mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
427 lines
15 KiB
Python
427 lines
15 KiB
Python
import glob
|
|
from collections import OrderedDict
|
|
import os
|
|
|
|
from toolkit.lora_special import LoRASpecialNetwork
|
|
from toolkit.optimizer import get_optimizer
|
|
|
|
from toolkit.scheduler import get_lr_scheduler
|
|
from toolkit.stable_diffusion_model import StableDiffusion
|
|
|
|
from jobs.process import BaseTrainProcess
|
|
from toolkit.metadata import get_meta_for_safetensors, load_metadata_from_safetensors, add_base_model_info_to_meta
|
|
from toolkit.train_tools import get_torch_dtype
|
|
import gc
|
|
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
from toolkit.config_modules import SaveConfig, LogingConfig, SampleConfig, NetworkConfig, TrainConfig, ModelConfig, \
|
|
GenerateImageConfig
|
|
|
|
|
|
def flush():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
class BaseSDTrainProcess(BaseTrainProcess):
|
|
sd: StableDiffusion
|
|
|
|
def __init__(self, process_id: int, job, config: OrderedDict, custom_pipeline=None):
|
|
super().__init__(process_id, job, config)
|
|
self.custom_pipeline = custom_pipeline
|
|
self.step_num = 0
|
|
self.start_step = 0
|
|
self.device = self.get_conf('device', self.job.device)
|
|
self.device_torch = torch.device(self.device)
|
|
network_config = self.get_conf('network', None)
|
|
if network_config is not None:
|
|
self.network_config = NetworkConfig(**network_config)
|
|
else:
|
|
self.network_config = None
|
|
self.training_folder = self.get_conf('training_folder', self.job.training_folder)
|
|
self.train_config = TrainConfig(**self.get_conf('train', {}))
|
|
self.model_config = ModelConfig(**self.get_conf('model', {}))
|
|
self.save_config = SaveConfig(**self.get_conf('save', {}))
|
|
self.sample_config = SampleConfig(**self.get_conf('sample', {}))
|
|
first_sample_config = self.get_conf('first_sample', None)
|
|
if first_sample_config is not None:
|
|
self.has_first_sample_requested = True
|
|
self.first_sample_config = SampleConfig(**first_sample_config)
|
|
else:
|
|
self.has_first_sample_requested = False
|
|
self.first_sample_config = self.sample_config
|
|
self.logging_config = LogingConfig(**self.get_conf('logging', {}))
|
|
self.optimizer = None
|
|
self.lr_scheduler = None
|
|
|
|
self.sd = StableDiffusion(
|
|
device=self.device,
|
|
model_config=self.model_config,
|
|
dtype=self.train_config.dtype,
|
|
custom_pipeline=self.custom_pipeline,
|
|
)
|
|
|
|
# to hold network if there is one
|
|
self.network = None
|
|
|
|
def sample(self, step=None, is_first=False):
|
|
sample_folder = os.path.join(self.save_root, 'samples')
|
|
gen_img_config_list = []
|
|
|
|
sample_config = self.first_sample_config if is_first else self.sample_config
|
|
start_seed = sample_config.seed
|
|
current_seed = start_seed
|
|
for i in range(len(sample_config.prompts)):
|
|
if sample_config.walk_seed:
|
|
current_seed = start_seed + i
|
|
|
|
step_num = ''
|
|
if step is not None:
|
|
# zero-pad 9 digits
|
|
step_num = f"_{str(step).zfill(9)}"
|
|
|
|
filename = f"[time]_{step_num}_[count].png"
|
|
|
|
output_path = os.path.join(sample_folder, filename)
|
|
|
|
gen_img_config_list.append(GenerateImageConfig(
|
|
prompt=sample_config.prompts[i], # it will autoparse the prompt
|
|
width=sample_config.width,
|
|
height=sample_config.height,
