mirror of
https://github.com/salesforce/BLIP.git
synced 2026-01-26 15:19:44 +00:00
update demo
This commit is contained in:
76
models/blip_itm.py
Normal file
76
models/blip_itm.py
Normal file
@@ -0,0 +1,76 @@
|
||||
from models.med import BertConfig, BertModel
|
||||
from transformers import BertTokenizer
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
||||
|
||||
class BLIP_ITM(nn.Module):
|
||||
def __init__(self,
|
||||
med_config = 'configs/med_config.json',
|
||||
image_size = 384,
|
||||
vit = 'base',
|
||||
vit_grad_ckpt = False,
|
||||
vit_ckpt_layer = 0,
|
||||
embed_dim = 256,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
||||
image_size (int): input image size
|
||||
vit (str): model size of vision transformer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
|
||||
self.tokenizer = init_tokenizer()
|
||||
med_config = BertConfig.from_json_file(med_config)
|
||||
med_config.encoder_width = vision_width
|
||||
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
||||
|
||||
text_width = self.text_encoder.config.hidden_size
|
||||
|
||||
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
||||
self.text_proj = nn.Linear(text_width, embed_dim)
|
||||
|
||||
self.itm_head = nn.Linear(text_width, 2)
|
||||
|
||||
|
||||
def forward(self, image, caption, match_head='itm'):
|
||||
|
||||
image_embeds = self.visual_encoder(image)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
||||
|
||||
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
|
||||
return_tensors="pt").to(image.device)
|
||||
|
||||
|
||||
if match_head=='itm':
|
||||
output = self.text_encoder(text.input_ids,
|
||||
attention_mask = text.attention_mask,
|
||||
encoder_hidden_states = image_embeds,
|
||||
encoder_attention_mask = image_atts,
|
||||
return_dict = True,
|
||||
)
|
||||
itm_output = self.itm_head(output.last_hidden_state[:,0,:])
|
||||
return itm_output
|
||||
|
||||
elif match_head=='itc':
|
||||
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
|
||||
return_dict = True, mode = 'text')
|
||||
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
|
||||
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
|
||||
|
||||
sim = image_feat @ text_feat.t()
|
||||
return sim
|
||||
|
||||
|
||||
def blip_itm(pretrained='',**kwargs):
|
||||
model = BLIP_ITM(**kwargs)
|
||||
if pretrained:
|
||||
model,msg = load_checkpoint(model,pretrained)
|
||||
assert(len(msg.missing_keys)==0)
|
||||
return model
|
||||
|
||||
Reference in New Issue
Block a user