First Commit

This commit is contained in:
snicolast
2025-09-12 16:23:19 +12:00
commit a326daa293
211 changed files with 55238 additions and 0 deletions

View File

@@ -0,0 +1,656 @@
"""A popular speaker recognition and diarization model.
Authors
* Hwidong Na 2020
"""
import torch # noqa: F401
import torch.nn as nn
import torch.nn.functional as F
from indextts.BigVGAN.nnet.CNN import Conv1d as _Conv1d
from indextts.BigVGAN.nnet.linear import Linear
from indextts.BigVGAN.nnet.normalization import BatchNorm1d as _BatchNorm1d
def length_to_mask(length, max_len=None, dtype=None, device=None):
"""Creates a binary mask for each sequence.
Reference: https://discuss.pytorch.org/t/how-to-generate-variable-length-mask/23397/3
Arguments
---------
length : torch.LongTensor
Containing the length of each sequence in the batch. Must be 1D.
max_len : int
Max length for the mask, also the size of the second dimension.
dtype : torch.dtype, default: None
The dtype of the generated mask.
device: torch.device, default: None
The device to put the mask variable.
Returns
-------
mask : tensor
The binary mask.
Example
-------
>>> length=torch.Tensor([1,2,3])
>>> mask=length_to_mask(length)
>>> mask
tensor([[1., 0., 0.],
[1., 1., 0.],
[1., 1., 1.]])
"""
assert len(length.shape) == 1
if max_len is None:
max_len = length.max().long().item() # using arange to generate mask
mask = torch.arange(
max_len, device=length.device, dtype=length.dtype
).expand(len(length), max_len) < length.unsqueeze(1)
if dtype is None:
dtype = length.dtype
if device is None:
device = length.device
mask = torch.as_tensor(mask, dtype=dtype, device=device)
return mask
# Skip transpose as much as possible for efficiency
class Conv1d(_Conv1d):
"""1D convolution. Skip transpose is used to improve efficiency."""
def __init__(self, *args, **kwargs):
super().__init__(skip_transpose=True, *args, **kwargs)
class BatchNorm1d(_BatchNorm1d):
"""1D batch normalization. Skip transpose is used to improve efficiency."""
def __init__(self, *args, **kwargs):
super().__init__(skip_transpose=True, *args, **kwargs)
class TDNNBlock(nn.Module):
"""An implementation of TDNN.
Arguments
---------
in_channels : int
Number of input channels.
out_channels : int
The number of output channels.
kernel_size : int
The kernel size of the TDNN blocks.
dilation : int
The dilation of the TDNN block.
activation : torch class
A class for constructing the activation layers.
groups : int
The groups size of the TDNN blocks.
Example
-------
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
>>> layer = TDNNBlock(64, 64, kernel_size=3, dilation=1)
>>> out_tensor = layer(inp_tensor).transpose(1, 2)
>>> out_tensor.shape
torch.Size([8, 120, 64])
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
dilation,
activation=nn.ReLU,
groups=1,
):
super().__init__()
self.conv = Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
dilation=dilation,
groups=groups,
)
self.activation = activation()
self.norm = BatchNorm1d(input_size=out_channels)
def forward(self, x):
"""Processes the input tensor x and returns an output tensor."""
return self.norm(self.activation(self.conv(x)))
class Res2NetBlock(torch.nn.Module):
"""An implementation of Res2NetBlock w/ dilation.
Arguments
---------
in_channels : int
The number of channels expected in the input.
out_channels : int
The number of output channels.
scale : int
The scale of the Res2Net block.
kernel_size: int
The kernel size of the Res2Net block.
dilation : int
The dilation of the Res2Net block.
Example
-------
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
>>> layer = Res2NetBlock(64, 64, scale=4, dilation=3)
>>> out_tensor = layer(inp_tensor).transpose(1, 2)
>>> out_tensor.shape
torch.Size([8, 120, 64])
"""
def __init__(
self, in_channels, out_channels, scale=8, kernel_size=3, dilation=1
):
super().__init__()
assert in_channels % scale == 0
assert out_channels % scale == 0
in_channel = in_channels // scale
hidden_channel = out_channels // scale
self.blocks = nn.ModuleList(
[
TDNNBlock(
in_channel,
hidden_channel,
kernel_size=kernel_size,
dilation=dilation,
)
for i in range(scale - 1)
]
)
self.scale = scale
def forward(self, x):
"""Processes the input tensor x and returns an output tensor."""
y = []
for i, x_i in enumerate(torch.chunk(x, self.scale, dim=1)):
if i == 0:
y_i = x_i
elif i == 1:
y_i = self.blocks[i - 1](x_i)
else:
y_i = self.blocks[i - 1](x_i + y_i)
y.append(y_i)
y = torch.cat(y, dim=1)
return y
class SEBlock(nn.Module):
"""An implementation of squeeze-and-excitation block.
Arguments
---------
in_channels : int
The number of input channels.
se_channels : int
The number of output channels after squeeze.
out_channels : int
The number of output channels.
Example
-------
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
>>> se_layer = SEBlock(64, 16, 64)
>>> lengths = torch.rand((8,))
>>> out_tensor = se_layer(inp_tensor, lengths).transpose(1, 2)
>>> out_tensor.shape
torch.Size([8, 120, 64])
"""
def __init__(self, in_channels, se_channels, out_channels):
super().__init__()
self.conv1 = Conv1d(
in_channels=in_channels, out_channels=se_channels, kernel_size=1
)
self.relu = torch.nn.ReLU(inplace=True)
self.conv2 = Conv1d(
in_channels=se_channels, out_channels=out_channels, kernel_size=1
)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x, lengths=None):
"""Processes the input tensor x and returns an output tensor."""
L = x.shape[-1]
if lengths is not None:
mask = length_to_mask(lengths * L, max_len=L, device=x.device)
mask = mask.unsqueeze(1)
total = mask.sum(dim=2, keepdim=True)
s = (x * mask).sum(dim=2, keepdim=True) / total
else:
s = x.mean(dim=2, keepdim=True)
s = self.relu(self.conv1(s))
s = self.sigmoid(self.conv2(s))
return s * x
class AttentiveStatisticsPooling(nn.Module):
"""This class implements an attentive statistic pooling layer for each channel.
It returns the concatenated mean and std of the input tensor.
Arguments
---------
channels: int
The number of input channels.
attention_channels: int
The number of attention channels.
global_context: bool
Whether to use global context.
Example
-------
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
>>> asp_layer = AttentiveStatisticsPooling(64)
>>> lengths = torch.rand((8,))
>>> out_tensor = asp_layer(inp_tensor, lengths).transpose(1, 2)
>>> out_tensor.shape
torch.Size([8, 1, 128])
"""
def __init__(self, channels, attention_channels=128, global_context=True):
super().__init__()
self.eps = 1e-12
self.global_context = global_context
if global_context:
self.tdnn = TDNNBlock(channels * 3, attention_channels, 1, 1)
else:
self.tdnn = TDNNBlock(channels, attention_channels, 1, 1)
self.tanh = nn.Tanh()
self.conv = Conv1d(
in_channels=attention_channels, out_channels=channels, kernel_size=1
)
def forward(self, x, lengths=None):
"""Calculates mean and std for a batch (input tensor).
Arguments
---------
x : torch.Tensor
Tensor of shape [N, C, L].
lengths : torch.Tensor
The corresponding relative lengths of the inputs.
Returns
-------
pooled_stats : torch.Tensor
mean and std of batch
"""
L = x.shape[-1]
def _compute_statistics(x, m, dim=2, eps=self.eps):
mean = (m * x).sum(dim)
std = torch.sqrt(
(m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps)
)
return mean, std
if lengths is None:
lengths = torch.ones(x.shape[0], device=x.device)
# Make binary mask of shape [N, 1, L]
mask = length_to_mask(lengths * L, max_len=L, device=x.device)
mask = mask.unsqueeze(1)
# Expand the temporal context of the pooling layer by allowing the
# self-attention to look at global properties of the utterance.
if self.global_context:
# torch.std is unstable for backward computation
# https://github.com/pytorch/pytorch/issues/4320
total = mask.sum(dim=2, keepdim=True).float()
mean, std = _compute_statistics(x, mask / total)
mean = mean.unsqueeze(2).repeat(1, 1, L)
std = std.unsqueeze(2).repeat(1, 1, L)
attn = torch.cat([x, mean, std], dim=1)
else:
attn = x
# Apply layers
attn = self.conv(self.tanh(self.tdnn(attn)))
# Filter out zero-paddings
attn = attn.masked_fill(mask == 0, float("-inf"))
attn = F.softmax(attn, dim=2)
mean, std = _compute_statistics(x, attn)
# Append mean and std of the batch
pooled_stats = torch.cat((mean, std), dim=1)
pooled_stats = pooled_stats.unsqueeze(2)
return pooled_stats
class SERes2NetBlock(nn.Module):
"""An implementation of building block in ECAPA-TDNN, i.e.,
TDNN-Res2Net-TDNN-SEBlock.
Arguments
---------
in_channels: int
Expected size of input channels.
out_channels: int
The number of output channels.
res2net_scale: int
The scale of the Res2Net block.
se_channels : int
The number of output channels after squeeze.
kernel_size: int
The kernel size of the TDNN blocks.
dilation: int
The dilation of the Res2Net block.
activation : torch class
A class for constructing the activation layers.
groups: int
Number of blocked connections from input channels to output channels.
Example
-------
>>> x = torch.rand(8, 120, 64).transpose(1, 2)
>>> conv = SERes2NetBlock(64, 64, res2net_scale=4)
>>> out = conv(x).transpose(1, 2)
>>> out.shape
torch.Size([8, 120, 64])
"""
def __init__(
self,
in_channels,
out_channels,
res2net_scale=8,
se_channels=128,
kernel_size=1,
dilation=1,
activation=torch.nn.ReLU,
groups=1,
):
super().__init__()
self.out_channels = out_channels
self.tdnn1 = TDNNBlock(
in_channels,
out_channels,
kernel_size=1,
dilation=1,
activation=activation,
groups=groups,
)
self.res2net_block = Res2NetBlock(
out_channels, out_channels, res2net_scale, kernel_size, dilation
)
self.tdnn2 = TDNNBlock(
out_channels,
out_channels,
kernel_size=1,
dilation=1,
activation=activation,
groups=groups,
)
self.se_block = SEBlock(out_channels, se_channels, out_channels)
self.shortcut = None
if in_channels != out_channels:
self.shortcut = Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
)
def forward(self, x, lengths=None):
"""Processes the input tensor x and returns an output tensor."""
residual = x
if self.shortcut:
residual = self.shortcut(x)
x = self.tdnn1(x)
x = self.res2net_block(x)
x = self.tdnn2(x)
x = self.se_block(x, lengths)
return x + residual
class ECAPA_TDNN(torch.nn.Module):
"""An implementation of the speaker embedding model in a paper.
"ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in
TDNN Based Speaker Verification" (https://arxiv.org/abs/2005.07143).
Arguments
---------
input_size : int
Expected size of the input dimension.
device : str
Device used, e.g., "cpu" or "cuda".
lin_neurons : int
Number of neurons in linear layers.
activation : torch class
A class for constructing the activation layers.
channels : list of ints
Output channels for TDNN/SERes2Net layer.
kernel_sizes : list of ints
List of kernel sizes for each layer.
dilations : list of ints
List of dilations for kernels in each layer.
attention_channels: int
The number of attention channels.
res2net_scale : int
The scale of the Res2Net block.
se_channels : int
The number of output channels after squeeze.
global_context: bool
Whether to use global context.
groups : list of ints
List of groups for kernels in each layer.
Example
-------
>>> input_feats = torch.rand([5, 120, 80])
>>> compute_embedding = ECAPA_TDNN(80, lin_neurons=192)
>>> outputs = compute_embedding(input_feats)
>>> outputs.shape
torch.Size([5, 1, 192])
"""
def __init__(
self,
input_size,
device="cpu",
lin_neurons=192,
activation=torch.nn.ReLU,
channels=[512, 512, 512, 512, 1536],
kernel_sizes=[5, 3, 3, 3, 1],
dilations=[1, 2, 3, 4, 1],
attention_channels=128,
res2net_scale=8,
se_channels=128,
global_context=True,
groups=[1, 1, 1, 1, 1],
):
super().__init__()
assert len(channels) == len(kernel_sizes)
assert len(channels) == len(dilations)
self.channels = channels
self.blocks = nn.ModuleList()
# The initial TDNN layer
self.blocks.append(
TDNNBlock(
input_size,
channels[0],
kernel_sizes[0],
dilations[0],
activation,
groups[0],
)
)
# SE-Res2Net layers
for i in range(1, len(channels) - 1):
self.blocks.append(
SERes2NetBlock(
channels[i - 1],
channels[i],
res2net_scale=res2net_scale,
se_channels=se_channels,
kernel_size=kernel_sizes[i],
dilation=dilations[i],
activation=activation,
groups=groups[i],
)
)
# Multi-layer feature aggregation
self.mfa = TDNNBlock(
channels[-2] * (len(channels) - 2),
channels[-1],
kernel_sizes[-1],
dilations[-1],
activation,
groups=groups[-1],
)
# Attentive Statistical Pooling
self.asp = AttentiveStatisticsPooling(
channels[-1],
attention_channels=attention_channels,
global_context=global_context,
)
self.asp_bn = BatchNorm1d(input_size=channels[-1] * 2)
# Final linear transformation
self.fc = Conv1d(
in_channels=channels[-1] * 2,
out_channels=lin_neurons,
kernel_size=1,
)
def forward(self, x, lengths=None):
"""Returns the embedding vector.
Arguments
---------
x : torch.Tensor
Tensor of shape (batch, time, channel).
lengths : torch.Tensor
Corresponding relative lengths of inputs.
Returns
-------
x : torch.Tensor
Embedding vector.
"""
# Minimize transpose for efficiency
x = x.transpose(1, 2)
xl = []
for layer in self.blocks:
try:
x = layer(x, lengths=lengths)
except TypeError:
x = layer(x)
xl.append(x)
# Multi-layer feature aggregation
x = torch.cat(xl[1:], dim=1)
x = self.mfa(x)
# Attentive Statistical Pooling
x = self.asp(x, lengths=lengths)
x = self.asp_bn(x)
# Final linear transformation
x = self.fc(x)
x = x.transpose(1, 2)
return x
class Classifier(torch.nn.Module):
"""This class implements the cosine similarity on the top of features.
Arguments
---------
input_size : int
Expected size of input dimension.
device : str
Device used, e.g., "cpu" or "cuda".
lin_blocks : int
Number of linear layers.
lin_neurons : int
Number of neurons in linear layers.
out_neurons : int
Number of classes.
Example
-------
>>> classify = Classifier(input_size=2, lin_neurons=2, out_neurons=2)
>>> outputs = torch.tensor([ [1., -1.], [-9., 1.], [0.9, 0.1], [0.1, 0.9] ])
>>> outputs = outputs.unsqueeze(1)
>>> cos = classify(outputs)
>>> (cos < -1.0).long().sum()
tensor(0)
>>> (cos > 1.0).long().sum()
tensor(0)
"""
def __init__(
self,
input_size,
device="cpu",
lin_blocks=0,
lin_neurons=192,
out_neurons=1211,
):
super().__init__()
self.blocks = nn.ModuleList()
for block_index in range(lin_blocks):
self.blocks.extend(
[
_BatchNorm1d(input_size=input_size),
Linear(input_size=input_size, n_neurons=lin_neurons),
]
)
input_size = lin_neurons
# Final Layer
self.weight = nn.Parameter(
torch.FloatTensor(out_neurons, input_size, device=device)
)
nn.init.xavier_uniform_(self.weight)
def forward(self, x):
"""Returns the output probabilities over speakers.
Arguments
---------
x : torch.Tensor
Torch tensor.
Returns
-------
out : torch.Tensor
Output probabilities over speakers.
"""
for layer in self.blocks:
x = layer(x)
# Need to be normalized
x = F.linear(F.normalize(x.squeeze(1)), F.normalize(self.weight))
return x.unsqueeze(1)

View File

View File

@@ -0,0 +1,122 @@
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
# LICENSE is in incl_licenses directory.
import torch
from torch import nn, pow, sin
from torch.nn import Parameter
class Snake(nn.Module):
'''
Implementation of a sine-based periodic activation function
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter
References:
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snake(256)
>>> x = torch.randn(256)
>>> x = a1(x)
'''
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
'''
Initialization.
INPUT:
- in_features: shape of the input
- alpha: trainable parameter
alpha is initialized to 1 by default, higher values = higher-frequency.
alpha will be trained along with the rest of your model.
'''
super(Snake, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
'''
Forward pass of the function.
Applies the function to the input elementwise.
Snake = x + 1/a * sin^2 (xa)
'''
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
if self.alpha_logscale:
alpha = torch.exp(alpha)
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x
class SnakeBeta(nn.Module):
'''
A modified Snake function which uses separate parameters for the magnitude of the periodic components
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
References:
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snakebeta(256)
>>> x = torch.randn(256)
>>> x = a1(x)
'''
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
'''
Initialization.
INPUT:
- in_features: shape of the input
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
alpha is initialized to 1 by default, higher values = higher-frequency.
beta is initialized to 1 by default, higher values = higher-magnitude.
alpha will be trained along with the rest of your model.
'''
super(SnakeBeta, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = Parameter(torch.zeros(in_features) * alpha)
self.beta = Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = Parameter(torch.ones(in_features) * alpha)
self.beta = Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
'''
Forward pass of the function.
Applies the function to the input elementwise.
SnakeBeta = x + 1/b * sin^2 (xa)
'''
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
beta = self.beta.unsqueeze(0).unsqueeze(-1)
if self.alpha_logscale:
alpha = torch.exp(alpha)
beta = torch.exp(beta)
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x

View File

@@ -0,0 +1 @@
/build

View File

@@ -0,0 +1,76 @@
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
import torch
import torch.nn as nn
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
from indextts.BigVGAN.alias_free_activation.cuda import load
from indextts.BigVGAN.alias_free_activation.torch.resample import DownSample1d, UpSample1d
anti_alias_activation_cuda = load.load()
class FusedAntiAliasActivation(torch.autograd.Function):
"""
Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
The hyperparameters are hard-coded in the kernel to maximize speed.
NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
"""
@staticmethod
def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
activation_results = anti_alias_activation_cuda.forward(
inputs, up_ftr, down_ftr, alpha, beta
)
return activation_results
@staticmethod
def backward(ctx, output_grads):
raise NotImplementedError
return output_grads, None, None
class Activation1d(nn.Module):
def __init__(
self,
activation,
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
down_kernel_size: int = 12,
fused: bool = True,
):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = activation
self.upsample = UpSample1d(up_ratio, up_kernel_size)
self.downsample = DownSample1d(down_ratio, down_kernel_size)
self.fused = fused # Whether to use fused CUDA kernel or not
def forward(self, x):
if not self.fused:
x = self.upsample(x)
x = self.act(x)
x = self.downsample(x)
return x
else:
if self.act.__class__.__name__ == "Snake":
beta = self.act.alpha.data # Snake uses same params for alpha and beta
else:
beta = (
self.act.beta.data
) # Snakebeta uses different params for alpha and beta
alpha = self.act.alpha.data
if (
not self.act.alpha_logscale
): # Exp baked into cuda kernel, cancel it out with a log
alpha = torch.log(alpha)
beta = torch.log(beta)
x = FusedAntiAliasActivation.apply(
x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta
)
return x

View File

@@ -0,0 +1,23 @@
/* coding=utf-8
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/extension.h>
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &fwd_cuda, "Anti-Alias Activation forward (CUDA)");
}

View File

@@ -0,0 +1,256 @@
/* coding=utf-8
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_profiler_api.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "type_shim.h"
#include <assert.h>
#include <cfloat>
#include <limits>
#include <stdint.h>
#include <c10/macros/Macros.h>
namespace
{
// Hard-coded hyperparameters
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
constexpr int BUFFER_SIZE = 32;
constexpr int FILTER_SIZE = 12;
constexpr int HALF_FILTER_SIZE = 6;
constexpr int UPSAMPLE_REPLICATION_PAD = 5; // 5 on each side, matching torch impl
constexpr int DOWNSAMPLE_REPLICATION_PAD_LEFT = 5; // matching torch impl
constexpr int DOWNSAMPLE_REPLICATION_PAD_RIGHT = 6; // matching torch impl
template <typename input_t, typename output_t, typename acc_t>
__global__ void anti_alias_activation_forward(
output_t *dst,
const input_t *src,
const acc_t *up_ftr,
const acc_t *down_ftr,
const acc_t *alpha,
const acc_t *beta,
int batch_size,
int channels,
int seq_len)
{
// Up and downsample filters
input_t up_filter[FILTER_SIZE];
input_t down_filter[FILTER_SIZE];
// Load data from global memory including extra indices reserved for replication paddings
input_t elements[2 * FILTER_SIZE + 2 * BUFFER_SIZE + 2 * UPSAMPLE_REPLICATION_PAD] = {0};
input_t intermediates[2 * FILTER_SIZE + 2 * BUFFER_SIZE + DOWNSAMPLE_REPLICATION_PAD_LEFT + DOWNSAMPLE_REPLICATION_PAD_RIGHT] = {0};
// Output stores downsampled output before writing to dst
output_t output[BUFFER_SIZE];
// blockDim/threadIdx = (128, 1, 1)
// gridDim/blockIdx = (seq_blocks, channels, batches)
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
int local_offset = threadIdx.x * BUFFER_SIZE;
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
// intermediate have double the seq_len
int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
int intermediate_seq_offset = blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_local_offset;
// Get values needed for replication padding before moving pointer
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
input_t seq_left_most_value = right_most_pntr[0];
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
// Move src and dst pointers
src += block_offset + local_offset;
dst += block_offset + local_offset;
// Alpha and beta values for snake activatons. Applies exp by default
alpha = alpha + blockIdx.y;
beta = beta + blockIdx.y;
acc_t alpha_val = expf(alpha[0]);
acc_t beta_val = expf(beta[0]);
#pragma unroll
for (int it = 0; it < FILTER_SIZE; it += 1)
{
up_filter[it] = up_ftr[it];
down_filter[it] = down_ftr[it];
}
// Apply replication padding for upsampling, matching torch impl
#pragma unroll
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE; it += 1)
{
int element_index = seq_offset + it; // index for element
if ((element_index < 0) && (element_index >= -UPSAMPLE_REPLICATION_PAD))
{
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_left_most_value;
}
if ((element_index >= seq_len) && (element_index < seq_len + UPSAMPLE_REPLICATION_PAD))
{
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_right_most_value;
}
if ((element_index >= 0) && (element_index < seq_len))
{
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * src[it];
}
}
// Apply upsampling strided convolution and write to intermediates. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT for replication padding of the downsampilng conv later
#pragma unroll
for (int it = 0; it < (2 * BUFFER_SIZE + 2 * FILTER_SIZE); it += 1)
{
acc_t acc = 0.0;
int element_index = intermediate_seq_offset + it; // index for intermediate
#pragma unroll
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
{
if ((element_index + f_idx) >= 0)
{
acc += up_filter[f_idx] * elements[it + f_idx];
}
}
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] = acc;
}
// Apply activation function. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT and DOWNSAMPLE_REPLICATION_PAD_RIGHT for replication padding of the downsampilng conv later
double no_div_by_zero = 0.000000001;
#pragma unroll
for (int it = 0; it < 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it += 1)
{
acc_t a = sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val);
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] += (1.0 / (beta_val + no_div_by_zero)) * a * a;
}
// Apply replication padding before downsampling conv from intermediates
#pragma unroll
for (int it = 0; it < DOWNSAMPLE_REPLICATION_PAD_LEFT; it += 1)
{
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT];
}
#pragma unroll
for (int it = DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it < DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE + DOWNSAMPLE_REPLICATION_PAD_RIGHT; it += 1)
{
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE - 1];
}
// Apply downsample strided convolution (assuming stride=2) from intermediates
#pragma unroll
for (int it = 0; it < BUFFER_SIZE; it += 1)
{
acc_t acc = 0.0;
#pragma unroll
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
{
// Add constant DOWNSAMPLE_REPLICATION_PAD_RIGHT to match torch implementation
acc += down_filter[f_idx] * intermediates[it * 2 + f_idx + DOWNSAMPLE_REPLICATION_PAD_RIGHT];
}
output[it] = acc;
}
// Write output to dst
#pragma unroll
for (int it = 0; it < BUFFER_SIZE; it += ELEMENTS_PER_LDG_STG)
{
int element_index = seq_offset + it;
if (element_index < seq_len)
{
dst[it] = output[it];
}
}
}
template <typename input_t, typename output_t, typename acc_t>
void dispatch_anti_alias_activation_forward(
output_t *dst,
const input_t *src,
const acc_t *up_ftr,
const acc_t *down_ftr,
const acc_t *alpha,
const acc_t *beta,
int batch_size,
int channels,
int seq_len)
{
if (seq_len == 0)
{
return;
}
else
{
// Use 128 threads per block to maximimize gpu utilization
constexpr int threads_per_block = 128;
constexpr int seq_len_per_block = 4096;
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
dim3 blocks(blocks_per_seq_len, channels, batch_size);
dim3 threads(threads_per_block, 1, 1);
anti_alias_activation_forward<input_t, output_t, acc_t>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, up_ftr, down_ftr, alpha, beta, batch_size, channels, seq_len);
}
}
}
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta)
{
// Input is a 3d tensor with dimensions [batches, channels, seq_len]
const int batches = input.size(0);
const int channels = input.size(1);
const int seq_len = input.size(2);
// Output
auto act_options = input.options().requires_grad(false);
torch::Tensor anti_alias_activation_results =
torch::empty({batches, channels, seq_len}, act_options);
using float32 = float;
// The dtype of input is float16, bfloat16, or float32
// The dtype of up_filter, down_filter, alpha, and beta is float32
// printf("input scalar type: %d\n", input.scalar_type());
// printf("up_filter scalar type: %d\n", up_filter.scalar_type());
// printf("down_filter scalar type: %d\n", down_filter.scalar_type());
// printf("alpha scalar type: %d\n", alpha.scalar_type());
// printf("beta scalar type: %d\n", beta.scalar_type());
void *input_ptr = static_cast<void *>(input.data_ptr());
float32 *up_filter_ptr = static_cast<float32 *>(up_filter.data_ptr());
float32 *down_filter_ptr = static_cast<float32 *>(down_filter.data_ptr());
float32 *alpha_ptr = static_cast<float32 *>(alpha.data_ptr());
float32 *beta_ptr = static_cast<float32 *>(beta.data_ptr());
void *anti_alias_activation_results_ptr = static_cast<void *>(anti_alias_activation_results.data_ptr());
DISPATCH_FLOAT_HALF_AND_BFLOAT(
input.scalar_type(),
"dispatch anti alias activation_forward",
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float32>(
reinterpret_cast<scalar_t *>(anti_alias_activation_results_ptr),
reinterpret_cast<const scalar_t *>(input_ptr),
reinterpret_cast<const float32 *>(up_filter_ptr),
reinterpret_cast<const float32 *>(down_filter_ptr),
reinterpret_cast<const float32 *>(alpha_ptr),
reinterpret_cast<const float32 *>(beta_ptr),
batches,
channels,
seq_len););
return anti_alias_activation_results;
}

View File

@@ -0,0 +1,29 @@
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*This code is copied fron NVIDIA apex:
* https://github.com/NVIDIA/apex
* with minor changes. */
#ifndef TORCH_CHECK
#define TORCH_CHECK AT_CHECK
#endif
#ifdef VERSION_GE_1_3
#define DATA_PTR data_ptr
#else
#define DATA_PTR data
#endif

View File

@@ -0,0 +1,121 @@
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
import os
import pathlib
import subprocess
from torch.utils import cpp_extension
"""
Setting this param to a list has a problem of generating different compilation commands (with diferent order of architectures) and leading to recompilation of fused kernels.
Set it to empty stringo avoid recompilation and assign arch flags explicity in extra_cuda_cflags below
"""
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
import re
import shutil
import tempfile
# 补丁修复sources 路径含中文字符时,生成 build.ninja 乱码导致编译失败
# 使用临时目录来规避 ninja 编译失败(比如中文路径)
def chinese_path_compile_support(sources, buildpath):
pattern = re.compile(r'[\u4e00-\u9fff]')
if not bool(pattern.search(str(sources[0].resolve()))):
return buildpath # 检测非中文路径跳过
# Create build directory
resolves = [ item.name for item in sources]
ninja_compile_dir = os.path.join(tempfile.gettempdir(), "BigVGAN", "cuda")
os.makedirs(ninja_compile_dir, exist_ok=True)
new_buildpath = os.path.join(ninja_compile_dir, "build")
os.makedirs(new_buildpath, exist_ok=True)
print(f"ninja_buildpath: {new_buildpath}")
# Copy files to directory
sources.clear()
current_dir = os.path.dirname(__file__)
ALLOWED_EXTENSIONS = {'.py', '.cu', '.cpp', '.h'}
for filename in os.listdir(current_dir):
item = pathlib.Path(current_dir).joinpath(filename)
tar_path = pathlib.Path(ninja_compile_dir).joinpath(item.name)
if not item.suffix.lower() in ALLOWED_EXTENSIONS:continue
pathlib.Path(shutil.copy2(item, tar_path))
if tar_path.name in resolves:sources.append(tar_path)
return new_buildpath
def load():
# Check if cuda 11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, _ = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
if int(bare_metal_major) >= 11:
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
# Build path
srcpath = pathlib.Path(__file__).parent.absolute()
buildpath = srcpath / "build"
_create_build_dir(buildpath)
# Helper function to build the kernels.
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
return cpp_extension.load(
name=name,
sources=sources,
build_directory=buildpath,
extra_cflags=[
"-O3",
],
extra_cuda_cflags=[
"-O3",
"-gencode",
"arch=compute_70,code=sm_70",
"--use_fast_math",
]
+ extra_cuda_flags
+ cc_flag,
verbose=True,
)
extra_cuda_flags = [
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
]
sources = [
srcpath / "anti_alias_activation.cpp",
srcpath / "anti_alias_activation_cuda.cu",
]
# 兼容方案ninja 特殊字符路径编译支持处理(比如中文路径)
buildpath = chinese_path_compile_support(sources, buildpath)
anti_alias_activation_cuda = _cpp_extention_load_helper(
"anti_alias_activation_cuda", sources, extra_cuda_flags
)
return anti_alias_activation_cuda
def _get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output(
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def _create_build_dir(buildpath):
try:
os.mkdir(buildpath)
except OSError:
if not os.path.isdir(buildpath):
print(f"Creation of the build directory {buildpath} failed")

View File

@@ -0,0 +1,92 @@
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ATen/ATen.h>
#include "compat.h"
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
switch (TYPE) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
switch (TYPEIN) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t_in = float; \
switch (TYPEOUT) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t_out = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_out = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_out = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
} \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_in = at::Half; \
using scalar_t_out = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_in = at::BFloat16; \
using scalar_t_out = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
}

View File

@@ -0,0 +1,6 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
from .act import *
from .filter import *
from .resample import *

View File

@@ -0,0 +1,31 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch.nn as nn
from .resample import DownSample1d, UpSample1d
class Activation1d(nn.Module):
def __init__(
self,
activation,
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
down_kernel_size: int = 12,
):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = activation
self.upsample = UpSample1d(up_ratio, up_kernel_size)
self.downsample = DownSample1d(down_ratio, down_kernel_size)
# x: [B,C,T]
def forward(self, x):
x = self.upsample(x)
x = self.act(x)
x = self.downsample(x)
return x

View File

@@ -0,0 +1,102 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
if "sinc" in dir(torch):
sinc = torch.sinc
else:
# This code is adopted from adefossez's julius.core.sinc under the MIT License
# https://adefossez.github.io/julius/julius/core.html
# LICENSE is in incl_licenses directory.
def sinc(x: torch.Tensor):
"""
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
"""
return torch.where(
x == 0,
torch.tensor(1.0, device=x.device, dtype=x.dtype),
torch.sin(math.pi * x) / math.pi / x,
)
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
# https://adefossez.github.io/julius/julius/lowpass.html
# LICENSE is in incl_licenses directory.
def kaiser_sinc_filter1d(
cutoff, half_width, kernel_size
): # return filter [1,1,kernel_size]
even = kernel_size % 2 == 0
half_size = kernel_size // 2
# For kaiser window
delta_f = 4 * half_width
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
if A > 50.0:
beta = 0.1102 * (A - 8.7)
elif A >= 21.0:
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
else:
beta = 0.0
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
if even:
time = torch.arange(-half_size, half_size) + 0.5
else:
time = torch.arange(kernel_size) - half_size
if cutoff == 0:
filter_ = torch.zeros_like(time)
else:
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
"""
Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal.
"""
filter_ /= filter_.sum()
filter = filter_.view(1, 1, kernel_size)
return filter
class LowPassFilter1d(nn.Module):
def __init__(
self,
cutoff=0.5,
half_width=0.6,
stride: int = 1,
padding: bool = True,
padding_mode: str = "replicate",
kernel_size: int = 12,
):
"""
kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible.
"""
super().__init__()
if cutoff < -0.0:
raise ValueError("Minimum cutoff must be larger than zero.")
if cutoff > 0.5:
raise ValueError("A cutoff above 0.5 does not make sense.")
self.kernel_size = kernel_size
self.even = kernel_size % 2 == 0
self.pad_left = kernel_size // 2 - int(self.even)
self.pad_right = kernel_size // 2
self.stride = stride
self.padding = padding
self.padding_mode = padding_mode
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
self.register_buffer("filter", filter)
# Input [B, C, T]
def forward(self, x):
_, C, _ = x.shape
if self.padding:
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
return out

View File

@@ -0,0 +1,58 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch.nn as nn
from torch.nn import functional as F
from .filter import LowPassFilter1d, kaiser_sinc_filter1d
class UpSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = (
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
)
self.stride = ratio
self.pad = self.kernel_size // ratio - 1
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
self.pad_right = (
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
)
filter = kaiser_sinc_filter1d(
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
)
self.register_buffer("filter", filter)
# x: [B, C, T]
def forward(self, x):
_, C, _ = x.shape
x = F.pad(x, (self.pad, self.pad), mode="replicate")
x = self.ratio * F.conv_transpose1d(
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
)
x = x[..., self.pad_left : -self.pad_right]
return x
class DownSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = (
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
)
self.lowpass = LowPassFilter1d(
cutoff=0.5 / ratio,
half_width=0.6 / ratio,
stride=ratio,
kernel_size=self.kernel_size,
)
def forward(self, x):
xx = self.lowpass(x)
return xx

View File

@@ -0,0 +1,6 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
from .act import *
from .filter import *
from .resample import *

View File

@@ -0,0 +1,29 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch.nn as nn
from .resample import DownSample1d, UpSample1d
class Activation1d(nn.Module):
def __init__(self,
activation,
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
down_kernel_size: int = 12):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = activation
self.upsample = UpSample1d(up_ratio, up_kernel_size)
self.downsample = DownSample1d(down_ratio, down_kernel_size)
# x: [B,C,T]
def forward(self, x):
x = self.upsample(x)
x = self.act(x)
x = self.downsample(x)
return x

View File

@@ -0,0 +1,96 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
if 'sinc' in dir(torch):
sinc = torch.sinc
else:
# This code is adopted from adefossez's julius.core.sinc under the MIT License
# https://adefossez.github.io/julius/julius/core.html
# LICENSE is in incl_licenses directory.
def sinc(x: torch.Tensor):
"""
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
"""
return torch.where(x == 0,
torch.tensor(1., device=x.device, dtype=x.dtype),
torch.sin(math.pi * x) / math.pi / x)
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
# https://adefossez.github.io/julius/julius/lowpass.html
# LICENSE is in incl_licenses directory.
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
even = (kernel_size % 2 == 0)
half_size = kernel_size // 2
#For kaiser window
delta_f = 4 * half_width
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
if A > 50.:
beta = 0.1102 * (A - 8.7)
elif A >= 21.:
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
else:
beta = 0.
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
if even:
time = (torch.arange(-half_size, half_size) + 0.5)
else:
time = torch.arange(kernel_size) - half_size
if cutoff == 0:
filter_ = torch.zeros_like(time)
else:
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
# Normalize filter to have sum = 1, otherwise we will have a small leakage
# of the constant component in the input signal.
filter_ /= filter_.sum()
filter = filter_.view(1, 1, kernel_size)
return filter
class LowPassFilter1d(nn.Module):
def __init__(self,
cutoff=0.5,
half_width=0.6,
stride: int = 1,
padding: bool = True,
padding_mode: str = 'replicate',
kernel_size: int = 12):
# kernel_size should be even number for stylegan3 setup,
# in this implementation, odd number is also possible.
super().__init__()
if cutoff < -0.:
raise ValueError("Minimum cutoff must be larger than zero.")
if cutoff > 0.5:
raise ValueError("A cutoff above 0.5 does not make sense.")
self.kernel_size = kernel_size
self.even = (kernel_size % 2 == 0)
self.pad_left = kernel_size // 2 - int(self.even)
self.pad_right = kernel_size // 2
self.stride = stride
self.padding = padding
self.padding_mode = padding_mode
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
self.register_buffer("filter", filter)
#input [B, C, T]
def forward(self, x):
_, C, _ = x.shape
if self.padding:
x = F.pad(x, (self.pad_left, self.pad_right),
mode=self.padding_mode)
out = F.conv1d(x, self.filter.expand(C, -1, -1),
stride=self.stride, groups=C)
return out

View File

@@ -0,0 +1,49 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch.nn as nn
from torch.nn import functional as F
from .filter import LowPassFilter1d, kaiser_sinc_filter1d
class UpSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
self.stride = ratio
self.pad = self.kernel_size // ratio - 1
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
half_width=0.6 / ratio,
kernel_size=self.kernel_size)
self.register_buffer("filter", filter)
# x: [B, C, T]
def forward(self, x):
_, C, _ = x.shape
x = F.pad(x, (self.pad, self.pad), mode='replicate')
x = self.ratio * F.conv_transpose1d(
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
x = x[..., self.pad_left:-self.pad_right]
return x
class DownSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
half_width=0.6 / ratio,
stride=ratio,
kernel_size=self.kernel_size)
def forward(self, x):
xx = self.lowpass(x)
return xx