|
|
negative_prompt=sample_config.neg,
|
|
seed=current_seed,
|
|
guidance_scale=sample_config.guidance_scale,
|
|
guidance_rescale=sample_config.guidance_rescale,
|
|
num_inference_steps=sample_config.sample_steps,
|
|
network_multiplier=sample_config.network_multiplier,
|
|
output_path=output_path,
|
|
))
|
|
|
|
# send to be generated
|
|
self.sd.generate_images(gen_img_config_list)
|
|
|
|
def update_training_metadata(self):
|
|
o_dict = OrderedDict({
|
|
"training_info": self.get_training_info()
|
|
})
|
|
if self.model_config.is_v2:
|
|
o_dict['ss_v2'] = True
|
|
o_dict['ss_base_model_version'] = 'sd_2.1'
|
|
|
|
elif self.model_config.is_xl:
|
|
o_dict['ss_base_model_version'] = 'sdxl_1.0'
|
|
else:
|
|
o_dict['ss_base_model_version'] = 'sd_1.5'
|
|
|
|
o_dict = add_base_model_info_to_meta(
|
|
o_dict,
|
|
is_v2=self.model_config.is_v2,
|
|
is_xl=self.model_config.is_xl,
|
|
)
|
|
o_dict['ss_output_name'] = self.job.name
|
|
|
|
self.add_meta(o_dict)
|
|
|
|
def get_training_info(self):
|
|
info = OrderedDict({
|
|
'step': self.step_num + 1
|
|
})
|
|
return info
|
|
|
|
def clean_up_saves(self):
|
|
# remove old saves
|
|
# get latest saved step
|
|
if os.path.exists(self.save_root):
|
|
latest_file = None
|
|
# pattern is {job_name}_{zero_filles_step}.safetensors but NOT {job_name}.safetensors
|
|
pattern = f"{self.job.name}_*.safetensors"
|
|
files = glob.glob(os.path.join(self.save_root, pattern))
|
|
if len(files) > self.save_config.max_step_saves_to_keep:
|
|
# remove all but the latest max_step_saves_to_keep
|
|
files.sort(key=os.path.getctime)
|
|
for file in files[:-self.save_config.max_step_saves_to_keep]:
|
|
self.print(f"Removing old save: {file}")
|
|
os.remove(file)
|
|
return latest_file
|
|
else:
|
|
return None
|
|
|
|
def save(self, step=None):
|
|
if not os.path.exists(self.save_root):
|
|
os.makedirs(self.save_root, exist_ok=True)
|
|
|
|
step_num = ''
|
|
if step is not None:
|
|
# zeropad 9 digits
|
|
step_num = f"_{str(step).zfill(9)}"
|
|
|
|
self.update_training_metadata()
|
|
filename = f'{self.job.name}{step_num}.safetensors'
|
|
file_path = os.path.join(self.save_root, filename)
|
|
# prepare meta
|
|
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
|
|
if self.network is not None:
|
|
prev_multiplier = self.network.multiplier
|
|
self.network.multiplier = 1.0
|
|
# TODO handle dreambooth, fine tuning, etc
|
|
self.network.save_weights(
|
|
file_path,
|
|
dtype=get_torch_dtype(self.save_config.dtype),
|
|
metadata=save_meta
|
|
)
|
|
self.network.multiplier = prev_multiplier
|
|
else:
|
|
self.sd.save(
|
|
file_path,
|
|
save_meta,
|
|
get_torch_dtype(self.save_config.dtype)
|
|
)
|
|
|
|
self.print(f"Saved to {file_path}")
|
|
self.clean_up_saves()
|
|
|
|
# Called before the model is loaded
|
|
def hook_before_model_load(self):
|
|
# override in subclass
|
|
pass
|
|
|
|
def hook_add_extra_train_params(self, params):
|
|
# override in subclass
|
|
return params
|
|
|
|
def hook_before_train_loop(self):
|
|
pass
|
|
|
|
def hook_train_loop(self):
|
|
# return loss
|
|
return 0.0
|
|
|
|
def get_latest_save_path(self):
|
|
# get latest saved step
|
|
if os.path.exists(self.save_root):
|
|
latest_file = None
|
|
# pattern is {job_name}_{zero_filles_step}.safetensors or {job_name}.safetensors
|
|
pattern = f"{self.job.name}*.safetensors"
|
|
