mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
287 lines
11 KiB
Python
287 lines
11 KiB
Python
import math
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.optim import Optimizer
|
|
from toolkit.optimizers.optimizer_utils import copy_stochastic, Auto8bitTensor, stochastic_grad_accummulation
|
|
|
|
|
|
class Prodigy8bit(Optimizer):
|
|
r"""
|
|
Implements Adam with Prodigy step-sizes.
|
|
Handles stochastic rounding for various precisions as well as stochastic gradient accumulation.
|
|
Stores state in 8bit for memory savings.
|
|
Leave LR set to 1 unless you encounter instability.
|
|
|
|
Arguments:
|
|
params (iterable):
|
|
Iterable of parameters to optimize or dicts defining parameter groups.
|
|
lr (float):
|
|
Learning rate adjustment parameter. Increases or decreases the Prodigy learning rate.
|
|
betas (Tuple[float, float], optional): coefficients used for computing
|
|
running averages of gradient and its square (default: (0.9, 0.999))
|
|
beta3 (float):
|
|
coefficients for computing the Prodidy stepsize using running averages.
|
|
If set to None, uses the value of square root of beta2 (default: None).
|
|
eps (float):
|
|
Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-8).
|
|
weight_decay (float):
|
|
Weight decay, i.e. a L2 penalty (default: 0).
|
|
decouple (boolean):
|
|
Use AdamW style decoupled weight decay
|
|
use_bias_correction (boolean):
|
|
Turn on Adam's bias correction. Off by default.
|
|
safeguard_warmup (boolean):
|
|
Remove lr from the denominator of D estimate to avoid issues during warm-up stage. Off by default.
|
|
d0 (float):
|
|
Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing.
|
|
d_coef (float):
|
|
Coefficient in the expression for the estimate of d (default 1.0).
|
|
Values such as 0.5 and 2.0 typically work as well.
|
|
Changing this parameter is the preferred way to tune the method.
|
|
growth_rate (float):
|
|
prevent the D estimate from growing faster than this multiplicative rate.
|
|
Default is inf, for unrestricted. Values like 1.02 give a kind of learning
|
|
rate warmup effect.
|
|
fsdp_in_use (bool):
|
|
If you're using sharded parameters, this should be set to True. The optimizer
|
|
will attempt to auto-detect this, but if you're using an implementation other
|
|
than PyTorch's builtin version, the auto-detection won't work.
|
|
"""
|
|
|
|
def __init__(self, params, lr=1.0,
|
|
betas=(0.9, 0.999), beta3=None,
|
|
eps=1e-8, weight_decay=0, decouple=True,
|
|
use_bias_correction=False, safeguard_warmup=False,
|
|
d0=1e-6, d_coef=1.0, growth_rate=float('inf'),
|
|
fsdp_in_use=False):
|
|
if not 0.0 < d0:
|
|
raise ValueError("Invalid d0 value: {}".format(d0))
|
|
if not 0.0 < lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 < eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
if not 0.0 <= betas[0] < 1.0:
|
|
raise ValueError(
|
|
"Invalid beta parameter at index 0: {}".format(betas[0]))
|
|
if not 0.0 <= betas[1] < 1.0:
|
|
raise ValueError(
|
|
"Invalid beta parameter at index 1: {}".format(betas[1]))
|
|
|
|