534
indextts/BigVGAN/bigvgan.py Normal file
View File

@@ -0,0 +1,534 @@
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import json
import os
from pathlib import Path
from typing import Dict, Optional, Union
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import remove_weight_norm, weight_norm
import indextts.BigVGAN.activations as activations
from indextts.BigVGAN.alias_free_activation.torch.act import \
Activation1d as TorchActivation1d
from indextts.BigVGAN.ECAPA_TDNN import ECAPA_TDNN
from indextts.BigVGAN.env import AttrDict
from indextts.BigVGAN.utils import get_padding, init_weights
def load_hparams_from_json(path) -> AttrDict:
with open(path) as f:
data = f.read()
return AttrDict(json.loads(data))
class AMPBlock1(torch.nn.Module):
"""
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
AMPBlock1 has additional self.convs2 that contains additional Conv1d layers with a fixed dilation=1 followed by each layer in self.convs1
Args:
h (AttrDict): Hyperparameters.
channels (int): Number of convolution channels.
kernel_size (int): Size of the convolution kernel. Default is 3.
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
"""
def __init__(
self,
h: AttrDict,
channels: int,
kernel_size: int = 3,
dilation: tuple = (1, 3, 5),
activation: str = None,
):
super().__init__()
self.h = h
self.convs1 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=d,
padding=get_padding(kernel_size, d),
)
)
for d in dilation
]
)
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
)
for _ in range(len(dilation))
]
)
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(
self.convs2
) # Total number of conv layers
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from alias_free_activation.cuda.activation1d import \
Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
# Activation functions
if activation == "snake":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.Snake(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
elif activation == "snakebeta":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.SnakeBeta(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class AMPBlock2(torch.nn.Module):
"""
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
Unlike AMPBlock1, AMPBlock2 does not contain extra Conv1d layers with fixed dilation=1
Args:
h (AttrDict): Hyperparameters.
channels (int): Number of convolution channels.
kernel_size (int): Size of the convolution kernel. Default is 3.
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
"""
def __init__(
self,
h: AttrDict,
channels: int,
kernel_size: int = 3,
dilation: tuple = (1, 3, 5),
activation: str = None,
):
super().__init__()
self.h = h
self.convs = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=d,
padding=get_padding(kernel_size, d),
)
)
for d in dilation
]
)
self.convs.apply(init_weights)
self.num_layers = len(self.convs) # Total number of conv layers
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from alias_free_activation.cuda.activation1d import \
Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
# Activation functions
if activation == "snake":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.Snake(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
elif activation == "snakebeta":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.SnakeBeta(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
for c, a in zip(self.convs, self.activations):
xt = a(x)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
'''
PyTorchModelHubMixin,
library_name="bigvgan",
repo_url="https://github.com/NVIDIA/BigVGAN",
docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
pipeline_tag="audio-to-audio",
license="mit",
tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"],
'''
class BigVGAN(
torch.nn.Module,
):
"""
BigVGAN is a neural vocoder model that applies anti-aliased periodic activation for residual blocks (resblocks).
New in BigVGAN-v2: it can optionally use optimized CUDA kernels for AMP (anti-aliased multi-periodicity) blocks.
Args:
h (AttrDict): Hyperparameters.
use_cuda_kernel (bool): If set to True, loads optimized CUDA kernels for AMP. This should be used for inference only, as training is not supported with CUDA kernels.
Note:
- The `use_cuda_kernel` parameter should be used for inference only, as training with CUDA kernels is not supported.
- Ensure that the activation function is correctly specified in the hyperparameters (h.activation).
"""
def __init__(self, h: AttrDict, use_cuda_kernel: bool = False):
super().__init__()
self.h = h
self.h["use_cuda_kernel"] = use_cuda_kernel
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from alias_free_activation.cuda.activation1d import \
Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
self.feat_upsample = h.feat_upsample
self.cond_in_each_up_layer = h.cond_d_vector_in_each_upsampling_layer
# Pre-conv
self.conv_pre = weight_norm(
Conv1d(h.gpt_dim, h.upsample_initial_channel, 7, 1, padding=3)
)
# Define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
if h.resblock == "1":
resblock_class = AMPBlock1
elif h.resblock == "2":
resblock_class = AMPBlock2
else:
raise ValueError(
f"Incorrect resblock class specified in hyperparameters. Got {h.resblock}"
)
# Transposed conv-based upsamplers. does not apply anti-aliasing
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(
nn.ModuleList(
[
weight_norm(
ConvTranspose1d(
h.upsample_initial_channel // (2**i),
h.upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
]
)
)
# Residual blocks using anti-aliased multi-periodicity composition modules (AMP)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
):
self.resblocks.append(
resblock_class(h, ch, k, d, activation=h.activation)
)
# Post-conv
activation_post = (
activations.Snake(ch, alpha_logscale=h.snake_logscale)
if h.activation == "snake"
else (
activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
if h.activation == "snakebeta"
else None
)
)
if activation_post is None:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
self.activation_post = Activation1d(activation=activation_post)
# Whether to use bias for the final conv_post. Default to True for backward compatibility
self.use_bias_at_final = h.get("use_bias_at_final", True)
self.conv_post = weight_norm(
Conv1d(ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final)
)
# Weight initialization
for i in range(len(self.ups)):
self.ups[i].apply(init_weights)
self.conv_post.apply(init_weights)
# Final tanh activation. Defaults to True for backward compatibility
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
self.speaker_encoder = ECAPA_TDNN(h.num_mels, lin_neurons=h.speaker_embedding_dim)
self.cond_layer = nn.Conv1d(h.speaker_embedding_dim, h.upsample_initial_channel, 1)
if self.cond_in_each_up_layer:
self.conds = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2 ** (i + 1))
self.conds.append(nn.Conv1d(h.speaker_embedding_dim, ch, 1))
def forward(self, x, mel_refer, lens=None):
# Speaker reference
speaker_embedding = self.speaker_encoder(mel_refer, lens)
n_batch = x.size(0)
contrastive_loss = None
if n_batch * 2 == speaker_embedding.size(0):
spe_emb_chunk1, spe_emb_chunk2 = speaker_embedding[:n_batch, :, :], speaker_embedding[n_batch:, :, :]
contrastive_loss = self.cal_clip_loss(spe_emb_chunk1.squeeze(1), spe_emb_chunk2.squeeze(1),
self.logit_scale.exp())
speaker_embedding = speaker_embedding[:n_batch, :, :]
speaker_embedding = speaker_embedding.transpose(1, 2)
# upsample feat
if self.feat_upsample:
x = torch.nn.functional.interpolate(
x.transpose(1, 2),
scale_factor=[4],
mode="linear",
).squeeze(1)
else:
x = x.transpose(1, 2)
# BigVGAN
# Pre-conv
x = self.conv_pre(x)
x = x + self.cond_layer(speaker_embedding)
for i in range(self.num_upsamples):
# Upsampling
for i_up in range(len(self.ups[i])):
x = self.ups[i][i_up](x)
if self.cond_in_each_up_layer:
x = x + self.conds[i](speaker_embedding)
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# Post-conv
x = self.activation_post(x)
x = self.conv_post(x)
# Final tanh activation
if self.use_tanh_at_final:
x = torch.tanh(x)
else:
x = torch.clamp(x, min=-1.0, max=1.0) # Bound the output to [-1, 1]
return x, contrastive_loss
def remove_weight_norm(self):
try:
print("Removing weight norm...")
for l in self.ups:
for l_i in l:
remove_weight_norm(l_i)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
except ValueError:
print("[INFO] Model already removed weight norm. Skipping!")
pass
# Additional methods for huggingface_hub support
def _save_pretrained(self, save_directory: Path) -> None:
"""Save weights and config.json from a Pytorch model to a local directory."""
model_path = save_directory / "bigvgan_generator.pt"
torch.save({"generator": self.state_dict()}, model_path)
config_path = save_directory / "config.json"
with open(config_path, "w") as config_file:
json.dump(self.h, config_file, indent=4)
@classmethod
def _from_pretrained(
cls,
*,
model_id: str,
revision: str,
cache_dir: str,
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Union[str, bool, None],
map_location: str = "cpu", # Additional argument
strict: bool = False, # Additional argument
use_cuda_kernel: bool = False,
**model_kwargs,
):
"""Load Pytorch pretrained weights and return the loaded model."""
# Download and load hyperparameters (h) used by BigVGAN
if os.path.isdir(model_id):
print("Loading config.json from local directory")
config_file = os.path.join(model_id, "config.json")
else:
config_file = hf_hub_download(
repo_id=model_id,
filename="config.json",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
h = load_hparams_from_json(config_file)
# instantiate BigVGAN using h
if use_cuda_kernel:
print(
f"[WARNING] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!"
)
print(
f"[WARNING] You need nvcc and ninja installed in your system that matches your PyTorch build is using to build the kernel. If not, the model will fail to initialize or generate incorrect waveform!"
)
print(
f"[WARNING] For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis"
)
model = cls(h, use_cuda_kernel=use_cuda_kernel)
# Download and load pretrained generator weight
if os.path.isdir(model_id):
print("Loading weights from local directory")
model_file = os.path.join(model_id, "bigvgan_generator.pt")
else:
print(f"Loading weights from {model_id}")
model_file = hf_hub_download(
repo_id=model_id,
filename="bigvgan_generator.pt",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
checkpoint_dict = torch.load(model_file, map_location=map_location)
try:
model.load_state_dict(checkpoint_dict["generator"])
except RuntimeError:
print(
f"[INFO] the pretrained checkpoint does not contain weight norm. Loading the checkpoint after removing weight norm!"
)
model.remove_weight_norm()
model.load_state_dict(checkpoint_dict["generator"])
return model

451
indextts/BigVGAN/models.py Normal file
View File

@@ -0,0 +1,451 @@
# Copyright (c) 2022 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Conv1d, Conv2d, ConvTranspose1d
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
import indextts.BigVGAN.activations as activations
from indextts.BigVGAN.ECAPA_TDNN import ECAPA_TDNN
from indextts.BigVGAN.utils import get_padding, init_weights
LRELU_SLOPE = 0.1
class AMPBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
super(AMPBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
if self.h.get("use_cuda_kernel", False):
from indextts.BigVGAN.alias_free_activation.cuda.activation1d import Activation1d
else:
from indextts.BigVGAN.alias_free_torch import Activation1d
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class AMPBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
super(AMPBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
self.num_layers = len(self.convs) # total number of conv layers
if self.h.get("use_cuda_kernel", False):
from indextts.BigVGAN.alias_free_activation.cuda.activation1d import Activation1d
else:
from indextts.BigVGAN.alias_free_torch import Activation1d
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
def forward(self, x):
for c, a in zip(self.convs, self.activations):
xt = a(x)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class BigVGAN(torch.nn.Module):
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
def __init__(self, h, use_cuda_kernel=False):
"""
Args:
h (dict)
use_cuda_kernel (bool): whether to use custom cuda kernel for anti-aliased activation
"""
super(BigVGAN, self).__init__()
self.h = h
self.h["use_cuda_kernel"] = use_cuda_kernel
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
self.feat_upsample = h.feat_upsample
self.cond_in_each_up_layer = h.cond_d_vector_in_each_upsampling_layer
# pre conv
self.conv_pre = weight_norm(Conv1d(h.gpt_dim, h.upsample_initial_channel, 7, 1, padding=3))
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
resblock = AMPBlock1 if h.resblock == "1" else AMPBlock2
# transposed conv-based upsamplers. does not apply anti-aliasing
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(nn.ModuleList([
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
h.upsample_initial_channel // (2 ** (i + 1)),
k, u, padding=(k - u) // 2))
]))
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(self.h, ch, k, d, activation=h.activation))
if use_cuda_kernel:
from indextts.BigVGAN.alias_free_activation.cuda.activation1d import Activation1d
else:
from indextts.BigVGAN.alias_free_torch import Activation1d
# post conv
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
else:
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
# weight initialization
for i in range(len(self.ups)):
self.ups[i].apply(init_weights)
self.conv_post.apply(init_weights)
self.speaker_encoder = ECAPA_TDNN(h.num_mels, lin_neurons=h.speaker_embedding_dim)
self.cond_layer = nn.Conv1d(h.speaker_embedding_dim, h.upsample_initial_channel, 1)
if self.cond_in_each_up_layer:
self.conds = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2 ** (i + 1))
self.conds.append(nn.Conv1d(h.speaker_embedding_dim, ch, 1))
# self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
def forward(self, x, mel_ref, lens=None):
speaker_embedding = self.speaker_encoder(mel_ref, lens)
n_batch = x.size(0)
contrastive_loss = None
if n_batch * 2 == speaker_embedding.size(0):
spe_emb_chunk1, spe_emb_chunk2 = speaker_embedding[:n_batch, :, :], speaker_embedding[n_batch:, :, :]
contrastive_loss = self.cal_clip_loss(spe_emb_chunk1.squeeze(1), spe_emb_chunk2.squeeze(1), self.logit_scale.exp())
speaker_embedding = speaker_embedding[:n_batch, :, :]
speaker_embedding = speaker_embedding.transpose(1, 2)
# upsample feat
if self.feat_upsample:
x = torch.nn.functional.interpolate(
x.transpose(1, 2),
scale_factor=[4],
mode="linear",
).squeeze(1)
else:
x = x.transpose(1, 2)
### bigVGAN ###
# pre conv
x = self.conv_pre(x)
x = x + self.cond_layer(speaker_embedding)
for i in range(self.num_upsamples):
# upsampling
for i_up in range(len(self.ups[i])):
x = self.ups[i][i_up](x)
if self.cond_in_each_up_layer:
x = x + self.conds[i](speaker_embedding)
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# post conv
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x, contrastive_loss
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
for l_i in l:
remove_weight_norm(l_i)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
def cal_clip_loss(self, image_features, text_features, logit_scale):
device = image_features.device
logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale)
labels = torch.arange(logits_per_image.shape[0], device=device, dtype=torch.long)
total_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
return total_loss
def get_logits(self, image_features, text_features, logit_scale):
logits_per_image = logit_scale * image_features @ text_features.T
logits_per_text = logit_scale * text_features @ image_features.T
return logits_per_image, logits_per_text
class DiscriminatorP(torch.nn.Module):
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.d_mult = h.discriminator_channel_mult
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, int(32 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(32 * self.d_mult), int(128 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(128 * self.d_mult), int(512 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(512 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(1024 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, h):
super(MultiPeriodDiscriminator, self).__init__()
self.mpd_reshapes = h.mpd_reshapes
print("mpd_reshapes: {}".format(self.mpd_reshapes))
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes]
self.discriminators = nn.ModuleList(discriminators)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorR(nn.Module):
def __init__(self, cfg, resolution):
super().__init__()
self.resolution = resolution
assert len(self.resolution) == 3, \
"MRD layer requires list with len=3, got {}".format(self.resolution)
self.lrelu_slope = LRELU_SLOPE
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
if hasattr(cfg, "mrd_use_spectral_norm"):
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm))
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
self.d_mult = cfg.discriminator_channel_mult
if hasattr(cfg, "mrd_channel_mult"):
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult))
self.d_mult = cfg.mrd_channel_mult
self.convs = nn.ModuleList([
norm_f(nn.Conv2d(1, int(32 * self.d_mult), (3, 9), padding=(1, 4))),
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 3), padding=(1, 1))),
])
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)))
def forward(self, x):
fmap = []
x = self.spectrogram(x)
x = x.unsqueeze(1)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, self.lrelu_slope)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
def spectrogram(self, x):
n_fft, hop_length, win_length = self.resolution
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')
x = x.squeeze(1)
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True)
x = torch.view_as_real(x) # [B, F, TT, 2]
mag = torch.norm(x, p=2, dim=-1) # [B, F, TT]
return mag
class MultiResolutionDiscriminator(nn.Module):
def __init__(self, cfg, debug=False):
super().__init__()
self.resolutions = cfg.resolutions
assert len(self.resolutions) == 3, \
"MRD requires list of list with len=3, each element having a list with len=3. got {}".\
format(self.resolutions)
self.discriminators = nn.ModuleList(
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(x=y)
y_d_g, fmap_g = d(x=y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1 - dr)**2)
g_loss = torch.mean(dg**2)
loss += (r_loss + g_loss)
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1 - dg)**2)
gen_losses.append(l)
loss += l
return loss, gen_losses

View File

@@ -0,0 +1,546 @@
"""Library implementing convolutional neural networks.
Authors
* Mirco Ravanelli 2020
* Jianyuan Zhong 2020
* Cem Subakan 2021
* Davide Borra 2021
* Andreas Nautsch 2022
* Sarthak Yadav 2022
"""
import logging
import math
from typing import Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
class SincConv(nn.Module):
"""This function implements SincConv (SincNet).
M. Ravanelli, Y. Bengio, "Speaker Recognition from raw waveform with
SincNet", in Proc. of SLT 2018 (https://arxiv.org/abs/1808.00158)
Arguments
---------
out_channels : int
It is the number of output channels.
kernel_size: int
Kernel size of the convolutional filters.
input_shape : tuple
The shape of the input. Alternatively use ``in_channels``.
in_channels : int
The number of input channels. Alternatively use ``input_shape``.
stride : int
Stride factor of the convolutional filters. When the stride factor > 1,
a decimation in time is performed.
dilation : int
Dilation factor of the convolutional filters.
padding : str
(same, valid, causal). If "valid", no padding is performed.
If "same" and stride is 1, output shape is the same as the input shape.
"causal" results in causal (dilated) convolutions.
padding_mode : str
This flag specifies the type of padding. See torch.nn documentation
for more information.
sample_rate : int
Sampling rate of the input signals. It is only used for sinc_conv.
min_low_hz : float
Lowest possible frequency (in Hz) for a filter. It is only used for
sinc_conv.
min_band_hz : float
Lowest possible value (in Hz) for a filter bandwidth.
Example
-------
>>> inp_tensor = torch.rand([10, 16000])
>>> conv = SincConv(input_shape=inp_tensor.shape, out_channels=25, kernel_size=11)
>>> out_tensor = conv(inp_tensor)
>>> out_tensor.shape
torch.Size([10, 16000, 25])
"""
def __init__(
self,
out_channels,
kernel_size,
input_shape=None,
in_channels=None,
stride=1,
dilation=1,
padding="same",
padding_mode="reflect",
sample_rate=16000,
min_low_hz=50,
min_band_hz=50,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.padding = padding
self.padding_mode = padding_mode
self.sample_rate = sample_rate
self.min_low_hz = min_low_hz
self.min_band_hz = min_band_hz
# input shape inference
if input_shape is None and self.in_channels is None:
raise ValueError("Must provide one of input_shape or in_channels")
if self.in_channels is None:
self.in_channels = self._check_input_shape(input_shape)
if self.out_channels % self.in_channels != 0:
raise ValueError(
"Number of output channels must be divisible by in_channels"
)
# Initialize Sinc filters
self._init_sinc_conv()
def forward(self, x):
"""Returns the output of the convolution.
Arguments
---------
x : torch.Tensor (batch, time, channel)
input to convolve. 2d or 4d tensors are expected.
Returns
-------
wx : torch.Tensor
The convolved outputs.
"""
x = x.transpose(1, -1)
self.device = x.device
unsqueeze = x.ndim == 2
if unsqueeze:
x = x.unsqueeze(1)
if self.padding == "same":
x = self._manage_padding(
x, self.kernel_size, self.dilation, self.stride
)
elif self.padding == "causal":
num_pad = (self.kernel_size - 1) * self.dilation
x = F.pad(x, (num_pad, 0))
elif self.padding == "valid":
pass
else:
raise ValueError(
"Padding must be 'same', 'valid' or 'causal'. Got %s."
% (self.padding)
)
sinc_filters = self._get_sinc_filters()
wx = F.conv1d(
x,
sinc_filters,
stride=self.stride,
padding=0,
dilation=self.dilation,
groups=self.in_channels,
)
if unsqueeze:
wx = wx.squeeze(1)
wx = wx.transpose(1, -1)
return wx
def _check_input_shape(self, shape):
"""Checks the input shape and returns the number of input channels."""
if len(shape) == 2:
in_channels = 1
elif len(shape) == 3:
in_channels = shape[-1]
else:
raise ValueError(
"sincconv expects 2d or 3d inputs. Got " + str(len(shape))
)
# Kernel size must be odd
if self.kernel_size % 2 == 0:
raise ValueError(
"The field kernel size must be an odd number. Got %s."
% (self.kernel_size)
)
return in_channels
def _get_sinc_filters(self):
"""This functions creates the sinc-filters to used for sinc-conv."""
# Computing the low frequencies of the filters
low = self.min_low_hz + torch.abs(self.low_hz_)
# Setting minimum band and minimum freq
high = torch.clamp(
low + self.min_band_hz + torch.abs(self.band_hz_),
self.min_low_hz,
self.sample_rate / 2,
)
band = (high - low)[:, 0]
# Passing from n_ to the corresponding f_times_t domain
self.n_ = self.n_.to(self.device)
self.window_ = self.window_.to(self.device)
f_times_t_low = torch.matmul(low, self.n_)
f_times_t_high = torch.matmul(high, self.n_)
# Left part of the filters.
band_pass_left = (
(torch.sin(f_times_t_high) - torch.sin(f_times_t_low))
/ (self.n_ / 2)
) * self.window_
# Central element of the filter
band_pass_center = 2 * band.view(-1, 1)
# Right part of the filter (sinc filters are symmetric)
band_pass_right = torch.flip(band_pass_left, dims=[1])
# Combining left, central, and right part of the filter
band_pass = torch.cat(
[band_pass_left, band_pass_center, band_pass_right], dim=1
)
# Amplitude normalization
band_pass = band_pass / (2 * band[:, None])
# Setting up the filter coefficients
filters = band_pass.view(self.out_channels, 1, self.kernel_size)
return filters
def _init_sinc_conv(self):
"""Initializes the parameters of the sinc_conv layer."""
# Initialize filterbanks such that they are equally spaced in Mel scale
high_hz = self.sample_rate / 2 - (self.min_low_hz + self.min_band_hz)
mel = torch.linspace(
self._to_mel(self.min_low_hz),
self._to_mel(high_hz),
self.out_channels + 1,
)
hz = self._to_hz(mel)
# Filter lower frequency and bands
self.low_hz_ = hz[:-1].unsqueeze(1)
self.band_hz_ = (hz[1:] - hz[:-1]).unsqueeze(1)
# Maiking freq and bands learnable
self.low_hz_ = nn.Parameter(self.low_hz_)
self.band_hz_ = nn.Parameter(self.band_hz_)
# Hamming window
n_lin = torch.linspace(
0, (self.kernel_size / 2) - 1, steps=int((self.kernel_size / 2))
)
self.window_ = 0.54 - 0.46 * torch.cos(
2 * math.pi * n_lin / self.kernel_size
)
# Time axis (only half is needed due to symmetry)
n = (self.kernel_size - 1) / 2.0
self.n_ = (
2 * math.pi * torch.arange(-n, 0).view(1, -1) / self.sample_rate
)
def _to_mel(self, hz):
"""Converts frequency in Hz to the mel scale."""
return 2595 * np.log10(1 + hz / 700)
def _to_hz(self, mel):
"""Converts frequency in the mel scale to Hz."""
return 700 * (10 ** (mel / 2595) - 1)
def _manage_padding(self, x, kernel_size: int, dilation: int, stride: int):
"""This function performs zero-padding on the time axis
such that their lengths is unchanged after the convolution.
Arguments
---------
x : torch.Tensor
Input tensor.
kernel_size : int
Size of kernel.
dilation : int
Dilation used.
stride : int
Stride.
Returns
-------
x : torch.Tensor
"""
# Detecting input shape
L_in = self.in_channels
# Time padding
padding = get_padding_elem(L_in, stride, kernel_size, dilation)
# Applying padding
x = F.pad(x, padding, mode=self.padding_mode)
return x
class Conv1d(nn.Module):
"""This function implements 1d convolution.
Arguments
---------
out_channels : int
It is the number of output channels.
kernel_size : int
Kernel size of the convolutional filters.
input_shape : tuple
The shape of the input. Alternatively use ``in_channels``.
in_channels : int
The number of input channels. Alternatively use ``input_shape``.
stride : int
Stride factor of the convolutional filters. When the stride factor > 1,
a decimation in time is performed.
dilation : int
Dilation factor of the convolutional filters.
padding : str
(same, valid, causal). If "valid", no padding is performed.
If "same" and stride is 1, output shape is the same as the input shape.
"causal" results in causal (dilated) convolutions.
groups : int
Number of blocked connections from input channels to output channels.
bias : bool
Whether to add a bias term to convolution operation.
padding_mode : str
This flag specifies the type of padding. See torch.nn documentation
for more information.
skip_transpose : bool
If False, uses batch x time x channel convention of speechbrain.
If True, uses batch x channel x time convention.
weight_norm : bool
If True, use weight normalization,
to be removed with self.remove_weight_norm() at inference
conv_init : str
Weight initialization for the convolution network
default_padding: str or int
This sets the default padding mode that will be used by the pytorch Conv1d backend.
Example
-------
>>> inp_tensor = torch.rand([10, 40, 16])
>>> cnn_1d = Conv1d(
... input_shape=inp_tensor.shape, out_channels=8, kernel_size=5
... )
>>> out_tensor = cnn_1d(inp_tensor)
>>> out_tensor.shape
torch.Size([10, 40, 8])
"""
def __init__(
self,
out_channels,
kernel_size,
input_shape=None,
in_channels=None,
stride=1,
dilation=1,
padding="same",
groups=1,
bias=True,
padding_mode="reflect",
skip_transpose=False,
weight_norm=False,
conv_init=None,
default_padding=0,
):
super().__init__()
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.padding = padding
self.padding_mode = padding_mode
self.unsqueeze = False
self.skip_transpose = skip_transpose
if input_shape is None and in_channels is None:
raise ValueError("Must provide one of input_shape or in_channels")
if in_channels is None:
in_channels = self._check_input_shape(input_shape)
self.in_channels = in_channels
self.conv = nn.Conv1d(
in_channels,
out_channels,
self.kernel_size,
stride=self.stride,
dilation=self.dilation,
padding=default_padding,
groups=groups,
bias=bias,
)
if conv_init == "kaiming":
nn.init.kaiming_normal_(self.conv.weight)
elif conv_init == "zero":
nn.init.zeros_(self.conv.weight)
elif conv_init == "normal":
nn.init.normal_(self.conv.weight, std=1e-6)
if weight_norm:
self.conv = nn.utils.weight_norm(self.conv)
def forward(self, x):
"""Returns the output of the convolution.
Arguments
---------
x : torch.Tensor (batch, time, channel)
input to convolve. 2d or 4d tensors are expected.
Returns
-------
wx : torch.Tensor
The convolved outputs.
"""
if not self.skip_transpose:
x = x.transpose(1, -1)
if self.unsqueeze:
x = x.unsqueeze(1)
if self.padding == "same":
x = self._manage_padding(
x, self.kernel_size, self.dilation, self.stride
)
elif self.padding == "causal":
num_pad = (self.kernel_size - 1) * self.dilation
x = F.pad(x, (num_pad, 0))
elif self.padding == "valid":
pass
else:
raise ValueError(
"Padding must be 'same', 'valid' or 'causal'. Got "
+ self.padding
)
wx = self.conv(x)
if self.unsqueeze:
wx = wx.squeeze(1)
if not self.skip_transpose:
wx = wx.transpose(1, -1)
return wx
def _manage_padding(self, x, kernel_size: int, dilation: int, stride: int):
"""This function performs zero-padding on the time axis
such that their lengths is unchanged after the convolution.
Arguments
---------
x : torch.Tensor
Input tensor.
kernel_size : int
Size of kernel.
dilation : int
Dilation used.
stride : int
Stride.
Returns
-------
x : torch.Tensor
The padded outputs.
"""
# Detecting input shape
L_in = self.in_channels
# Time padding
padding = get_padding_elem(L_in, stride, kernel_size, dilation)
# Applying padding
x = F.pad(x, padding, mode=self.padding_mode)
return x
def _check_input_shape(self, shape):
"""Checks the input shape and returns the number of input channels."""
if len(shape) == 2:
self.unsqueeze = True
in_channels = 1
elif self.skip_transpose:
in_channels = shape[1]
elif len(shape) == 3:
in_channels = shape[2]
else:
raise ValueError(
"conv1d expects 2d, 3d inputs. Got " + str(len(shape))
)
# Kernel size must be odd
if not self.padding == "valid" and self.kernel_size % 2 == 0:
raise ValueError(
"The field kernel size must be an odd number. Got %s."
% (self.kernel_size)
)
return in_channels
def remove_weight_norm(self):
"""Removes weight normalization at inference if used during training."""
self.conv = nn.utils.remove_weight_norm(self.conv)
def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int):
"""This function computes the number of elements to add for zero-padding.
Arguments
---------
L_in : int
stride: int
kernel_size : int
dilation : int
Returns
-------
padding : int
The size of the padding to be added
"""
if stride > 1:
padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)]
else:
L_out = (
math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1
)
padding = [
math.floor((L_in - L_out) / 2),
math.floor((L_in - L_out) / 2),
]
return padding

View File

View File

@@ -0,0 +1,89 @@
"""Library implementing linear transformation.
Authors
* Mirco Ravanelli 2020
* Davide Borra 2021
"""
import logging
import torch
import torch.nn as nn
class Linear(torch.nn.Module):
"""Computes a linear transformation y = wx + b.
Arguments
---------
n_neurons : int
It is the number of output neurons (i.e, the dimensionality of the
output).
input_shape : tuple
It is the shape of the input tensor.
input_size : int
Size of the input tensor.
bias : bool
If True, the additive bias b is adopted.
max_norm : float
weight max-norm.
combine_dims : bool
If True and the input is 4D, combine 3rd and 4th dimensions of input.
Example
-------
>>> inputs = torch.rand(10, 50, 40)
>>> lin_t = Linear(input_shape=(10, 50, 40), n_neurons=100)
>>> output = lin_t(inputs)
>>> output.shape
torch.Size([10, 50, 100])
"""
def __init__(
self,
n_neurons,
input_shape=None,
input_size=None,
bias=True,
max_norm=None,
combine_dims=False,
):
super().__init__()
self.max_norm = max_norm
self.combine_dims = combine_dims
if input_shape is None and input_size is None:
raise ValueError("Expected one of input_shape or input_size")
if input_size is None:
input_size = input_shape[-1]
if len(input_shape) == 4 and self.combine_dims:
input_size = input_shape[2] * input_shape[3]
# Weights are initialized following pytorch approach
self.w = nn.Linear(input_size, n_neurons, bias=bias)
def forward(self, x):
"""Returns the linear transformation of input tensor.
Arguments
---------
x : torch.Tensor
Input to transform linearly.
Returns
-------
wx : torch.Tensor
The linearly transformed outputs.
"""
if x.ndim == 4 and self.combine_dims:
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3])
if self.max_norm is not None:
self.w.weight.data = torch.renorm(
self.w.weight.data, p=2, dim=0, maxnorm=self.max_norm
)
wx = self.w(x)
return wx

View File

@@ -0,0 +1,670 @@
"""Library implementing normalization.
Authors
* Mirco Ravanelli 2020
* Guillermo Cámbara 2021
* Sarthak Yadav 2022
"""
import torch
import torch.nn as nn
class BatchNorm1d(nn.Module):
"""Applies 1d batch normalization to the input tensor.
Arguments
---------
input_shape : tuple
The expected shape of the input. Alternatively, use ``input_size``.
input_size : int
The expected size of the input. Alternatively, use ``input_shape``.
eps : float
This value is added to std deviation estimation to improve the numerical
stability.
momentum : float
It is a value used for the running_mean and running_var computation.
affine : bool
When set to True, the affine parameters are learned.
track_running_stats : bool
When set to True, this module tracks the running mean and variance,
and when set to False, this module does not track such statistics.
combine_batch_time : bool
When true, it combines batch an time axis.
skip_transpose : bool
Whether to skip the transposition.
Example
-------
>>> input = torch.randn(100, 10)
>>> norm = BatchNorm1d(input_shape=input.shape)
>>> output = norm(input)
>>> output.shape
torch.Size([100, 10])
"""
def __init__(
self,
input_shape=None,
input_size=None,
eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True,
combine_batch_time=False,
skip_transpose=False,
):
super().__init__()
self.combine_batch_time = combine_batch_time
self.skip_transpose = skip_transpose
if input_size is None and skip_transpose:
input_size = input_shape[1]
elif input_size is None:
input_size = input_shape[-1]
self.norm = nn.BatchNorm1d(
input_size,
eps=eps,
momentum=momentum,
affine=affine,
track_running_stats=track_running_stats,
)
def forward(self, x):
"""Returns the normalized input tensor.
Arguments
---------
x : torch.Tensor (batch, time, [channels])
input to normalize. 2d or 3d tensors are expected in input
4d tensors can be used when combine_dims=True.
Returns
-------
x_n : torch.Tensor
The normalized outputs.
"""
shape_or = x.shape
if self.combine_batch_time:
if x.ndim == 3:
x = x.reshape(shape_or[0] * shape_or[1], shape_or[2])
else:
x = x.reshape(
shape_or[0] * shape_or[1], shape_or[3], shape_or[2]
)
elif not self.skip_transpose:
x = x.transpose(-1, 1)
x_n = self.norm(x)
if self.combine_batch_time:
x_n = x_n.reshape(shape_or)
elif not self.skip_transpose:
x_n = x_n.transpose(1, -1)
return x_n
class BatchNorm2d(nn.Module):
"""Applies 2d batch normalization to the input tensor.
Arguments
---------
input_shape : tuple
The expected shape of the input. Alternatively, use ``input_size``.
input_size : int
The expected size of the input. Alternatively, use ``input_shape``.
eps : float
This value is added to std deviation estimation to improve the numerical
stability.
momentum : float
It is a value used for the running_mean and running_var computation.
affine : bool
When set to True, the affine parameters are learned.
track_running_stats : bool
When set to True, this module tracks the running mean and variance,
and when set to False, this module does not track such statistics.
Example
-------
>>> input = torch.randn(100, 10, 5, 20)
>>> norm = BatchNorm2d(input_shape=input.shape)
>>> output = norm(input)
>>> output.shape
torch.Size([100, 10, 5, 20])
"""
def __init__(
self,
input_shape=None,
input_size=None,
eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True,
):
super().__init__()
if input_shape is None and input_size is None:
raise ValueError("Expected input_shape or input_size as input")
if input_size is None:
input_size = input_shape[-1]
self.norm = nn.BatchNorm2d(
input_size,
eps=eps,
momentum=momentum,
affine=affine,
track_running_stats=track_running_stats,
)
def forward(self, x):
"""Returns the normalized input tensor.
Arguments
---------
x : torch.Tensor (batch, time, channel1, channel2)
input to normalize. 4d tensors are expected.
Returns
-------
x_n : torch.Tensor
The normalized outputs.
"""
x = x.transpose(-1, 1)
x_n = self.norm(x)
x_n = x_n.transpose(1, -1)
return x_n
class LayerNorm(nn.Module):
"""Applies layer normalization to the input tensor.
Arguments
---------
input_size : int
The expected size of the dimension to be normalized.
input_shape : tuple
The expected shape of the input.
eps : float
This value is added to std deviation estimation to improve the numerical
stability.
elementwise_affine : bool
If True, this module has learnable per-element affine parameters
initialized to ones (for weights) and zeros (for biases).
Example
-------
>>> input = torch.randn(100, 101, 128)
>>> norm = LayerNorm(input_shape=input.shape)
>>> output = norm(input)
>>> output.shape
torch.Size([100, 101, 128])
"""
def __init__(
self,
input_size=None,
input_shape=None,
eps=1e-05,
elementwise_affine=True,
):
super().__init__()
self.eps = eps
self.elementwise_affine = elementwise_affine
if input_shape is not None:
input_size = input_shape[2:]
self.norm = torch.nn.LayerNorm(
input_size,
eps=self.eps,
elementwise_affine=self.elementwise_affine,
)
def forward(self, x):
"""Returns the normalized input tensor.
Arguments
---------
x : torch.Tensor (batch, time, channels)
input to normalize. 3d or 4d tensors are expected.
Returns
-------
The normalized outputs.
"""
return self.norm(x)
class InstanceNorm1d(nn.Module):
"""Applies 1d instance normalization to the input tensor.
Arguments
---------
input_shape : tuple
The expected shape of the input. Alternatively, use ``input_size``.
input_size : int
The expected size of the input. Alternatively, use ``input_shape``.
eps : float
This value is added to std deviation estimation to improve the numerical
stability.
momentum : float
It is a value used for the running_mean and running_var computation.
track_running_stats : bool
When set to True, this module tracks the running mean and variance,
and when set to False, this module does not track such statistics.
affine : bool
A boolean value that when set to True, this module has learnable
affine parameters, initialized the same way as done for
batch normalization. Default: False.
Example
-------
>>> input = torch.randn(100, 10, 20)
>>> norm = InstanceNorm1d(input_shape=input.shape)
>>> output = norm(input)
>>> output.shape
torch.Size([100, 10, 20])
"""
def __init__(
self,
input_shape=None,
input_size=None,
eps=1e-05,
momentum=0.1,
track_running_stats=True,
affine=False,
):
super().__init__()
if input_shape is None and input_size is None:
raise ValueError("Expected input_shape or input_size as input")
if input_size is None:
input_size = input_shape[-1]
self.norm = nn.InstanceNorm1d(
input_size,
eps=eps,
momentum=momentum,
track_running_stats=track_running_stats,
affine=affine,
)
def forward(self, x):
"""Returns the normalized input tensor.
Arguments
---------
x : torch.Tensor (batch, time, channels)
input to normalize. 3d tensors are expected.
Returns
-------
x_n : torch.Tensor
The normalized outputs.
"""
x = x.transpose(-1, 1)
x_n = self.norm(x)
x_n = x_n.transpose(1, -1)
return x_n
class InstanceNorm2d(nn.Module):
"""Applies 2d instance normalization to the input tensor.
Arguments
---------
input_shape : tuple
The expected shape of the input. Alternatively, use ``input_size``.
input_size : int
The expected size of the input. Alternatively, use ``input_shape``.
eps : float
This value is added to std deviation estimation to improve the numerical
stability.
momentum : float
It is a value used for the running_mean and running_var computation.
track_running_stats : bool
When set to True, this module tracks the running mean and variance,
and when set to False, this module does not track such statistics.
affine : bool
A boolean value that when set to True, this module has learnable
affine parameters, initialized the same way as done for
batch normalization. Default: False.
Example
-------
>>> input = torch.randn(100, 10, 20, 2)
>>> norm = InstanceNorm2d(input_shape=input.shape)
>>> output = norm(input)
>>> output.shape
torch.Size([100, 10, 20, 2])
"""
def __init__(
self,
input_shape=None,
input_size=None,
eps=1e-05,
momentum=0.1,
track_running_stats=True,
affine=False,
):
super().__init__()
if input_shape is None and input_size is None:
raise ValueError("Expected input_shape or input_size as input")
if input_size is None:
input_size = input_shape[-1]
self.norm = nn.InstanceNorm2d(
input_size,
eps=eps,
momentum=momentum,
track_running_stats=track_running_stats,
affine=affine,
)
def forward(self, x):
"""Returns the normalized input tensor.
Arguments
---------
x : torch.Tensor (batch, time, channel1, channel2)
input to normalize. 4d tensors are expected.
Returns
-------
x_n : torch.Tensor
The normalized outputs.
"""
x = x.transpose(-1, 1)
x_n = self.norm(x)
x_n = x_n.transpose(1, -1)
return x_n
class GroupNorm(nn.Module):
"""Applies group normalization to the input tensor.
Arguments
---------
input_shape : tuple
The expected shape of the input. Alternatively, use ``input_size``.
input_size : int
The expected size of the input. Alternatively, use ``input_shape``.
num_groups : int
Number of groups to separate the channels into.
eps : float
This value is added to std deviation estimation to improve the numerical
stability.
affine : bool
A boolean value that when set to True, this module has learnable per-channel
affine parameters initialized to ones (for weights) and zeros (for biases).
Example
-------
>>> input = torch.randn(100, 101, 128)
>>> norm = GroupNorm(input_size=128, num_groups=128)
>>> output = norm(input)
>>> output.shape
torch.Size([100, 101, 128])
"""
def __init__(
self,
input_shape=None,
input_size=None,
num_groups=None,
eps=1e-05,
affine=True,
):
super().__init__()
self.eps = eps
self.affine = affine
if input_shape is None and input_size is None:
raise ValueError("Expected input_shape or input_size as input")
if num_groups is None:
raise ValueError("Expected num_groups as input")
if input_shape is not None:
input_size = input_shape[-1]
self.norm = torch.nn.GroupNorm(
num_groups,
input_size,
eps=self.eps,
affine=self.affine,
)
def forward(self, x):
"""Returns the normalized input tensor.
Arguments
---------
x : torch.Tensor (batch, time, channels)
input to normalize. 3d or 4d tensors are expected.
Returns
-------
x_n : torch.Tensor
The normalized outputs.
"""
x = x.transpose(-1, 1)
x_n = self.norm(x)
x_n = x_n.transpose(1, -1)
return x_n
class ExponentialMovingAverage(nn.Module):
"""
Applies learnable exponential moving average, as required by learnable PCEN layer
Arguments
---------
input_size : int
The expected size of the input.
coeff_init: float
Initial smoothing coefficient value
per_channel: bool
Controls whether every smoothing coefficients are learned
independently for every input channel
trainable: bool
whether to learn the PCEN parameters or use fixed
skip_transpose : bool
If False, uses batch x time x channel convention of speechbrain.
If True, uses batch x channel x time convention.
Example
-------
>>> inp_tensor = torch.rand([10, 50, 40])
>>> pcen = ExponentialMovingAverage(40)
>>> out_tensor = pcen(inp_tensor)
>>> out_tensor.shape
torch.Size([10, 50, 40])
"""
def __init__(
self,
input_size: int,
coeff_init: float = 0.04,
per_channel: bool = False,
trainable: bool = True,
skip_transpose: bool = False,
):
super().__init__()
self._coeff_init = coeff_init
self._per_channel = per_channel
self.skip_transpose = skip_transpose
self.trainable = trainable
weights = (
torch.ones(
input_size,
)
if self._per_channel
else torch.ones(
1,
)
)
self._weights = nn.Parameter(
weights * self._coeff_init, requires_grad=trainable
)
def forward(self, x):
"""Returns the normalized input tensor.
Arguments
---------
x : torch.Tensor (batch, time, channels)
input to normalize.
"""
if not self.skip_transpose:
x = x.transpose(1, -1)
w = torch.clamp(self._weights, min=0.0, max=1.0)
initial_state = x[:, :, 0]
def scan(init_state, x, w):
"""Loops and accumulates."""
x = x.permute(2, 0, 1)
acc = init_state
results = []
for ix in range(x.shape[0]):
acc = (w * x[ix]) + ((1.0 - w) * acc)
results.append(acc.unsqueeze(0))
results = torch.cat(results, dim=0)
results = results.permute(1, 2, 0)
return results
output = scan(initial_state, x, w)
if not self.skip_transpose:
output = output.transpose(1, -1)
return output
class PCEN(nn.Module):
"""
This class implements a learnable Per-channel energy normalization (PCEN) layer, supporting both
original PCEN as specified in [1] as well as sPCEN as specified in [2]
[1] Yuxuan Wang, Pascal Getreuer, Thad Hughes, Richard F. Lyon, Rif A. Saurous, "Trainable Frontend For
Robust and Far-Field Keyword Spotting", in Proc of ICASSP 2017 (https://arxiv.org/abs/1607.05666)
[2] Neil Zeghidour, Olivier Teboul, F{\'e}lix de Chaumont Quitry & Marco Tagliasacchi, "LEAF: A LEARNABLE FRONTEND
FOR AUDIO CLASSIFICATION", in Proc of ICLR 2021 (https://arxiv.org/abs/2101.08596)
The default argument values correspond with those used by [2].
Arguments
---------
input_size : int
The expected size of the input.
alpha: float
specifies alpha coefficient for PCEN
smooth_coef: float
specified smooth coefficient for PCEN
delta: float
specifies delta coefficient for PCEN
root: float
specifies root coefficient for PCEN
floor: float
specifies floor coefficient for PCEN
trainable: bool
whether to learn the PCEN parameters or use fixed
per_channel_smooth_coef: bool
whether to learn independent smooth coefficients for every channel.
when True, essentially using sPCEN from [2]
skip_transpose : bool
If False, uses batch x time x channel convention of speechbrain.
If True, uses batch x channel x time convention.
Example
-------
>>> inp_tensor = torch.rand([10, 50, 40])
>>> pcen = PCEN(40, alpha=0.96) # sPCEN
>>> out_tensor = pcen(inp_tensor)
>>> out_tensor.shape
torch.Size([10, 50, 40])
"""
def __init__(
self,
input_size,
alpha: float = 0.96,
smooth_coef: float = 0.04,
delta: float = 2.0,
root: float = 2.0,
floor: float = 1e-12,
trainable: bool = True,
per_channel_smooth_coef: bool = True,
skip_transpose: bool = False,
):
super().__init__()
self._smooth_coef = smooth_coef
self._floor = floor
self._per_channel_smooth_coef = per_channel_smooth_coef
self.skip_transpose = skip_transpose
self.alpha = nn.Parameter(
torch.ones(input_size) * alpha, requires_grad=trainable
)
self.delta = nn.Parameter(
torch.ones(input_size) * delta, requires_grad=trainable
)
self.root = nn.Parameter(
torch.ones(input_size) * root, requires_grad=trainable
)
self.ema = ExponentialMovingAverage(
input_size,
coeff_init=self._smooth_coef,
per_channel=self._per_channel_smooth_coef,
skip_transpose=True,
trainable=trainable,
)
def forward(self, x):
"""Returns the normalized input tensor.
Arguments
---------
x : torch.Tensor (batch, time, channels)
input to normalize.
Returns
-------
output : torch.Tensor
The normalized outputs.
"""
if not self.skip_transpose:
x = x.transpose(1, -1)
alpha = torch.min(
self.alpha, torch.tensor(1.0, dtype=x.dtype, device=x.device)
)
root = torch.max(
self.root, torch.tensor(1.0, dtype=x.dtype, device=x.device)
)
ema_smoother = self.ema(x)
one_over_root = 1.0 / root
output = (
x / (self._floor + ema_smoother) ** alpha.view(1, -1, 1)
+ self.delta.view(1, -1, 1)
) ** one_over_root.view(1, -1, 1) - self.delta.view(
1, -1, 1
) ** one_over_root.view(
1, -1, 1
)
if not self.skip_transpose:
output = output.transpose(1, -1)
return output