files = glob.glob(os.path.join(self.save_root, pattern))
|
|
if len(files) > 0:
|
|
latest_file = max(files, key=os.path.getctime)
|
|
return latest_file
|
|
else:
|
|
return None
|
|
|
|
def load_weights(self, path):
|
|
if self.network is not None:
|
|
self.network.load_weights(path)
|
|
meta = load_metadata_from_safetensors(path)
|
|
# if 'training_info' in Orderdict keys
|
|
if 'training_info' in meta and 'step' in meta['training_info']:
|
|
self.step_num = meta['training_info']['step']
|
|
self.start_step = self.step_num
|
|
print(f"Found step {self.step_num} in metadata, starting from there")
|
|
|
|
else:
|
|
print("load_weights not implemented for non-network models")
|
|
|
|
def run(self):
|
|
# run base process run
|
|
BaseTrainProcess.run(self)
|
|
### HOOK ###
|
|
self.hook_before_model_load()
|
|
# run base sd process run
|
|
self.sd.load_model()
|
|
|
|
dtype = get_torch_dtype(self.train_config.dtype)
|
|
|
|
# model is loaded from BaseSDProcess
|
|
unet = self.sd.unet
|
|
vae = self.sd.vae
|
|
tokenizer = self.sd.tokenizer
|
|
text_encoder = self.sd.text_encoder
|
|
noise_scheduler = self.sd.noise_scheduler
|
|
|
|
if self.train_config.xformers:
|
|
vae.set_use_memory_efficient_attention_xformers(True)
|
|
unet.enable_xformers_memory_efficient_attention()
|
|
if self.train_config.gradient_checkpointing:
|
|
unet.enable_gradient_checkpointing()
|
|
# if isinstance(text_encoder, list):
|
|
# for te in text_encoder:
|
|
# te.enable_gradient_checkpointing()
|
|
# else:
|
|
# text_encoder.enable_gradient_checkpointing()
|
|
|
|
unet.to(self.device_torch, dtype=dtype)
|
|
unet.requires_grad_(False)
|
|
unet.eval()
|
|
vae = vae.to(torch.device('cpu'), dtype=dtype)
|
|
vae.requires_grad_(False)
|
|
vae.eval()
|
|
|
|
if self.network_config is not None:
|
|
self.network = LoRASpecialNetwork(
|
|
text_encoder=text_encoder,
|
|
unet=unet,
|
|
lora_dim=self.network_config.linear,
|
|
multiplier=1.0,
|
|
alpha=self.network_config.linear_alpha,
|
|
train_unet=self.train_config.train_unet,
|
|
train_text_encoder=self.train_config.train_text_encoder,
|
|
conv_lora_dim=self.network_config.conv,
|
|
conv_alpha=self.network_config.conv_alpha,
|
|
)
|
|
|
|
self.network.force_to(self.device_torch, dtype=dtype)
|
|
# give network to sd so it can use it
|
|
self.sd.network = self.network
|
|
|
|
self.network.apply_to(
|
|
text_encoder,
|
|
unet,
|
|
self.train_config.train_text_encoder,
|
|
self.train_config.train_unet
|
|
)
|
|
|
|
self.network.prepare_grad_etc(text_encoder, unet)
|
|
|
|
params = self.network.prepare_optimizer_params(
|
|
text_encoder_lr=self.train_config.lr,
|
|
unet_lr=self.train_config.lr,
|
|
default_lr=self.train_config.lr
|
|
)
|
|
|
|
if self.train_config.gradient_checkpointing:
|
|
self.network.enable_gradient_checkpointing()
|
|
|
|
latest_save_path = self.get_latest_save_path()
|
|
if latest_save_path is not None:
|
|
self.print(f"#### IMPORTANT RESUMING FROM {latest_save_path} ####")
|
|
self.print(f"Loading from {latest_save_path}")
|
|
self.load_weights(latest_save_path)
|
|
self.network.multiplier = 1.0
|
|
|
|
|
|
else:
|
|
params = []
|
|
# assume dreambooth/finetune
|
|
if self.train_config.train_text_encoder:
|
|
if self.sd.is_xl:
|
|
for te in text_encoder:
|
|
te.requires_grad_(True)
|
|
te.train()
|
|
params += te.parameters()
|
|
else:
|
|
text_encoder.requires_grad_(True)
