mirror of
https://github.com/power88/webui-fooocus-prompt-expansion.git
synced 2026-01-26 19:29:50 +00:00
192 lines
7.2 KiB
Python
192 lines
7.2 KiB
Python
# Fooocus GPT2 Expansion
|
|
# Algorithm created by Lvmin Zhang at 2023, Stanford
|
|
# Modified by power88 and GPT-4o for stable-diffusion-webui
|
|
# If used inside Fooocus, any use is permitted.
|
|
# If used outside Fooocus, only non-commercial use is permitted (CC-By NC 4.0).
|
|
# This applies to the word list, vocab, model, and algorithm.
|
|
|
|
|
|
import os
|
|
import re
|
|
import torch
|
|
import math
|
|
import shutil
|
|
import gradio as gr
|
|
|
|
from pathlib import Path
|
|
from modules.scripts import basedir
|
|
from huggingface_hub import hf_hub_download
|
|
from transformers.generation.logits_process import LogitsProcessorList
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
|
|
from modules import scripts, paths_internal, errors, devices
|
|
from modules.ui_components import InputAccordion
|
|
from functools import lru_cache
|
|
|
|
|
|
# limitation of np.random.seed(), called from transformers.set_seed()
|
|
SEED_LIMIT_NUMPY = 2 ** 32
|
|
neg_inf = - 8192.0
|
|
ext_dir = Path(basedir())
|
|
fooocus_expansion_model_dir = Path(paths_internal.models_path) / "prompt_expansion"
|
|
|
|
|
|
def download_model():
|
|
fooocus_expansion_model = fooocus_expansion_model_dir / "pytorch_model.bin"
|
|
if not fooocus_expansion_model.exists():
|
|
try:
|
|
print(f'### webui-fooocus-prompt-expansion: Downloading model...')
|
|
shutil.copytree(ext_dir / "models", fooocus_expansion_model_dir)
|
|
hf_hub_download(repo_id='lllyasviel/misc', filename='fooocus_expansion.bin', local_dir=fooocus_expansion_model_dir)
|
|
os.rename(fooocus_expansion_model_dir / 'fooocus_expansion.bin', fooocus_expansion_model)
|
|
except Exception:
|
|
errors.report('### webui-fooocus-prompt-expansion: Failed to download model', exc_info=True)
|
|
print(f'Download the model manually from "https://huggingface.co/lllyasviel/misc/tree/main/fooocus_expansion.bin" and place it in {fooocus_expansion_model_dir}.')
|
|
|
|
|
|
def safe_str(x):
|
|
return re.sub(r' +', r' ', x).strip(",. \r\n")
|
|
|
|
|
|
class FooocusExpansion:
|
|
def __init__(self):
|
|
|
|
download_model()
|
|
print(f'Loading models from {fooocus_expansion_model_dir}')
|
|
self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_model_dir)
|
|
|
|
positive_words = open(os.path.join(fooocus_expansion_model_dir, 'positive.txt'),
|
|
encoding='utf-8').read().splitlines()
|
|
positive_words = ['Ġ' + x.lower() for x in positive_words if x != '']
|
|
|
|
self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf
|
|
|
|
debug_list = []
|
|
for k, v in self.tokenizer.vocab.items():
|
|
if k in positive_words:
|
|
self.logits_bias[0, v] = 0
|
|
debug_list.append(k[1:])
|
|
|
|
print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.')
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_model_dir)
|
|
self.model.eval()
|
|
|
|
self.load_model_device = devices.get_optimal_device_name()
|
|
use_fp16 = devices.dtype == torch.float16
|
|
if use_fp16:
|
|
self.model.half()
|
|
|
|
self.model.to(self.load_model_device) # Ensure the model is on the correct device
|
|
|
|
print(f'Fooocus Expansion engine loaded for {self.load_model_device}, use_fp16 = {use_fp16}.')
|
|
|
|
def unload_model(self):
|
|
"""Unload the model to free up memory."""
|
|
del self.model
|
|
torch.cuda.empty_cache()
|
|
print('Model unloaded and memory cleared.')