101
indextts/BigVGAN/utils.py Normal file
View File

@@ -0,0 +1,101 @@
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import glob
import os
import matplotlib
import matplotlib.pylab as plt
import torch
from scipy.io.wavfile import write
from torch.nn.utils import weight_norm
matplotlib.use("Agg")
MAX_WAV_VALUE = 32768.0
def plot_spectrogram(spectrogram):
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
fig.canvas.draw()
plt.close()
return fig
def plot_spectrogram_clipped(spectrogram, clip_max=2.0):
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(
spectrogram,
aspect="auto",
origin="lower",
interpolation="none",
vmin=1e-6,
vmax=clip_max,
)
plt.colorbar(im, ax=ax)
fig.canvas.draw()
plt.close()
return fig
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def apply_weight_norm(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
weight_norm(m)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print(f"Loading '{filepath}'")
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def save_checkpoint(filepath, obj):
print(f"Saving checkpoint to {filepath}")
torch.save(obj, filepath)
print("Complete.")
def scan_checkpoint(cp_dir, prefix, renamed_file=None):
# Fallback to original scanning logic first
pattern = os.path.join(cp_dir, prefix + "????????")
cp_list = glob.glob(pattern)
if len(cp_list) > 0:
last_checkpoint_path = sorted(cp_list)[-1]
print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'")
return last_checkpoint_path
# If no pattern-based checkpoints are found, check for renamed file
if renamed_file:
renamed_path = os.path.join(cp_dir, renamed_file)
if os.path.isfile(renamed_path):
print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'")
return renamed_path
return None
def save_audio(audio, path, sr):
# wav: torch with 1d shape
audio = audio * MAX_WAV_VALUE
audio = audio.cpu().numpy().astype("int16")
write(path, sr, audio)

0
indextts/__init__.py Normal file
View File

65
indextts/cli.py Normal file
View File

@@ -0,0 +1,65 @@
import os
import sys
import warnings
# Suppress warnings from tensorflow and other libraries
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
def main():
import argparse
parser = argparse.ArgumentParser(description="IndexTTS Command Line")
parser.add_argument("text", type=str, help="Text to be synthesized")
parser.add_argument("-v", "--voice", type=str, required=True, help="Path to the audio prompt file (wav format)")
parser.add_argument("-o", "--output_path", type=str, default="gen.wav", help="Path to the output wav file")
parser.add_argument("-c", "--config", type=str, default="checkpoints/config.yaml", help="Path to the config file. Default is 'checkpoints/config.yaml'")
parser.add_argument("--model_dir", type=str, default="checkpoints", help="Path to the model directory. Default is 'checkpoints'")
parser.add_argument("--fp16", action="store_true", default=False, help="Use FP16 for inference if available")
parser.add_argument("-f", "--force", action="store_true", default=False, help="Force to overwrite the output file if it exists")
parser.add_argument("-d", "--device", type=str, default=None, help="Device to run the model on (cpu, cuda, mps, xpu)." )
args = parser.parse_args()
if len(args.text.strip()) == 0:
print("ERROR: Text is empty.")
parser.print_help()
sys.exit(1)
if not os.path.exists(args.voice):
print(f"Audio prompt file {args.voice} does not exist.")
parser.print_help()
sys.exit(1)
if not os.path.exists(args.config):
print(f"Config file {args.config} does not exist.")
parser.print_help()
sys.exit(1)
output_path = args.output_path
if os.path.exists(output_path):
if not args.force:
print(f"ERROR: Output file {output_path} already exists. Use --force to overwrite.")
parser.print_help()
sys.exit(1)
else:
os.remove(output_path)
try:
import torch
except ImportError:
print("ERROR: PyTorch is not installed. Please install it first.")
sys.exit(1)
if args.device is None:
if torch.cuda.is_available():
args.device = "cuda:0"
elif hasattr(torch, "xpu") and torch.xpu.is_available():
args.device = "xpu"
elif hasattr(torch, "mps") and torch.mps.is_available():
args.device = "mps"
else:
args.device = "cpu"
args.fp16 = False # Disable FP16 on CPU
print("WARNING: Running on CPU may be slow.")
# TODO: Add CLI support for IndexTTS2.
from indextts.infer import IndexTTS
tts = IndexTTS(cfg_path=args.config, model_dir=args.model_dir, use_fp16=args.fp16, device=args.device)
tts.infer(audio_prompt=args.voice, text=args.text.strip(), output_path=output_path)
if __name__ == "__main__":
main()

0
indextts/gpt/__init__.py Normal file
View File

View File

View File

@@ -0,0 +1,312 @@
# Copyright (c) 2019 Shigeki Karita
# 2020 Mobvoi Inc (Binbin Zhang)
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multi-Head Attention layer definition."""
import math
from typing import Tuple
import torch
from torch import nn
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head: int, n_feat: int, dropout_rate: float):
"""Construct an MultiHeadedAttention object."""
super().__init__()
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2) # (batch, head, time1, d_k)
k = k.transpose(1, 2) # (batch, head, time2, d_k)
v = v.transpose(1, 2) # (batch, head, time2, d_k)
return q, k, v
def forward_attention(
self, value: torch.Tensor, scores: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
) -> torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
# 1st chunk to ease the onnx export.]
# 2. pytorch training
if mask.size(2) > 0 : # time2 > 0
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
# For last chunk, time2 might be larger than scores.size(-1)
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
scores = scores.masked_fill(mask, -float('inf'))
attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0) # (batch, head, time1, time2)
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
# 1. onnx(16/-1, -1/-1, 16/0)
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
else:
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
self.h * self.d_k)
) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
def forward(self, query: torch.Tensor, key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
1.When applying cross attention between decoder and encoder,
the batch padding mask for input is in (#batch, 1, T) shape.
2.When applying self attention of encoder,
the mask is in (#batch, T, T) shape.
3.When applying self attention of decoder,
the mask is in (#batch, L, L) shape.
4.If the different position in decoder see different block
of the encoder, such as Mocha, the passed in mask could be
in (#batch, L, T) shape. But there is no such case in current
Wenet.
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
# NOTE(xcsong):
# when export onnx model, for 1st chunk, we feed
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
# and we will always do splitting and
# concatnation(this will simplify onnx export). Note that
# it's OK to concat & split zero-shaped tensors(see code below).
# when export jit model, for 1st chunk, we always feed
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# >>> a = torch.ones((1, 2, 0, 4))
# >>> b = torch.ones((1, 2, 3, 4))
# >>> c = torch.cat((a, b), dim=2)
# >>> torch.equal(b, c) # True
# >>> d = torch.split(a, 2, dim=-1)
# >>> torch.equal(d[0], d[1]) # True
if cache.size(0) > 0:
key_cache, value_cache = torch.split(
cache, cache.size(-1) // 2, dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = torch.cat((k, v), dim=-1)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask), new_cache
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head, n_feat, dropout_rate):
"""Construct an RelPositionMultiHeadedAttention object."""
super().__init__(n_head, n_feat, dropout_rate)
# linear transformation for positional encoding
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
torch.nn.init.xavier_uniform_(self.pos_bias_u)
torch.nn.init.xavier_uniform_(self.pos_bias_v)
def rel_shift(self, x, zero_triu: bool = False):
"""Compute relative positinal encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, size).
zero_triu (bool): If true, return the lower triangular part of
the matrix.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
device=x.device,
dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(x.size()[0],
x.size()[1],
x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)
if zero_triu:
ones = torch.ones((x.size(2), x.size(3)))
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
return x
def forward(self, query: torch.Tensor,
key: torch.Tensor, value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
pos_emb (torch.Tensor): Positional embedding tensor
(#batch, time2, size).
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
q = q.transpose(1, 2) # (batch, time1, head, d_k)
# NOTE(xcsong):
# when export onnx model, for 1st chunk, we feed
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
# and we will always do splitting and
# concatnation(this will simplify onnx export). Note that
# it's OK to concat & split zero-shaped tensors(see code below).
# when export jit model, for 1st chunk, we always feed
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# >>> a = torch.ones((1, 2, 0, 4))
# >>> b = torch.ones((1, 2, 3, 4))
# >>> c = torch.cat((a, b), dim=2)
# >>> torch.equal(b, c) # True
# >>> d = torch.split(a, 2, dim=-1)
# >>> torch.equal(d[0], d[1]) # True
if cache.size(0) > 0:
key_cache, value_cache = torch.split(
cache, cache.size(-1) // 2, dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = torch.cat((k, v), dim=-1)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2) # (batch, head, time1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, time2)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
# Remove rel_shift since it is useless in speech recognition,
# and it requires special attention for streaming.
# matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(
self.d_k) # (batch, head, time1, time2)
return self.forward_attention(v, scores, mask), new_cache

View File

@@ -0,0 +1,163 @@
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Positonal Encoding Module."""
import math
from typing import Tuple, Union
import torch
import torch.nn.functional as F
class PositionalEncoding(torch.nn.Module):
"""Positional encoding.
:param int d_model: embedding dim
:param float dropout_rate: dropout rate
:param int max_len: maximum input length
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
"""
def __init__(self,
d_model: int,
dropout_rate: float,
max_len: int = 5000,
reverse: bool = False):
"""Construct an PositionalEncoding object."""
super().__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.max_len = max_len
pe = torch.zeros(self.max_len, self.d_model)
position = torch.arange(0, self.max_len).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2) *
-(math.log(10000.0) / self.d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self,
x: torch.Tensor,
offset: Union[int, torch.Tensor] = 0) \
-> Tuple[torch.Tensor, torch.Tensor]:
"""Add positional encoding.
Args:
x (torch.Tensor): Input. Its shape is (batch, time, ...)
offset (int, torch.tensor): position offset
Returns:
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
torch.Tensor: for compatibility to RelPositionalEncoding
"""
self.pe = self.pe.to(x.device)
pos_emb = self.position_encoding(offset, x.size(1), False)
x = x * self.xscale + pos_emb
return self.dropout(x), self.dropout(pos_emb)
def position_encoding(self, offset: Union[int, torch.Tensor], size: int,
apply_dropout: bool = True) -> torch.Tensor:
""" For getting encoding in a streaming fashion
Attention!!!!!
we apply dropout only once at the whole utterance level in a none
streaming way, but will call this function several times with
increasing input size in a streaming scenario, so the dropout will
be applied several times.
Args:
offset (int or torch.tensor): start offset
size (int): required size of position encoding
Returns:
torch.Tensor: Corresponding encoding
"""
# How to subscript a Union type:
# https://github.com/pytorch/pytorch/issues/69434
if isinstance(offset, int):
assert offset + size < self.max_len
pos_emb = self.pe[:, offset:offset + size]
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
assert offset + size < self.max_len
pos_emb = self.pe[:, offset:offset + size]
else: # for batched streaming decoding on GPU
assert torch.max(offset) + size < self.max_len
index = offset.unsqueeze(1) + \
torch.arange(0, size).to(offset.device) # B X T
flag = index > 0
# remove negative offset
index = index * flag
pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
if apply_dropout:
pos_emb = self.dropout(pos_emb)
return pos_emb
class RelPositionalEncoding(PositionalEncoding):
"""Relative positional encoding module.
See : Appendix B in https://arxiv.org/abs/1901.02860
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
"""Initialize class."""
super().__init__(d_model, dropout_rate, max_len, reverse=True)
def forward(self,
x: torch.Tensor,
offset: Union[int, torch.Tensor] = 0) \
-> Tuple[torch.Tensor, torch.Tensor]:
"""Compute positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
torch.Tensor: Positional embedding tensor (1, time, `*`).
"""
self.pe = self.pe.to(x.device)
x = x * self.xscale
pos_emb = self.position_encoding(offset, x.size(1), False)
return self.dropout(x), self.dropout(pos_emb)
class NoPositionalEncoding(torch.nn.Module):
""" No position encoding
"""
def __init__(self, d_model: int, dropout_rate: float):
super().__init__()
self.d_model = d_model
self.dropout = torch.nn.Dropout(p=dropout_rate)
def forward(self,
x: torch.Tensor,
offset: Union[int, torch.Tensor] = 0) \
-> Tuple[torch.Tensor, torch.Tensor]:
""" Just return zero vector for interface compatibility
"""
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
return self.dropout(x), pos_emb
def position_encoding(
self, offset: Union[int, torch.Tensor], size: int) -> torch.Tensor:
return torch.zeros(1, size, self.d_model)

View File

@@ -0,0 +1,348 @@
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Subsampling layer definition."""
from typing import Tuple, Union
import torch
class BaseSubsampling(torch.nn.Module):
def __init__(self):
super().__init__()
self.right_context = 0
self.subsampling_rate = 1
def position_encoding(self, offset: Union[int, torch.Tensor],
size: int) -> torch.Tensor:
return self.pos_enc.position_encoding(offset, size)
class LinearNoSubsampling(BaseSubsampling):
"""Linear transform the input without subsampling
Args:
idim (int): Input dimension.
odim (int): Output dimension.
dropout_rate (float): Dropout rate.
"""
def __init__(self, idim: int, odim: int, dropout_rate: float,
pos_enc_class: torch.nn.Module):
"""Construct an linear object."""
super().__init__()
self.out = torch.nn.Sequential(
torch.nn.Linear(idim, odim),
torch.nn.LayerNorm(odim, eps=1e-5),
torch.nn.Dropout(dropout_rate),
)
self.pos_enc = pos_enc_class
self.right_context = 0
self.subsampling_rate = 1
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Input x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: linear input tensor (#batch, time', odim),
where time' = time .
torch.Tensor: linear input mask (#batch, 1, time'),
where time' = time .
"""
x = self.out(x)
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask
class Conv2dSubsampling3(BaseSubsampling):
"""Convolutional 2D subsampling (to 1/3 length).
Args:
idim (int): Input dimension.
odim (int): Output dimension.
dropout_rate (float): Dropout rate.
"""
def __init__(self, idim: int, odim: int, dropout_rate: float,
pos_enc_class: torch.nn.Module):
"""Construct an Conv2dSubsampling3 object."""
super().__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(1, odim, 5, 3),
torch.nn.ReLU()
)
self.out = torch.nn.Sequential(
torch.nn.Linear(odim * ((idim - 2) // 3), odim))
self.pos_enc = pos_enc_class
# The right context for every conv layer is computed by:
# (kernel_size - 1) * frame_rate_of_this_layer
self.subsampling_rate = 3
# 4 = (5 - 1) * 1
self.right_context = 4
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 3.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 3.
torch.Tensor: positional encoding
"""
x = x.unsqueeze(1) # (b, c=1, t, f)
x = self.conv(x)
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask[:, :, :-2:3]
class Conv2dSubsampling2(BaseSubsampling):
"""Convolutional 2D subsampling (to 1/2 length).
Args:
idim (int): Input dimension.
odim (int): Output dimension.
dropout_rate (float): Dropout rate.
"""
def __init__(self, idim: int, odim: int, dropout_rate: float,
pos_enc_class: torch.nn.Module):
"""Construct an Conv2dSubsampling4 object."""
super().__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(1, odim, 3, 2),
torch.nn.ReLU(),
)
self.out = torch.nn.Sequential(
torch.nn.Linear(odim * ((idim - 1) // 2), odim))
self.pos_enc = pos_enc_class
# The right context for every conv layer is computed by:
# (kernel_size - 1) * frame_rate_of_this_layer
self.subsampling_rate = 2
# 2 = (3 - 1) * 1
self.right_context = 2
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 2.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 2.
torch.Tensor: positional encoding
"""
x = x.unsqueeze(1) # (b, c=1, t, f)
x = self.conv(x)
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask[:, :, 2::2]
class Conv2dSubsampling4(BaseSubsampling):
"""Convolutional 2D subsampling (to 1/4 length).
Args:
idim (int): Input dimension.
odim (int): Output dimension.
dropout_rate (float): Dropout rate.
"""
def __init__(self, idim: int, odim: int, dropout_rate: float,
pos_enc_class: torch.nn.Module):
"""Construct an Conv2dSubsampling4 object."""
super().__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(1, odim, 3, 2),
torch.nn.ReLU(),
torch.nn.Conv2d(odim, odim, 3, 2),
torch.nn.ReLU(),
)
self.out = torch.nn.Sequential(
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
self.pos_enc = pos_enc_class
# The right context for every conv layer is computed by:
# (kernel_size - 1) * frame_rate_of_this_layer
self.subsampling_rate = 4
# 6 = (3 - 1) * 1 + (3 - 1) * 2
self.right_context = 6
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 4.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 4.
torch.Tensor: positional encoding
"""
x = x.unsqueeze(1) # (b, c=1, t, f)
x = self.conv(x)
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
class Conv2dSubsampling6(BaseSubsampling):
"""Convolutional 2D subsampling (to 1/6 length).
Args:
idim (int): Input dimension.
odim (int): Output dimension.
dropout_rate (float): Dropout rate.
pos_enc (torch.nn.Module): Custom position encoding layer.
"""
def __init__(self, idim: int, odim: int, dropout_rate: float,
pos_enc_class: torch.nn.Module):
"""Construct an Conv2dSubsampling6 object."""
super().__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(1, odim, 3, 2),
torch.nn.ReLU(),
torch.nn.Conv2d(odim, odim, 5, 3),
torch.nn.ReLU(),
)
self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
odim)
self.pos_enc = pos_enc_class
# 10 = (3 - 1) * 1 + (5 - 1) * 2
self.subsampling_rate = 6
self.right_context = 10
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 6.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 6.
torch.Tensor: positional encoding
"""
x = x.unsqueeze(1) # (b, c, t, f)
x = self.conv(x)
b, c, t, f = x.size()
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
class Conv2dSubsampling8(BaseSubsampling):
"""Convolutional 2D subsampling (to 1/8 length).
Args:
idim (int): Input dimension.
odim (int): Output dimension.
dropout_rate (float): Dropout rate.
"""
def __init__(self, idim: int, odim: int, dropout_rate: float,
pos_enc_class: torch.nn.Module):
"""Construct an Conv2dSubsampling8 object."""
super().__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(1, odim, 3, 2),
torch.nn.ReLU(),
torch.nn.Conv2d(odim, odim, 3, 2),
torch.nn.ReLU(),
torch.nn.Conv2d(odim, odim, 3, 2),
torch.nn.ReLU(),
)
self.linear = torch.nn.Linear(
odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
self.pos_enc = pos_enc_class
self.subsampling_rate = 8
# 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
self.right_context = 14
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 8.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 8.
torch.Tensor: positional encoding
"""
x = x.unsqueeze(1) # (b, c, t, f)
x = self.conv(x)
b, c, t, f = x.size()
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]

View File

@@ -0,0 +1,520 @@
from typing import Optional, Tuple
import torch
import torch.nn as nn
from indextts.gpt.conformer.attention import (MultiHeadedAttention,
RelPositionMultiHeadedAttention)
from indextts.gpt.conformer.embedding import (NoPositionalEncoding,
PositionalEncoding,
RelPositionalEncoding)
from indextts.gpt.conformer.subsampling import (Conv2dSubsampling2,
Conv2dSubsampling4,
Conv2dSubsampling6,
Conv2dSubsampling8,
LinearNoSubsampling)
from indextts.utils.common import make_pad_mask
class PositionwiseFeedForward(torch.nn.Module):
"""Positionwise feed forward layer.
FeedForward are appied on each position of the sequence.
The output dim is same with the input dim.
Args:
idim (int): Input dimenstion.
hidden_units (int): The number of hidden units.
dropout_rate (float): Dropout rate.
activation (torch.nn.Module): Activation function
"""
def __init__(self,
idim: int,
hidden_units: int,
dropout_rate: float,
activation: torch.nn.Module = torch.nn.ReLU()):
"""Construct a PositionwiseFeedForward object."""
super(PositionwiseFeedForward, self).__init__()
self.w_1 = torch.nn.Linear(idim, hidden_units)
self.activation = activation
self.dropout = torch.nn.Dropout(dropout_rate)
self.w_2 = torch.nn.Linear(hidden_units, idim)
def forward(self, xs: torch.Tensor) -> torch.Tensor:
"""Forward function.
Args:
xs: input tensor (B, L, D)
Returns:
output tensor, (B, L, D)
"""
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
class ConvolutionModule(nn.Module):
"""ConvolutionModule in Conformer model."""
def __init__(self,
channels: int,
kernel_size: int = 15,
activation: nn.Module = nn.ReLU(),
bias: bool = True):
"""Construct an ConvolutionModule object.
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernel size of conv layers.
causal (int): Whether use causal convolution or not
"""
super().__init__()
self.pointwise_conv1 = nn.Conv1d(
channels,
2 * channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
# self.lorder is used to distinguish if it's a causal convolution,
# if self.lorder > 0: it's a causal convolution, the input will be
# padded with self.lorder frames on the left in forward.
# else: it's a symmetrical convolution
# kernel_size should be an odd number for none causal convolution
assert (kernel_size - 1) % 2 == 0
padding = (kernel_size - 1) // 2
self.lorder = 0
self.depthwise_conv = nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
padding=padding,
groups=channels,
bias=bias,
)
self.use_layer_norm = True
self.norm = nn.LayerNorm(channels)
self.pointwise_conv2 = nn.Conv1d(
channels,
channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.activation = activation
def forward(
self,
x: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
cache: torch.Tensor = torch.zeros((0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute convolution module.
Args:
x (torch.Tensor): Input tensor (#batch, time, channels).
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
(0, 0, 0) means fake mask.
cache (torch.Tensor): left context cache, it is only
used in causal convolution (#batch, channels, cache_t),
(0, 0, 0) meas fake cache.
Returns:
torch.Tensor: Output tensor (#batch, time, channels).
"""
# exchange the temporal dimension and the feature dimension
x = x.transpose(1, 2) # (#batch, channels, time)
# mask batch padding
if mask_pad.size(2) > 0: # time > 0
x.masked_fill_(~mask_pad, 0.0)
if self.lorder > 0:
if cache.size(2) == 0: # cache_t == 0
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
else:
assert cache.size(0) == x.size(0) # equal batch
assert cache.size(1) == x.size(1) # equal channel
x = torch.cat((cache, x), dim=2)
assert (x.size(2) > self.lorder)
new_cache = x[:, :, -self.lorder:]
else:
# It's better we just return None if no cache is required,
# However, for JIT export, here we just fake one tensor instead of
# None.
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
# GLU mechanism
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
# 1D Depthwise Conv
x = self.depthwise_conv(x)
if self.use_layer_norm:
x = x.transpose(1, 2)
x = self.activation(self.norm(x))
if self.use_layer_norm:
x = x.transpose(1, 2)
x = self.pointwise_conv2(x)
# mask batch padding
if mask_pad.size(2) > 0: # time > 0
x.masked_fill_(~mask_pad, 0.0)
return x.transpose(1, 2), new_cache
class ConformerEncoderLayer(nn.Module):
"""Encoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
instance can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward` instance can be used as the argument.
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
instance.
`PositionwiseFeedForward` instance can be used as the argument.
conv_module (torch.nn.Module): Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool):
True: use layer_norm before each sub-block.
False: use layer_norm after each sub-block.
concat_after (bool): Whether to concat attention layer's input and
output.
True: x -> x + linear(concat(x, att(x)))
False: x -> x + att(x)
"""
def __init__(
self,
size: int,
self_attn: torch.nn.Module,
feed_forward: Optional[nn.Module] = None,
feed_forward_macaron: Optional[nn.Module] = None,
conv_module: Optional[nn.Module] = None,
dropout_rate: float = 0.1,
normalize_before: bool = True,
concat_after: bool = False,
):
"""Construct an EncoderLayer object."""
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = nn.LayerNorm(size,
eps=1e-5) # for the CNN module
self.norm_final = nn.LayerNorm(
size, eps=1e-5) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear = nn.Linear(size + size, size)
else:
self.concat_linear = nn.Identity()
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute encoded features.
Args:
x (torch.Tensor): (#batch, time, size)
mask (torch.Tensor): Mask tensor for the input (#batch, timetime),
(0, 0, 0) means fake mask.
pos_emb (torch.Tensor): positional encoding, must not be None
for ConformerEncoderLayer.
mask_pad (torch.Tensor): batch padding mask used for conv module.
(#batch, 1time), (0, 0, 0) means fake mask.
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
cnn_cache (torch.Tensor): Convolution cache in conformer layer
(#batch=1, size, cache_t2)
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time, time).
torch.Tensor: att_cache tensor,
(#batch=1, head, cache_t1 + time, d_k * 2).
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
"""
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(
self.feed_forward_macaron(x))
if not self.normalize_before:
x = self.norm_ff_macaron(x)
# multi-headed self-attention module
residual = x
if self.normalize_before:
x = self.norm_mha(x)
x_att, new_att_cache = self.self_attn(
x, x, x, mask, pos_emb, att_cache)
if self.concat_after:
x_concat = torch.cat((x, x_att), dim=-1)
x = residual + self.concat_linear(x_concat)
else:
x = residual + self.dropout(x_att)
if not self.normalize_before:
x = self.norm_mha(x)
# convolution module
# Fake new cnn cache here, and then change it in conv_module
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
x = residual + self.dropout(x)
if not self.normalize_before:
x = self.norm_conv(x)
# feed forward module
residual = x
if self.normalize_before:
x = self.norm_ff(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm_ff(x)
if self.conv_module is not None:
x = self.norm_final(x)
return x, mask, new_att_cache, new_cnn_cache
class BaseEncoder(torch.nn.Module):
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "abs_pos",
normalize_before: bool = True,
concat_after: bool = False,
):
"""
Args:
input_size (int): input dim
output_size (int): dimension of attention
attention_heads (int): the number of heads of multi head attention
linear_units (int): the hidden units number of position-wise feed
forward
num_blocks (int): the number of decoder blocks
dropout_rate (float): dropout rate
attention_dropout_rate (float): dropout rate in attention
positional_dropout_rate (float): dropout rate after adding
positional encoding
input_layer (str): input layer type.
optional [linear, conv2d, conv2d6, conv2d8]
pos_enc_layer_type (str): Encoder positional encoding layer type.
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
normalize_before (bool):
True: use layer_norm before each sub-block of a layer.
False: use layer_norm after each sub-block of a layer.
concat_after (bool): whether to concat attention layer's input
and output.
True: x -> x + linear(concat(x, att(x)))
False: x -> x + att(x)
static_chunk_size (int): chunk size for static chunk training and
decoding
use_dynamic_chunk (bool): whether use dynamic chunk size for
training or not, You can only use fixed chunk(chunk_size > 0)
or dyanmic chunk size(use_dynamic_chunk = True)
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
dynamic chunk training
"""
super().__init__()
self._output_size = output_size
if pos_enc_layer_type == "abs_pos":
pos_enc_class = PositionalEncoding
elif pos_enc_layer_type == "rel_pos":
pos_enc_class = RelPositionalEncoding
elif pos_enc_layer_type == "no_pos":
pos_enc_class = NoPositionalEncoding
else:
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
if input_layer == "linear":
subsampling_class = LinearNoSubsampling
elif input_layer == "conv2d2":
subsampling_class = Conv2dSubsampling2
elif input_layer == "conv2d":
subsampling_class = Conv2dSubsampling4
elif input_layer == "conv2d6":
subsampling_class = Conv2dSubsampling6
elif input_layer == "conv2d8":
subsampling_class = Conv2dSubsampling8
else:
raise ValueError("unknown input_layer: " + input_layer)
self.embed = subsampling_class(
input_size,
output_size,
dropout_rate,
pos_enc_class(output_size, dropout_rate),
)
self.normalize_before = normalize_before
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs: torch.Tensor,
xs_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Embed positions in tensor.
Args:
xs: padded input tensor (B, T, D)
xs_lens: input length (B)
decoding_chunk_size: decoding chunk size for dynamic chunk
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
num_decoding_left_chunks: number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
Returns:
encoder output tensor xs, and subsampled masks
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
masks: torch.Tensor batch padding mask after subsample
(B, 1, T' ~= T/subsample_rate)
"""
T = xs.size(1)
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
xs, pos_emb, masks = self.embed(xs, masks)
chunk_masks = masks
mask_pad = masks # (B, 1, T/subsample_rate)
for layer in self.encoders:
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
if self.normalize_before:
xs = self.after_norm(xs)
# Here we assume the mask is not changed in encoder layers, so just
# return the masks before encoder layers, and the masks will be used
# for cross attention with decoder later
return xs, masks
class ConformerEncoder(BaseEncoder):
"""Conformer encoder module."""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "rel_pos",
normalize_before: bool = True,
concat_after: bool = False,
macaron_style: bool = False,
use_cnn_module: bool = True,
cnn_module_kernel: int = 15,
):
"""Construct ConformerEncoder
Args:
input_size to use_dynamic_chunk, see in BaseEncoder
positionwise_conv_kernel_size (int): Kernel size of positionwise
conv1d layer.
macaron_style (bool): Whether to use macaron style for
positionwise layer.
selfattention_layer_type (str): Encoder attention layer type,
the parameter has no effect now, it's just for configure
compatibility.
activation_type (str): Encoder activation function type.
use_cnn_module (bool): Whether to use convolution module.
cnn_module_kernel (int): Kernel size of convolution module.
causal (bool): whether to use causal convolution or not.
"""
super().__init__(input_size, output_size, attention_heads,
linear_units, num_blocks, dropout_rate,
input_layer, pos_enc_layer_type, normalize_before,
concat_after)
activation = torch.nn.SiLU()
# self-attention module definition
if pos_enc_layer_type != "rel_pos":
encoder_selfattn_layer = MultiHeadedAttention
else:
encoder_selfattn_layer = RelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
dropout_rate,
)
# feed-forward module definition
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
activation,
)
# convolution module definition
convolution_layer = ConvolutionModule
convolution_layer_args = (output_size,
cnn_module_kernel,
activation,)
self.encoders = torch.nn.ModuleList([
ConformerEncoderLayer(
output_size,
encoder_selfattn_layer(*encoder_selfattn_layer_args),
positionwise_layer(*positionwise_layer_args),
positionwise_layer(
*positionwise_layer_args) if macaron_style else None,
convolution_layer(
*convolution_layer_args) if use_cnn_module else None,
dropout_rate,
normalize_before,
concat_after,
) for _ in range(num_blocks)
])

