mirror of
https://github.com/salesforce/BLIP.git
synced 2026-02-20 19:13:56 +00:00
add video-text retrieval
This commit is contained in:
110
data/video_dataset.py
Normal file
110
data/video_dataset.py
Normal file
@@ -0,0 +1,110 @@
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision.datasets.utils import download_url
|
||||
|
||||
from PIL import Image
|
||||
import torch
|
||||
import numpy as np
|
||||
import random
|
||||
import decord
|
||||
from decord import VideoReader
|
||||
import json
|
||||
import os
|
||||
from data.utils import pre_caption
|
||||
|
||||
decord.bridge.set_bridge("torch")
|
||||
|
||||
class ImageNorm(object):
|
||||
"""Apply Normalization to Image Pixels on GPU
|
||||
"""
|
||||
def __init__(self, mean, std):
|
||||
self.mean = torch.tensor(mean).view(1, 3, 1, 1)
|
||||
self.std = torch.tensor(std).view(1, 3, 1, 1)
|
||||
|
||||
def __call__(self, img):
|
||||
|
||||
if torch.max(img) > 1 and self.mean.max() <= 1:
|
||||
img.div_(255.)
|
||||
return img.sub_(self.mean).div_(self.std)
|
||||
|
||||
def load_jsonl(filename):
|
||||
with open(filename, "r") as f:
|
||||
return [json.loads(l.strip("\n")) for l in f.readlines()]
|
||||
|
||||
|
||||
class VideoDataset(Dataset):
|
||||
|
||||
def __init__(self, video_root, ann_root, num_frm=4, frm_sampling_strategy="rand", max_img_size=384, video_fmt='.mp4'):
|
||||
'''
|
||||
image_root (string): Root directory of video
|
||||
ann_root (string): directory to store the annotation file
|
||||
'''
|
||||
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/msrvtt_test.jsonl'
|
||||
filename = 'msrvtt_test.jsonl'
|
||||
|
||||
download_url(url,ann_root)
|
||||
self.annotation = load_jsonl(os.path.join(ann_root,filename))
|
||||
|
||||
self.num_frm = num_frm
|
||||
self.frm_sampling_strategy = frm_sampling_strategy
|
||||
self.max_img_size = max_img_size
|
||||
self.video_root = video_root
|
||||
self.video_fmt = video_fmt
|
||||
self.img_norm = ImageNorm(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
||||
|
||||
self.text = [pre_caption(ann['caption'],40) for ann in self.annotation]
|
||||
self.txt2video = [i for i in range(len(self.annotation))]
|
||||
self.video2txt = self.txt2video
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotation)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
||||
ann = self.annotation[index]
|
||||
|
||||
video_path = os.path.join(self.video_root, ann['clip_name'] + self.video_fmt)
|
||||
|
||||
vid_frm_array = self._load_video_from_path_decord(video_path, height=self.max_img_size, width=self.max_img_size)
|
||||
|
||||
video = self.img_norm(vid_frm_array.float())
|
||||
|
||||
return video, ann['clip_name']
|
||||
|
||||
|
||||
|
||||
def _load_video_from_path_decord(self, video_path, height=None, width=None, start_time=None, end_time=None, fps=-1):
|
||||
try:
|
||||
if not height or not width:
|
||||
vr = VideoReader(video_path)
|
||||
else:
|
||||
vr = VideoReader(video_path, width=width, height=height)
|
||||
|
||||
vlen = len(vr)
|
||||
|
||||
if start_time or end_time:
|
||||
assert fps > 0, 'must provide video fps if specifying start and end time.'
|
||||
|
||||
start_idx = min(int(start_time * fps), vlen)
|
||||
end_idx = min(int(end_time * fps), vlen)
|
||||
else:
|
||||
start_idx, end_idx = 0, vlen
|
||||
|
||||
if self.frm_sampling_strategy == 'uniform':
|
||||
frame_indices = np.arange(start_idx, end_idx, vlen / self.num_frm, dtype=int)
|
||||
elif self.frm_sampling_strategy == 'rand':
|
||||
frame_indices = sorted(random.sample(range(vlen), self.num_frm))
|
||||
elif self.frm_sampling_strategy == 'headtail':
|
||||
frame_indices_head = sorted(random.sample(range(vlen // 2), self.num_frm // 2))
|
||||
frame_indices_tail = sorted(random.sample(range(vlen // 2, vlen), self.num_frm // 2))
|
||||
frame_indices = frame_indices_head + frame_indices_tail
|
||||
else:
|
||||
raise NotImplementedError('Invalid sampling strategy {} '.format(self.frm_sampling_strategy))
|
||||
|
||||
raw_sample_frms = vr.get_batch(frame_indices)
|
||||
except Exception as e:
|
||||
return None
|
||||
|
||||
raw_sample_frms = raw_sample_frms.permute(0, 3, 1, 2)
|
||||
|
||||
return raw_sample_frms
|
||||
Reference in New Issue
Block a user