if decouple and weight_decay > 0:
|
|
print(f"Using decoupled weight decay")
|
|
|
|
defaults = dict(lr=lr, betas=betas, beta3=beta3,
|
|
eps=eps, weight_decay=weight_decay,
|
|
d=d0, d0=d0, d_max=d0,
|
|
d_numerator=0.0, d_coef=d_coef,
|
|
k=0, growth_rate=growth_rate,
|
|
use_bias_correction=use_bias_correction,
|
|
decouple=decouple, safeguard_warmup=safeguard_warmup,
|
|
fsdp_in_use=fsdp_in_use)
|
|
self.d0 = d0
|
|
super(Prodigy8bit, self).__init__(params, defaults)
|
|
|
|
self.is_stochastic_rounding_accumulation = False
|
|
|
|
# setup stochastic grad accum hooks
|
|
for group in self.param_groups:
|
|
for param in group['params']:
|
|
if param.requires_grad and param.dtype != torch.float32:
|
|
self.is_stochastic_rounding_accumulation = True
|
|
param.register_post_accumulate_grad_hook(
|
|
stochastic_grad_accummulation
|
|
)
|
|
|
|
@property
|
|
def supports_memory_efficient_fp16(self):
|
|
return False
|
|
|
|
@property
|
|
def supports_flat_params(self):
|
|
return True
|
|
|
|
def step_hook(self):
|
|
if not self.is_stochastic_rounding_accumulation:
|
|
return
|
|
# copy over stochastically rounded grads
|
|
for group in self.param_groups:
|
|
for param in group['params']:
|
|
if param.requires_grad and hasattr(param, "_accum_grad"):
|
|
param.grad = param._accum_grad
|
|
del param._accum_grad
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Arguments:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
# call pre step
|
|
self.step_hook()
|
|
loss = None
|
|
if closure is not None:
|
|
loss = closure()
|
|
|
|
d_denom = 0.0
|
|
|
|
group = self.param_groups[0]
|
|
use_bias_correction = group['use_bias_correction']
|
|
beta1, beta2 = group['betas']
|
|
beta3 = group['beta3']
|
|
if beta3 is None:
|
|
beta3 = math.sqrt(beta2)
|
|
k = group['k']
|
|
|
|
d = group['d']
|
|
d_max = group['d_max']
|
|
d_coef = group['d_coef']
|
|
lr = max(group['lr'] for group in self.param_groups)
|
|
|
|
if use_bias_correction:
|
|
bias_correction = ((1 - beta2**(k+1))**0.5) / (1 - beta1**(k+1))
|
|
else:
|
|
bias_correction = 1
|
|
|
|
dlr = d*lr*bias_correction
|
|
|
|
growth_rate = group['growth_rate']
|
|
decouple = group['decouple']
|
|
fsdp_in_use = group['fsdp_in_use']
|
|
|
|
d_numerator = group['d_numerator']
|
|
d_numerator *= beta3
|
|
|
|
for group in self.param_groups:
|
|
decay = group['weight_decay']
|
|
k = group['k']
|
|
eps = group['eps']
|
|
group_lr = group['lr']
|
|
d0 = group['d0']
|
|
safeguard_warmup = group['safeguard_warmup']
|
|
|
|
if group_lr not in [lr, 0.0]:
|
|
raise RuntimeError(
|
|
f"Setting different lr values in different parameter groups is only supported for values of 0")
|
|
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
if hasattr(p, "_fsdp_flattened"):
|
|
fsdp_in_use = True
|
|
|
|
grad = p.grad.data.to(torch.float32)
|
|
p_fp32 = p.clone().to(torch.float32)
|
|
|
|
# Apply weight decay (coupled variant)
|
|
if decay != 0 and not decouple:
|
|
grad.add_(p_fp32.data, alpha=decay)
|
|
|
|
state = self.state[p]
|
|
|
|
# State initialization
|
|
if 'step' not in state:
|
|