713
indextts/gpt/model.py Normal file
View File

@@ -0,0 +1,713 @@
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
from transformers import GPT2Config, LogitsProcessorList
from indextts.gpt.transformers_gpt2 import GPT2PreTrainedModel, GPT2Model
# from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from transformers.utils.model_parallel_utils import (assert_device_map,
get_device_map)
from indextts.gpt.conformer_encoder import ConformerEncoder
from indextts.gpt.perceiver import PerceiverResampler
from indextts.utils.arch_util import AttentionBlock
from indextts.utils.typical_sampling import TypicalLogitsWarper
def null_position_embeddings(range, dim):
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
class ResBlock(nn.Module):
"""
Basic residual convolutional block that uses GroupNorm.
"""
def __init__(self, chan):
super().__init__()
self.net = nn.Sequential(
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
nn.GroupNorm(chan // 8, chan),
nn.ReLU(),
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
nn.GroupNorm(chan // 8, chan)
)
def forward(self, x):
return F.relu(self.net(x) + x)
class GPT2InferenceModel(GPT2PreTrainedModel):
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache=False):
super().__init__(config)
# Note: the argument named `text_pos_emb` here actually represents the mel position embedding
self.transformer = gpt
self.text_pos_embedding = text_pos_emb
self.embeddings = embeddings
self.final_norm = norm
self.lm_head = nn.Sequential(norm, linear)
self.kv_cache = kv_cache
# Model parallel
self.model_parallel = False
self.device_map = None
self.cached_mel_emb = None
def parallelize(self, device_map=None):
self.device_map = (
get_device_map(len(self.transformer.h), range(max(1, torch.cuda.device_count())))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.transformer.h))
self.transformer.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.transformer.first_device)
self.model_parallel = True
def deparallelize(self):
self.transformer.deparallelize()
self.transformer = self.transformer.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
torch.cuda.empty_cache()
if torch.backends.mps.is_available():
torch.mps.empty_cache()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def store_mel_emb(self, mel_emb):
self.cached_mel_emb = mel_emb
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None) # usually None
if not self.kv_cache:
past_key_values = None
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 0)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
assert self.cached_mel_emb is not None
assert inputs_embeds is None # Not supported by this inference model.
assert labels is None # Training not supported by this inference model.
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# Create embedding
mel_len = self.cached_mel_emb.shape[1]
if input_ids.shape[1] != 1:
text_inputs = input_ids[:, mel_len:]
text_emb = self.embeddings(text_inputs)
text_emb = text_emb + self.text_pos_embedding(text_emb)
if self.cached_mel_emb.shape[0] != text_emb.shape[0]:
mel_emb = self.cached_mel_emb.repeat_interleave(
text_emb.shape[0] // self.cached_mel_emb.shape[0], 0
)
else: # this outcome only occurs once per loop in most cases
mel_emb = self.cached_mel_emb
emb = torch.cat([mel_emb, text_emb], dim=1)
else:
emb = self.embeddings(input_ids)
emb = emb + self.text_pos_embedding.get_fixed_embedding(
attention_mask.shape[1] - mel_len, attention_mask.device
)
transformer_outputs = self.transformer(
inputs_embeds=emb,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# Set device for model parallelism
if self.model_parallel:
if torch.backends.mps.is_available():
self.to(self.transformer.first_device)
else:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + transformer_outputs[1:]
return CausalLMOutputWithCrossAttentions(
loss=None,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past, beam_idx):
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
)
for layer_past in past
)
class ConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
attn_blocks=6,
num_attn_heads=4,
do_checkpointing=False,
mean=False):
super().__init__()
attn = []
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
self.do_checkpointing = do_checkpointing
self.mean = mean
def forward(self, x):
h = self.init(x)
h = self.attn(h)
if self.mean:
return h.mean(dim=2)
else:
return h
# return h[:, :, 0]
class LearnedPositionEmbeddings(nn.Module):
def __init__(self, seq_len, model_dim, init=.02):
super().__init__()
self.emb = nn.Embedding(seq_len, model_dim)
# Initializing this way is standard for GPT-2
self.emb.weight.data.normal_(mean=0.0, std=init)
def forward(self, x):
sl = x.shape[1]
return self.emb(torch.arange(0, sl, device=x.device))
def get_fixed_embedding(self, ind, dev):
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing, activation_function):
"""
GPT-2 implemented by the HuggingFace library.
"""
from transformers import GPT2Config, GPT2Model
gpt_config = GPT2Config(vocab_size=256, # Unused.
n_positions=max_mel_seq_len + max_text_seq_len,
n_ctx=max_mel_seq_len + max_text_seq_len,
n_embd=model_dim,
n_layer=layers,
n_head=heads,
activation_function=activation_function or "gelu_new",
gradient_checkpointing=checkpointing,
use_cache=not checkpointing)
gpt = GPT2Model(gpt_config)
# Override the built in positional embeddings
del gpt.wpe
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
# Built-in token embeddings are unused.
del gpt.wte
return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim), \
None, None
class MelEncoder(nn.Module):
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
super().__init__()
self.channels = channels
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1),
nn.Sequential(*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels // 16, channels // 2),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels // 8, channels),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
)
self.reduction = 4
def forward(self, x):
for e in self.encoder:
x = e(x)
return x.permute(0, 2, 1)
class UnifiedVoice(nn.Module):
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
mel_length_compression=1024, number_text_tokens=256,
start_text_token=0, stop_text_token=1, number_mel_codes=8194, start_mel_token=8192, stop_mel_token=8193,
train_solo_embeddings=False, use_mel_codes_as_input=True,
checkpointing=True, types=1, activation_function=None,
condition_num_latent=32, condition_type="perceiver", condition_module=None):
"""
Args:
layers: Number of layers in transformer stack.
model_dim: Operating dimensions of the transformer
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
max_text_tokens: Maximum number of text tokens that will be encountered by model.
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
number_text_tokens:
start_text_token:
stop_text_token:
number_mel_codes:
start_mel_token:
stop_mel_token:
train_solo_embeddings:
use_mel_codes_as_input:
checkpointing:
condition_type: perceiver, gst or default encoder
"""
super().__init__()
self.number_text_tokens = number_text_tokens
self.start_text_token = start_text_token
self.stop_text_token = stop_text_token
self.number_mel_codes = number_mel_codes
self.start_mel_token = start_mel_token
self.stop_mel_token = stop_mel_token
self.layers = layers
self.heads = heads
self.max_mel_tokens = max_mel_tokens
self.max_text_tokens = max_text_tokens
self.model_dim = model_dim
self.max_conditioning_inputs = max_conditioning_inputs
self.mel_length_compression = mel_length_compression
self.condition_type = condition_type
self.cond_num = condition_num_latent
self.cond_mask_pad = nn.ConstantPad1d((self.cond_num, 0), True)
if condition_type == "perceiver":
self.conditioning_encoder = ConditioningEncoder(100, model_dim, num_attn_heads=heads)
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=model_dim, num_latents=self.cond_num)
elif condition_type == "conformer_perceiver" or condition_type == "conformer_encoder":
self.conditioning_encoder = ConformerEncoder(input_size=100,
output_size=condition_module['output_size'],
linear_units=condition_module['linear_units'],
attention_heads=condition_module['attention_heads'],
num_blocks=condition_module['num_blocks'],
input_layer=condition_module['input_layer'])
if condition_type == "conformer_perceiver":
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=condition_module['output_size'],
ff_mult=condition_module['perceiver_mult'],
heads=condition_module['attention_heads'],
num_latents=self.cond_num)
else:
self.conditioning_encoder = ConditioningEncoder(100, model_dim, num_attn_heads=heads, mean=True)
self.text_embedding = nn.Embedding(self.number_text_tokens * types + 1, model_dim)
if use_mel_codes_as_input:
self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim)
else:
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1)
self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \
build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens + 2 + self.max_conditioning_inputs,
self.max_text_tokens + 2, checkpointing, activation_function)
if train_solo_embeddings:
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
else:
self.mel_solo_embedding = 0
self.text_solo_embedding = 0
self.final_norm = nn.LayerNorm(model_dim)
self.text_head = nn.Linear(model_dim, self.number_text_tokens * types + 1)
self.mel_head = nn.Linear(model_dim, self.number_mel_codes)
# Initialize the embeddings per the GPT-2 scheme
embeddings = [self.text_embedding]
if use_mel_codes_as_input:
embeddings.append(self.mel_embedding)
for module in embeddings:
module.weight.data.normal_(mean=0.0, std=.02)
def post_init_gpt2_config(self, use_deepspeed=False, kv_cache=False, half=False):
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
gpt_config = GPT2Config(
vocab_size=self.number_mel_codes,
n_positions=seq_length,
n_ctx=seq_length,
n_embd=self.model_dim,
n_layer=self.layers,
n_head=self.heads,
gradient_checkpointing=False,
use_cache=True,
)
self.inference_model = GPT2InferenceModel(
gpt_config,
self.gpt,
self.mel_pos_embedding,
self.mel_embedding,
self.final_norm,
self.mel_head,
kv_cache=kv_cache,
)
if use_deepspeed and half and torch.cuda.is_available():
import deepspeed
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
mp_size=1,
replace_with_kernel_inject=False,
dtype=torch.float16)
self.inference_model = self.ds_engine.module.eval()
elif use_deepspeed and torch.cuda.is_available():
import deepspeed
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
mp_size=1,
replace_with_kernel_inject=False,
dtype=torch.float32)
self.inference_model = self.ds_engine.module.eval()
else:
self.inference_model = self.inference_model.eval()
# self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head)
self.gpt.wte = self.mel_embedding
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
inp = F.pad(input, (1, 0), value=start_token)
tar = F.pad(input, (0, 1), value=stop_token)
return inp, tar
def set_mel_padding(self, mel_input_tokens, mel_lengths):
"""
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
preformatting to create a working TTS model.
"""
for b in range(len(mel_lengths)):
# Due to the convolutional nature of how these tokens are generated,
# it would be best if the model predicts a token past the actual last token.
actual_end = mel_lengths[b]
if actual_end < mel_input_tokens.shape[-1]:
mel_input_tokens[b, actual_end:] = self.stop_mel_token
return mel_input_tokens
def set_text_padding(self, text_input_tokens, text_lengths):
"""
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
preformatting to create a working TTS model.
"""
for b in range(len(text_lengths)):
# Due to the convolutional nature of how these tokens are generated,
# it would be best if the model predicts a token past the actual last token.
actual_end = text_lengths[b]
if actual_end < text_input_tokens.shape[-1]:
text_input_tokens[b, actual_end:] = self.stop_text_token
return text_input_tokens
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False):
if second_inputs is not None:
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
else:
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1)
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
if get_attns:
return gpt_out.attentions
offset = speech_conditioning_inputs.shape[1]
enc = gpt_out.last_hidden_state[:, offset:]
enc = self.final_norm(enc)
if return_latent:
return enc[:, :first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:]
first_logits = enc[:, :first_inputs.shape[1]]
first_logits = first_head(first_logits)
first_logits = first_logits.permute(0, 2, 1)
if second_inputs is not None:
second_logits = enc[:, -second_inputs.shape[1]:]
second_logits = second_head(second_logits)
second_logits = second_logits.permute(0, 2, 1)
return first_logits, second_logits
else:
return first_logits
def get_conditioning(self, speech_conditioning_input, cond_mel_lengths=None):
if self.condition_type == "perceiver":
if speech_conditioning_input.ndim == 4:
speech_conditioning_input = speech_conditioning_input.squeeze(1)
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input) # (b, d, s)
conds = self.perceiver_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 32, d)
elif self.condition_type == "conformer_perceiver":
speech_conditioning_input, mask = self.conditioning_encoder(speech_conditioning_input.transpose(1, 2),
cond_mel_lengths) # (b, s, d), (b, 1, s)
if self.condition_type == "conformer_perceiver":
# conds_mask = torch.cat([torch.ones((mask.shape[0], self.cond_num), dtype=torch.bool), mask.squeeze(1)], dim=1)
conds_mask = self.cond_mask_pad(mask.squeeze(1))
conds = self.perceiver_encoder(speech_conditioning_input, conds_mask) # (b, 32, d)
elif self.condition_type == "gst":
if speech_conditioning_input.ndim == 4:
speech_conditioning_input = speech_conditioning_input.squeeze(1)
conds = self.gst_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 1, d)
else:
speech_conditioning_input = (
speech_conditioning_input.unsqueeze(1)
if len(speech_conditioning_input.shape) == 3
else speech_conditioning_input
)
conds = []
for j in range(speech_conditioning_input.shape[1]):
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
conds = torch.stack(conds, dim=1)
conds = conds.mean(dim=1)
conds = conds.unsqueeze(1)
return conds
def forward(self, speech_conditioning_latent, text_inputs, text_lengths, mel_codes, wav_lengths,
cond_mel_lengths=None, types=None, text_first=True, raw_mels=None, return_attentions=False,
return_latent=False, clip_inputs=False):
"""
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
(actuated by `text_first`).
speech_conditioning_input: MEL float tensor, (b,1024)
text_inputs: long tensor, (b,t)
text_lengths: long tensor, (b,)
mel_inputs: long tensor, (b,m)
wav_lengths: long tensor, (b,)
raw_mels: MEL float tensor (b,80,s)
If return_attentions is specified, only logits are returned.
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
If clip_inputs is True, the inputs will be clipped to the smallest input size across each input modality.
"""
speech_conditioning_latent = self.get_conditioning(speech_conditioning_latent, cond_mel_lengths)
# Types are expressed by expanding the text embedding space.
if types is not None:
text_inputs = text_inputs * (1 + types).unsqueeze(-1)
if clip_inputs:
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
# chopping the inputs by the maximum actual length.
max_text_len = text_lengths.max()
text_inputs = text_inputs[:, :max_text_len]
max_mel_len = wav_lengths.max() // self.mel_length_compression
mel_codes = mel_codes[:, :max_mel_len]
if raw_mels is not None:
raw_mels = raw_mels[:, :, :max_mel_len * 4]
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
# mel_codes_lengths = torch.div(wav_lengths, self.mel_length_compression, rounding_mode='trunc')
mel_codes_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 1
mel_codes = self.set_mel_padding(mel_codes, mel_codes_lengths)
text_inputs = self.set_text_padding(text_inputs, text_lengths)
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
mel_codes = F.pad(mel_codes, (0, 1), value=self.stop_mel_token)
conds = speech_conditioning_latent
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
if raw_mels is not None:
mel_inp = F.pad(raw_mels, (0, 8))
else:
mel_inp = mel_codes
mel_emb = self.mel_embedding(mel_inp)
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
if text_first:
# print(f"conds: {conds.shape}, text_emb: {text_emb.shape}, mel_emb: {mel_emb.shape}")
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions, return_latent=return_latent)
if return_latent:
return mel_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
else:
mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions, return_latent=return_latent)
if return_latent:
return text_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
if return_attentions:
return mel_logits
loss_text = F.cross_entropy(text_logits, text_targets.long())
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
return loss_text.mean(), loss_mel.mean(), mel_logits
def prepare_gpt_inputs(
self,
conditional_latents: torch.Tensor,
text_inputs: torch.Tensor,
):
"""
Prepare the inputs for the GPT2InferenceModel to generate.
Args:
conds_latent: (b, 32, dim) audio conditioning embedding by `get_conditioning()`
text_inputs: (b, L)
Returns:
input_ids: (b, s+1) the input ids for the GPT2InferenceModel.generate()
inputs_embeds: (b, s+1, dim) the input embeddings for the GPT2InferenceModel.forward()
attention_mask: (b, s+1) the attention mask for the GPT2InferenceModel.generate()
"""
b, L = text_inputs.shape[:2]
device = text_inputs.device
single_cond = conditional_latents.ndim == 3 and conditional_latents.shape[0] == 1
if not single_cond:
assert conditional_latents.shape[0] == b, f"batch size mismatch: {conditional_latents.shape[0]} vs {b}"
batched_mel_emb = []
attention_masks = []
target_len = conditional_latents.shape[1] + L + 2
for i in range(b):
valid_mask = (text_inputs[i] != self.stop_text_token) & (text_inputs[i] != self.start_text_token)
text_input = text_inputs[i][valid_mask]
text_input = F.pad(text_input, (1, 0), value=self.start_text_token)
text_input = F.pad(text_input, (0, 1), value=self.stop_text_token)
text_input_pos = torch.arange(0, text_input.size(-1), device=device)
text_emb = self.text_embedding(text_input) + self.text_pos_embedding.emb(text_input_pos)
# concatenate [conditional latents][text embeddings]
conds_text_emb = [
conditional_latents.squeeze(0) if single_cond else conditional_latents[i],
text_emb,
]
# +1 for the start_mel_token
attention_mask = torch.ones(target_len+1, dtype=torch.long, device=device)
# check this text input is padded
padding: int = L + 2 - text_input.size(-1)
# pad left of [cond][text] -> [pad][cond][text]
if padding > 0:
pad = torch.zeros((padding, conditional_latents.size(-1)), dtype=text_emb.dtype, device=device) # [p, dim]
conds_text_emb.insert(0, pad)
attention_mask[:padding] = 0
mel_emb = torch.cat(conds_text_emb) #[s, dim]
assert mel_emb.shape[0] == target_len, f"mel_emb.shape: {mel_emb.shape}, target_len: {target_len}"
batched_mel_emb.append(mel_emb)
attention_masks.append(attention_mask)
# [b, s, dim]
batched_mel_emb = torch.stack(batched_mel_emb, dim=0)
# [b, s+1]
attention_mask = torch.stack(attention_masks, dim=0)
# [b, s+1]
fake_inputs = torch.ones(
(
batched_mel_emb.shape[0],
batched_mel_emb.shape[1] + 1, # +1 for the start_mel_token
),
dtype=torch.long,
device=device,
)
fake_inputs[:, -1] = self.start_mel_token
return fake_inputs, batched_mel_emb, attention_mask
def inference_speech(self, speech_conditioning_mel, text_inputs, cond_mel_lengths=None, input_tokens=None, num_return_sequences=1,
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
"""
Args:
speech_conditioning_mel: (b, n_mels, frames) or (n_mels, frames)
text_inputs: (b, L)
cond_mel_lengths: lengths of the conditioning mel spectrograms in shape (b,) or (1,)
input_tokens: additional tokens for generation in shape (b, s) or (s,)
max_generate_length: limit the number of generated tokens
hf_generate_kwargs: kwargs for `GPT2InferenceModel.generate(**hf_generate_kwargs)`
"""
if speech_conditioning_mel.ndim == 2:
speech_conditioning_mel = speech_conditioning_mel.unsqueeze(0)
if cond_mel_lengths is None:
cond_mel_lengths = torch.tensor([speech_conditioning_mel.shape[-1]], device=speech_conditioning_mel.device)
conds_latent = self.get_conditioning(speech_conditioning_mel, cond_mel_lengths)
input_ids, inputs_embeds, attention_mask = self.prepare_gpt_inputs(conds_latent, text_inputs)
self.inference_model.store_mel_emb(inputs_embeds)
if input_tokens is None:
inputs = input_ids
else:
if input_tokens.ndim == 1:
input_tokens = input_tokens.unsqueeze(0)
assert num_return_sequences % input_tokens.shape[0] == 0, \
"The num_return_sequences must be divisible by the batch number of input_tokens"
assert num_return_sequences % text_inputs.shape[0] == 0, \
"The num_return_sequences must be divisible by the batch number of text_inputs"
b = num_return_sequences // input_ids.shape[0]
if b > 1:
input_ids = input_ids.repeat(b, 1)
attention_mask = attention_mask.repeat(b, 1)
input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1)
inputs = torch.cat([input_ids, input_tokens], dim=1)
attention_mask = F.pad(attention_mask, (0, input_tokens.shape[1]), value=1)
trunc_index = inputs.shape[1]
logits_processor = LogitsProcessorList()
if typical_sampling:
# employ custom typical sampling
if not (typical_mass > 0.0 and typical_mass < 1.0):
raise ValueError(f"`typical_mass` has to be a float > 0 and < 1, but is {typical_mass}")
min_tokens_to_keep = 2 if hf_generate_kwargs.get("num_beams", 1) > 1 else 1
logits_processor.append(TypicalLogitsWarper(mass=typical_mass, min_tokens_to_keep=min_tokens_to_keep))
max_length = (trunc_index + self.max_mel_tokens - 1) if max_generate_length is None else trunc_index + max_generate_length
output = self.inference_model.generate(inputs,
bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token,
eos_token_id=self.stop_mel_token, attention_mask=attention_mask,
max_length=max_length, logits_processor=logits_processor,
num_return_sequences=num_return_sequences,
**hf_generate_kwargs)
if isinstance(output, torch.Tensor):
return output[:, trunc_index:]
# GenerateOutput
output.sequences = output.sequences[:, trunc_index:]
return output

747
indextts/gpt/model_v2.py Normal file
View File

@@ -0,0 +1,747 @@
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
from transformers import GPT2Config, LogitsProcessorList
from indextts.gpt.transformers_gpt2 import GPT2PreTrainedModel, GPT2Model
# from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from transformers.utils.model_parallel_utils import (assert_device_map,
get_device_map)
from indextts.gpt.conformer_encoder import ConformerEncoder
from indextts.gpt.perceiver import PerceiverResampler
from indextts.utils.arch_util import AttentionBlock
from indextts.utils.typical_sampling import TypicalLogitsWarper
def null_position_embeddings(range, dim):
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
class ResBlock(nn.Module):
"""
Basic residual convolutional block that uses GroupNorm.
"""
def __init__(self, chan):
super().__init__()
self.net = nn.Sequential(
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
nn.GroupNorm(chan // 8, chan),
nn.ReLU(),
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
nn.GroupNorm(chan // 8, chan)
)
def forward(self, x):
return F.relu(self.net(x) + x)
class GPT2InferenceModel(GPT2PreTrainedModel):
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache=False):
super().__init__(config)
# Note: the argument named `text_pos_emb` here actually represents the mel position embedding
self.transformer = gpt
self.text_pos_embedding = text_pos_emb
self.embeddings = embeddings
self.final_norm = norm
self.lm_head = nn.Sequential(norm, linear)
self.kv_cache = kv_cache
# Model parallel
self.model_parallel = False
self.device_map = None
self.cached_mel_emb = None
def parallelize(self, device_map=None):
self.device_map = (
get_device_map(len(self.transformer.h), range(max(1, torch.cuda.device_count())))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.transformer.h))
self.transformer.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.transformer.first_device)
self.model_parallel = True
def deparallelize(self):
self.transformer.deparallelize()
self.transformer = self.transformer.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
torch.cuda.empty_cache()
if torch.backends.mps.is_available():
torch.mps.empty_cache()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def store_mel_emb(self, mel_emb):
self.cached_mel_emb = mel_emb
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None) # usually None
if not self.kv_cache:
past_key_values = None
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 0)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
assert self.cached_mel_emb is not None
assert inputs_embeds is None # Not supported by this inference model.
assert labels is None # Training not supported by this inference model.
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# Create embedding
mel_len = self.cached_mel_emb.shape[1]
if input_ids.shape[1] != 1:
text_inputs = input_ids[:, mel_len:]
text_emb = self.embeddings(text_inputs)
text_emb = text_emb + self.text_pos_embedding(text_emb)
if self.cached_mel_emb.shape[0] != text_emb.shape[0]:
mel_emb = self.cached_mel_emb.repeat_interleave(
text_emb.shape[0] // self.cached_mel_emb.shape[0], 0
)
else: # this outcome only occurs once per loop in most cases
mel_emb = self.cached_mel_emb
emb = torch.cat([mel_emb, text_emb], dim=1)
else:
emb = self.embeddings(input_ids)
emb = emb + self.text_pos_embedding.get_fixed_embedding(
attention_mask.shape[1] - mel_len, attention_mask.device
)
transformer_outputs = self.transformer(
inputs_embeds=emb,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# Set device for model parallelism
if self.model_parallel:
if torch.backends.mps.is_available():
self.to(self.transformer.first_device)
else:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + transformer_outputs[1:]
return CausalLMOutputWithCrossAttentions(
loss=None,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past, beam_idx):
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
)
for layer_past in past
)
class ConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
attn_blocks=6,
num_attn_heads=4,
do_checkpointing=False,
mean=False):
super().__init__()
attn = []
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
self.do_checkpointing = do_checkpointing
self.mean = mean
def forward(self, x):
h = self.init(x)
h = self.attn(h)
if self.mean:
return h.mean(dim=2)
else:
return h
# return h[:, :, 0]
class LearnedPositionEmbeddings(nn.Module):
def __init__(self, seq_len, model_dim, init=.02):
super().__init__()
self.emb = nn.Embedding(seq_len, model_dim)
# Initializing this way is standard for GPT-2
self.emb.weight.data.normal_(mean=0.0, std=init)
def forward(self, x):
sl = x.shape[1]
return self.emb(torch.arange(0, sl, device=x.device))
def get_fixed_embedding(self, ind, dev):
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
"""
GPT-2 implemented by the HuggingFace library.
"""
from transformers import GPT2Config, GPT2Model
gpt_config = GPT2Config(vocab_size=256, # Unused.
n_positions=max_mel_seq_len + max_text_seq_len,
n_ctx=max_mel_seq_len + max_text_seq_len,
n_embd=model_dim,
n_layer=layers,
n_head=heads,
gradient_checkpointing=checkpointing,
use_cache=not checkpointing)
gpt = GPT2Model(gpt_config)
# Override the built in positional embeddings
del gpt.wpe
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
# Built-in token embeddings are unused.
del gpt.wte
return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim), \
None, None
class MelEncoder(nn.Module):
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
super().__init__()
self.channels = channels
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1),
nn.Sequential(*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels // 16, channels // 2),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels // 8, channels),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
)
self.reduction = 4
def forward(self, x):
for e in self.encoder:
x = e(x)
return x.permute(0, 2, 1)
class UnifiedVoice(nn.Module):
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
mel_length_compression=1024, number_text_tokens=256,
start_text_token=0, stop_text_token=1, number_mel_codes=8194, start_mel_token=8192, stop_mel_token=8193,
train_solo_embeddings=False, use_mel_codes_as_input=True,
checkpointing=True, types=1,
condition_num_latent=32, condition_type="perceiver", condition_module=None, emo_condition_module=None):
"""
Args:
layers: Number of layers in transformer stack.
model_dim: Operating dimensions of the transformer
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
max_text_tokens: Maximum number of text tokens that will be encountered by model.
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
number_text_tokens:
start_text_token:
stop_text_token:
number_mel_codes:
start_mel_token:
stop_mel_token:
train_solo_embeddings:
use_mel_codes_as_input:
checkpointing:
condition_type: perceiver, gst or default encoder
"""
super().__init__()
self.number_text_tokens = number_text_tokens
self.start_text_token = start_text_token
self.stop_text_token = stop_text_token
self.number_mel_codes = number_mel_codes
self.start_mel_token = start_mel_token
self.stop_mel_token = stop_mel_token
self.layers = layers
self.heads = heads
self.max_mel_tokens = max_mel_tokens
self.max_text_tokens = max_text_tokens
self.model_dim = model_dim
self.max_conditioning_inputs = max_conditioning_inputs
self.mel_length_compression = mel_length_compression
self.condition_type = condition_type
self.cond_num = condition_num_latent
self.cond_mask_pad = nn.ConstantPad1d((self.cond_num, 0), True)
self.emo_cond_mask_pad = nn.ConstantPad1d((1, 0), True)
if condition_type == "perceiver":
self.conditioning_encoder = ConditioningEncoder(1024, model_dim, num_attn_heads=heads)
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=model_dim, num_latents=self.cond_num)
elif condition_type == "conformer_perceiver" or condition_type == "conformer_encoder":
self.conditioning_encoder = ConformerEncoder(input_size=1024,
output_size=condition_module['output_size'],
linear_units=condition_module['linear_units'],
attention_heads=condition_module['attention_heads'],
num_blocks=condition_module['num_blocks'],
input_layer=condition_module['input_layer'])
if condition_type == "conformer_perceiver":
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=condition_module['output_size'],
ff_mult=condition_module['perceiver_mult'],
heads=condition_module['attention_heads'],
num_latents=self.cond_num)
else:
self.conditioning_encoder = ConditioningEncoder(1024, model_dim, num_attn_heads=heads, mean=True)
self.emo_conditioning_encoder = ConformerEncoder(input_size=1024,
output_size=emo_condition_module['output_size'],
linear_units=emo_condition_module['linear_units'],
attention_heads=emo_condition_module['attention_heads'],
num_blocks=emo_condition_module['num_blocks'],
input_layer=emo_condition_module['input_layer'])
self.emo_perceiver_encoder = PerceiverResampler(1024, dim_context=emo_condition_module['output_size'],
ff_mult=emo_condition_module['perceiver_mult'],
heads=emo_condition_module['attention_heads'],
num_latents=1)
self.text_embedding = nn.Embedding(self.number_text_tokens * types + 1, model_dim)
self.emo_layer = nn.Linear(model_dim, model_dim)
self.emovec_layer = nn.Linear(1024, model_dim)
if use_mel_codes_as_input:
self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim)
else:
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1)
self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \
build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens + 2 + self.max_conditioning_inputs,
self.max_text_tokens + 2, checkpointing)
if train_solo_embeddings:
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
else:
self.mel_solo_embedding = 0
self.text_solo_embedding = 0
self.final_norm = nn.LayerNorm(model_dim)
self.text_head = nn.Linear(model_dim, self.number_text_tokens * types + 1)
self.mel_head = nn.Linear(model_dim, self.number_mel_codes)
self.speed_emb = nn.Embedding(2, model_dim)
self.speed_emb.weight.data.normal_(mean=0.0, std=0.0)
# Initialize the embeddings per the GPT-2 scheme
embeddings = [self.text_embedding]
if use_mel_codes_as_input:
embeddings.append(self.mel_embedding)
for module in embeddings:
module.weight.data.normal_(mean=0.0, std=.02)
def post_init_gpt2_config(self, use_deepspeed=False, kv_cache=False, half=False):
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
gpt_config = GPT2Config(
vocab_size=self.number_mel_codes,
n_positions=seq_length,
n_ctx=seq_length,
n_embd=self.model_dim,
n_layer=self.layers,
n_head=self.heads,
gradient_checkpointing=False,
use_cache=True,
)
self.inference_model = GPT2InferenceModel(
gpt_config,
self.gpt,
self.mel_pos_embedding,
self.mel_embedding,
self.final_norm,
self.mel_head,
kv_cache=kv_cache,
)
if use_deepspeed and half and torch.cuda.is_available():
import deepspeed
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
mp_size=1,
replace_with_kernel_inject=True,
dtype=torch.float16)
self.inference_model = self.ds_engine.module.eval()
elif use_deepspeed and torch.cuda.is_available():
import deepspeed
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
mp_size=1,
replace_with_kernel_inject=True,
dtype=torch.float32)
self.inference_model = self.ds_engine.module.eval()
else:
self.inference_model = self.inference_model.eval()
# self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head)
self.gpt.wte = self.mel_embedding
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
inp = F.pad(input, (1, 0), value=start_token)
tar = F.pad(input, (0, 1), value=stop_token)
return inp, tar
def set_mel_padding(self, mel_input_tokens, mel_lengths):
"""
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
preformatting to create a working TTS model.
"""
for b in range(len(mel_lengths)):
# Due to the convolutional nature of how these tokens are generated,
# it would be best if the model predicts a token past the actual last token.
actual_end = mel_lengths[b]
if actual_end < mel_input_tokens.shape[-1]:
mel_input_tokens[b, actual_end:] = self.stop_mel_token
return mel_input_tokens
def set_text_padding(self, text_input_tokens, text_lengths):
"""
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
preformatting to create a working TTS model.
"""
for b in range(len(text_lengths)):
# Due to the convolutional nature of how these tokens are generated,
# it would be best if the model predicts a token past the actual last token.
actual_end = text_lengths[b]
if actual_end < text_input_tokens.shape[-1]:
text_input_tokens[b, actual_end:] = self.stop_text_token
return text_input_tokens
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False):
if second_inputs is not None:
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
else:
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1)
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
if get_attns:
return gpt_out.attentions
offset = speech_conditioning_inputs.shape[1]
enc = gpt_out.last_hidden_state[:, offset:]
enc = self.final_norm(enc)
if return_latent:
return enc[:, :first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:]
first_logits = enc[:, :first_inputs.shape[1]]
first_logits = first_head(first_logits)
first_logits = first_logits.permute(0, 2, 1)
if second_inputs is not None:
second_logits = enc[:, -second_inputs.shape[1]:]
second_logits = second_head(second_logits)
second_logits = second_logits.permute(0, 2, 1)
return first_logits, second_logits
else:
return first_logits
def get_conditioning(self, speech_conditioning_input, cond_mel_lengths=None):
if self.condition_type == "perceiver":
if speech_conditioning_input.ndim == 4:
speech_conditioning_input = speech_conditioning_input.squeeze(1)
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input) # (b, d, s)
conds = self.perceiver_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 32, d)
elif self.condition_type == "conformer_perceiver":
speech_conditioning_input, mask = self.conditioning_encoder(speech_conditioning_input.transpose(1, 2),
cond_mel_lengths) # (b, s, d), (b, 1, s)
if self.condition_type == "conformer_perceiver":
# conds_mask = torch.cat([torch.ones((mask.shape[0], self.cond_num), dtype=torch.bool), mask.squeeze(1)], dim=1)
conds_mask = self.cond_mask_pad(mask.squeeze(1))
conds = self.perceiver_encoder(speech_conditioning_input, conds_mask) # (b, 32, d)
elif self.condition_type == "gst":
if speech_conditioning_input.ndim == 4:
speech_conditioning_input = speech_conditioning_input.squeeze(1)
conds = self.gst_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 1, d)
else:
speech_conditioning_input = (
speech_conditioning_input.unsqueeze(1)
if len(speech_conditioning_input.shape) == 3
else speech_conditioning_input
)
conds = []
for j in range(speech_conditioning_input.shape[1]):
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
conds = torch.stack(conds, dim=1)
conds = conds.mean(dim=1)
conds = conds.unsqueeze(1)
return conds
def get_emo_conditioning(self, speech_conditioning_input, cond_mel_lengths=None):
speech_conditioning_input, mask = self.emo_conditioning_encoder(speech_conditioning_input.transpose(1, 2),
cond_mel_lengths) # (b, s, d), (b, 1, s)
conds_mask = self.emo_cond_mask_pad(mask.squeeze(1))
conds = self.emo_perceiver_encoder(speech_conditioning_input, conds_mask) # (b, 1, d)
return conds.squeeze(1)
def forward(self, speech_conditioning_latent, text_inputs, text_lengths, mel_codes, mel_codes_lengths, emo_speech_conditioning_latent,
cond_mel_lengths=None, emo_cond_mel_lengths=None, emo_vec=None, use_speed=None, do_spk_cond=False):
"""
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
speech_conditioning_input: MEL float tensor, (b,1024)
text_inputs: long tensor, (b,t)
text_lengths: long tensor, (b,)
mel_inputs: long tensor, (b,m)
wav_lengths: long tensor, (b,)
If return_attentions is specified, only logits are returned.
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
"""
if do_spk_cond:
speech_conditioning_latent = self.get_conditioning(speech_conditioning_latent.transpose(1,2), cond_mel_lengths)
else:
speech_conditioning_latent = speech_conditioning_latent
if emo_vec is None:
emo_vec_syn_ori = self.get_emo_conditioning(emo_speech_conditioning_latent.transpose(1,2), emo_cond_mel_lengths)
emo_vec_syn = self.emovec_layer(emo_vec_syn_ori)
emo_vec = self.emo_layer(emo_vec_syn)
text_inputs = self.set_text_padding(text_inputs, text_lengths)
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
mel_codes = self.set_mel_padding(mel_codes, mel_codes_lengths)
mel_codes = F.pad(mel_codes, (0, 1), value=self.stop_mel_token)
duration_emb = self.speed_emb(torch.zeros_like(use_speed))
duration_emb_half = self.speed_emb(torch.ones_like(use_speed))
conds = torch.cat((speech_conditioning_latent + emo_vec.unsqueeze(1), duration_emb_half.unsqueeze(1), duration_emb.unsqueeze(1)), 1)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
mel_emb = self.mel_embedding(mel_codes)
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=False, return_latent=True)
return mel_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
def prepare_gpt_inputs(
self,
conditional_latents: torch.Tensor,
text_inputs: torch.Tensor,
):
"""
Prepare the inputs for the GPT2InferenceModel to generate.
Args:
conds_latent: (b, 32, dim) audio conditioning embedding by `get_conditioning()`
text_inputs: (b, L)
Returns:
input_ids: (b, s+1) the input ids for the GPT2InferenceModel.generate()
inputs_embeds: (b, s+1, dim) the input embeddings for the GPT2InferenceModel.forward()
attention_mask: (b, s+1) the attention mask for the GPT2InferenceModel.generate()
"""
b, L = text_inputs.shape[:2]
device = text_inputs.device
single_cond = conditional_latents.ndim == 3 and conditional_latents.shape[0] == 1
if not single_cond:
assert conditional_latents.shape[0] == b, f"batch size mismatch: {conditional_latents.shape[0]} vs {b}"
batched_mel_emb = []
attention_masks = []
target_len = conditional_latents.shape[1] + L + 2
for i in range(b):
valid_mask = (text_inputs[i] != self.stop_text_token) & (text_inputs[i] != self.start_text_token)
text_input = text_inputs[i][valid_mask]
text_input = F.pad(text_input, (1, 0), value=self.start_text_token)
text_input = F.pad(text_input, (0, 1), value=self.stop_text_token)
text_input_pos = torch.arange(0, text_input.size(-1), device=device)
text_emb = self.text_embedding(text_input) + self.text_pos_embedding.emb(text_input_pos)
# concatenate [conditional latents][text embeddings]
conds_text_emb = [
conditional_latents.squeeze(0) if single_cond else conditional_latents[i],
text_emb,
]
# +1 for the start_mel_token
attention_mask = torch.ones(target_len+1, dtype=torch.long, device=device)
# check this text input is padded
padding: int = L + 2 - text_input.size(-1)
# pad left of [cond][text] -> [pad][cond][text]
if padding > 0:
pad = torch.zeros((padding, conditional_latents.size(-1)), dtype=text_emb.dtype, device=device) # [p, dim]
conds_text_emb.insert(0, pad)
attention_mask[:padding] = 0
mel_emb = torch.cat(conds_text_emb) #[s, dim]
assert mel_emb.shape[0] == target_len, f"mel_emb.shape: {mel_emb.shape}, target_len: {target_len}"
batched_mel_emb.append(mel_emb)
attention_masks.append(attention_mask)
# [b, s, dim]
batched_mel_emb = torch.stack(batched_mel_emb, dim=0)
# [b, s+1]
attention_mask = torch.stack(attention_masks, dim=0)
# [b, s+1]
fake_inputs = torch.ones(
(
batched_mel_emb.shape[0],
batched_mel_emb.shape[1] + 1, # +1 for the start_mel_token
),
dtype=torch.long,
device=device,
)
fake_inputs[:, -1] = self.start_mel_token
return fake_inputs, batched_mel_emb, attention_mask
def inference_speech(self, speech_condition, text_inputs, emo_speech_condition=None, cond_lengths=None, emo_cond_lengths=None, emo_vec=None, use_speed=False, input_tokens=None, num_return_sequences=1,
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
"""
Args:
speech_condition: (b, d, frames) or (d, frames)
text_inputs: (b, L)
cond_mel_lengths: lengths of the conditioning mel spectrograms in shape (b,) or (1,)
input_tokens: additional tokens for generation in shape (b, s) or (s,)
max_generate_length: limit the number of generated tokens
hf_generate_kwargs: kwargs for `GPT2InferenceModel.generate(**hf_generate_kwargs)`
"""
if speech_condition.ndim == 2:
speech_condition = speech_condition.unsqueeze(0)
if emo_speech_condition is None:
emo_speech_condition = speech_condition
if cond_lengths is None:
cond_lengths = torch.tensor([speech_condition.shape[-1]], device=speech_condition.device)
if emo_cond_lengths is None:
emo_cond_lengths = torch.tensor([emo_speech_condition.shape[-1]], device=speech_condition.device)
speech_conditioning_latent = self.get_conditioning(speech_condition.transpose(1,2), cond_lengths)
if emo_vec is None:
print('compute emo vec')
emo_vec = self.get_emo_conditioning(emo_speech_condition.transpose(1,2), emo_cond_lengths)
emo_vec = self.emovec_layer(emo_vec)
emo_vec = self.emo_layer(emo_vec)
else:
print('Use the specified emotion vector')
tmp = torch.zeros(text_inputs.size(0)).to(text_inputs.device)
duration_emb = self.speed_emb(torch.zeros_like(tmp).long())
duration_emb_half = self.speed_emb(torch.ones_like(tmp).long())
conds_latent = torch.cat((speech_conditioning_latent + emo_vec.unsqueeze(1), duration_emb_half.unsqueeze(1), duration_emb.unsqueeze(1)), 1)
input_ids, inputs_embeds, attention_mask = self.prepare_gpt_inputs(conds_latent, text_inputs)
self.inference_model.store_mel_emb(inputs_embeds)
if input_tokens is None:
inputs = input_ids
else:
if input_tokens.ndim == 1:
input_tokens = input_tokens.unsqueeze(0)
assert num_return_sequences % input_tokens.shape[0] == 0, \
"The num_return_sequences must be divisible by the batch number of input_tokens"
assert num_return_sequences % text_inputs.shape[0] == 0, \
"The num_return_sequences must be divisible by the batch number of text_inputs"
b = num_return_sequences // input_ids.shape[0]
if b > 1:
input_ids = input_ids.repeat(b, 1)
attention_mask = attention_mask.repeat(b, 1)
input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1)
inputs = torch.cat([input_ids, input_tokens], dim=1)
attention_mask = F.pad(attention_mask, (0, input_tokens.shape[1]), value=1)
trunc_index = inputs.shape[1]
logits_processor = LogitsProcessorList()
if typical_sampling:
# employ custom typical sampling
if not (typical_mass > 0.0 and typical_mass < 1.0):
raise ValueError(f"`typical_mass` has to be a float > 0 and < 1, but is {typical_mass}")
min_tokens_to_keep = 2 if hf_generate_kwargs.get("num_beams", 1) > 1 else 1
logits_processor.append(TypicalLogitsWarper(mass=typical_mass, min_tokens_to_keep=min_tokens_to_keep))
max_length = (trunc_index + self.max_mel_tokens - 1) if max_generate_length is None else trunc_index + max_generate_length
output = self.inference_model.generate(inputs,
bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token,
eos_token_id=self.stop_mel_token, attention_mask=attention_mask,
max_length=max_length, logits_processor=logits_processor,
num_return_sequences=num_return_sequences,
**hf_generate_kwargs)
if isinstance(output, torch.Tensor):
return output[:, trunc_index:], speech_conditioning_latent
# GenerateOutput
output.sequences = output.sequences[:, trunc_index:]
return output, speech_conditioning_latent
def get_emovec(self, emo_speech_conditioning_latent, emo_cond_lengths):
emo_vec_syn_ori = self.get_emo_conditioning(emo_speech_conditioning_latent.transpose(1,2), emo_cond_lengths)
emo_vec_syn = self.emovec_layer(emo_vec_syn_ori)
emo_vec = self.emo_layer(emo_vec_syn)
return emo_vec
def merge_emovec(self, speech_conditioning_latent, emo_speech_conditioning_latent, cond_lengths, emo_cond_lengths, alpha = 1.0):
emo_vec = self.get_emovec(emo_speech_conditioning_latent, emo_cond_lengths)
base_vec = self.get_emovec(speech_conditioning_latent, cond_lengths)
out = base_vec + alpha * (emo_vec - base_vec)
return out