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def logits_processor(self, input_ids, scores):
|
|
assert scores.ndim == 2 and scores.shape[0] == 1
|
|
self.logits_bias = self.logits_bias.to(self.load_model_device)
|
|
|
|
bias = self.logits_bias.clone().to(self.load_model_device) # Ensure bias is on the correct device
|
|
bias[0, input_ids[0].to(self.load_model_device).long()] = neg_inf # Ensure input_ids are on the correct device
|
|
bias[0, 11] = 0
|
|
|
|
return scores + bias.to(scores.device) # Ensure bias is on the same device as scores
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def __call__(self, prompt, seed):
|
|
if not prompt:
|
|
return ''
|
|
|
|
seed = int(seed) % SEED_LIMIT_NUMPY
|
|
set_seed(seed)
|
|
prompt = safe_str(prompt) + ','
|
|
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
|
|
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.load_model_device)
|
|
tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.load_model_device)
|
|
|
|
current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1])
|
|
max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0))
|
|
max_new_tokens = max_token_length - current_token_length
|
|
|
|
features = self.model.generate(**tokenized_kwargs,
|
|
top_k=100,
|
|
max_new_tokens=max_new_tokens,
|
|
do_sample=True,
|
|
logits_processor=LogitsProcessorList([self.logits_processor]))
|
|
|
|
response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
|
|
result = safe_str(response[0])
|
|
|
|
return result
|
|
|
|
|
|
@lru_cache(maxsize=1024)
|
|
def create_positive(positive, seed):
|
|
if not positive:
|
|
return ''
|
|
expansion = FooocusExpansion()
|
|
positive = expansion(positive, seed=seed)
|
|
expansion.unload_model() # Unload the model after use
|
|
return positive
|
|
|
|
|
|
class FooocusPromptExpansion(scripts.Script):
|
|
infotext_fields = []
|
|
prompt_elm = None
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.on_after_component_elem_id = [
|
|
('txt2img_prompt', self.save_prompt_box),
|
|
('img2img_prompt', self.save_prompt_box),
|
|
]
|
|
|
|
def title(self):
|
|
return 'Fooocus Prompt Expansion'
|
|
|
|
def show(self, is_img2img):
|
|
return scripts.AlwaysVisible
|
|
|
|
def ui(self, is_img2img):
|
|
with InputAccordion(False, label="Fooocus Expansion") as is_enabled:
|
|
seed = gr.Number(value=0, label="Seed", info="Seed for random number generator")
|
|
if self.prompt_elm is not None:
|
|
with gr.Row():
|
|
generate = gr.Button('Generate expansion prompts')
|
|
apply = gr.Button('Apply expansion to prompts')
|
|
preview = gr.Textbox('', label="Expansion preview", interactive=False)
|
|
|
|
for x in [preview, generate, apply]:
|
|
x.save_to_config = False
|
|
|
|
generate.click(
|
|
fn=create_positive,
|
|
inputs=[self.prompt_elm, seed],
|
|
outputs=[preview],
|
|
)
|
|
apply.click(
|
|
fn=lambda *args: (False, create_positive(*args)),
|
|
inputs=[self.prompt_elm, seed],
|
|
outputs=[is_enabled, self.prompt_elm],
|
|
)
|
|
self.infotext_fields.append((is_enabled, lambda d: False))
|
|
|
|
return [is_enabled, seed]
|
|
|
|
def process(self, p, is_enabled, seed):
|
|
if not is_enabled:
|
|
return
|
|
|
|
for i, prompt in enumerate(p.all_prompts):
|
|
p.all_prompts[i] = create_positive(prompt, seed)
|
|
|
|
def save_prompt_box(self, on_component):
|
|
self.prompt_elm = on_component.component
|