state['step'] = 0
|
|
state['s'] = Auto8bitTensor(
|
|
torch.zeros_like(p_fp32.data).detach())
|
|
state['p0'] = Auto8bitTensor(p_fp32.detach().clone())
|
|
# Exponential moving average of gradient values
|
|
state['exp_avg'] = Auto8bitTensor(
|
|
torch.zeros_like(p_fp32.data).detach())
|
|
# Exponential moving average of squared gradient values
|
|
state['exp_avg_sq'] = Auto8bitTensor(
|
|
torch.zeros_like(p_fp32.data).detach())
|
|
|
|
exp_avg = state['exp_avg'].to(torch.float32)
|
|
exp_avg_sq = state['exp_avg_sq'].to(torch.float32)
|
|
|
|
s = state['s'].to(torch.float32)
|
|
p0 = state['p0'].to(torch.float32)
|
|
|
|
if group_lr > 0.0:
|
|
# we use d / d0 instead of just d to avoid getting values that are too small
|
|
d_numerator += (d / d0) * dlr * torch.dot(grad.flatten(),
|
|
(p0.data - p_fp32.data).flatten()).item()
|
|
|
|
# Adam EMA updates
|
|
exp_avg.mul_(beta1).add_(grad, alpha=d * (1-beta1))
|
|
exp_avg_sq.mul_(beta2).addcmul_(
|
|
grad, grad, value=d * d * (1-beta2))
|
|
|
|
if safeguard_warmup:
|
|
s.mul_(beta3).add_(grad, alpha=((d / d0) * d))
|
|
else:
|
|
s.mul_(beta3).add_(grad, alpha=((d / d0) * dlr))
|
|
d_denom += s.abs().sum().item()
|
|
|
|
# update state with stochastic rounding
|
|
state['exp_avg'] = Auto8bitTensor(exp_avg)
|
|
state['exp_avg_sq'] = Auto8bitTensor(exp_avg_sq)
|
|
state['s'] = Auto8bitTensor(s)
|
|
state['p0'] = Auto8bitTensor(p0)
|
|
|
|
d_hat = d
|
|
|
|
# if we have not done any progres, return
|
|
# if we have any gradients available, will have d_denom > 0 (unless \|g\|=0)
|
|
if d_denom == 0:
|
|
return loss
|
|
|
|
if lr > 0.0:
|
|
if fsdp_in_use:
|
|
dist_tensor = torch.zeros(2).cuda()
|
|
dist_tensor[0] = d_numerator
|
|
dist_tensor[1] = d_denom
|
|
dist.all_reduce(dist_tensor, op=dist.ReduceOp.SUM)
|
|
global_d_numerator = dist_tensor[0]
|
|
global_d_denom = dist_tensor[1]
|
|
else:
|
|
global_d_numerator = d_numerator
|
|
global_d_denom = d_denom
|
|
|
|
d_hat = d_coef * global_d_numerator / global_d_denom
|
|
if d == group['d0']:
|
|
d = max(d, d_hat)
|
|
d_max = max(d_max, d_hat)
|
|
d = min(d_max, d * growth_rate)
|
|
|
|
for group in self.param_groups:
|
|
group['d_numerator'] = global_d_numerator
|
|
group['d_denom'] = global_d_denom
|
|
group['d'] = d
|
|
group['d_max'] = d_max
|
|
group['d_hat'] = d_hat
|
|
|
|
decay = group['weight_decay']
|
|
k = group['k']
|
|
eps = group['eps']
|
|
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
grad = p.grad.data.to(torch.float32)
|
|
p_fp32 = p.clone().to(torch.float32)
|
|
|
|
state = self.state[p]
|
|
|
|
exp_avg = state['exp_avg'].to(torch.float32)
|
|
exp_avg_sq = state['exp_avg_sq'].to(torch.float32)
|
|
|
|
state['step'] += 1
|
|
|
|
denom = exp_avg_sq.sqrt().add_(d * eps)
|
|
|
|
# Apply weight decay (decoupled variant)
|
|
if decay != 0 and decouple:
|
|
p_fp32.data.add_(p_fp32.data, alpha=-decay * dlr)
|
|
|
|
# Take step
|
|
p_fp32.data.addcdiv_(exp_avg, denom, value=-dlr)
|
|
# apply stochastic rounding
|
|
copy_stochastic(p.data, p_fp32.data)
|
|
|
|
group['k'] = k + 1
|
|
|
|
return loss
|