317
indextts/gpt/perceiver.py Normal file
View File

@@ -0,0 +1,317 @@
# Adapted from https://github.com/lucidrains/naturalspeech2-pytorch/blob/659bec7f7543e7747e809e950cc2f84242fbeec7/naturalspeech2_pytorch/naturalspeech2_pytorch.py#L532
from collections import namedtuple
from functools import wraps
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from packaging import version
from torch import einsum, nn
def exists(val):
return val is not None
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
# main class
class Attend(nn.Module):
def __init__(self, dropout=0.0, causal=False, use_flash=False):
super().__init__()
self.dropout = dropout
self.attn_dropout = nn.Dropout(dropout)
self.causal = causal
self.register_buffer("mask", None, persistent=False)
self.use_flash = use_flash
assert not (
use_flash and version.parse(torch.__version__) < version.parse("2.0.0")
), "in order to use flash attention, you must be using pytorch 2.0 or above"
# determine efficient attention configs for cuda and cpu
self.config = namedtuple("EfficientAttentionConfig", ["enable_flash", "enable_math", "enable_mem_efficient"])
self.cpu_config = self.config(True, True, True)
self.cuda_config = None
if not torch.cuda.is_available() or not use_flash:
return
device_properties = torch.cuda.get_device_properties(torch.device("cuda"))
if device_properties.major == 8 and device_properties.minor == 0:
print_once("A100 GPU detected, using flash attention if input tensor is on cuda")
self.cuda_config = self.config(True, False, False)
else:
print_once("Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda")
self.cuda_config = self.config(False, True, True)
def get_mask(self, n, device):
if exists(self.mask) and self.mask.shape[-1] >= n:
return self.mask[:n, :n]
mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1)
self.register_buffer("mask", mask, persistent=False)
return mask
def flash_attn(self, q, k, v, mask=None):
_, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda
# Recommended for multi-query single-key-value attention by Tri Dao
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
if k.ndim == 3:
k = rearrange(k, "b ... -> b 1 ...").expand_as(q)
if v.ndim == 3:
v = rearrange(v, "b ... -> b 1 ...").expand_as(q)
# Check if mask exists and expand to compatible shape
# The mask is B L, so it would have to be expanded to B H N L
if exists(mask):
mask = rearrange(mask, "b j -> b 1 1 j")
mask = mask.expand(-1, heads, q_len, -1)
# Check if there is a compatible device for flash attention
config = self.cuda_config if is_cuda else self.cpu_config
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
with torch.backends.cuda.sdp_kernel(**config._asdict()):
out = F.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=self.dropout if self.training else 0.0, is_causal=self.causal
)
return out
def forward(self, q, k, v, mask=None):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
n, device = q.shape[-2], q.device
scale = q.shape[-1] ** -0.5
if self.use_flash:
return self.flash_attn(q, k, v, mask=mask)
kv_einsum_eq = "b j d" if k.ndim == 3 else "b h j d"
# similarity
sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale
# key padding mask
if exists(mask):
mask = rearrange(mask, "b j -> b 1 1 j")
sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max)
# causal mask
if self.causal:
causal_mask = self.get_mask(n, device)
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
# attention
attn = sim.softmax(dim=-1)
attn = self.attn_dropout(attn)
# aggregate values
out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v)
return out
def Sequential(*mods):
return nn.Sequential(*filter(exists, mods))
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
class RMSNorm(nn.Module):
def __init__(self, dim, scale=True, dim_cond=None):
super().__init__()
self.cond = exists(dim_cond)
self.to_gamma_beta = nn.Linear(dim_cond, dim * 2) if self.cond else None
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.ones(dim)) if scale else None
def forward(self, x, cond=None):
gamma = default(self.gamma, 1)
out = F.normalize(x, dim=-1) * self.scale * gamma
if not self.cond:
return out
assert exists(cond)
gamma, beta = self.to_gamma_beta(cond).chunk(2, dim=-1)
gamma, beta = map(lambda t: rearrange(t, "b d -> b 1 d"), (gamma, beta))
return out * gamma + beta
class CausalConv1d(nn.Conv1d):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
(kernel_size,) = self.kernel_size
(dilation,) = self.dilation
(stride,) = self.stride
assert stride == 1
self.causal_padding = dilation * (kernel_size - 1)
def forward(self, x):
causal_padded_x = F.pad(x, (self.causal_padding, 0), value=0.0)
return super().forward(causal_padded_x)
class GEGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.gelu(gate) * x
def FeedForward(dim, mult=4, causal_conv=False):
dim_inner = int(dim * mult * 2 / 3)
conv = None
if causal_conv:
conv = nn.Sequential(
Rearrange("b n d -> b d n"),
CausalConv1d(dim_inner, dim_inner, 3),
Rearrange("b d n -> b n d"),
)
return Sequential(nn.Linear(dim, dim_inner * 2), GEGLU(), conv, nn.Linear(dim_inner, dim))
class PerceiverResampler(nn.Module):
def __init__(
self,
dim,
depth=2,
dim_context=None,
num_latents=32,
dim_head=64,
heads=8,
ff_mult=4,
use_flash_attn=False,
):
super().__init__()
dim_context = default(dim_context, dim)
self.proj_context = nn.Linear(dim_context, dim) if dim_context != dim else nn.Identity()
self.latents = nn.Parameter(torch.randn(num_latents, dim))
nn.init.normal_(self.latents, std=0.02)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
Attention(
dim=dim,
dim_head=dim_head,
heads=heads,
use_flash=use_flash_attn,
cross_attn_include_queries=True,
),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
self.norm = RMSNorm(dim)
def forward(self, x, mask=None):
batch = x.shape[0]
x = self.proj_context(x)
latents = repeat(self.latents, "n d -> b n d", b=batch)
for attn, ff in self.layers:
latents = attn(latents, x, mask=mask) + latents
latents = ff(latents) + latents
return self.norm(latents)
class Attention(nn.Module):
def __init__(
self,
dim,
*,
dim_context=None,
causal=False,
dim_head=64,
heads=8,
dropout=0.0,
use_flash=False,
cross_attn_include_queries=False,
):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
self.cross_attn_include_queries = cross_attn_include_queries
dim_inner = dim_head * heads
dim_context = default(dim_context, dim)
self.attend = Attend(causal=causal, dropout=dropout, use_flash=use_flash)
self.to_q = nn.Linear(dim, dim_inner, bias=False)
self.to_kv = nn.Linear(dim_context, dim_inner * 2, bias=False)
self.to_out = nn.Linear(dim_inner, dim, bias=False)
def forward(self, x, context=None, mask=None):
h, has_context = self.heads, exists(context)
context = default(context, x)
if has_context and self.cross_attn_include_queries:
context = torch.cat((x, context), dim=-2)
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim=-1))
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
out = self.attend(q, k, v, mask=mask)
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

681
indextts/infer.py Normal file
View File

@@ -0,0 +1,681 @@
import os
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
import time
from subprocess import CalledProcessError
from typing import Dict, List
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from omegaconf import OmegaConf
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
from indextts.BigVGAN.models import BigVGAN as Generator
from indextts.gpt.model import UnifiedVoice
from indextts.utils.checkpoint import load_checkpoint
from indextts.utils.feature_extractors import MelSpectrogramFeatures
from indextts.utils.front import TextNormalizer, TextTokenizer
class IndexTTS:
def __init__(
self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_fp16=True, device=None,
use_cuda_kernel=None,
):
"""
Args:
cfg_path (str): path to the config file.
model_dir (str): path to the model directory.
use_fp16 (bool): whether to use fp16.
device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
"""
if device is not None:
self.device = device
self.use_fp16 = False if device == "cpu" else use_fp16
self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
elif torch.cuda.is_available():
self.device = "cuda:0"
self.use_fp16 = use_fp16
self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
elif hasattr(torch, "xpu") and torch.xpu.is_available():
self.device = "xpu"
self.use_fp16 = use_fp16
self.use_cuda_kernel = False
elif hasattr(torch, "mps") and torch.backends.mps.is_available():
self.device = "mps"
self.use_fp16 = False # Use float16 on MPS is overhead than float32
self.use_cuda_kernel = False
else:
self.device = "cpu"
self.use_fp16 = False
self.use_cuda_kernel = False
print(">> Be patient, it may take a while to run in CPU mode.")
self.cfg = OmegaConf.load(cfg_path)
self.model_dir = model_dir
self.dtype = torch.float16 if self.use_fp16 else None
self.stop_mel_token = self.cfg.gpt.stop_mel_token
# Comment-off to load the VQ-VAE model for debugging tokenizer
# https://github.com/index-tts/index-tts/issues/34
#
# from indextts.vqvae.xtts_dvae import DiscreteVAE
# self.dvae = DiscreteVAE(**self.cfg.vqvae)
# self.dvae_path = os.path.join(self.model_dir, self.cfg.dvae_checkpoint)
# load_checkpoint(self.dvae, self.dvae_path)
# self.dvae = self.dvae.to(self.device)
# if self.use_fp16:
# self.dvae.eval().half()
# else:
# self.dvae.eval()
# print(">> vqvae weights restored from:", self.dvae_path)
self.gpt = UnifiedVoice(**self.cfg.gpt)
self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
load_checkpoint(self.gpt, self.gpt_path)
self.gpt = self.gpt.to(self.device)
if self.use_fp16:
self.gpt.eval().half()
else:
self.gpt.eval()
print(">> GPT weights restored from:", self.gpt_path)
if self.use_fp16:
try:
import deepspeed
use_deepspeed = True
except (ImportError, OSError, CalledProcessError) as e:
use_deepspeed = False
print(f">> DeepSpeed加载失败回退到标准推理: {e}")
self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=True)
else:
self.gpt.post_init_gpt2_config(use_deepspeed=False, kv_cache=False, half=False)
if self.use_cuda_kernel:
# preload the CUDA kernel for BigVGAN
try:
from indextts.BigVGAN.alias_free_activation.cuda import load
anti_alias_activation_cuda = load.load()
print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
except:
print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
self.use_cuda_kernel = False
self.bigvgan = Generator(self.cfg.bigvgan, use_cuda_kernel=self.use_cuda_kernel)
self.bigvgan_path = os.path.join(self.model_dir, self.cfg.bigvgan_checkpoint)
vocoder_dict = torch.load(self.bigvgan_path, map_location="cpu")
self.bigvgan.load_state_dict(vocoder_dict["generator"])
self.bigvgan = self.bigvgan.to(self.device)
# remove weight norm on eval mode
self.bigvgan.remove_weight_norm()
self.bigvgan.eval()
print(">> bigvgan weights restored from:", self.bigvgan_path)
self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"])
self.normalizer = TextNormalizer()
self.normalizer.load()
print(">> TextNormalizer loaded")
self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
print(">> bpe model loaded from:", self.bpe_path)
# 缓存参考音频mel
self.cache_audio_prompt = None
self.cache_cond_mel = None
# 进度引用显示(可选)
self.gr_progress = None
self.model_version = self.cfg.version if hasattr(self.cfg, "version") else None
def remove_long_silence(self, codes: torch.Tensor, silent_token=52, max_consecutive=30):
"""
Shrink special tokens (silent_token and stop_mel_token) in codes
codes: [B, T]
"""
code_lens = []
codes_list = []
device = codes.device
dtype = codes.dtype
isfix = False
for i in range(0, codes.shape[0]):
code = codes[i]
if not torch.any(code == self.stop_mel_token).item():
len_ = code.size(0)
else:
stop_mel_idx = (code == self.stop_mel_token).nonzero(as_tuple=False)
len_ = stop_mel_idx[0].item() if len(stop_mel_idx) > 0 else code.size(0)
count = torch.sum(code == silent_token).item()
if count > max_consecutive:
# code = code.cpu().tolist()
ncode_idx = []
n = 0
for k in range(len_):
assert code[
k] != self.stop_mel_token, f"stop_mel_token {self.stop_mel_token} should be shrinked here"
if code[k] != silent_token:
ncode_idx.append(k)
n = 0
elif code[k] == silent_token and n < 10:
ncode_idx.append(k)
n += 1
# if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52):
# n += 1
# new code
len_ = len(ncode_idx)
codes_list.append(code[ncode_idx])
isfix = True
else:
# shrink to len_
codes_list.append(code[:len_])
code_lens.append(len_)
if isfix:
if len(codes_list) > 1:
codes = pad_sequence(codes_list, batch_first=True, padding_value=self.stop_mel_token)
else:
codes = codes_list[0].unsqueeze(0)
else:
# unchanged
pass
# clip codes to max length
max_len = max(code_lens)
if max_len < codes.shape[1]:
codes = codes[:, :max_len]
code_lens = torch.tensor(code_lens, dtype=torch.long, device=device)
return codes, code_lens
def bucket_segments(self, segments, bucket_max_size=4) -> List[List[Dict]]:
"""
Segment data bucketing.
if ``bucket_max_size=1``, return all segments in one bucket.
"""
outputs: List[Dict] = []
for idx, sent in enumerate(segments):
outputs.append({"idx": idx, "sent": sent, "len": len(sent)})
if len(outputs) > bucket_max_size:
# split segments into buckets by segment length
buckets: List[List[Dict]] = []
factor = 1.5
last_bucket = None
last_bucket_sent_len_median = 0
for sent in sorted(outputs, key=lambda x: x["len"]):
current_sent_len = sent["len"]
if current_sent_len == 0:
print(">> skip empty segment")
continue
if last_bucket is None \
or current_sent_len >= int(last_bucket_sent_len_median * factor) \
or len(last_bucket) >= bucket_max_size:
# new bucket
buckets.append([sent])
last_bucket = buckets[-1]
last_bucket_sent_len_median = current_sent_len
else:
# current bucket can hold more segments
last_bucket.append(sent) # sorted
mid = len(last_bucket) // 2
last_bucket_sent_len_median = last_bucket[mid]["len"]
last_bucket = None
# merge all buckets with size 1
out_buckets: List[List[Dict]] = []
only_ones: List[Dict] = []
for b in buckets:
if len(b) == 1:
only_ones.append(b[0])
else:
out_buckets.append(b)
if len(only_ones) > 0:
# merge into previous buckets if possible
# print("only_ones:", [(o["idx"], o["len"]) for o in only_ones])
for i in range(len(out_buckets)):
b = out_buckets[i]
if len(b) < bucket_max_size:
b.append(only_ones.pop(0))
if len(only_ones) == 0:
break
# combined all remaining sized 1 buckets
if len(only_ones) > 0:
out_buckets.extend(
[only_ones[i:i + bucket_max_size] for i in range(0, len(only_ones), bucket_max_size)])
return out_buckets
return [outputs]
def pad_tokens_cat(self, tokens: List[torch.Tensor]) -> torch.Tensor:
if self.model_version and self.model_version >= 1.5:
# 1.5版本以上直接使用stop_text_token 右侧填充,填充到最大长度
# [1, N] -> [N,]
tokens = [t.squeeze(0) for t in tokens]
return pad_sequence(tokens, batch_first=True, padding_value=self.cfg.gpt.stop_text_token,
padding_side="right")
max_len = max(t.size(1) for t in tokens)
outputs = []
for tensor in tokens:
pad_len = max_len - tensor.size(1)
if pad_len > 0:
n = min(8, pad_len)
tensor = torch.nn.functional.pad(tensor, (0, n), value=self.cfg.gpt.stop_text_token)
tensor = torch.nn.functional.pad(tensor, (0, pad_len - n), value=self.cfg.gpt.start_text_token)
tensor = tensor[:, :max_len]
outputs.append(tensor)
tokens = torch.cat(outputs, dim=0)
return tokens
def torch_empty_cache(self):
try:
if "cuda" in str(self.device):
torch.cuda.empty_cache()
elif "mps" in str(self.device):
torch.mps.empty_cache()
except Exception as e:
pass
def _set_gr_progress(self, value, desc):
if self.gr_progress is not None:
self.gr_progress(value, desc=desc)
# 快速推理:对于“多句长文本”,可实现至少 2~10 倍以上的速度提升~ First modified by sunnyboxs 2025-04-16
def infer_fast(self, audio_prompt, text, output_path, verbose=False, max_text_tokens_per_segment=100,
segments_bucket_max_size=4, **generation_kwargs):
"""
Args:
``max_text_tokens_per_segment``: 分句的最大token数默认``100``可以根据GPU硬件情况调整
- 越小batch 越多,推理速度越*快*,占用内存更多,可能影响质量
- 越大batch 越少,推理速度越*慢*,占用内存和质量更接近于非快速推理
``segments_bucket_max_size``: 分句分桶的最大容量,默认``4``可以根据GPU内存调整
- 越大bucket数量越少batch越多推理速度越*快*,占用内存更多,可能影响质量
- 越小bucket数量越多batch越少推理速度越*慢*,占用内存和质量更接近于非快速推理
"""
print(">> starting fast inference...")
self._set_gr_progress(0, "starting fast inference...")
if verbose:
print(f"origin text:{text}")
start_time = time.perf_counter()
# 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度
if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt:
audio, sr = torchaudio.load(audio_prompt)
audio = torch.mean(audio, dim=0, keepdim=True)
if audio.shape[0] > 1:
audio = audio[0].unsqueeze(0)
audio = torchaudio.transforms.Resample(sr, 24000)(audio)
cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
cond_mel_frame = cond_mel.shape[-1]
if verbose:
print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype)
self.cache_audio_prompt = audio_prompt
self.cache_cond_mel = cond_mel
else:
cond_mel = self.cache_cond_mel
cond_mel_frame = cond_mel.shape[-1]
pass
auto_conditioning = cond_mel
cond_mel_lengths = torch.tensor([cond_mel_frame], device=self.device)
# text_tokens
text_tokens_list = self.tokenizer.tokenize(text)
segments = self.tokenizer.split_segments(text_tokens_list,
max_text_tokens_per_segment=max_text_tokens_per_segment)
if verbose:
print(">> text token count:", len(text_tokens_list))
print(" segments count:", len(segments))
print(" max_text_tokens_per_segment:", max_text_tokens_per_segment)
print(*segments, sep="\n")
do_sample = generation_kwargs.pop("do_sample", True)
top_p = generation_kwargs.pop("top_p", 0.8)
top_k = generation_kwargs.pop("top_k", 30)
temperature = generation_kwargs.pop("temperature", 1.0)
autoregressive_batch_size = 1
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
num_beams = generation_kwargs.pop("num_beams", 3)
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 600)
sampling_rate = 24000
# lang = "EN"
# lang = "ZH"
wavs = []
gpt_gen_time = 0
gpt_forward_time = 0
bigvgan_time = 0
# text processing
all_text_tokens: List[List[torch.Tensor]] = []
self._set_gr_progress(0.1, "text processing...")
bucket_max_size = segments_bucket_max_size if self.device != "cpu" else 1
all_segments = self.bucket_segments(segments, bucket_max_size=bucket_max_size)
bucket_count = len(all_segments)
if verbose:
print(">> segments bucket_count:", bucket_count,
"bucket sizes:", [(len(s), [t["idx"] for t in s]) for s in all_segments],
"bucket_max_size:", bucket_max_size)
for segments in all_segments:
temp_tokens: List[torch.Tensor] = []
all_text_tokens.append(temp_tokens)
for item in segments:
sent = item["sent"]
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
if verbose:
print(text_tokens)
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
# debug tokenizer
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
print("text_token_syms is same as segment tokens", text_token_syms == sent)
temp_tokens.append(text_tokens)
# Sequential processing of bucketing data
all_batch_num = sum(len(s) for s in all_segments)
all_batch_codes = []
processed_num = 0
for item_tokens in all_text_tokens:
batch_num = len(item_tokens)
if batch_num > 1:
batch_text_tokens = self.pad_tokens_cat(item_tokens)
else:
batch_text_tokens = item_tokens[0]
processed_num += batch_num
# gpt speech
self._set_gr_progress(0.2 + 0.3 * processed_num / all_batch_num,
f"gpt speech inference {processed_num}/{all_batch_num}...")
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(batch_text_tokens.device.type, enabled=self.dtype is not None,
dtype=self.dtype):
temp_codes = self.gpt.inference_speech(auto_conditioning, batch_text_tokens,
cond_mel_lengths=cond_mel_lengths,
# text_lengths=text_len,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=autoregressive_batch_size,
length_penalty=length_penalty,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**generation_kwargs)
all_batch_codes.append(temp_codes)
gpt_gen_time += time.perf_counter() - m_start_time
# gpt latent
self._set_gr_progress(0.5, "gpt latents inference...")
all_idxs = []
all_latents = []
has_warned = False
for batch_codes, batch_tokens, batch_segments in zip(all_batch_codes, all_text_tokens, all_segments):
for i in range(batch_codes.shape[0]):
codes = batch_codes[i] # [x]
if not has_warned and codes[-1] != self.stop_mel_token:
warnings.warn(
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
f"Consider reducing `max_text_tokens_per_segment`({max_text_tokens_per_segment}) or increasing `max_mel_tokens`.",
category=RuntimeWarning
)
has_warned = True
codes = codes.unsqueeze(0) # [x] -> [1, x]
if verbose:
print("codes:", codes.shape)
print(codes)
codes, code_lens = self.remove_long_silence(codes, silent_token=52, max_consecutive=30)
if verbose:
print("fix codes:", codes.shape)
print(codes)
print("code_lens:", code_lens)
text_tokens = batch_tokens[i]
all_idxs.append(batch_segments[i]["idx"])
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
latent = \
self.gpt(auto_conditioning, text_tokens,
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
code_lens * self.gpt.mel_length_compression,
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
device=text_tokens.device),
return_latent=True, clip_inputs=False)
gpt_forward_time += time.perf_counter() - m_start_time
all_latents.append(latent)
del all_batch_codes, all_text_tokens, all_segments
# bigvgan chunk
chunk_size = 2
all_latents = [all_latents[all_idxs.index(i)] for i in range(len(all_latents))]
if verbose:
print(">> all_latents:", len(all_latents))
print(" latents length:", [l.shape[1] for l in all_latents])
chunk_latents = [all_latents[i: i + chunk_size] for i in range(0, len(all_latents), chunk_size)]
chunk_length = len(chunk_latents)
latent_length = len(all_latents)
# bigvgan chunk decode
self._set_gr_progress(0.7, "bigvgan decoding...")
tqdm_progress = tqdm(total=latent_length, desc="bigvgan")
for items in chunk_latents:
tqdm_progress.update(len(items))
latent = torch.cat(items, dim=1)
with torch.no_grad():
with torch.amp.autocast(latent.device.type, enabled=self.dtype is not None, dtype=self.dtype):
m_start_time = time.perf_counter()
wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2))
bigvgan_time += time.perf_counter() - m_start_time
wav = wav.squeeze(1)
pass
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
wavs.append(wav.cpu()) # to cpu before saving
# clear cache
tqdm_progress.close() # 确保进度条被关闭
del all_latents, chunk_latents
end_time = time.perf_counter()
self.torch_empty_cache()
# wav audio output
self._set_gr_progress(0.9, "saving audio...")
wav = torch.cat(wavs, dim=1)
wav_length = wav.shape[-1] / sampling_rate
print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds")
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
print(f">> Total fast inference time: {end_time - start_time:.2f} seconds")
print(f">> Generated audio length: {wav_length:.2f} seconds")
print(f">> [fast] bigvgan chunk_length: {chunk_length}")
print(f">> [fast] batch_num: {all_batch_num} bucket_max_size: {bucket_max_size}",
f"bucket_count: {bucket_count}" if bucket_max_size > 1 else "")
print(f">> [fast] RTF: {(end_time - start_time) / wav_length:.4f}")
# save audio
wav = wav.cpu() # to cpu
if output_path:
# 直接保存音频到指定路径中
os.makedirs(os.path.dirname(output_path), exist_ok=True)
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
print(">> wav file saved to:", output_path)
return output_path
else:
# 返回以符合Gradio的格式要求
wav_data = wav.type(torch.int16)
wav_data = wav_data.numpy().T
return (sampling_rate, wav_data)
# 原始推理模式
def infer(self, audio_prompt, text, output_path, verbose=False, max_text_tokens_per_segment=120,
**generation_kwargs):
print(">> starting inference...")
self._set_gr_progress(0, "starting inference...")
if verbose:
print(f"origin text:{text}")
start_time = time.perf_counter()
# 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度
if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt:
audio, sr = torchaudio.load(audio_prompt)
audio = torch.mean(audio, dim=0, keepdim=True)
if audio.shape[0] > 1:
audio = audio[0].unsqueeze(0)
audio = torchaudio.transforms.Resample(sr, 24000)(audio)
cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
cond_mel_frame = cond_mel.shape[-1]
if verbose:
print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype)
self.cache_audio_prompt = audio_prompt
self.cache_cond_mel = cond_mel
else:
cond_mel = self.cache_cond_mel
cond_mel_frame = cond_mel.shape[-1]
pass
self._set_gr_progress(0.1, "text processing...")
auto_conditioning = cond_mel
text_tokens_list = self.tokenizer.tokenize(text)
segments = self.tokenizer.split_segments(text_tokens_list, max_text_tokens_per_segment)
if verbose:
print("text token count:", len(text_tokens_list))
print("segments count:", len(segments))
print("max_text_tokens_per_segment:", max_text_tokens_per_segment)
print(*segments, sep="\n")
do_sample = generation_kwargs.pop("do_sample", True)
top_p = generation_kwargs.pop("top_p", 0.8)
top_k = generation_kwargs.pop("top_k", 30)
temperature = generation_kwargs.pop("temperature", 1.0)
autoregressive_batch_size = 1
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
num_beams = generation_kwargs.pop("num_beams", 3)
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 600)
sampling_rate = 24000
# lang = "EN"
# lang = "ZH"
wavs = []
gpt_gen_time = 0
gpt_forward_time = 0
bigvgan_time = 0
progress = 0
has_warned = False
for sent in segments:
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
# text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.
# text_tokens = F.pad(text_tokens, (1, 0), value=0)
# text_tokens = F.pad(text_tokens, (0, 1), value=1)
if verbose:
print(text_tokens)
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
# debug tokenizer
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
print("text_token_syms is same as segment tokens", text_token_syms == sent)
# text_len = torch.IntTensor([text_tokens.size(1)], device=text_tokens.device)
# print(text_len)
progress += 1
self._set_gr_progress(0.2 + 0.4 * (progress - 1) / len(segments),
f"gpt latents inference {progress}/{len(segments)}...")
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
codes = self.gpt.inference_speech(auto_conditioning, text_tokens,
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
device=text_tokens.device),
# text_lengths=text_len,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=autoregressive_batch_size,
length_penalty=length_penalty,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**generation_kwargs)
gpt_gen_time += time.perf_counter() - m_start_time
if not has_warned and (codes[:, -1] != self.stop_mel_token).any():
warnings.warn(
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
f"Input text tokens: {text_tokens.shape[1]}. "
f"Consider reducing `max_text_tokens_per_segment`({max_text_tokens_per_segment}) or increasing `max_mel_tokens`.",
category=RuntimeWarning
)
has_warned = True
code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
if verbose:
print(codes, type(codes))
print(f"codes shape: {codes.shape}, codes type: {codes.dtype}")
print(f"code len: {code_lens}")
# remove ultra-long silence if exits
# temporarily fix the long silence bug.
codes, code_lens = self.remove_long_silence(codes, silent_token=52, max_consecutive=30)
if verbose:
print(codes, type(codes))
print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}")
print(f"code len: {code_lens}")
self._set_gr_progress(0.2 + 0.4 * progress / len(segments),
f"gpt speech inference {progress}/{len(segments)}...")
m_start_time = time.perf_counter()
# latent, text_lens_out, code_lens_out = \
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
latent = \
self.gpt(auto_conditioning, text_tokens,
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
code_lens * self.gpt.mel_length_compression,
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
device=text_tokens.device),
return_latent=True, clip_inputs=False)
gpt_forward_time += time.perf_counter() - m_start_time
m_start_time = time.perf_counter()
wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2))
bigvgan_time += time.perf_counter() - m_start_time
wav = wav.squeeze(1)
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
if verbose:
print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
# wavs.append(wav[:, :-512])
wavs.append(wav.cpu()) # to cpu before saving
end_time = time.perf_counter()
self._set_gr_progress(0.9, "saving audio...")
wav = torch.cat(wavs, dim=1)
wav_length = wav.shape[-1] / sampling_rate
print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds")
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
print(f">> Total inference time: {end_time - start_time:.2f} seconds")
print(f">> Generated audio length: {wav_length:.2f} seconds")
print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")
# save audio
wav = wav.cpu() # to cpu
if output_path:
# 直接保存音频到指定路径中
if os.path.isfile(output_path):
os.remove(output_path)
print(">> remove old wav file:", output_path)
if os.path.dirname(output_path) != "":
os.makedirs(os.path.dirname(output_path), exist_ok=True)
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
print(">> wav file saved to:", output_path)
return output_path
else:
# 返回以符合Gradio的格式要求
wav_data = wav.type(torch.int16)
wav_data = wav_data.numpy().T
return (sampling_rate, wav_data)
if __name__ == "__main__":
prompt_wav = "examples/voice_01.wav"
text = '欢迎大家来体验indextts2并给予我们意见与反馈谢谢大家。'
tts = IndexTTS(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_cuda_kernel=False)
tts.infer(audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)

