mirror of
https://github.com/salesforce/BLIP.git
synced 2026-01-26 23:29:44 +00:00
118 lines
4.1 KiB
Python
118 lines
4.1 KiB
Python
'''
|
|
* Copyright (c) 2022, salesforce.com, inc.
|
|
* All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
* By Junnan Li
|
|
'''
|
|
import argparse
|
|
import os
|
|
import ruamel_yaml as yaml
|
|
import numpy as np
|
|
import random
|
|
import time
|
|
import datetime
|
|
import json
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.backends.cudnn as cudnn
|
|
import torch.distributed as dist
|
|
from torch.utils.data import DataLoader
|
|
|
|
from models.blip import blip_decoder
|
|
import utils
|
|
from data import create_dataset, create_sampler, create_loader
|
|
from data.utils import save_result
|
|
|
|
@torch.no_grad()
|
|
def evaluate(model, data_loader, device, config):
|
|
# evaluate
|
|
model.eval()
|
|
|
|
metric_logger = utils.MetricLogger(delimiter=" ")
|
|
header = 'Evaluation:'
|
|
print_freq = 10
|
|
|
|
result = []
|
|
for image, image_id in metric_logger.log_every(data_loader, print_freq, header):
|
|
|
|
image = image.to(device)
|
|
|
|
captions = model.generate(image, sample=False, num_beams=config['num_beams'], max_length=config['max_length'],
|
|
min_length=config['min_length'], repetition_penalty=1.1)
|
|
|
|
for caption, img_id in zip(captions, image_id):
|
|
result.append({"image_id": img_id.item(), "caption": caption})
|
|
|
|
return result
|
|
|
|
|
|
def main(args, config):
|
|
utils.init_distributed_mode(args)
|
|
|
|
device = torch.device(args.device)
|
|
|
|
# fix the seed for reproducibility
|
|
seed = args.seed + utils.get_rank()
|
|
torch.manual_seed(seed)
|
|
np.random.seed(seed)
|
|
random.seed(seed)
|
|
cudnn.benchmark = True
|
|
|
|
#### Dataset ####
|
|
print("Creating captioning dataset")
|
|
val_dataset, test_dataset = create_dataset('nocaps', config)
|
|
|
|
if args.distributed:
|
|
num_tasks = utils.get_world_size()
|
|
global_rank = utils.get_rank()
|
|
samplers = create_sampler([val_dataset,test_dataset], [False,False], num_tasks, global_rank)
|
|
else:
|
|
samplers = [None,None]
|
|
|
|
val_loader, test_loader = create_loader([val_dataset, test_dataset],samplers,
|
|
batch_size=[config['batch_size']]*2,num_workers=[4,4],
|
|
is_trains=[False, False], collate_fns=[None,None])
|
|
|
|
#### Model ####
|
|
print("Creating model")
|
|
model = blip_decoder(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'],
|
|
prompt=config['prompt'])
|
|
|
|
model = model.to(device)
|
|
|
|
model_without_ddp = model
|
|
if args.distributed:
|
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
|
model_without_ddp = model.module
|
|
|
|
val_result = evaluate(model_without_ddp, val_loader, device, config)
|
|
val_result_file = save_result(val_result, args.result_dir, 'val', remove_duplicate='image_id')
|
|
test_result = evaluate(model_without_ddp, test_loader, device, config)
|
|
test_result_file = save_result(test_result, args.result_dir, 'test', remove_duplicate='image_id')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--config', default='./configs/nocaps.yaml')
|
|
parser.add_argument('--output_dir', default='output/NoCaps')
|
|
parser.add_argument('--device', default='cuda')
|
|
parser.add_argument('--seed', default=42, type=int)
|
|
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
|
|
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
|
parser.add_argument('--distributed', default=True, type=bool)
|
|
args = parser.parse_args()
|
|
|
|
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
|
|
|
|
args.result_dir = os.path.join(args.output_dir, 'result')
|
|
|
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
|
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
|
|
|
|
main(args, config) |