diff --git a/README.md b/README.md
index bd2dac1..2c6d756 100644
--- a/README.md
+++ b/README.md
@@ -1,14 +1,78 @@
## BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
-This is the PyTorch implementation of the BLIP paper.
+
+
+This is the PyTorch implementation of the BLIP paper. The code has been tested on PyTorch 1.9 and 1.10.
+To install the dependencies, run
python -m torch.distributed.run --nproc_per_node=8 --use_env train_retrieval.py \ +--config ./configs/retrieval_coco.yaml \ +--output_dir output/retrieval_coco \ +--evaluate+3. To finetune the pre-trained checkpoint using 8 A100 GPUs, first set 'pretrained' in configs/retrieval_coco.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth". Then run: +
python -m torch.distributed.run --nproc_per_node=8 --use_env train_retrieval.py \ +--config ./configs/retrieval_coco.yaml \ +--output_dir output/retrieval_coco+ +### Image-Text Captioning: +1. Download COCO and NoCaps datasets from the original websites, and set 'image_root' in configs/caption_coco.yaml and configs/nocaps.yaml accordingly. +2. To evaluate the finetuned BLIP model on COCO, run: +
python -m torch.distributed.run --nproc_per_node=8 --use_env train_caption.py --evaluate+3. To evaluate the finetuned BLIP model on NoCaps, generate results with: (evaluation needs to be performed on official server) +
python -m torch.distributed.run --nproc_per_node=8 --use_env eval_nocaps.py+4. To finetune the pre-trained checkpoint using 8 A100 GPUs, first set 'pretrained' in configs/caption_coco.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base.pth". Then run: +
python -m torch.distributed.run --nproc_per_node=8 --use_env train_caption.py+ +### VQA: +1. Download VQA v2 dataset and Visual Genome dataset from the original websites, and set 'vqa_root' and 'vg_root' in configs/vqa.yaml. +2. To evaluate the finetuned BLIP model, generate results with: (evaluation needs to be performed on official server) +
python -m torch.distributed.run --nproc_per_node=8 --use_env train_vqa.py --evaluate+3. To finetune the pre-trained checkpoint using 16 A100 GPUs, first set 'pretrained' in configs/vqa.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base.pth". Then run: +
python -m torch.distributed.run --nproc_per_node=16 --use_env train_vqa.py+ +### NLVR2: +1. Download NLVR2 dataset from the original websites, and set 'image_root' in configs/nlvr.yaml. +2. To evaluate the finetuned BLIP model, run +
python -m torch.distributed.run --nproc_per_node=8 --use_env train_nlvr.py --evaluate+3. To finetune the pre-trained checkpoint using 16 A100 GPUs, first set 'pretrained' in configs/nlvr.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth". Then run: +
python -m torch.distributed.run --nproc_per_node=16 --use_env train_nlvr.py+ +### Citation +If you find this code to be useful for your research, please consider citing. +
+@inproceedings{ALBEF,
+ title={Align before Fuse: Vision and Language Representation Learning with Momentum Distillation},
+ author={Junnan Li and Ramprasaath R. Selvaraju and Akhilesh Deepak Gotmare and Shafiq Joty and Caiming Xiong and Steven Hoi},
+ year={2021},
+ booktitle={NeurIPS},
+}