737
indextts/infer_v2.py Normal file
View File

@@ -0,0 +1,737 @@
import os
from subprocess import CalledProcessError
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
import json
import re
import time
import librosa
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
from omegaconf import OmegaConf
from indextts.gpt.model_v2 import UnifiedVoice
from indextts.utils.maskgct_utils import build_semantic_model, build_semantic_codec
from indextts.utils.checkpoint import load_checkpoint
from indextts.utils.front import TextNormalizer, TextTokenizer
from indextts.s2mel.modules.commons import load_checkpoint2, MyModel
from indextts.s2mel.modules.bigvgan import bigvgan
from indextts.s2mel.modules.campplus.DTDNN import CAMPPlus
from indextts.s2mel.modules.audio import mel_spectrogram
from transformers import AutoTokenizer
try:
from modelscope import AutoModelForCausalLM
except Exception:
AutoModelForCausalLM = None
from huggingface_hub import hf_hub_download
import safetensors
from transformers import SeamlessM4TFeatureExtractor
import random
import torch.nn.functional as F
class IndexTTS2:
def __init__(
self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_fp16=False, device=None,
use_cuda_kernel=None,use_deepspeed=False
):
"""
Args:
cfg_path (str): path to the config file.
model_dir (str): path to the model directory.
use_fp16 (bool): whether to use fp16.
device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
use_deepspeed (bool): whether to use DeepSpeed or not.
"""
if device is not None:
self.device = device
self.use_fp16 = False if device == "cpu" else use_fp16
self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
elif torch.cuda.is_available():
self.device = "cuda:0"
self.use_fp16 = use_fp16
self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
elif hasattr(torch, "xpu") and torch.xpu.is_available():
self.device = "xpu"
self.use_fp16 = use_fp16
self.use_cuda_kernel = False
elif hasattr(torch, "mps") and torch.backends.mps.is_available():
self.device = "mps"
self.use_fp16 = False # Use float16 on MPS is overhead than float32
self.use_cuda_kernel = False
else:
self.device = "cpu"
self.use_fp16 = False
self.use_cuda_kernel = False
print(">> Be patient, it may take a while to run in CPU mode.")
self.cfg = OmegaConf.load(cfg_path)
self.model_dir = model_dir
self.dtype = torch.float16 if self.use_fp16 else None
self.stop_mel_token = self.cfg.gpt.stop_mel_token
# Lazy init for QwenEmotion to avoid requiring `modelscope` when not using emo_text
self.qwen_emo = None
self.qwen_emo_path = os.path.join(self.model_dir, self.cfg.qwen_emo_path)
self.gpt = UnifiedVoice(**self.cfg.gpt)
self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
load_checkpoint(self.gpt, self.gpt_path)
self.gpt = self.gpt.to(self.device)
if self.use_fp16:
self.gpt.eval().half()
else:
self.gpt.eval()
print(">> GPT weights restored from:", self.gpt_path)
if use_deepspeed:
try:
import deepspeed
except (ImportError, OSError, CalledProcessError) as e:
use_deepspeed = False
print(f">> Failed to load DeepSpeed. Falling back to normal inference. Error: {e}")
self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=self.use_fp16)
if self.use_cuda_kernel:
# preload the CUDA kernel for BigVGAN
try:
from indextts.BigVGAN.alias_free_activation.cuda import load
anti_alias_activation_cuda = load.load()
print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
except:
print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
self.use_cuda_kernel = False
self.extract_features = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
self.semantic_model, self.semantic_mean, self.semantic_std = build_semantic_model(
os.path.join(self.model_dir, self.cfg.w2v_stat))
self.semantic_model = self.semantic_model.to(self.device)
self.semantic_model.eval()
self.semantic_mean = self.semantic_mean.to(self.device)
self.semantic_std = self.semantic_std.to(self.device)
semantic_codec = build_semantic_codec(self.cfg.semantic_codec)
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT", filename="semantic_codec/model.safetensors")
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
self.semantic_codec = semantic_codec.to(self.device)
self.semantic_codec.eval()
print('>> semantic_codec weights restored from: {}'.format(semantic_code_ckpt))
s2mel_path = os.path.join(self.model_dir, self.cfg.s2mel_checkpoint)
s2mel = MyModel(self.cfg.s2mel, use_gpt_latent=True)
s2mel, _, _, _ = load_checkpoint2(
s2mel,
None,
s2mel_path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
)
self.s2mel = s2mel.to(self.device)
self.s2mel.models['cfm'].estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
self.s2mel.eval()
print(">> s2mel weights restored from:", s2mel_path)
# load campplus_model
campplus_ckpt_path = hf_hub_download(
"funasr/campplus", filename="campplus_cn_common.bin"
)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
self.campplus_model = campplus_model.to(self.device)
self.campplus_model.eval()
print(">> campplus_model weights restored from:", campplus_ckpt_path)
bigvgan_name = self.cfg.vocoder.name
self.bigvgan = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=self.use_cuda_kernel)
self.bigvgan = self.bigvgan.to(self.device)
self.bigvgan.remove_weight_norm()
self.bigvgan.eval()
print(">> bigvgan weights restored from:", bigvgan_name)
self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"])
self.normalizer = TextNormalizer()
self.normalizer.load()
print(">> TextNormalizer loaded")
self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
print(">> bpe model loaded from:", self.bpe_path)
emo_matrix = torch.load(os.path.join(self.model_dir, self.cfg.emo_matrix))
self.emo_matrix = emo_matrix.to(self.device)
self.emo_num = list(self.cfg.emo_num)
spk_matrix = torch.load(os.path.join(self.model_dir, self.cfg.spk_matrix))
self.spk_matrix = spk_matrix.to(self.device)
self.emo_matrix = torch.split(self.emo_matrix, self.emo_num)
self.spk_matrix = torch.split(self.spk_matrix, self.emo_num)
mel_fn_args = {
"n_fft": self.cfg.s2mel['preprocess_params']['spect_params']['n_fft'],
"win_size": self.cfg.s2mel['preprocess_params']['spect_params']['win_length'],
"hop_size": self.cfg.s2mel['preprocess_params']['spect_params']['hop_length'],
"num_mels": self.cfg.s2mel['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": self.cfg.s2mel["preprocess_params"]["sr"],
"fmin": self.cfg.s2mel['preprocess_params']['spect_params'].get('fmin', 0),
"fmax": None if self.cfg.s2mel['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000,
"center": False
}
self.mel_fn = lambda x: mel_spectrogram(x, **mel_fn_args)
# 缓存参考音频:
self.cache_spk_cond = None
self.cache_s2mel_style = None
self.cache_s2mel_prompt = None
self.cache_spk_audio_prompt = None
self.cache_emo_cond = None
self.cache_emo_audio_prompt = None
self.cache_mel = None
# 进度引用显示(可选)
self.gr_progress = None
self.model_version = self.cfg.version if hasattr(self.cfg, "version") else None
@torch.no_grad()
def get_emb(self, input_features, attention_mask):
vq_emb = self.semantic_model(
input_features=input_features,
attention_mask=attention_mask,
output_hidden_states=True,
)
feat = vq_emb.hidden_states[17] # (B, T, C)
feat = (feat - self.semantic_mean) / self.semantic_std
return feat
def remove_long_silence(self, codes: torch.Tensor, silent_token=52, max_consecutive=30):
"""
Shrink special tokens (silent_token and stop_mel_token) in codes
codes: [B, T]
"""
code_lens = []
codes_list = []
device = codes.device
dtype = codes.dtype
isfix = False
for i in range(0, codes.shape[0]):
code = codes[i]
if not torch.any(code == self.stop_mel_token).item():
len_ = code.size(0)
else:
stop_mel_idx = (code == self.stop_mel_token).nonzero(as_tuple=False)
len_ = stop_mel_idx[0].item() if len(stop_mel_idx) > 0 else code.size(0)
count = torch.sum(code == silent_token).item()
if count > max_consecutive:
# code = code.cpu().tolist()
ncode_idx = []
n = 0
for k in range(len_):
assert code[
k] != self.stop_mel_token, f"stop_mel_token {self.stop_mel_token} should be shrinked here"
if code[k] != silent_token:
ncode_idx.append(k)
n = 0
elif code[k] == silent_token and n < 10:
ncode_idx.append(k)
n += 1
# if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52):
# n += 1
# new code
len_ = len(ncode_idx)
codes_list.append(code[ncode_idx])
isfix = True
else:
# shrink to len_
codes_list.append(code[:len_])
code_lens.append(len_)
if isfix:
if len(codes_list) > 1:
codes = pad_sequence(codes_list, batch_first=True, padding_value=self.stop_mel_token)
else:
codes = codes_list[0].unsqueeze(0)
else:
# unchanged
pass
# clip codes to max length
max_len = max(code_lens)
if max_len < codes.shape[1]:
codes = codes[:, :max_len]
code_lens = torch.tensor(code_lens, dtype=torch.long, device=device)
return codes, code_lens
def insert_interval_silence(self, wavs, sampling_rate=22050, interval_silence=200):
"""
Insert silences between generated segments.
wavs: List[torch.tensor]
"""
if not wavs or interval_silence <= 0:
return wavs
# get channel_size
channel_size = wavs[0].size(0)
# get silence tensor
sil_dur = int(sampling_rate * interval_silence / 1000.0)
sil_tensor = torch.zeros(channel_size, sil_dur)
wavs_list = []
for i, wav in enumerate(wavs):
wavs_list.append(wav)
if i < len(wavs) - 1:
wavs_list.append(sil_tensor)
return wavs_list
def _set_gr_progress(self, value, desc):
if self.gr_progress is not None:
self.gr_progress(value, desc=desc)
# 原始推理模式
def infer(self, spk_audio_prompt, text, output_path,
emo_audio_prompt=None, emo_alpha=1.0,
emo_vector=None,
use_emo_text=False, emo_text=None, use_random=False, interval_silence=200,
verbose=False, max_text_tokens_per_segment=120, **generation_kwargs):
print(">> starting inference...")
self._set_gr_progress(0, "starting inference...")
if verbose:
print(f"origin text:{text}, spk_audio_prompt:{spk_audio_prompt}, "
f"emo_audio_prompt:{emo_audio_prompt}, emo_alpha:{emo_alpha}, "
f"emo_vector:{emo_vector}, use_emo_text:{use_emo_text}, "
f"emo_text:{emo_text}")
start_time = time.perf_counter()
if use_emo_text or emo_vector is not None:
# we're using a text or emotion vector guidance; so we must remove
# "emotion reference voice", to ensure we use correct emotion mixing!
emo_audio_prompt = None
if use_emo_text:
# automatically generate emotion vectors from text prompt
if emo_text is None:
emo_text = text # use main text prompt
if self.qwen_emo is None:
if AutoModelForCausalLM is None:
raise ImportError(
"`modelscope` is required to use emo_text. Install `modelscope` or disable 'use_emo_text'."
)
self.qwen_emo = QwenEmotion(self.qwen_emo_path)
emo_dict = self.qwen_emo.inference(emo_text)
print(f"detected emotion vectors from text: {emo_dict}")
# convert ordered dict to list of vectors; the order is VERY important!
emo_vector = list(emo_dict.values())
if emo_vector is not None:
# we have emotion vectors; they can't be blended via alpha mixing
# in the main inference process later, so we must pre-calculate
# their new strengths here based on the alpha instead!
emo_vector_scale = max(0.0, min(1.0, emo_alpha))
if emo_vector_scale != 1.0:
# scale each vector and truncate to 4 decimals (for nicer printing)
emo_vector = [int(x * emo_vector_scale * 10000) / 10000 for x in emo_vector]
print(f"scaled emotion vectors to {emo_vector_scale}x: {emo_vector}")
if emo_audio_prompt is None:
# we are not using any external "emotion reference voice"; use
# speaker's voice as the main emotion reference audio.
emo_audio_prompt = spk_audio_prompt
# must always use alpha=1.0 when we don't have an external reference voice
emo_alpha = 1.0
# 如果参考音频改变了,才需要重新生成, 提升速度
if self.cache_spk_cond is None or self.cache_spk_audio_prompt != spk_audio_prompt:
audio, sr = librosa.load(spk_audio_prompt)
audio = torch.tensor(audio).unsqueeze(0)
audio_22k = torchaudio.transforms.Resample(sr, 22050)(audio)
audio_16k = torchaudio.transforms.Resample(sr, 16000)(audio)
inputs = self.extract_features(audio_16k, sampling_rate=16000, return_tensors="pt")
input_features = inputs["input_features"]
attention_mask = inputs["attention_mask"]
input_features = input_features.to(self.device)
attention_mask = attention_mask.to(self.device)
spk_cond_emb = self.get_emb(input_features, attention_mask)
_, S_ref = self.semantic_codec.quantize(spk_cond_emb)
ref_mel = self.mel_fn(audio_22k.to(spk_cond_emb.device).float())
ref_target_lengths = torch.LongTensor([ref_mel.size(2)]).to(ref_mel.device)
feat = torchaudio.compliance.kaldi.fbank(audio_16k.to(ref_mel.device),
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat = feat - feat.mean(dim=0, keepdim=True) # feat2另外一个滤波器能量组特征[922, 80]
style = self.campplus_model(feat.unsqueeze(0)) # 参考音频的全局style2[1,192]
prompt_condition = self.s2mel.models['length_regulator'](S_ref,
ylens=ref_target_lengths,
n_quantizers=3,
f0=None)[0]
self.cache_spk_cond = spk_cond_emb
self.cache_s2mel_style = style
self.cache_s2mel_prompt = prompt_condition
self.cache_spk_audio_prompt = spk_audio_prompt
self.cache_mel = ref_mel
else:
style = self.cache_s2mel_style
prompt_condition = self.cache_s2mel_prompt
spk_cond_emb = self.cache_spk_cond
ref_mel = self.cache_mel
if emo_vector is not None:
weight_vector = torch.tensor(emo_vector).to(self.device)
if use_random:
random_index = [random.randint(0, x - 1) for x in self.emo_num]
else:
random_index = [find_most_similar_cosine(style, tmp) for tmp in self.spk_matrix]
emo_matrix = [tmp[index].unsqueeze(0) for index, tmp in zip(random_index, self.emo_matrix)]
emo_matrix = torch.cat(emo_matrix, 0)
emovec_mat = weight_vector.unsqueeze(1) * emo_matrix
emovec_mat = torch.sum(emovec_mat, 0)
emovec_mat = emovec_mat.unsqueeze(0)
if self.cache_emo_cond is None or self.cache_emo_audio_prompt != emo_audio_prompt:
emo_audio, _ = librosa.load(emo_audio_prompt, sr=16000)
emo_inputs = self.extract_features(emo_audio, sampling_rate=16000, return_tensors="pt")
emo_input_features = emo_inputs["input_features"]
emo_attention_mask = emo_inputs["attention_mask"]
emo_input_features = emo_input_features.to(self.device)
emo_attention_mask = emo_attention_mask.to(self.device)
emo_cond_emb = self.get_emb(emo_input_features, emo_attention_mask)
self.cache_emo_cond = emo_cond_emb
self.cache_emo_audio_prompt = emo_audio_prompt
else:
emo_cond_emb = self.cache_emo_cond
self._set_gr_progress(0.1, "text processing...")
text_tokens_list = self.tokenizer.tokenize(text)
segments = self.tokenizer.split_segments(text_tokens_list, max_text_tokens_per_segment)
segments_count = len(segments)
if verbose:
print("text_tokens_list:", text_tokens_list)
print("segments count:", segments_count)
print("max_text_tokens_per_segment:", max_text_tokens_per_segment)
print(*segments, sep="\n")
do_sample = generation_kwargs.pop("do_sample", True)
top_p = generation_kwargs.pop("top_p", 0.8)
top_k = generation_kwargs.pop("top_k", 30)
temperature = generation_kwargs.pop("temperature", 0.8)
autoregressive_batch_size = 1
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
num_beams = generation_kwargs.pop("num_beams", 3)
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 1500)
sampling_rate = 22050
wavs = []
gpt_gen_time = 0
gpt_forward_time = 0
s2mel_time = 0
bigvgan_time = 0
has_warned = False
for seg_idx, sent in enumerate(segments):
self._set_gr_progress(0.2 + 0.7 * seg_idx / segments_count,
f"speech synthesis {seg_idx + 1}/{segments_count}...")
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
if verbose:
print(text_tokens)
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
# debug tokenizer
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
print("text_token_syms is same as segment tokens", text_token_syms == sent)
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
emovec = self.gpt.merge_emovec(
spk_cond_emb,
emo_cond_emb,
torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
alpha=emo_alpha
)
if emo_vector is not None:
emovec = emovec_mat + (1 - torch.sum(weight_vector)) * emovec
# emovec = emovec_mat
codes, speech_conditioning_latent = self.gpt.inference_speech(
spk_cond_emb,
text_tokens,
emo_cond_emb,
cond_lengths=torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
emo_cond_lengths=torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
emo_vec=emovec,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=autoregressive_batch_size,
length_penalty=length_penalty,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**generation_kwargs
)
gpt_gen_time += time.perf_counter() - m_start_time
if not has_warned and (codes[:, -1] != self.stop_mel_token).any():
warnings.warn(
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
f"Input text tokens: {text_tokens.shape[1]}. "
f"Consider reducing `max_text_tokens_per_segment`({max_text_tokens_per_segment}) or increasing `max_mel_tokens`.",
category=RuntimeWarning
)
has_warned = True
code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
# if verbose:
# print(codes, type(codes))
# print(f"codes shape: {codes.shape}, codes type: {codes.dtype}")
# print(f"code len: {code_lens}")
code_lens = []
for code in codes:
if self.stop_mel_token not in code:
code_lens.append(len(code))
code_len = len(code)
else:
len_ = (code == self.stop_mel_token).nonzero(as_tuple=False)[0] + 1
code_len = len_ - 1
code_lens.append(code_len)
codes = codes[:, :code_len]
code_lens = torch.LongTensor(code_lens)
code_lens = code_lens.to(self.device)
if verbose:
print(codes, type(codes))
print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}")
print(f"code len: {code_lens}")
m_start_time = time.perf_counter()
use_speed = torch.zeros(spk_cond_emb.size(0)).to(spk_cond_emb.device).long()
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
latent = self.gpt(
speech_conditioning_latent,
text_tokens,
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device),
codes,
torch.tensor([codes.shape[-1]], device=text_tokens.device),
emo_cond_emb,
cond_mel_lengths=torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
emo_cond_mel_lengths=torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
emo_vec=emovec,
use_speed=use_speed,
)
gpt_forward_time += time.perf_counter() - m_start_time
dtype = None
with torch.amp.autocast(text_tokens.device.type, enabled=dtype is not None, dtype=dtype):
m_start_time = time.perf_counter()
diffusion_steps = 25
inference_cfg_rate = 0.7
latent = self.s2mel.models['gpt_layer'](latent)
S_infer = self.semantic_codec.quantizer.vq2emb(codes.unsqueeze(1))
S_infer = S_infer.transpose(1, 2)
S_infer = S_infer + latent
target_lengths = (code_lens * 1.72).long()
cond = self.s2mel.models['length_regulator'](S_infer,
ylens=target_lengths,
n_quantizers=3,
f0=None)[0]
cat_condition = torch.cat([prompt_condition, cond], dim=1)
vc_target = self.s2mel.models['cfm'].inference(cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(
cond.device),
ref_mel, style, None, diffusion_steps,
inference_cfg_rate=inference_cfg_rate)
vc_target = vc_target[:, :, ref_mel.size(-1):]
s2mel_time += time.perf_counter() - m_start_time
m_start_time = time.perf_counter()
wav = self.bigvgan(vc_target.float()).squeeze().unsqueeze(0)
print(wav.shape)
bigvgan_time += time.perf_counter() - m_start_time
wav = wav.squeeze(1)
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
if verbose:
print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
# wavs.append(wav[:, :-512])
wavs.append(wav.cpu()) # to cpu before saving
end_time = time.perf_counter()
self._set_gr_progress(0.9, "saving audio...")
wavs = self.insert_interval_silence(wavs, sampling_rate=sampling_rate, interval_silence=interval_silence)
wav = torch.cat(wavs, dim=1)
wav_length = wav.shape[-1] / sampling_rate
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
print(f">> s2mel_time: {s2mel_time:.2f} seconds")
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
print(f">> Total inference time: {end_time - start_time:.2f} seconds")
print(f">> Generated audio length: {wav_length:.2f} seconds")
print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")
# save audio
wav = wav.cpu() # to cpu
if output_path:
# 直接保存音频到指定路径中
if os.path.isfile(output_path):
os.remove(output_path)
print(">> remove old wav file:", output_path)
if os.path.dirname(output_path) != "":
os.makedirs(os.path.dirname(output_path), exist_ok=True)
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
print(">> wav file saved to:", output_path)
return output_path
else:
# 返回以符合Gradio的格式要求
wav_data = wav.type(torch.int16)
wav_data = wav_data.numpy().T
return (sampling_rate, wav_data)
def find_most_similar_cosine(query_vector, matrix):
query_vector = query_vector.float()
matrix = matrix.float()
similarities = F.cosine_similarity(query_vector, matrix, dim=1)
most_similar_index = torch.argmax(similarities)
return most_similar_index
class QwenEmotion:
def __init__(self, model_dir):
self.model_dir = model_dir
self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_dir,
torch_dtype="float16", # "auto"
device_map="auto"
)
self.prompt = "文本情感分类"
self.cn_key_to_en = {
"高兴": "happy",
"愤怒": "angry",
"悲伤": "sad",
"恐惧": "afraid",
"反感": "disgusted",
# TODO: the "低落" (melancholic) emotion will always be mapped to
# "悲伤" (sad) by QwenEmotion's text analysis. it doesn't know the
# difference between those emotions even if user writes exact words.
# SEE: `self.melancholic_words` for current workaround.
"低落": "melancholic",
"惊讶": "surprised",
"自然": "calm",
}
self.desired_vector_order = ["高兴", "愤怒", "悲伤", "恐惧", "反感", "低落", "惊讶", "自然"]
self.melancholic_words = {
# emotion text phrases that will force QwenEmotion's "悲伤" (sad) detection
# to become "低落" (melancholic) instead, to fix limitations mentioned above.
"低落",
"melancholy",
"melancholic",
"depression",
"depressed",
"gloomy",
}
self.max_score = 1.2
self.min_score = 0.0
def clamp_score(self, value):
return max(self.min_score, min(self.max_score, value))
def convert(self, content):
# generate emotion vector dictionary:
# - insert values in desired order (Python 3.7+ `dict` remembers insertion order)
# - convert Chinese keys to English
# - clamp all values to the allowed min/max range
# - use 0.0 for any values that were missing in `content`
emotion_dict = {
self.cn_key_to_en[cn_key]: self.clamp_score(content.get(cn_key, 0.0))
for cn_key in self.desired_vector_order
}
# default to a calm/neutral voice if all emotion vectors were empty
if all(val <= 0.0 for val in emotion_dict.values()):
print(">> no emotions detected; using default calm/neutral voice")
emotion_dict["calm"] = 1.0
return emotion_dict
def inference(self, text_input):
start = time.time()
messages = [
{"role": "system", "content": f"{self.prompt}"},
{"role": "user", "content": f"{text_input}"}
]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False,
)
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
# conduct text completion
generated_ids = self.model.generate(
**model_inputs,
max_new_tokens=32768,
pad_token_id=self.tokenizer.eos_token_id
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
content = self.tokenizer.decode(output_ids[index:], skip_special_tokens=True)
# decode the JSON emotion detections as a dictionary
try:
content = json.loads(content)
except json.decoder.JSONDecodeError:
# invalid JSON; fallback to manual string parsing
# print(">> parsing QwenEmotion response", content)
content = {
m.group(1): float(m.group(2))
for m in re.finditer(r'([^\s":.,]+?)"?\s*:\s*([\d.]+)', content)
}
# print(">> dict result", content)
# workaround for QwenEmotion's inability to distinguish "悲伤" (sad) vs "低落" (melancholic).
# if we detect any of the IndexTTS "melancholic" words, we swap those vectors
# to encode the "sad" emotion as "melancholic" (instead of sadness).
text_input_lower = text_input.lower()
if any(word in text_input_lower for word in self.melancholic_words):
# print(">> before vec swap", content)
content["悲伤"], content["低落"] = content.get("低落", 0.0), content.get("悲伤", 0.0)
# print(">> after vec swap", content)
return self.convert(content)
if __name__ == "__main__":
prompt_wav = "examples/voice_01.wav"
text = '欢迎大家来体验indextts2并给予我们意见与反馈谢谢大家。'
tts = IndexTTS2(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_cuda_kernel=False)
tts.infer(spk_audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)

View File

@@ -0,0 +1,16 @@
__version__ = "1.0.0"
# preserved here for legacy reasons
__model_version__ = "latest"
import audiotools
audiotools.ml.BaseModel.INTERN += ["dac.**"]
audiotools.ml.BaseModel.EXTERN += ["einops"]
from . import nn
from . import model
from . import utils
from .model import DAC
from .model import DACFile

View File

@@ -0,0 +1,36 @@
import sys
import argbind
from dac.utils import download
from dac.utils.decode import decode
from dac.utils.encode import encode
STAGES = ["encode", "decode", "download"]
def run(stage: str):
"""Run stages.
Parameters
----------
stage : str
Stage to run
"""
if stage not in STAGES:
raise ValueError(f"Unknown command: {stage}. Allowed commands are {STAGES}")
stage_fn = globals()[stage]
if stage == "download":
stage_fn()
return
stage_fn()
if __name__ == "__main__":
group = sys.argv.pop(1)
args = argbind.parse_args(group=group)
with argbind.scope(args):
run(group)

View File

@@ -0,0 +1,4 @@
from .base import CodecMixin
from .base import DACFile
from .dac import DAC
from .discriminator import Discriminator

View File

@@ -0,0 +1,294 @@
import math
from dataclasses import dataclass
from pathlib import Path
from typing import Union
import numpy as np
import torch
import tqdm
from audiotools import AudioSignal
from torch import nn
SUPPORTED_VERSIONS = ["1.0.0"]
@dataclass
class DACFile:
codes: torch.Tensor
# Metadata
chunk_length: int
original_length: int
input_db: float
channels: int
sample_rate: int
padding: bool
dac_version: str
def save(self, path):
artifacts = {
"codes": self.codes.numpy().astype(np.uint16),
"metadata": {
"input_db": self.input_db.numpy().astype(np.float32),
"original_length": self.original_length,
"sample_rate": self.sample_rate,
"chunk_length": self.chunk_length,
"channels": self.channels,
"padding": self.padding,
"dac_version": SUPPORTED_VERSIONS[-1],
},
}
path = Path(path).with_suffix(".dac")
with open(path, "wb") as f:
np.save(f, artifacts)
return path
@classmethod
def load(cls, path):
artifacts = np.load(path, allow_pickle=True)[()]
codes = torch.from_numpy(artifacts["codes"].astype(int))
if artifacts["metadata"].get("dac_version", None) not in SUPPORTED_VERSIONS:
raise RuntimeError(
f"Given file {path} can't be loaded with this version of descript-audio-codec."
)
return cls(codes=codes, **artifacts["metadata"])
class CodecMixin:
@property
def padding(self):
if not hasattr(self, "_padding"):
self._padding = True
return self._padding
@padding.setter
def padding(self, value):
assert isinstance(value, bool)
layers = [
l for l in self.modules() if isinstance(l, (nn.Conv1d, nn.ConvTranspose1d))
]
for layer in layers:
if value:
if hasattr(layer, "original_padding"):
layer.padding = layer.original_padding
else:
layer.original_padding = layer.padding
layer.padding = tuple(0 for _ in range(len(layer.padding)))
self._padding = value
def get_delay(self):
# Any number works here, delay is invariant to input length
l_out = self.get_output_length(0)
L = l_out
layers = []
for layer in self.modules():
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
layers.append(layer)
for layer in reversed(layers):
d = layer.dilation[0]
k = layer.kernel_size[0]
s = layer.stride[0]
if isinstance(layer, nn.ConvTranspose1d):
L = ((L - d * (k - 1) - 1) / s) + 1
elif isinstance(layer, nn.Conv1d):
L = (L - 1) * s + d * (k - 1) + 1
L = math.ceil(L)
l_in = L
return (l_in - l_out) // 2
def get_output_length(self, input_length):
L = input_length
# Calculate output length
for layer in self.modules():
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
d = layer.dilation[0]
k = layer.kernel_size[0]
s = layer.stride[0]
if isinstance(layer, nn.Conv1d):
L = ((L - d * (k - 1) - 1) / s) + 1
elif isinstance(layer, nn.ConvTranspose1d):
L = (L - 1) * s + d * (k - 1) + 1
L = math.floor(L)
return L
@torch.no_grad()
def compress(
self,
audio_path_or_signal: Union[str, Path, AudioSignal],
win_duration: float = 1.0,
verbose: bool = False,
normalize_db: float = -16,
n_quantizers: int = None,
) -> DACFile:
"""Processes an audio signal from a file or AudioSignal object into
discrete codes. This function processes the signal in short windows,
using constant GPU memory.
Parameters
----------
audio_path_or_signal : Union[str, Path, AudioSignal]
audio signal to reconstruct
win_duration : float, optional
window duration in seconds, by default 5.0
verbose : bool, optional
by default False
normalize_db : float, optional
normalize db, by default -16
Returns
-------
DACFile
Object containing compressed codes and metadata
required for decompression
"""
audio_signal = audio_path_or_signal
if isinstance(audio_signal, (str, Path)):
audio_signal = AudioSignal.load_from_file_with_ffmpeg(str(audio_signal))
self.eval()
original_padding = self.padding
original_device = audio_signal.device
audio_signal = audio_signal.clone()
original_sr = audio_signal.sample_rate
resample_fn = audio_signal.resample
loudness_fn = audio_signal.loudness
# If audio is > 10 minutes long, use the ffmpeg versions
if audio_signal.signal_duration >= 10 * 60 * 60:
resample_fn = audio_signal.ffmpeg_resample
loudness_fn = audio_signal.ffmpeg_loudness
original_length = audio_signal.signal_length
resample_fn(self.sample_rate)
input_db = loudness_fn()
if normalize_db is not None:
audio_signal.normalize(normalize_db)
audio_signal.ensure_max_of_audio()
nb, nac, nt = audio_signal.audio_data.shape
audio_signal.audio_data = audio_signal.audio_data.reshape(nb * nac, 1, nt)
win_duration = (
audio_signal.signal_duration if win_duration is None else win_duration
)
if audio_signal.signal_duration <= win_duration:
# Unchunked compression (used if signal length < win duration)
self.padding = True
n_samples = nt
hop = nt
else:
# Chunked inference
self.padding = False
# Zero-pad signal on either side by the delay
audio_signal.zero_pad(self.delay, self.delay)
n_samples = int(win_duration * self.sample_rate)
# Round n_samples to nearest hop length multiple
n_samples = int(math.ceil(n_samples / self.hop_length) * self.hop_length)
hop = self.get_output_length(n_samples)
codes = []
range_fn = range if not verbose else tqdm.trange
for i in range_fn(0, nt, hop):
x = audio_signal[..., i : i + n_samples]
x = x.zero_pad(0, max(0, n_samples - x.shape[-1]))
audio_data = x.audio_data.to(self.device)
audio_data = self.preprocess(audio_data, self.sample_rate)
_, c, _, _, _ = self.encode(audio_data, n_quantizers)
codes.append(c.to(original_device))
chunk_length = c.shape[-1]
codes = torch.cat(codes, dim=-1)
dac_file = DACFile(
codes=codes,
chunk_length=chunk_length,
original_length=original_length,
input_db=input_db,
channels=nac,
sample_rate=original_sr,
padding=self.padding,
dac_version=SUPPORTED_VERSIONS[-1],
)
if n_quantizers is not None:
codes = codes[:, :n_quantizers, :]
self.padding = original_padding
return dac_file
@torch.no_grad()
def decompress(
self,
obj: Union[str, Path, DACFile],
verbose: bool = False,
) -> AudioSignal:
"""Reconstruct audio from a given .dac file
Parameters
----------
obj : Union[str, Path, DACFile]
.dac file location or corresponding DACFile object.
verbose : bool, optional
Prints progress if True, by default False
Returns
-------
AudioSignal
Object with the reconstructed audio
"""
self.eval()
if isinstance(obj, (str, Path)):
obj = DACFile.load(obj)
original_padding = self.padding
self.padding = obj.padding
range_fn = range if not verbose else tqdm.trange
codes = obj.codes
original_device = codes.device
chunk_length = obj.chunk_length
recons = []
for i in range_fn(0, codes.shape[-1], chunk_length):
c = codes[..., i : i + chunk_length].to(self.device)
z = self.quantizer.from_codes(c)[0]
r = self.decode(z)
recons.append(r.to(original_device))
recons = torch.cat(recons, dim=-1)
recons = AudioSignal(recons, self.sample_rate)
resample_fn = recons.resample
loudness_fn = recons.loudness
# If audio is > 10 minutes long, use the ffmpeg versions
if recons.signal_duration >= 10 * 60 * 60:
resample_fn = recons.ffmpeg_resample
loudness_fn = recons.ffmpeg_loudness
recons.normalize(obj.input_db)
resample_fn(obj.sample_rate)
recons = recons[..., : obj.original_length]
loudness_fn()
recons.audio_data = recons.audio_data.reshape(
-1, obj.channels, obj.original_length
)
self.padding = original_padding
return recons

View File

@@ -0,0 +1,400 @@
import math
from typing import List
from typing import Union
import numpy as np
import torch
from audiotools import AudioSignal
from audiotools.ml import BaseModel
from torch import nn
from .base import CodecMixin
from indextts.s2mel.dac.nn.layers import Snake1d
from indextts.s2mel.dac.nn.layers import WNConv1d
from indextts.s2mel.dac.nn.layers import WNConvTranspose1d
from indextts.s2mel.dac.nn.quantize import ResidualVectorQuantize
from .encodec import SConv1d, SConvTranspose1d, SLSTM
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
class ResidualUnit(nn.Module):
def __init__(self, dim: int = 16, dilation: int = 1, causal: bool = False):
super().__init__()
conv1d_type = SConv1d# if causal else WNConv1d
pad = ((7 - 1) * dilation) // 2
self.block = nn.Sequential(
Snake1d(dim),
conv1d_type(dim, dim, kernel_size=7, dilation=dilation, padding=pad, causal=causal, norm='weight_norm'),
Snake1d(dim),
conv1d_type(dim, dim, kernel_size=1, causal=causal, norm='weight_norm'),
)
def forward(self, x):
y = self.block(x)
pad = (x.shape[-1] - y.shape[-1]) // 2
if pad > 0:
x = x[..., pad:-pad]
return x + y
class EncoderBlock(nn.Module):
def __init__(self, dim: int = 16, stride: int = 1, causal: bool = False):
super().__init__()
conv1d_type = SConv1d# if causal else WNConv1d
self.block = nn.Sequential(
ResidualUnit(dim // 2, dilation=1, causal=causal),
ResidualUnit(dim // 2, dilation=3, causal=causal),
ResidualUnit(dim // 2, dilation=9, causal=causal),
Snake1d(dim // 2),
conv1d_type(
dim // 2,
dim,
kernel_size=2 * stride,
stride=stride,
padding=math.ceil(stride / 2),
causal=causal,
norm='weight_norm',
),
)
def forward(self, x):
return self.block(x)
class Encoder(nn.Module):
def __init__(
self,
d_model: int = 64,
strides: list = [2, 4, 8, 8],
d_latent: int = 64,
causal: bool = False,
lstm: int = 2,
):
super().__init__()
conv1d_type = SConv1d# if causal else WNConv1d
# Create first convolution
self.block = [conv1d_type(1, d_model, kernel_size=7, padding=3, causal=causal, norm='weight_norm')]
# Create EncoderBlocks that double channels as they downsample by `stride`
for stride in strides:
d_model *= 2
self.block += [EncoderBlock(d_model, stride=stride, causal=causal)]
# Add LSTM if needed
self.use_lstm = lstm
if lstm:
self.block += [SLSTM(d_model, lstm)]
# Create last convolution
self.block += [
Snake1d(d_model),
conv1d_type(d_model, d_latent, kernel_size=3, padding=1, causal=causal, norm='weight_norm'),
]
# Wrap black into nn.Sequential
self.block = nn.Sequential(*self.block)
self.enc_dim = d_model
def forward(self, x):
return self.block(x)
def reset_cache(self):
# recursively find all submodules named SConv1d in self.block and use their reset_cache method
def reset_cache(m):
if isinstance(m, SConv1d) or isinstance(m, SLSTM):
m.reset_cache()
return
for child in m.children():
reset_cache(child)
reset_cache(self.block)
class DecoderBlock(nn.Module):
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1, causal: bool = False):
super().__init__()
conv1d_type = SConvTranspose1d #if causal else WNConvTranspose1d
self.block = nn.Sequential(
Snake1d(input_dim),
conv1d_type(
input_dim,
output_dim,
kernel_size=2 * stride,
stride=stride,
padding=math.ceil(stride / 2),
causal=causal,
norm='weight_norm'
),
ResidualUnit(output_dim, dilation=1, causal=causal),
ResidualUnit(output_dim, dilation=3, causal=causal),
ResidualUnit(output_dim, dilation=9, causal=causal),
)
def forward(self, x):
return self.block(x)
class Decoder(nn.Module):
def __init__(
self,
input_channel,
channels,
rates,
d_out: int = 1,
causal: bool = False,
lstm: int = 2,
):
super().__init__()
conv1d_type = SConv1d# if causal else WNConv1d
# Add first conv layer
layers = [conv1d_type(input_channel, channels, kernel_size=7, padding=3, causal=causal, norm='weight_norm')]
if lstm:
layers += [SLSTM(channels, num_layers=lstm)]
# Add upsampling + MRF blocks
for i, stride in enumerate(rates):
input_dim = channels // 2**i
output_dim = channels // 2 ** (i + 1)
layers += [DecoderBlock(input_dim, output_dim, stride, causal=causal)]
# Add final conv layer
layers += [
Snake1d(output_dim),
conv1d_type(output_dim, d_out, kernel_size=7, padding=3, causal=causal, norm='weight_norm'),
nn.Tanh(),
]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class DAC(BaseModel, CodecMixin):
def __init__(
self,
encoder_dim: int = 64,
encoder_rates: List[int] = [2, 4, 8, 8],
latent_dim: int = None,
decoder_dim: int = 1536,
decoder_rates: List[int] = [8, 8, 4, 2],
n_codebooks: int = 9,
codebook_size: int = 1024,
codebook_dim: Union[int, list] = 8,
quantizer_dropout: bool = False,
sample_rate: int = 44100,
lstm: int = 2,
causal: bool = False,
):
super().__init__()
self.encoder_dim = encoder_dim
self.encoder_rates = encoder_rates
self.decoder_dim = decoder_dim
self.decoder_rates = decoder_rates
self.sample_rate = sample_rate
if latent_dim is None:
latent_dim = encoder_dim * (2 ** len(encoder_rates))
self.latent_dim = latent_dim
self.hop_length = np.prod(encoder_rates)
self.encoder = Encoder(encoder_dim, encoder_rates, latent_dim, causal=causal, lstm=lstm)
self.n_codebooks = n_codebooks
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim
self.quantizer = ResidualVectorQuantize(
input_dim=latent_dim,
n_codebooks=n_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
self.decoder = Decoder(
latent_dim,
decoder_dim,
decoder_rates,
lstm=lstm,
causal=causal,
)
self.sample_rate = sample_rate
self.apply(init_weights)
self.delay = self.get_delay()
def preprocess(self, audio_data, sample_rate):
if sample_rate is None:
sample_rate = self.sample_rate
assert sample_rate == self.sample_rate
length = audio_data.shape[-1]
right_pad = math.ceil(length / self.hop_length) * self.hop_length - length
audio_data = nn.functional.pad(audio_data, (0, right_pad))
return audio_data
def encode(
self,
audio_data: torch.Tensor,
n_quantizers: int = None,
):
"""Encode given audio data and return quantized latent codes
Parameters
----------
audio_data : Tensor[B x 1 x T]
Audio data to encode
n_quantizers : int, optional
Number of quantizers to use, by default None
If None, all quantizers are used.
Returns
-------
dict
A dictionary with the following keys:
"z" : Tensor[B x D x T]
Quantized continuous representation of input
"codes" : Tensor[B x N x T]
Codebook indices for each codebook
(quantized discrete representation of input)
"latents" : Tensor[B x N*D x T]
Projected latents (continuous representation of input before quantization)
"vq/commitment_loss" : Tensor[1]
Commitment loss to train encoder to predict vectors closer to codebook
entries
"vq/codebook_loss" : Tensor[1]
Codebook loss to update the codebook
"length" : int
Number of samples in input audio
"""
z = self.encoder(audio_data)
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(
z, n_quantizers
)
return z, codes, latents, commitment_loss, codebook_loss
def decode(self, z: torch.Tensor):
"""Decode given latent codes and return audio data
Parameters
----------
z : Tensor[B x D x T]
Quantized continuous representation of input
length : int, optional
Number of samples in output audio, by default None
Returns
-------
dict
A dictionary with the following keys:
"audio" : Tensor[B x 1 x length]
Decoded audio data.
"""
return self.decoder(z)
def forward(
self,
audio_data: torch.Tensor,
sample_rate: int = None,
n_quantizers: int = None,
):
"""Model forward pass
Parameters
----------
audio_data : Tensor[B x 1 x T]
Audio data to encode
sample_rate : int, optional
Sample rate of audio data in Hz, by default None
If None, defaults to `self.sample_rate`
n_quantizers : int, optional
Number of quantizers to use, by default None.
If None, all quantizers are used.
Returns
-------
dict
A dictionary with the following keys:
"z" : Tensor[B x D x T]
Quantized continuous representation of input
"codes" : Tensor[B x N x T]
Codebook indices for each codebook
(quantized discrete representation of input)
"latents" : Tensor[B x N*D x T]
Projected latents (continuous representation of input before quantization)
"vq/commitment_loss" : Tensor[1]
Commitment loss to train encoder to predict vectors closer to codebook
entries
"vq/codebook_loss" : Tensor[1]
Codebook loss to update the codebook
"length" : int
Number of samples in input audio
"audio" : Tensor[B x 1 x length]
Decoded audio data.
"""
length = audio_data.shape[-1]
audio_data = self.preprocess(audio_data, sample_rate)
z, codes, latents, commitment_loss, codebook_loss = self.encode(
audio_data, n_quantizers
)
x = self.decode(z)
return {
"audio": x[..., :length],
"z": z,
"codes": codes,
"latents": latents,
"vq/commitment_loss": commitment_loss,
"vq/codebook_loss": codebook_loss,
}
if __name__ == "__main__":
import numpy as np
from functools import partial
model = DAC().to("cpu")
for n, m in model.named_modules():
o = m.extra_repr()
p = sum([np.prod(p.size()) for p in m.parameters()])
fn = lambda o, p: o + f" {p/1e6:<.3f}M params."
setattr(m, "extra_repr", partial(fn, o=o, p=p))
print(model)
print("Total # of params: ", sum([np.prod(p.size()) for p in model.parameters()]))
length = 88200 * 2
x = torch.randn(1, 1, length).to(model.device)
x.requires_grad_(True)
x.retain_grad()
# Make a forward pass
out = model(x)["audio"]
print("Input shape:", x.shape)
print("Output shape:", out.shape)
# Create gradient variable
grad = torch.zeros_like(out)
grad[:, :, grad.shape[-1] // 2] = 1
# Make a backward pass
out.backward(grad)
# Check non-zero values
gradmap = x.grad.squeeze(0)
gradmap = (gradmap != 0).sum(0) # sum across features
rf = (gradmap != 0).sum()
print(f"Receptive field: {rf.item()}")
x = AudioSignal(torch.randn(1, 1, 44100 * 60), 44100)
model.decompress(model.compress(x, verbose=True), verbose=True)