|
|
text_encoder.train()
|
|
params += text_encoder.parameters()
|
|
if self.train_config.train_unet:
|
|
unet.requires_grad_(True)
|
|
unet.train()
|
|
params += unet.parameters()
|
|
|
|
# TODO recover save if training network. Maybe load from beginning
|
|
|
|
### HOOK ###
|
|
params = self.hook_add_extra_train_params(params)
|
|
|
|
optimizer_type = self.train_config.optimizer.lower()
|
|
optimizer = get_optimizer(params, optimizer_type, learning_rate=self.train_config.lr,
|
|
optimizer_params=self.train_config.optimizer_params)
|
|
self.optimizer = optimizer
|
|
|
|
lr_scheduler = get_lr_scheduler(
|
|
self.train_config.lr_scheduler,
|
|
optimizer,
|
|
max_iterations=self.train_config.steps,
|
|
lr_min=self.train_config.lr / 100,
|
|
)
|
|
|
|
self.lr_scheduler = lr_scheduler
|
|
|
|
### HOOK ###
|
|
self.hook_before_train_loop()
|
|
|
|
if self.has_first_sample_requested:
|
|
self.print("Generating first sample from first sample config")
|
|
self.sample(0, is_first=True)
|
|
|
|
# sample first
|
|
if self.train_config.skip_first_sample:
|
|
self.print("Skipping first sample due to config setting")
|
|
else:
|
|
self.print("Generating baseline samples before training")
|
|
self.sample(0)
|
|
|
|
self.progress_bar = tqdm(
|
|
total=self.train_config.steps,
|
|
desc=self.job.name,
|
|
leave=True,
|
|
initial=self.step_num,
|
|
iterable=range(0, self.train_config.steps),
|
|
)
|
|
|
|
# self.step_num = 0
|
|
for step in range(self.step_num, self.train_config.steps):
|
|
# todo handle dataloader here maybe, not sure
|
|
|
|
### HOOK ###
|
|
loss_dict = self.hook_train_loop()
|
|
|
|
if self.train_config.optimizer.lower().startswith('dadaptation') or \
|
|
self.train_config.optimizer.lower().startswith('prodigy'):
|
|
learning_rate = (
|
|
optimizer.param_groups[0]["d"] *
|
|
optimizer.param_groups[0]["lr"]
|
|
)
|
|
else:
|
|
learning_rate = optimizer.param_groups[0]['lr']
|
|
|
|
prog_bar_string = f"lr: {learning_rate:.1e}"
|
|
for key, value in loss_dict.items():
|
|
prog_bar_string += f" {key}: {value:.3e}"
|
|
|
|
self.progress_bar.set_postfix_str(prog_bar_string)
|
|
|
|
# don't do on first step
|
|
if self.step_num != self.start_step:
|
|
# pause progress bar
|
|
self.progress_bar.unpause() # makes it so doesn't track time
|
|
if self.sample_config.sample_every and self.step_num % self.sample_config.sample_every == 0:
|
|
# print above the progress bar
|
|
self.sample(self.step_num)
|
|
|
|
if self.save_config.save_every and self.step_num % self.save_config.save_every == 0:
|
|
# print above the progress bar
|
|
self.print(f"Saving at step {self.step_num}")
|
|
self.save(self.step_num)
|
|
|
|
if self.logging_config.log_every and self.step_num % self.logging_config.log_every == 0:
|
|
# log to tensorboard
|
|
if self.writer is not None:
|
|
for key, value in loss_dict.items():
|
|
self.writer.add_scalar(f"{key}", value, self.step_num)
|
|
self.writer.add_scalar(f"lr", learning_rate, self.step_num)
|
|
self.progress_bar.refresh()
|
|
|
|
# sets progress bar to match out step
|
|
self.progress_bar.update(step - self.progress_bar.n)
|
|
# end of step
|
|
self.step_num = step
|
|
|
|
self.sample(self.step_num + 1)
|
|
print("")
|
|
self.save()
|
|
|
|
del (
|
|
self.sd,
|
|
unet,
|
|
noise_scheduler,
|
|
optimizer,
|
|
self.network,
|
|
tokenizer,
|
|
text_encoder,
|
|
)
|
|
|
|
flush()
|