View File

@@ -0,0 +1,228 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from audiotools import AudioSignal
from audiotools import ml
from audiotools import STFTParams
from einops import rearrange
from torch.nn.utils import weight_norm
def WNConv1d(*args, **kwargs):
act = kwargs.pop("act", True)
conv = weight_norm(nn.Conv1d(*args, **kwargs))
if not act:
return conv
return nn.Sequential(conv, nn.LeakyReLU(0.1))
def WNConv2d(*args, **kwargs):
act = kwargs.pop("act", True)
conv = weight_norm(nn.Conv2d(*args, **kwargs))
if not act:
return conv
return nn.Sequential(conv, nn.LeakyReLU(0.1))
class MPD(nn.Module):
def __init__(self, period):
super().__init__()
self.period = period
self.convs = nn.ModuleList(
[
WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
]
)
self.conv_post = WNConv2d(
1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
)
def pad_to_period(self, x):
t = x.shape[-1]
x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
return x
def forward(self, x):
fmap = []
x = self.pad_to_period(x)
x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
for layer in self.convs:
x = layer(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
return fmap
class MSD(nn.Module):
def __init__(self, rate: int = 1, sample_rate: int = 44100):
super().__init__()
self.convs = nn.ModuleList(
[
WNConv1d(1, 16, 15, 1, padding=7),
WNConv1d(16, 64, 41, 4, groups=4, padding=20),
WNConv1d(64, 256, 41, 4, groups=16, padding=20),
WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
WNConv1d(1024, 1024, 5, 1, padding=2),
]
)
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
self.sample_rate = sample_rate
self.rate = rate
def forward(self, x):
x = AudioSignal(x, self.sample_rate)
x.resample(self.sample_rate // self.rate)
x = x.audio_data
fmap = []
for l in self.convs:
x = l(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
return fmap
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
class MRD(nn.Module):
def __init__(
self,
window_length: int,
hop_factor: float = 0.25,
sample_rate: int = 44100,
bands: list = BANDS,
):
"""Complex multi-band spectrogram discriminator.
Parameters
----------
window_length : int
Window length of STFT.
hop_factor : float, optional
Hop factor of the STFT, defaults to ``0.25 * window_length``.
sample_rate : int, optional
Sampling rate of audio in Hz, by default 44100
bands : list, optional
Bands to run discriminator over.
"""
super().__init__()
self.window_length = window_length
self.hop_factor = hop_factor
self.sample_rate = sample_rate
self.stft_params = STFTParams(
window_length=window_length,
hop_length=int(window_length * hop_factor),
match_stride=True,
)
n_fft = window_length // 2 + 1
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
self.bands = bands
ch = 32
convs = lambda: nn.ModuleList(
[
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
]
)
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
def spectrogram(self, x):
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
x = torch.view_as_real(x.stft())
x = rearrange(x, "b 1 f t c -> (b 1) c t f")
# Split into bands
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
return x_bands
def forward(self, x):
x_bands = self.spectrogram(x)
fmap = []
x = []
for band, stack in zip(x_bands, self.band_convs):
for layer in stack:
band = layer(band)
fmap.append(band)
x.append(band)
x = torch.cat(x, dim=-1)
x = self.conv_post(x)
fmap.append(x)
return fmap
class Discriminator(nn.Module):
def __init__(
self,
rates: list = [],
periods: list = [2, 3, 5, 7, 11],
fft_sizes: list = [2048, 1024, 512],
sample_rate: int = 44100,
bands: list = BANDS,
):
"""Discriminator that combines multiple discriminators.
Parameters
----------
rates : list, optional
sampling rates (in Hz) to run MSD at, by default []
If empty, MSD is not used.
periods : list, optional
periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
fft_sizes : list, optional
Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
sample_rate : int, optional
Sampling rate of audio in Hz, by default 44100
bands : list, optional
Bands to run MRD at, by default `BANDS`
"""
super().__init__()
discs = []
discs += [MPD(p) for p in periods]
discs += [MSD(r, sample_rate=sample_rate) for r in rates]
discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes]
self.discriminators = nn.ModuleList(discs)
def preprocess(self, y):
# Remove DC offset
y = y - y.mean(dim=-1, keepdims=True)
# Peak normalize the volume of input audio
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
return y
def forward(self, x):
x = self.preprocess(x)
fmaps = [d(x) for d in self.discriminators]
return fmaps
if __name__ == "__main__":
disc = Discriminator()
x = torch.zeros(1, 1, 44100)
results = disc(x)
for i, result in enumerate(results):
print(f"disc{i}")
for i, r in enumerate(result):
print(r.shape, r.mean(), r.min(), r.max())
print()

View File

@@ -0,0 +1,320 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Convolutional layers wrappers and utilities."""
import math
import typing as tp
import warnings
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import spectral_norm, weight_norm
import typing as tp
import einops
class ConvLayerNorm(nn.LayerNorm):
"""
Convolution-friendly LayerNorm that moves channels to last dimensions
before running the normalization and moves them back to original position right after.
"""
def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
super().__init__(normalized_shape, **kwargs)
def forward(self, x):
x = einops.rearrange(x, 'b ... t -> b t ...')
x = super().forward(x)
x = einops.rearrange(x, 'b t ... -> b ... t')
return
CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
'time_layer_norm', 'layer_norm', 'time_group_norm'])
def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
assert norm in CONV_NORMALIZATIONS
if norm == 'weight_norm':
return weight_norm(module)
elif norm == 'spectral_norm':
return spectral_norm(module)
else:
# We already check was in CONV_NORMALIZATION, so any other choice
# doesn't need reparametrization.
return module
def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
"""Return the proper normalization module. If causal is True, this will ensure the returned
module is causal, or return an error if the normalization doesn't support causal evaluation.
"""
assert norm in CONV_NORMALIZATIONS
if norm == 'layer_norm':
assert isinstance(module, nn.modules.conv._ConvNd)
return ConvLayerNorm(module.out_channels, **norm_kwargs)
elif norm == 'time_group_norm':
if causal:
raise ValueError("GroupNorm doesn't support causal evaluation.")
assert isinstance(module, nn.modules.conv._ConvNd)
return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
else:
return nn.Identity()
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
padding_total: int = 0) -> int:
"""See `pad_for_conv1d`.
"""
length = x.shape[-1]
n_frames = (length - kernel_size + padding_total) / stride + 1
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
return ideal_length - length
def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
"""Pad for a convolution to make sure that the last window is full.
Extra padding is added at the end. This is required to ensure that we can rebuild
an output of the same length, as otherwise, even with padding, some time steps
might get removed.
For instance, with total padding = 4, kernel size = 4, stride = 2:
0 0 1 2 3 4 5 0 0 # (0s are padding)
1 2 3 # (output frames of a convolution, last 0 is never used)
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding)
1 2 3 4 # once you removed padding, we are missing one time step !
"""
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
return F.pad(x, (0, extra_padding))
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
If this is the case, we insert extra 0 padding to the right before the reflection happen.
"""
length = x.shape[-1]
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
if mode == 'reflect':
max_pad = max(padding_left, padding_right)
extra_pad = 0
if length <= max_pad:
extra_pad = max_pad - length + 1
x = F.pad(x, (0, extra_pad))
padded = F.pad(x, paddings, mode, value)
end = padded.shape[-1] - extra_pad
return padded[..., :end]
else:
return F.pad(x, paddings, mode, value)
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
assert (padding_left + padding_right) <= x.shape[-1]
end = x.shape[-1] - padding_right
return x[..., padding_left: end]
class NormConv1d(nn.Module):
"""Wrapper around Conv1d and normalization applied to this conv
to provide a uniform interface across normalization approaches.
"""
def __init__(self, *args, causal: bool = False, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
self.norm_type = norm
def forward(self, x):
x = self.conv(x)
x = self.norm(x)
return x
class NormConv2d(nn.Module):
"""Wrapper around Conv2d and normalization applied to this conv
to provide a uniform interface across normalization approaches.
"""
def __init__(self, *args, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm)
self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs)
self.norm_type = norm
def forward(self, x):
x = self.conv(x)
x = self.norm(x)
return x
class NormConvTranspose1d(nn.Module):
"""Wrapper around ConvTranspose1d and normalization applied to this conv
to provide a uniform interface across normalization approaches.
"""
def __init__(self, *args, causal: bool = False, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
self.norm_type = norm
def forward(self, x):
x = self.convtr(x)
x = self.norm(x)
return x
class NormConvTranspose2d(nn.Module):
"""Wrapper around ConvTranspose2d and normalization applied to this conv
to provide a uniform interface across normalization approaches.
"""
def __init__(self, *args, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.convtr = apply_parametrization_norm(nn.ConvTranspose2d(*args, **kwargs), norm)
self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs)
def forward(self, x):
x = self.convtr(x)
x = self.norm(x)
return x
class SConv1d(nn.Module):
"""Conv1d with some builtin handling of asymmetric or causal padding
and normalization.
"""
def __init__(self, in_channels: int, out_channels: int,
kernel_size: int, stride: int = 1, dilation: int = 1,
groups: int = 1, bias: bool = True, causal: bool = False,
norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
pad_mode: str = 'reflect', **kwargs):
super().__init__()
# warn user on unusual setup between dilation and stride
if stride > 1 and dilation > 1:
warnings.warn('SConv1d has been initialized with stride > 1 and dilation > 1'
f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).')
self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
dilation=dilation, groups=groups, bias=bias, causal=causal,
norm=norm, norm_kwargs=norm_kwargs)
self.causal = causal
self.pad_mode = pad_mode
self.cache_enabled = False
def reset_cache(self):
"""Reset the cache when starting a new stream."""
self.cache = None
self.cache_enabled = True
def forward(self, x):
B, C, T = x.shape
kernel_size = self.conv.conv.kernel_size[0]
stride = self.conv.conv.stride[0]
dilation = self.conv.conv.dilation[0]
kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations
padding_total = kernel_size - stride
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
if self.causal:
# Left padding for causal
if self.cache_enabled and self.cache is not None:
# Concatenate the cache (previous inputs) with the new input for streaming
x = torch.cat([self.cache, x], dim=2)
else:
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
else:
# Asymmetric padding required for odd strides
padding_right = padding_total // 2
padding_left = padding_total - padding_right
x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
# Store the most recent input frames for future cache use
if self.cache_enabled:
if self.cache is None:
# Initialize cache with zeros (at the start of streaming)
self.cache = torch.zeros(B, C, kernel_size - 1, device=x.device)
# Update the cache by storing the latest input frames
if kernel_size > 1:
self.cache = x[:, :, -kernel_size + 1:].detach() # Only store the necessary frames
return self.conv(x)
class SConvTranspose1d(nn.Module):
"""ConvTranspose1d with some builtin handling of asymmetric or causal padding
and normalization.
"""
def __init__(self, in_channels: int, out_channels: int,
kernel_size: int, stride: int = 1, causal: bool = False,
norm: str = 'none', trim_right_ratio: float = 1.,
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
causal=causal, norm=norm, norm_kwargs=norm_kwargs)
self.causal = causal
self.trim_right_ratio = trim_right_ratio
assert self.causal or self.trim_right_ratio == 1., \
"`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
def forward(self, x):
kernel_size = self.convtr.convtr.kernel_size[0]
stride = self.convtr.convtr.stride[0]
padding_total = kernel_size - stride
y = self.convtr(x)
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
# removed at the very end, when keeping only the right length for the output,
# as removing it here would require also passing the length at the matching layer
# in the encoder.
if self.causal:
# Trim the padding on the right according to the specified ratio
# if trim_right_ratio = 1.0, trim everything from right
padding_right = math.ceil(padding_total * self.trim_right_ratio)
padding_left = padding_total - padding_right
y = unpad1d(y, (padding_left, padding_right))
else:
# Asymmetric padding required for odd strides
padding_right = padding_total // 2
padding_left = padding_total - padding_right
y = unpad1d(y, (padding_left, padding_right))
return y
class SLSTM(nn.Module):
"""
LSTM without worrying about the hidden state, nor the layout of the data.
Expects input as convolutional layout.
"""
def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True):
super().__init__()
self.skip = skip
self.lstm = nn.LSTM(dimension, dimension, num_layers)
self.hidden = None
self.cache_enabled = False
def forward(self, x):
x = x.permute(2, 0, 1)
if self.training or not self.cache_enabled:
y, _ = self.lstm(x)
else:
y, self.hidden = self.lstm(x, self.hidden)
if self.skip:
y = y + x
y = y.permute(1, 2, 0)
return y
def reset_cache(self):
self.hidden = None
self.cache_enabled = True

View File

@@ -0,0 +1,3 @@
from . import layers
from . import loss
from . import quantize

View File

@@ -0,0 +1,33 @@
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn.utils import weight_norm
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
# Scripting this brings model speed up 1.4x
@torch.jit.script
def snake(x, alpha):
shape = x.shape
x = x.reshape(shape[0], shape[1], -1)
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
x = x.reshape(shape)
return x
class Snake1d(nn.Module):
def __init__(self, channels):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, channels, 1))
def forward(self, x):
return snake(x, self.alpha)

View File

@@ -0,0 +1,368 @@
import typing
from typing import List
import torch
import torch.nn.functional as F
from audiotools import AudioSignal
from audiotools import STFTParams
from torch import nn
class L1Loss(nn.L1Loss):
"""L1 Loss between AudioSignals. Defaults
to comparing ``audio_data``, but any
attribute of an AudioSignal can be used.
Parameters
----------
attribute : str, optional
Attribute of signal to compare, defaults to ``audio_data``.
weight : float, optional
Weight of this loss, defaults to 1.0.
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
"""
def __init__(self, attribute: str = "audio_data", weight: float = 1.0, **kwargs):
self.attribute = attribute
self.weight = weight
super().__init__(**kwargs)
def forward(self, x: AudioSignal, y: AudioSignal):
"""
Parameters
----------
x : AudioSignal
Estimate AudioSignal
y : AudioSignal
Reference AudioSignal
Returns
-------
torch.Tensor
L1 loss between AudioSignal attributes.
"""
if isinstance(x, AudioSignal):
x = getattr(x, self.attribute)
y = getattr(y, self.attribute)
return super().forward(x, y)
class SISDRLoss(nn.Module):
"""
Computes the Scale-Invariant Source-to-Distortion Ratio between a batch
of estimated and reference audio signals or aligned features.
Parameters
----------
scaling : int, optional
Whether to use scale-invariant (True) or
signal-to-noise ratio (False), by default True
reduction : str, optional
How to reduce across the batch (either 'mean',
'sum', or none).], by default ' mean'
zero_mean : int, optional
Zero mean the references and estimates before
computing the loss, by default True
clip_min : int, optional
The minimum possible loss value. Helps network
to not focus on making already good examples better, by default None
weight : float, optional
Weight of this loss, defaults to 1.0.
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
"""
def __init__(
self,
scaling: int = True,
reduction: str = "mean",
zero_mean: int = True,
clip_min: int = None,
weight: float = 1.0,
):
self.scaling = scaling
self.reduction = reduction
self.zero_mean = zero_mean
self.clip_min = clip_min
self.weight = weight
super().__init__()
def forward(self, x: AudioSignal, y: AudioSignal):
eps = 1e-8
# nb, nc, nt
if isinstance(x, AudioSignal):
references = x.audio_data
estimates = y.audio_data
else:
references = x
estimates = y
nb = references.shape[0]
references = references.reshape(nb, 1, -1).permute(0, 2, 1)
estimates = estimates.reshape(nb, 1, -1).permute(0, 2, 1)
# samples now on axis 1
if self.zero_mean:
mean_reference = references.mean(dim=1, keepdim=True)
mean_estimate = estimates.mean(dim=1, keepdim=True)
else:
mean_reference = 0
mean_estimate = 0
_references = references - mean_reference
_estimates = estimates - mean_estimate
references_projection = (_references**2).sum(dim=-2) + eps
references_on_estimates = (_estimates * _references).sum(dim=-2) + eps
scale = (
(references_on_estimates / references_projection).unsqueeze(1)
if self.scaling
else 1
)
e_true = scale * _references
e_res = _estimates - e_true
signal = (e_true**2).sum(dim=1)
noise = (e_res**2).sum(dim=1)
sdr = -10 * torch.log10(signal / noise + eps)
if self.clip_min is not None:
sdr = torch.clamp(sdr, min=self.clip_min)
if self.reduction == "mean":
sdr = sdr.mean()
elif self.reduction == "sum":
sdr = sdr.sum()
return sdr
class MultiScaleSTFTLoss(nn.Module):
"""Computes the multi-scale STFT loss from [1].
Parameters
----------
window_lengths : List[int], optional
Length of each window of each STFT, by default [2048, 512]
loss_fn : typing.Callable, optional
How to compare each loss, by default nn.L1Loss()
clamp_eps : float, optional
Clamp on the log magnitude, below, by default 1e-5
mag_weight : float, optional
Weight of raw magnitude portion of loss, by default 1.0
log_weight : float, optional
Weight of log magnitude portion of loss, by default 1.0
pow : float, optional
Power to raise magnitude to before taking log, by default 2.0
weight : float, optional
Weight of this loss, by default 1.0
match_stride : bool, optional
Whether to match the stride of convolutional layers, by default False
References
----------
1. Engel, Jesse, Chenjie Gu, and Adam Roberts.
"DDSP: Differentiable Digital Signal Processing."
International Conference on Learning Representations. 2019.
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
"""
def __init__(
self,
window_lengths: List[int] = [2048, 512],
loss_fn: typing.Callable = nn.L1Loss(),
clamp_eps: float = 1e-5,
mag_weight: float = 1.0,
log_weight: float = 1.0,
pow: float = 2.0,
weight: float = 1.0,
match_stride: bool = False,
window_type: str = None,
):
super().__init__()
self.stft_params = [
STFTParams(
window_length=w,
hop_length=w // 4,
match_stride=match_stride,
window_type=window_type,
)
for w in window_lengths
]
self.loss_fn = loss_fn
self.log_weight = log_weight
self.mag_weight = mag_weight
self.clamp_eps = clamp_eps
self.weight = weight
self.pow = pow
def forward(self, x: AudioSignal, y: AudioSignal):
"""Computes multi-scale STFT between an estimate and a reference
signal.
Parameters
----------
x : AudioSignal
Estimate signal
y : AudioSignal
Reference signal
Returns
-------
torch.Tensor
Multi-scale STFT loss.
"""
loss = 0.0
for s in self.stft_params:
x.stft(s.window_length, s.hop_length, s.window_type)
y.stft(s.window_length, s.hop_length, s.window_type)
loss += self.log_weight * self.loss_fn(
x.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
y.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
)
loss += self.mag_weight * self.loss_fn(x.magnitude, y.magnitude)
return loss
class MelSpectrogramLoss(nn.Module):
"""Compute distance between mel spectrograms. Can be used
in a multi-scale way.
Parameters
----------
n_mels : List[int]
Number of mels per STFT, by default [150, 80],
window_lengths : List[int], optional
Length of each window of each STFT, by default [2048, 512]
loss_fn : typing.Callable, optional
How to compare each loss, by default nn.L1Loss()
clamp_eps : float, optional
Clamp on the log magnitude, below, by default 1e-5
mag_weight : float, optional
Weight of raw magnitude portion of loss, by default 1.0
log_weight : float, optional
Weight of log magnitude portion of loss, by default 1.0
pow : float, optional
Power to raise magnitude to before taking log, by default 2.0
weight : float, optional
Weight of this loss, by default 1.0
match_stride : bool, optional
Whether to match the stride of convolutional layers, by default False
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
"""
def __init__(
self,
n_mels: List[int] = [150, 80],
window_lengths: List[int] = [2048, 512],
loss_fn: typing.Callable = nn.L1Loss(),
clamp_eps: float = 1e-5,
mag_weight: float = 1.0,
log_weight: float = 1.0,
pow: float = 2.0,
weight: float = 1.0,
match_stride: bool = False,
mel_fmin: List[float] = [0.0, 0.0],
mel_fmax: List[float] = [None, None],
window_type: str = None,
):
super().__init__()
self.stft_params = [
STFTParams(
window_length=w,
hop_length=w // 4,
match_stride=match_stride,
window_type=window_type,
)
for w in window_lengths
]
self.n_mels = n_mels
self.loss_fn = loss_fn
self.clamp_eps = clamp_eps
self.log_weight = log_weight
self.mag_weight = mag_weight
self.weight = weight
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
self.pow = pow
def forward(self, x: AudioSignal, y: AudioSignal):
"""Computes mel loss between an estimate and a reference
signal.
Parameters
----------
x : AudioSignal
Estimate signal
y : AudioSignal
Reference signal
Returns
-------
torch.Tensor
Mel loss.
"""
loss = 0.0
for n_mels, fmin, fmax, s in zip(
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
):
kwargs = {
"window_length": s.window_length,
"hop_length": s.hop_length,
"window_type": s.window_type,
}
x_mels = x.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
y_mels = y.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
loss += self.log_weight * self.loss_fn(
x_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
y_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
)
loss += self.mag_weight * self.loss_fn(x_mels, y_mels)
return loss
class GANLoss(nn.Module):
"""
Computes a discriminator loss, given a discriminator on
generated waveforms/spectrograms compared to ground truth
waveforms/spectrograms. Computes the loss for both the
discriminator and the generator in separate functions.
"""
def __init__(self, discriminator):
super().__init__()
self.discriminator = discriminator
def forward(self, fake, real):
d_fake = self.discriminator(fake.audio_data)
d_real = self.discriminator(real.audio_data)
return d_fake, d_real
def discriminator_loss(self, fake, real):
d_fake, d_real = self.forward(fake.clone().detach(), real)
loss_d = 0
for x_fake, x_real in zip(d_fake, d_real):
loss_d += torch.mean(x_fake[-1] ** 2)
loss_d += torch.mean((1 - x_real[-1]) ** 2)
return loss_d
def generator_loss(self, fake, real):
d_fake, d_real = self.forward(fake, real)
loss_g = 0
for x_fake in d_fake:
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
loss_feature = 0
for i in range(len(d_fake)):
for j in range(len(d_fake[i]) - 1):
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
return loss_g, loss_feature

View File

@@ -0,0 +1,339 @@
from typing import Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn.utils import weight_norm
from indextts.s2mel.dac.nn.layers import WNConv1d
class VectorQuantizeLegacy(nn.Module):
"""
Implementation of VQ similar to Karpathy's repo:
https://github.com/karpathy/deep-vector-quantization
removed in-out projection
"""
def __init__(self, input_dim: int, codebook_size: int):
super().__init__()
self.codebook_size = codebook_size
self.codebook = nn.Embedding(codebook_size, input_dim)
def forward(self, z, z_mask=None):
"""Quantized the input tensor using a fixed codebook and returns
the corresponding codebook vectors
Parameters
----------
z : Tensor[B x D x T]
Returns
-------
Tensor[B x D x T]
Quantized continuous representation of input
Tensor[1]
Commitment loss to train encoder to predict vectors closer to codebook
entries
Tensor[1]
Codebook loss to update the codebook
Tensor[B x T]
Codebook indices (quantized discrete representation of input)
Tensor[B x D x T]
Projected latents (continuous representation of input before quantization)
"""
z_e = z
z_q, indices = self.decode_latents(z)
if z_mask is not None:
commitment_loss = (F.mse_loss(z_e, z_q.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
codebook_loss = (F.mse_loss(z_q, z_e.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
else:
commitment_loss = F.mse_loss(z_e, z_q.detach())
codebook_loss = F.mse_loss(z_q, z_e.detach())
z_q = (
z_e + (z_q - z_e).detach()
) # noop in forward pass, straight-through gradient estimator in backward pass
return z_q, indices, z_e, commitment_loss, codebook_loss
def embed_code(self, embed_id):
return F.embedding(embed_id, self.codebook.weight)
def decode_code(self, embed_id):
return self.embed_code(embed_id).transpose(1, 2)
def decode_latents(self, latents):
encodings = rearrange(latents, "b d t -> (b t) d")
codebook = self.codebook.weight # codebook: (N x D)
# L2 normalize encodings and codebook (ViT-VQGAN)
encodings = F.normalize(encodings)
codebook = F.normalize(codebook)
# Compute euclidean distance with codebook
dist = (
encodings.pow(2).sum(1, keepdim=True)
- 2 * encodings @ codebook.t()
+ codebook.pow(2).sum(1, keepdim=True).t()
)
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
z_q = self.decode_code(indices)
return z_q, indices
class VectorQuantize(nn.Module):
"""
Implementation of VQ similar to Karpathy's repo:
https://github.com/karpathy/deep-vector-quantization
Additionally uses following tricks from Improved VQGAN
(https://arxiv.org/pdf/2110.04627.pdf):
1. Factorized codes: Perform nearest neighbor lookup in low-dimensional space
for improved codebook usage
2. l2-normalized codes: Converts euclidean distance to cosine similarity which
improves training stability
"""
def __init__(self, input_dim: int, codebook_size: int, codebook_dim: int):
super().__init__()
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim
self.in_proj = WNConv1d(input_dim, codebook_dim, kernel_size=1)
self.out_proj = WNConv1d(codebook_dim, input_dim, kernel_size=1)
self.codebook = nn.Embedding(codebook_size, codebook_dim)
def forward(self, z, z_mask=None):
"""Quantized the input tensor using a fixed codebook and returns
the corresponding codebook vectors
Parameters
----------
z : Tensor[B x D x T]
Returns
-------
Tensor[B x D x T]
Quantized continuous representation of input
Tensor[1]
Commitment loss to train encoder to predict vectors closer to codebook
entries
Tensor[1]
Codebook loss to update the codebook
Tensor[B x T]
Codebook indices (quantized discrete representation of input)
Tensor[B x D x T]
Projected latents (continuous representation of input before quantization)
"""
# Factorized codes (ViT-VQGAN) Project input into low-dimensional space
z_e = self.in_proj(z) # z_e : (B x D x T)
z_q, indices = self.decode_latents(z_e)
if z_mask is not None:
commitment_loss = (F.mse_loss(z_e, z_q.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
codebook_loss = (F.mse_loss(z_q, z_e.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
else:
commitment_loss = F.mse_loss(z_e, z_q.detach())
codebook_loss = F.mse_loss(z_q, z_e.detach())
z_q = (
z_e + (z_q - z_e).detach()
) # noop in forward pass, straight-through gradient estimator in backward pass
z_q = self.out_proj(z_q)
return z_q, commitment_loss, codebook_loss, indices, z_e
def embed_code(self, embed_id):
return F.embedding(embed_id, self.codebook.weight)
def decode_code(self, embed_id):
return self.embed_code(embed_id).transpose(1, 2)
def decode_latents(self, latents):
encodings = rearrange(latents, "b d t -> (b t) d")
codebook = self.codebook.weight # codebook: (N x D)
# L2 normalize encodings and codebook (ViT-VQGAN)
encodings = F.normalize(encodings)
codebook = F.normalize(codebook)
# Compute euclidean distance with codebook
dist = (
encodings.pow(2).sum(1, keepdim=True)
- 2 * encodings @ codebook.t()
+ codebook.pow(2).sum(1, keepdim=True).t()
)
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
z_q = self.decode_code(indices)
return z_q, indices
class ResidualVectorQuantize(nn.Module):
"""
Introduced in SoundStream: An end2end neural audio codec
https://arxiv.org/abs/2107.03312
"""
def __init__(
self,
input_dim: int = 512,
n_codebooks: int = 9,
codebook_size: int = 1024,
codebook_dim: Union[int, list] = 8,
quantizer_dropout: float = 0.0,
):
super().__init__()
if isinstance(codebook_dim, int):
codebook_dim = [codebook_dim for _ in range(n_codebooks)]
self.n_codebooks = n_codebooks
self.codebook_dim = codebook_dim
self.codebook_size = codebook_size
self.quantizers = nn.ModuleList(
[
VectorQuantize(input_dim, codebook_size, codebook_dim[i])
for i in range(n_codebooks)
]
)
self.quantizer_dropout = quantizer_dropout
def forward(self, z, n_quantizers: int = None):
"""Quantized the input tensor using a fixed set of `n` codebooks and returns
the corresponding codebook vectors
Parameters
----------
z : Tensor[B x D x T]
n_quantizers : int, optional
No. of quantizers to use
(n_quantizers < self.n_codebooks ex: for quantizer dropout)
Note: if `self.quantizer_dropout` is True, this argument is ignored
when in training mode, and a random number of quantizers is used.
Returns
-------
dict
A dictionary with the following keys:
"z" : Tensor[B x D x T]
Quantized continuous representation of input
"codes" : Tensor[B x N x T]
Codebook indices for each codebook
(quantized discrete representation of input)
"latents" : Tensor[B x N*D x T]
Projected latents (continuous representation of input before quantization)
"vq/commitment_loss" : Tensor[1]
Commitment loss to train encoder to predict vectors closer to codebook
entries
"vq/codebook_loss" : Tensor[1]
Codebook loss to update the codebook
"""
z_q = 0
residual = z
commitment_loss = 0
codebook_loss = 0
codebook_indices = []
latents = []
if n_quantizers is None:
n_quantizers = self.n_codebooks
if self.training:
n_quantizers = torch.ones((z.shape[0],)) * self.n_codebooks + 1
dropout = torch.randint(1, self.n_codebooks + 1, (z.shape[0],))
n_dropout = int(z.shape[0] * self.quantizer_dropout)
n_quantizers[:n_dropout] = dropout[:n_dropout]
n_quantizers = n_quantizers.to(z.device)
for i, quantizer in enumerate(self.quantizers):
if self.training is False and i >= n_quantizers:
break
z_q_i, commitment_loss_i, codebook_loss_i, indices_i, z_e_i = quantizer(
residual
)
# Create mask to apply quantizer dropout
mask = (
torch.full((z.shape[0],), fill_value=i, device=z.device) < n_quantizers
)
z_q = z_q + z_q_i * mask[:, None, None]
residual = residual - z_q_i
# Sum losses
commitment_loss += (commitment_loss_i * mask).mean()
codebook_loss += (codebook_loss_i * mask).mean()
codebook_indices.append(indices_i)
latents.append(z_e_i)
codes = torch.stack(codebook_indices, dim=1)
latents = torch.cat(latents, dim=1)
return z_q, codes, latents, commitment_loss, codebook_loss
def from_codes(self, codes: torch.Tensor):
"""Given the quantized codes, reconstruct the continuous representation
Parameters
----------
codes : Tensor[B x N x T]
Quantized discrete representation of input
Returns
-------
Tensor[B x D x T]
Quantized continuous representation of input
"""
z_q = 0.0
z_p = []
n_codebooks = codes.shape[1]
for i in range(n_codebooks):
z_p_i = self.quantizers[i].decode_code(codes[:, i, :])
z_p.append(z_p_i)
z_q_i = self.quantizers[i].out_proj(z_p_i)
z_q = z_q + z_q_i
return z_q, torch.cat(z_p, dim=1), codes
def from_latents(self, latents: torch.Tensor):
"""Given the unquantized latents, reconstruct the
continuous representation after quantization.
Parameters
----------
latents : Tensor[B x N x T]
Continuous representation of input after projection
Returns
-------
Tensor[B x D x T]
Quantized representation of full-projected space
Tensor[B x D x T]
Quantized representation of latent space
"""
z_q = 0
z_p = []
codes = []
dims = np.cumsum([0] + [q.codebook_dim for q in self.quantizers])
n_codebooks = np.where(dims <= latents.shape[1])[0].max(axis=0, keepdims=True)[
0
]
for i in range(n_codebooks):
j, k = dims[i], dims[i + 1]
z_p_i, codes_i = self.quantizers[i].decode_latents(latents[:, j:k, :])
z_p.append(z_p_i)
codes.append(codes_i)
z_q_i = self.quantizers[i].out_proj(z_p_i)
z_q = z_q + z_q_i
return z_q, torch.cat(z_p, dim=1), torch.stack(codes, dim=1)
if __name__ == "__main__":
rvq = ResidualVectorQuantize(quantizer_dropout=True)
x = torch.randn(16, 512, 80)
y = rvq(x)
print(y["latents"].shape)

View File

@@ -0,0 +1,123 @@
from pathlib import Path
import argbind
from audiotools import ml
import indextts.s2mel.dac as dac
DAC = dac.model.DAC
Accelerator = ml.Accelerator
__MODEL_LATEST_TAGS__ = {
("44khz", "8kbps"): "0.0.1",
("24khz", "8kbps"): "0.0.4",
("16khz", "8kbps"): "0.0.5",
("44khz", "16kbps"): "1.0.0",
}
__MODEL_URLS__ = {
(
"44khz",
"0.0.1",
"8kbps",
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.1/weights.pth",
(
"24khz",
"0.0.4",
"8kbps",
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.4/weights_24khz.pth",
(
"16khz",
"0.0.5",
"8kbps",
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.5/weights_16khz.pth",
(
"44khz",
"1.0.0",
"16kbps",
): "https://github.com/descriptinc/descript-audio-codec/releases/download/1.0.0/weights_44khz_16kbps.pth",
}
@argbind.bind(group="download", positional=True, without_prefix=True)
def download(
model_type: str = "44khz", model_bitrate: str = "8kbps", tag: str = "latest"
):
"""
Function that downloads the weights file from URL if a local cache is not found.
Parameters
----------
model_type : str
The type of model to download. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz".
model_bitrate: str
Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
Only 44khz model supports 16kbps.
tag : str
The tag of the model to download. Defaults to "latest".
Returns
-------
Path
Directory path required to load model via audiotools.
"""
model_type = model_type.lower()
tag = tag.lower()
assert model_type in [
"44khz",
"24khz",
"16khz",
], "model_type must be one of '44khz', '24khz', or '16khz'"
assert model_bitrate in [
"8kbps",
"16kbps",
], "model_bitrate must be one of '8kbps', or '16kbps'"
if tag == "latest":
tag = __MODEL_LATEST_TAGS__[(model_type, model_bitrate)]
download_link = __MODEL_URLS__.get((model_type, tag, model_bitrate), None)
if download_link is None:
raise ValueError(
f"Could not find model with tag {tag} and model type {model_type}"
)
local_path = (
Path.home()
/ ".cache"
/ "descript"
/ "dac"
/ f"weights_{model_type}_{model_bitrate}_{tag}.pth"
)
if not local_path.exists():
local_path.parent.mkdir(parents=True, exist_ok=True)
# Download the model
import requests
response = requests.get(download_link)
if response.status_code != 200:
raise ValueError(
f"Could not download model. Received response code {response.status_code}"
)
local_path.write_bytes(response.content)
return local_path
def load_model(
model_type: str = "44khz",
model_bitrate: str = "8kbps",
tag: str = "latest",
load_path: str = None,
):
if not load_path:
load_path = download(
model_type=model_type, model_bitrate=model_bitrate, tag=tag
)
generator = DAC.load(load_path)
return generator

View File

@@ -0,0 +1,95 @@
import warnings
from pathlib import Path
import argbind
import numpy as np
import torch
from audiotools import AudioSignal
from tqdm import tqdm
from dac import DACFile
from dac.utils import load_model
warnings.filterwarnings("ignore", category=UserWarning)
@argbind.bind(group="decode", positional=True, without_prefix=True)
@torch.inference_mode()
@torch.no_grad()
def decode(
input: str,
output: str = "",
weights_path: str = "",
model_tag: str = "latest",
model_bitrate: str = "8kbps",
device: str = "cuda",
model_type: str = "44khz",
verbose: bool = False,
):
"""Decode audio from codes.
Parameters
----------
input : str
Path to input directory or file
output : str, optional
Path to output directory, by default "".
If `input` is a directory, the directory sub-tree relative to `input` is re-created in `output`.
weights_path : str, optional
Path to weights file, by default "". If not specified, the weights file will be downloaded from the internet using the
model_tag and model_type.
model_tag : str, optional
Tag of the model to use, by default "latest". Ignored if `weights_path` is specified.
model_bitrate: str
Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
device : str, optional
Device to use, by default "cuda". If "cpu", the model will be loaded on the CPU.
model_type : str, optional
The type of model to use. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz". Ignored if `weights_path` is specified.
"""
generator = load_model(
model_type=model_type,
model_bitrate=model_bitrate,
tag=model_tag,
load_path=weights_path,
)
generator.to(device)
generator.eval()
# Find all .dac files in input directory
_input = Path(input)
input_files = list(_input.glob("**/*.dac"))
# If input is a .dac file, add it to the list
if _input.suffix == ".dac":
input_files.append(_input)
# Create output directory
output = Path(output)
output.mkdir(parents=True, exist_ok=True)
for i in tqdm(range(len(input_files)), desc=f"Decoding files"):
# Load file
artifact = DACFile.load(input_files[i])
# Reconstruct audio from codes
recons = generator.decompress(artifact, verbose=verbose)
# Compute output path
relative_path = input_files[i].relative_to(input)
output_dir = output / relative_path.parent
if not relative_path.name:
output_dir = output
relative_path = input_files[i]
output_name = relative_path.with_suffix(".wav").name
output_path = output_dir / output_name
output_path.parent.mkdir(parents=True, exist_ok=True)
# Write to file
recons.write(output_path)
if __name__ == "__main__":
args = argbind.parse_args()
with argbind.scope(args):
decode()

View File

@@ -0,0 +1,94 @@
import math
import warnings
from pathlib import Path
import argbind
import numpy as np
import torch
from audiotools import AudioSignal
from audiotools.core import util
from tqdm import tqdm
from dac.utils import load_model
warnings.filterwarnings("ignore", category=UserWarning)
@argbind.bind(group="encode", positional=True, without_prefix=True)
@torch.inference_mode()
@torch.no_grad()
def encode(
input: str,
output: str = "",
weights_path: str = "",
model_tag: str = "latest",
model_bitrate: str = "8kbps",
n_quantizers: int = None,
device: str = "cuda",
model_type: str = "44khz",
win_duration: float = 5.0,
verbose: bool = False,
):
"""Encode audio files in input path to .dac format.
Parameters
----------
input : str
Path to input audio file or directory
output : str, optional
Path to output directory, by default "". If `input` is a directory, the directory sub-tree relative to `input` is re-created in `output`.
weights_path : str, optional
Path to weights file, by default "". If not specified, the weights file will be downloaded from the internet using the
model_tag and model_type.
model_tag : str, optional
Tag of the model to use, by default "latest". Ignored if `weights_path` is specified.
model_bitrate: str
Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
n_quantizers : int, optional
Number of quantizers to use, by default None. If not specified, all the quantizers will be used and the model will compress at maximum bitrate.
device : str, optional
Device to use, by default "cuda"
model_type : str, optional
The type of model to use. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz". Ignored if `weights_path` is specified.
"""
generator = load_model(
model_type=model_type,
model_bitrate=model_bitrate,
tag=model_tag,
load_path=weights_path,
)
generator.to(device)
generator.eval()
kwargs = {"n_quantizers": n_quantizers}
# Find all audio files in input path
input = Path(input)
audio_files = util.find_audio(input)
output = Path(output)
output.mkdir(parents=True, exist_ok=True)
for i in tqdm(range(len(audio_files)), desc="Encoding files"):
# Load file
signal = AudioSignal(audio_files[i])
# Encode audio to .dac format
artifact = generator.compress(signal, win_duration, verbose=verbose, **kwargs)
# Compute output path
relative_path = audio_files[i].relative_to(input)
output_dir = output / relative_path.parent
if not relative_path.name:
output_dir = output
relative_path = audio_files[i]
output_name = relative_path.with_suffix(".dac").name
output_path = output_dir / output_name
output_path.parent.mkdir(parents=True, exist_ok=True)
artifact.save(output_path)
if __name__ == "__main__":
args = argbind.parse_args()
with argbind.scope(args):
encode()

View File

@@ -0,0 +1,12 @@
import os
from huggingface_hub import hf_hub_download
def load_custom_model_from_hf(repo_id, model_filename="pytorch_model.bin", config_filename="config.yml"):
os.makedirs("./checkpoints", exist_ok=True)
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename, cache_dir="./checkpoints")
if config_filename is None:
return model_path
config_path = hf_hub_download(repo_id=repo_id, filename=config_filename, cache_dir="./checkpoints")
return model_path, config_path

View File

@@ -0,0 +1,82 @@
import numpy as np
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
from scipy.io.wavfile import read
MAX_WAV_VALUE = 32768.0
def load_wav(full_path):
sampling_rate, data = read(full_path)
return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
# if torch.min(y) < -1.0:
# print("min value is ", torch.min(y))
# if torch.max(y) > 1.0:
# print("max value is ", torch.max(y))
global mel_basis, hann_window # pylint: disable=global-statement
if f"{str(sampling_rate)}_{str(fmax)}_{str(y.device)}" not in mel_basis:
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
mel_basis[str(sampling_rate) + "_" + str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(sampling_rate) + "_" + str(y.device)] = torch.hann_window(win_size).to(y.device)
y = torch.nn.functional.pad(
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
)
y = y.squeeze(1)
spec = torch.view_as_real(
torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[str(sampling_rate) + "_" + str(y.device)],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
)
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
spec = torch.matmul(mel_basis[str(sampling_rate) + "_" + str(fmax) + "_" + str(y.device)], spec)
spec = spectral_normalize_torch(spec)
return spec

View File

@@ -0,0 +1,610 @@
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from munch import Munch
import json
import argparse
from torch.nn.parallel import DistributedDataParallel as DDP
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def kl_divergence(m_p, logs_p, m_q, logs_q):
"""KL(P||Q)"""
kl = (logs_q - logs_p) - 0.5
kl += (
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
)
return kl
def rand_gumbel(shape):
"""Sample from the Gumbel distribution, protect from overflows."""
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
return -torch.log(-torch.log(uniform_samples))
def rand_gumbel_like(x):
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
return g
def slice_segments(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :, :segment_size])
for i in range(x.size(0)):
idx_str = ids_str[i]
idx_end = idx_str + segment_size
ret[i] = x[i, :, idx_str:idx_end]
return ret
def slice_segments_audio(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :segment_size])
for i in range(x.size(0)):
idx_str = ids_str[i]
idx_end = idx_str + segment_size
ret[i] = x[i, idx_str:idx_end]
return ret
def rand_slice_segments(x, x_lengths=None, segment_size=4):
b, d, t = x.size()
if x_lengths is None:
x_lengths = t
ids_str_max = x_lengths - segment_size + 1
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(
dtype=torch.long
)
ret = slice_segments(x, ids_str, segment_size)
return ret, ids_str
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
position = torch.arange(length, dtype=torch.float)
num_timescales = channels // 2
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
num_timescales - 1
)
inv_timescales = min_timescale * torch.exp(
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
)
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
signal = F.pad(signal, [0, 0, 0, channels % 2])
signal = signal.view(1, channels, length)
return signal
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return x + signal.to(dtype=x.dtype, device=x.device)
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
def subsequent_mask(length):
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
return mask
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def shift_1d(x):
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
return x
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def avg_with_mask(x, mask):
assert mask.dtype == torch.float, "Mask should be float"
if mask.ndim == 2:
mask = mask.unsqueeze(1)
if mask.shape[1] == 1:
mask = mask.expand_as(x)
return (x * mask).sum() / mask.sum()
def generate_path(duration, mask):
"""
duration: [b, 1, t_x]
mask: [b, 1, t_y, t_x]
"""
device = duration.device
b, _, t_y, t_x = mask.shape
cum_duration = torch.cumsum(duration, -1)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
path = path.unsqueeze(1).transpose(2, 3) * mask
return path
def clip_grad_value_(parameters, clip_value, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
if clip_value is not None:
clip_value = float(clip_value)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
if clip_value is not None:
p.grad.data.clamp_(min=-clip_value, max=clip_value)
total_norm = total_norm ** (1.0 / norm_type)
return total_norm
def log_norm(x, mean=-4, std=4, dim=2):
"""
normalized log mel -> mel -> norm -> log(norm)
"""
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
return x
def load_F0_models(path):
# load F0 model
from .JDC.model import JDCNet
F0_model = JDCNet(num_class=1, seq_len=192)
params = torch.load(path, map_location="cpu")["net"]
F0_model.load_state_dict(params)
_ = F0_model.train()
return F0_model
def modify_w2v_forward(self, output_layer=15):
"""
change forward method of w2v encoder to get its intermediate layer output
:param self:
:param layer:
:return:
"""
from transformers.modeling_outputs import BaseModelOutput
def forward(
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
conv_attention_mask = attention_mask
if attention_mask is not None:
# make sure padded tokens output 0
hidden_states = hidden_states.masked_fill(
~attention_mask.bool().unsqueeze(-1), 0.0
)
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
dtype=hidden_states.dtype
)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0],
1,
attention_mask.shape[-1],
attention_mask.shape[-1],
)
hidden_states = self.dropout(hidden_states)
if self.embed_positions is not None:
relative_position_embeddings = self.embed_positions(hidden_states)
else:
relative_position_embeddings = None
deepspeed_zero3_is_enabled = False
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = (
True
if self.training and (dropout_probability < self.config.layerdrop)
else False
)
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
relative_position_embeddings,
output_attentions,
conv_attention_mask,
)
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
relative_position_embeddings=relative_position_embeddings,
output_attentions=output_attentions,
conv_attention_mask=conv_attention_mask,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if i == output_layer - 1:
break
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attentions]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
return forward
MATPLOTLIB_FLAG = False
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
import logging
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger("matplotlib")
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def normalize_f0(f0_sequence):
# Remove unvoiced frames (replace with -1)
voiced_indices = np.where(f0_sequence > 0)[0]
f0_voiced = f0_sequence[voiced_indices]
# Convert to log scale
log_f0 = np.log2(f0_voiced)
# Calculate mean and standard deviation
mean_f0 = np.mean(log_f0)
std_f0 = np.std(log_f0)
# Normalize the F0 sequence
normalized_f0 = (log_f0 - mean_f0) / std_f0
# Create the normalized F0 sequence with unvoiced frames
normalized_sequence = np.zeros_like(f0_sequence)
normalized_sequence[voiced_indices] = normalized_f0
normalized_sequence[f0_sequence <= 0] = -1 # Assign -1 to unvoiced frames
return normalized_sequence
class MyModel(nn.Module):
def __init__(self,args):
super(MyModel, self).__init__()
from modules.flow_matching import CFM
from modules.length_regulator import InterpolateRegulator
length_regulator = InterpolateRegulator(
channels=args.length_regulator.channels,
sampling_ratios=args.length_regulator.sampling_ratios,
is_discrete=args.length_regulator.is_discrete,
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
codebook_size=args.length_regulator.content_codebook_size,
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
)
self.models = nn.ModuleDict({
'cfm': CFM(args),
'length_regulator': length_regulator
})
def forward(self, x, target_lengths, prompt_len, cond, y):
x = self.models['cfm'](x, target_lengths, prompt_len, cond, y)
return x
def forward2(self, S_ori,target_lengths,F0_ori):
x = self.models['length_regulator'](S_ori, ylens=target_lengths, f0=F0_ori)
return x
def build_model(args, stage="DiT"):
if stage == "DiT":
from modules.flow_matching import CFM
from modules.length_regulator import InterpolateRegulator
length_regulator = InterpolateRegulator(
channels=args.length_regulator.channels,
sampling_ratios=args.length_regulator.sampling_ratios,
is_discrete=args.length_regulator.is_discrete,
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
codebook_size=args.length_regulator.content_codebook_size,
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
)
cfm = CFM(args)
nets = Munch(
cfm=cfm,
length_regulator=length_regulator,
)
elif stage == 'codec':
from dac.model.dac import Encoder
from modules.quantize import (
FAquantizer,
)
encoder = Encoder(
d_model=args.DAC.encoder_dim,
strides=args.DAC.encoder_rates,
d_latent=1024,
causal=args.causal,
lstm=args.lstm,
)
quantizer = FAquantizer(
in_dim=1024,
n_p_codebooks=1,
n_c_codebooks=args.n_c_codebooks,
n_t_codebooks=2,
n_r_codebooks=3,
codebook_size=1024,
codebook_dim=8,
quantizer_dropout=0.5,
causal=args.causal,
separate_prosody_encoder=args.separate_prosody_encoder,
timbre_norm=args.timbre_norm,
)
nets = Munch(
encoder=encoder,
quantizer=quantizer,
)
elif stage == "mel_vocos":
from modules.vocos import Vocos
decoder = Vocos(args)
nets = Munch(
decoder=decoder,
)
else:
raise ValueError(f"Unknown stage: {stage}")
return nets
def load_checkpoint(
model,
optimizer,
path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
load_ema=False,
):
state = torch.load(path, map_location="cpu")
params = state["net"]
if load_ema and "ema" in state:
print("Loading EMA")
for key in model:
i = 0
for param_name in params[key]:
if "input_pos" in param_name:
continue
assert params[key][param_name].shape == state["ema"][key][0][i].shape
params[key][param_name] = state["ema"][key][0][i].clone()
i += 1
for key in model:
if key in params and key not in ignore_modules:
if not is_distributed:
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
for k in list(params[key].keys()):
if k.startswith("module."):
params[key][k[len("module.") :]] = params[key][k]
del params[key][k]
model_state_dict = model[key].state_dict()
# 过滤出形状匹配的键值对
filtered_state_dict = {
k: v
for k, v in params[key].items()
if k in model_state_dict and v.shape == model_state_dict[k].shape
}
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
if skipped_keys:
print(
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
)
print("%s loaded" % key)
model[key].load_state_dict(filtered_state_dict, strict=False)
_ = [model[key].eval() for key in model]
if not load_only_params:
epoch = state["epoch"] + 1
iters = state["iters"]
optimizer.load_state_dict(state["optimizer"])
optimizer.load_scheduler_state_dict(state["scheduler"])
else:
epoch = 0
iters = 0
return model, optimizer, epoch, iters
def load_checkpoint2(
model,
optimizer,
path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
load_ema=False,
):
state = torch.load(path, map_location="cpu")
params = state["net"]
if load_ema and "ema" in state:
print("Loading EMA")
for key in model.models:
i = 0
for param_name in params[key]:
if "input_pos" in param_name:
continue
assert params[key][param_name].shape == state["ema"][key][0][i].shape
params[key][param_name] = state["ema"][key][0][i].clone()
i += 1
for key in model.models:
if key in params and key not in ignore_modules:
if not is_distributed:
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
for k in list(params[key].keys()):
if k.startswith("module."):
params[key][k[len("module.") :]] = params[key][k]
del params[key][k]
model_state_dict = model.models[key].state_dict()
# 过滤出形状匹配的键值对
filtered_state_dict = {
k: v
for k, v in params[key].items()
if k in model_state_dict and v.shape == model_state_dict[k].shape
}
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
if skipped_keys:
print(
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
)
print("%s loaded" % key)
model.models[key].load_state_dict(filtered_state_dict, strict=False)
model.eval()
# _ = [model[key].eval() for key in model]
if not load_only_params:
epoch = state["epoch"] + 1
iters = state["iters"]
optimizer.load_state_dict(state["optimizer"])
optimizer.load_scheduler_state_dict(state["scheduler"])
else:
epoch = 0
iters = 0
return model, optimizer, epoch, iters
def recursive_munch(d):
if isinstance(d, dict):
return Munch((k, recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [recursive_munch(v) for v in d]
else:
return d

View File

@@ -0,0 +1,258 @@
import torch
from torch import nn
import math
from modules.gpt_fast.model import ModelArgs, Transformer
# from modules.torchscript_modules.gpt_fast_model import ModelArgs, Transformer
from modules.wavenet import WN
from modules.commons import sequence_mask
from torch.nn.utils import weight_norm
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
self.max_period = 10000
self.scale = 1000
half = frequency_embedding_size // 2
freqs = torch.exp(
-math.log(self.max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
)
self.register_buffer("freqs", freqs)
def timestep_embedding(self, t):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
args = self.scale * t[:, None].float() * self.freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if self.frequency_embedding_size % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t)
t_emb = self.mlp(t_freq)
return t_emb
class StyleEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, input_size, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size)
self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True))
self.input_size = input_size
self.dropout_prob = dropout_prob
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
else:
labels = self.style_in(labels)
embeddings = labels
return embeddings
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True))
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DiT(torch.nn.Module):
def __init__(
self,
args
):
super(DiT, self).__init__()
self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False
self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False
self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False
model_args = ModelArgs(
block_size=16384,#args.DiT.block_size,
n_layer=args.DiT.depth,
n_head=args.DiT.num_heads,
dim=args.DiT.hidden_dim,
head_dim=args.DiT.hidden_dim // args.DiT.num_heads,
vocab_size=1024,
uvit_skip_connection=self.uvit_skip_connection,
time_as_token=self.time_as_token,
)
self.transformer = Transformer(model_args)
self.in_channels = args.DiT.in_channels
self.out_channels = args.DiT.in_channels
self.num_heads = args.DiT.num_heads
self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True))
self.content_type = args.DiT.content_type # 'discrete' or 'continuous'
self.content_codebook_size = args.DiT.content_codebook_size # for discrete content
self.content_dim = args.DiT.content_dim # for continuous content
self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim) # discrete content
self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True) # continuous content
self.is_causal = args.DiT.is_causal
self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim)
# self.style_embedder1 = weight_norm(nn.Linear(1024, args.DiT.hidden_dim, bias=True))
# self.style_embedder2 = weight_norm(nn.Linear(1024, args.style_encoder.dim, bias=True))
input_pos = torch.arange(16384)
self.register_buffer("input_pos", input_pos)
self.final_layer_type = args.DiT.final_layer_type # mlp or wavenet
if self.final_layer_type == 'wavenet':
self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim)
self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim)
self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1)
self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim,
kernel_size=args.wavenet.kernel_size,
dilation_rate=args.wavenet.dilation_rate,
n_layers=args.wavenet.num_layers,
gin_channels=args.wavenet.hidden_dim,
p_dropout=args.wavenet.p_dropout,
causal=False)
self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim)
self.res_projection = nn.Linear(args.DiT.hidden_dim,
args.wavenet.hidden_dim) # residual connection from tranformer output to final output
self.wavenet_style_condition = args.wavenet.style_condition
assert args.DiT.style_condition == args.wavenet.style_condition
else:
self.final_mlp = nn.Sequential(
nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim),
nn.SiLU(),
nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels),
)
self.transformer_style_condition = args.DiT.style_condition
self.class_dropout_prob = args.DiT.class_dropout_prob
self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim)
self.long_skip_connection = args.DiT.long_skip_connection
self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim)
self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 +
args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token),
args.DiT.hidden_dim)
if self.style_as_token:
self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim)
def setup_caches(self, max_batch_size, max_seq_length):
self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False)
def forward(self, x, prompt_x, x_lens, t, style, cond, mask_content=False):
"""
x (torch.Tensor): random noise
prompt_x (torch.Tensor): reference mel + zero mel
shape: (batch_size, 80, 795+1068)
x_lens (torch.Tensor): mel frames output
shape: (batch_size, mel_timesteps)
t (torch.Tensor): radshape:
shape: (batch_size)
style (torch.Tensor): reference global style
shape: (batch_size, 192)
cond (torch.Tensor): semantic info of reference audio and altered audio
shape: (batch_size, mel_timesteps(795+1069), 512)
"""
class_dropout = False
if self.training and torch.rand(1) < self.class_dropout_prob:
class_dropout = True
if not self.training and mask_content:
class_dropout = True
# cond_in_module = self.cond_embedder if self.content_type == 'discrete' else self.cond_projection
cond_in_module = self.cond_projection
B, _, T = x.size()
t1 = self.t_embedder(t) # (N, D) # t1 [2, 512]
cond = cond_in_module(cond) # cond [2,1863,512]->[2,1863,512]
x = x.transpose(1, 2) # [2,1863,80]
prompt_x = prompt_x.transpose(1, 2) # [2,1863,80]
x_in = torch.cat([x, prompt_x, cond], dim=-1) # 80+80+512=672 [2, 1863, 672]
if self.transformer_style_condition and not self.style_as_token: # True and True
x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1) #[2, 1863, 864]
if class_dropout: #False
x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0 # 80维后全置为0
x_in = self.cond_x_merge_linear(x_in) # (N, T, D) [2, 1863, 512]
if self.style_as_token: # False
style = self.style_in(style)
style = torch.zeros_like(style) if class_dropout else style
x_in = torch.cat([style.unsqueeze(1), x_in], dim=1)
if self.time_as_token: # False
x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1)
x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1) #torch.Size([1, 1, 1863])True
input_pos = self.input_pos[:x_in.size(1)] # (T,) range01863
x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None # torch.Size([1, 1, 1863, 1863]
x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded) # [2, 1863, 512]
x_res = x_res[:, 1:] if self.time_as_token else x_res
x_res = x_res[:, 1:] if self.style_as_token else x_res
if self.long_skip_connection: #True
x_res = self.skip_linear(torch.cat([x_res, x], dim=-1))
if self.final_layer_type == 'wavenet':
x = self.conv1(x_res)
x = x.transpose(1, 2)
t2 = self.t_embedder2(t)
x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection(
x_res) # long residual connection
x = self.final_layer(x, t1).transpose(1, 2)
x = self.conv2(x)
else:
x = self.final_mlp(x_res)
x = x.transpose(1, 2)
# x [2,80,1863]
return x

View File

@@ -0,0 +1,171 @@
from abc import ABC
import torch
import torch.nn.functional as F
from modules.diffusion_transformer import DiT
from modules.commons import sequence_mask
from tqdm import tqdm
class BASECFM(torch.nn.Module, ABC):
def __init__(
self,
args,
):
super().__init__()
self.sigma_min = 1e-6
self.estimator = None
self.in_channels = args.DiT.in_channels
self.criterion = torch.nn.MSELoss() if args.reg_loss_type == "l2" else torch.nn.L1Loss()
if hasattr(args.DiT, 'zero_prompt_speech_token'):
self.zero_prompt_speech_token = args.DiT.zero_prompt_speech_token
else:
self.zero_prompt_speech_token = False
@torch.inference_mode()
def inference(self, mu, x_lens, prompt, style, f0, n_timesteps, temperature=1.0, inference_cfg_rate=0.5):
"""Forward diffusion
Args:
mu (torch.Tensor): semantic info of reference audio and altered audio
shape: (batch_size, mel_timesteps(795+1069), 512)
x_lens (torch.Tensor): mel frames output
shape: (batch_size, mel_timesteps)
prompt (torch.Tensor): reference mel
shape: (batch_size, 80, 795)
style (torch.Tensor): reference global style
shape: (batch_size, 192)
f0: None
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
Returns:
sample: generated mel-spectrogram
shape: (batch_size, 80, mel_timesteps)
"""
B, T = mu.size(0), mu.size(1)
z = torch.randn([B, self.in_channels, T], device=mu.device) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
# t_span = t_span + (-1) * (torch.cos(torch.pi / 2 * t_span) - 1 + t_span)
return self.solve_euler(z, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate)
def solve_euler(self, x, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate=0.5):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): semantic info of reference audio and altered audio
shape: (batch_size, mel_timesteps(795+1069), 512)
x_lens (torch.Tensor): mel frames output
shape: (batch_size, mel_timesteps)
prompt (torch.Tensor): reference mel
shape: (batch_size, 80, 795)
style (torch.Tensor): reference global style
shape: (batch_size, 192)
"""
t, _, _ = t_span[0], t_span[-1], t_span[1] - t_span[0]
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
sol = []
# apply prompt
prompt_len = prompt.size(-1)
prompt_x = torch.zeros_like(x)
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
x[..., :prompt_len] = 0
if self.zero_prompt_speech_token:
mu[..., :prompt_len] = 0
for step in tqdm(range(1, len(t_span))):
dt = t_span[step] - t_span[step - 1]
if inference_cfg_rate > 0:
# Stack original and CFG (null) inputs for batched processing
stacked_prompt_x = torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0)
stacked_style = torch.cat([style, torch.zeros_like(style)], dim=0)
stacked_mu = torch.cat([mu, torch.zeros_like(mu)], dim=0)
stacked_x = torch.cat([x, x], dim=0)
stacked_t = torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0)
# Perform a single forward pass for both original and CFG inputs
stacked_dphi_dt = self.estimator(
stacked_x, stacked_prompt_x, x_lens, stacked_t, stacked_style, stacked_mu,
)
# Split the output back into the original and CFG components
dphi_dt, cfg_dphi_dt = stacked_dphi_dt.chunk(2, dim=0)
# Apply CFG formula
dphi_dt = (1.0 + inference_cfg_rate) * dphi_dt - inference_cfg_rate * cfg_dphi_dt
else:
dphi_dt = self.estimator(x, prompt_x, x_lens, t.unsqueeze(0), style, mu)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
x[:, :, :prompt_len] = 0
return sol[-1]
def forward(self, x1, x_lens, prompt_lens, mu, style):
"""Computes diffusion loss
Args:
mu (torch.Tensor): semantic info of reference audio and altered audio
shape: (batch_size, mel_timesteps(795+1069), 512)
x1: mel
x_lens (torch.Tensor): mel frames output
shape: (batch_size, mel_timesteps)
prompt (torch.Tensor): reference mel
shape: (batch_size, 80, 795)
style (torch.Tensor): reference global style
shape: (batch_size, 192)
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_feats, mel_timesteps)
"""
b, _, t = x1.shape
# random timestep
t = torch.rand([b, 1, 1], device=mu.device, dtype=x1.dtype)
# sample noise p(x_0)
z = torch.randn_like(x1)
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
u = x1 - (1 - self.sigma_min) * z
prompt = torch.zeros_like(x1)
for bib in range(b):
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
# range covered by prompt are set to 0
y[bib, :, :prompt_lens[bib]] = 0
if self.zero_prompt_speech_token:
mu[bib, :, :prompt_lens[bib]] = 0
estimator_out = self.estimator(y, prompt, x_lens, t.squeeze(1).squeeze(1), style, mu, prompt_lens)
loss = 0
for bib in range(b):
loss += self.criterion(estimator_out[bib, :, prompt_lens[bib]:x_lens[bib]], u[bib, :, prompt_lens[bib]:x_lens[bib]])
loss /= b
return loss, estimator_out + (1 - self.sigma_min) * z
class CFM(BASECFM):
def __init__(self, args):
super().__init__(
args
)
if args.dit_type == "DiT":
self.estimator = DiT(args)
else:
raise NotImplementedError(f"Unknown diffusion type {args.dit_type}")

View File

@@ -0,0 +1,141 @@
from typing import Tuple
import torch
import torch.nn as nn
from torch.nn import functional as F
from modules.commons import sequence_mask
import numpy as np
from dac.nn.quantize import VectorQuantize
# f0_bin = 256
f0_max = 1100.0
f0_min = 50.0
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
def f0_to_coarse(f0, f0_bin):
f0_mel = 1127 * (1 + f0 / 700).log()
a = (f0_bin - 2) / (f0_mel_max - f0_mel_min)
b = f0_mel_min * a - 1.
f0_mel = torch.where(f0_mel > 0, f0_mel * a - b, f0_mel)
# torch.clip_(f0_mel, min=1., max=float(f0_bin - 1))
f0_coarse = torch.round(f0_mel).long()
f0_coarse = f0_coarse * (f0_coarse > 0)
f0_coarse = f0_coarse + ((f0_coarse < 1) * 1)
f0_coarse = f0_coarse * (f0_coarse < f0_bin)
f0_coarse = f0_coarse + ((f0_coarse >= f0_bin) * (f0_bin - 1))
return f0_coarse
class InterpolateRegulator(nn.Module):
def __init__(
self,
channels: int,
sampling_ratios: Tuple,
is_discrete: bool = False,
in_channels: int = None, # only applies to continuous input
vector_quantize: bool = False, # whether to use vector quantization, only applies to continuous input
codebook_size: int = 1024, # for discrete only
out_channels: int = None,
groups: int = 1,
n_codebooks: int = 1, # number of codebooks
quantizer_dropout: float = 0.0, # dropout for quantizer
f0_condition: bool = False,
n_f0_bins: int = 512,
):
super().__init__()
self.sampling_ratios = sampling_ratios
out_channels = out_channels or channels
model = nn.ModuleList([])
if len(sampling_ratios) > 0:
self.interpolate = True
for _ in sampling_ratios:
module = nn.Conv1d(channels, channels, 3, 1, 1)
norm = nn.GroupNorm(groups, channels)
act = nn.Mish()
model.extend([module, norm, act])
else:
self.interpolate = False
model.append(
nn.Conv1d(channels, out_channels, 1, 1)
)
self.model = nn.Sequential(*model)
self.embedding = nn.Embedding(codebook_size, channels)
self.is_discrete = is_discrete
self.mask_token = nn.Parameter(torch.zeros(1, channels))
self.n_codebooks = n_codebooks
if n_codebooks > 1:
self.extra_codebooks = nn.ModuleList([
nn.Embedding(codebook_size, channels) for _ in range(n_codebooks - 1)
])
self.extra_codebook_mask_tokens = nn.ParameterList([
nn.Parameter(torch.zeros(1, channels)) for _ in range(n_codebooks - 1)
])
self.quantizer_dropout = quantizer_dropout
if f0_condition:
self.f0_embedding = nn.Embedding(n_f0_bins, channels)
self.f0_condition = f0_condition
self.n_f0_bins = n_f0_bins
self.f0_bins = torch.arange(2, 1024, 1024 // n_f0_bins)
self.f0_mask = nn.Parameter(torch.zeros(1, channels))
else:
self.f0_condition = False
if not is_discrete:
self.content_in_proj = nn.Linear(in_channels, channels)
if vector_quantize:
self.vq = VectorQuantize(channels, codebook_size, 8)
def forward(self, x, ylens=None, n_quantizers=None, f0=None):
# apply token drop
if self.training:
n_quantizers = torch.ones((x.shape[0],)) * self.n_codebooks
dropout = torch.randint(1, self.n_codebooks + 1, (x.shape[0],))
n_dropout = int(x.shape[0] * self.quantizer_dropout)
n_quantizers[:n_dropout] = dropout[:n_dropout]
n_quantizers = n_quantizers.to(x.device)
# decide whether to drop for each sample in batch
else:
n_quantizers = torch.ones((x.shape[0],), device=x.device) * (self.n_codebooks if n_quantizers is None else n_quantizers)
if self.is_discrete:
if self.n_codebooks > 1:
assert len(x.size()) == 3
x_emb = self.embedding(x[:, 0])
for i, emb in enumerate(self.extra_codebooks):
x_emb = x_emb + (n_quantizers > i+1)[..., None, None] * emb(x[:, i+1])
# add mask token if not using this codebook
# x_emb = x_emb + (n_quantizers <= i+1)[..., None, None] * self.extra_codebook_mask_tokens[i]
x = x_emb
elif self.n_codebooks == 1:
if len(x.size()) == 2:
x = self.embedding(x)
else:
x = self.embedding(x[:, 0])
else:
x = self.content_in_proj(x)
# x in (B, T, D)
mask = sequence_mask(ylens).unsqueeze(-1)
if self.interpolate:
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
else:
x = x.transpose(1, 2).contiguous()
mask = mask[:, :x.size(2), :]
ylens = ylens.clamp(max=x.size(2)).long()
if self.f0_condition:
if f0 is None:
x = x + self.f0_mask.unsqueeze(-1)
else:
#quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device)) # (N, T)
quantized_f0 = f0_to_coarse(f0, self.n_f0_bins)
quantized_f0 = quantized_f0.clamp(0, self.n_f0_bins - 1).long()
f0_emb = self.f0_embedding(quantized_f0)
f0_emb = F.interpolate(f0_emb.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
x = x + f0_emb
out = self.model(x).transpose(1, 2).contiguous()
if hasattr(self, 'vq'):
out_q, commitment_loss, codebook_loss, codes, out, = self.vq(out.transpose(1, 2))
out_q = out_q.transpose(1, 2)
return out_q * mask, ylens, codes, commitment_loss, codebook_loss
olens = ylens
return out * mask, olens, None, None, None

View File

@@ -0,0 +1,5 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
from .filter import *
from .resample import *
from .act import *

View File

@@ -0,0 +1,29 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
import torch.nn as nn
from .resample import UpSample1d, DownSample1d
class Activation1d(nn.Module):
def __init__(
self,
activation,
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
down_kernel_size: int = 12,
):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = activation
self.upsample = UpSample1d(up_ratio, up_kernel_size)
self.downsample = DownSample1d(down_ratio, down_kernel_size)
# x: [B,C,T]
def forward(self, x):
x = self.upsample(x)
x = self.act(x)
x = self.downsample(x)
return x

View File

@@ -0,0 +1,96 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
if "sinc" in dir(torch):
sinc = torch.sinc
else:
# This code is adopted from adefossez's julius.core.sinc under the MIT License
# https://adefossez.github.io/julius/julius/core.html
def sinc(x: torch.Tensor):
"""
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
"""
return torch.where(
x == 0,
torch.tensor(1.0, device=x.device, dtype=x.dtype),
torch.sin(math.pi * x) / math.pi / x,
)
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
# https://adefossez.github.io/julius/julius/lowpass.html
def kaiser_sinc_filter1d(
cutoff, half_width, kernel_size
): # return filter [1,1,kernel_size]
even = kernel_size % 2 == 0
half_size = kernel_size // 2
# For kaiser window
delta_f = 4 * half_width
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
if A > 50.0:
beta = 0.1102 * (A - 8.7)
elif A >= 21.0:
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
else:
beta = 0.0
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
if even:
time = torch.arange(-half_size, half_size) + 0.5
else:
time = torch.arange(kernel_size) - half_size
if cutoff == 0:
filter_ = torch.zeros_like(time)
else:
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
# Normalize filter to have sum = 1, otherwise we will have a small leakage
# of the constant component in the input signal.
filter_ /= filter_.sum()
filter = filter_.view(1, 1, kernel_size)
return filter
class LowPassFilter1d(nn.Module):
def __init__(
self,
cutoff=0.5,
half_width=0.6,
stride: int = 1,
padding: bool = True,
padding_mode: str = "replicate",
kernel_size: int = 12,
):
# kernel_size should be even number for stylegan3 setup,
# in this implementation, odd number is also possible.
super().__init__()
if cutoff < -0.0:
raise ValueError("Minimum cutoff must be larger than zero.")
if cutoff > 0.5:
raise ValueError("A cutoff above 0.5 does not make sense.")
self.kernel_size = kernel_size
self.even = kernel_size % 2 == 0
self.pad_left = kernel_size // 2 - int(self.even)
self.pad_right = kernel_size // 2
self.stride = stride
self.padding = padding
self.padding_mode = padding_mode
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
self.register_buffer("filter", filter)
# input [B, C, T]
def forward(self, x):
_, C, _ = x.shape
if self.padding:
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
return out

View File

@@ -0,0 +1,57 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
import torch.nn as nn
from torch.nn import functional as F
from .filter import LowPassFilter1d
from .filter import kaiser_sinc_filter1d
class UpSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = (
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
)
self.stride = ratio
self.pad = self.kernel_size // ratio - 1
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
self.pad_right = (
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
)
filter = kaiser_sinc_filter1d(
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
)
self.register_buffer("filter", filter)
# x: [B, C, T]
def forward(self, x):
_, C, _ = x.shape
x = F.pad(x, (self.pad, self.pad), mode="replicate")
x = self.ratio * F.conv_transpose1d(
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
)
x = x[..., self.pad_left : -self.pad_right]
return x
class DownSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = (
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
)
self.lowpass = LowPassFilter1d(
cutoff=0.5 / ratio,
half_width=0.6 / ratio,
stride=ratio,
kernel_size=self.kernel_size,
)
def forward(self, x):
xx = self.lowpass(x)
return xx

View File

@@ -0,0 +1,82 @@
import numpy as np
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
from scipy.io.wavfile import read
MAX_WAV_VALUE = 32768.0
def load_wav(full_path):
sampling_rate, data = read(full_path)
return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
# if torch.min(y) < -1.0:
# print("min value is ", torch.min(y))
# if torch.max(y) > 1.0:
# print("max value is ", torch.max(y))
global mel_basis, hann_window # pylint: disable=global-statement
if f"{str(sampling_rate)}_{str(fmax)}_{str(y.device)}" not in mel_basis:
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
mel_basis[str(sampling_rate) + "_" + str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(sampling_rate) + "_" + str(y.device)] = torch.hann_window(win_size).to(y.device)
y = torch.nn.functional.pad(
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
)
y = y.squeeze(1)
spec = torch.view_as_real(
torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[str(sampling_rate) + "_" + str(y.device)],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
)
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
spec = torch.matmul(mel_basis[str(sampling_rate) + "_" + str(fmax) + "_" + str(y.device)], spec)
spec = spectral_normalize_torch(spec)
return spec

View File

@@ -0,0 +1,120 @@
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
# LICENSE is in incl_licenses directory.
import torch
from torch import nn, sin, pow
from torch.nn import Parameter
class Snake(nn.Module):
'''
Implementation of a sine-based periodic activation function
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter
References:
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snake(256)
>>> x = torch.randn(256)
>>> x = a1(x)
'''
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
'''
Initialization.
INPUT:
- in_features: shape of the input
- alpha: trainable parameter
alpha is initialized to 1 by default, higher values = higher-frequency.
alpha will be trained along with the rest of your model.
'''
super(Snake, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
'''
Forward pass of the function.
Applies the function to the input elementwise.
Snake = x + 1/a * sin^2 (xa)
'''
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
if self.alpha_logscale:
alpha = torch.exp(alpha)
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x
class SnakeBeta(nn.Module):
'''
A modified Snake function which uses separate parameters for the magnitude of the periodic components
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
References:
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snakebeta(256)
>>> x = torch.randn(256)
>>> x = a1(x)
'''
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
'''
Initialization.
INPUT:
- in_features: shape of the input
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
alpha is initialized to 1 by default, higher values = higher-frequency.
beta is initialized to 1 by default, higher values = higher-magnitude.
alpha will be trained along with the rest of your model.
'''
super(SnakeBeta, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = Parameter(torch.zeros(in_features) * alpha)
self.beta = Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = Parameter(torch.ones(in_features) * alpha)
self.beta = Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
'''
Forward pass of the function.
Applies the function to the input elementwise.
SnakeBeta = x + 1/b * sin^2 (xa)
'''
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
beta = self.beta.unsqueeze(0).unsqueeze(-1)
if self.alpha_logscale:
alpha = torch.exp(alpha)
beta = torch.exp(beta)
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x

View File

@@ -0,0 +1,77 @@
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
import torch
import torch.nn as nn
from ..torch.resample import UpSample1d, DownSample1d
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
from ..cuda import load
anti_alias_activation_cuda = load.load()
class FusedAntiAliasActivation(torch.autograd.Function):
"""
Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
The hyperparameters are hard-coded in the kernel to maximize speed.
NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
"""
@staticmethod
def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
activation_results = anti_alias_activation_cuda.forward(
inputs, up_ftr, down_ftr, alpha, beta
)
return activation_results
@staticmethod
def backward(ctx, output_grads):
raise NotImplementedError
return output_grads, None, None
class Activation1d(nn.Module):
def __init__(
self,
activation,
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
down_kernel_size: int = 12,
fused: bool = True,
):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = activation
self.upsample = UpSample1d(up_ratio, up_kernel_size)
self.downsample = DownSample1d(down_ratio, down_kernel_size)
self.fused = fused # Whether to use fused CUDA kernel or not
def forward(self, x):
if not self.fused:
x = self.upsample(x)
x = self.act(x)
x = self.downsample(x)
return x
else:
if self.act.__class__.__name__ == "Snake":
beta = self.act.alpha.data # Snake uses same params for alpha and beta
else:
beta = (
self.act.beta.data
) # Snakebeta uses different params for alpha and beta
alpha = self.act.alpha.data
if (
not self.act.alpha_logscale
): # Exp baked into cuda kernel, cancel it out with a log
alpha = torch.log(alpha)
beta = torch.log(beta)
x = FusedAntiAliasActivation.apply(
x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta
)
return x

View File

@@ -0,0 +1,23 @@
/* coding=utf-8
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/extension.h>
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &fwd_cuda, "Anti-Alias Activation forward (CUDA)");
}

View File

@@ -0,0 +1,246 @@
/* coding=utf-8
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_profiler_api.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "type_shim.h"
#include <assert.h>
#include <cfloat>
#include <limits>
#include <stdint.h>
#include <c10/macros/Macros.h>
namespace
{
// Hard-coded hyperparameters
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
constexpr int BUFFER_SIZE = 32;
constexpr int FILTER_SIZE = 12;
constexpr int HALF_FILTER_SIZE = 6;
constexpr int UPSAMPLE_REPLICATION_PAD = 5; // 5 on each side, matching torch impl
constexpr int DOWNSAMPLE_REPLICATION_PAD_LEFT = 5; // matching torch impl
constexpr int DOWNSAMPLE_REPLICATION_PAD_RIGHT = 6; // matching torch impl
template <typename input_t, typename output_t, typename acc_t>
__global__ void anti_alias_activation_forward(
output_t *dst,
const input_t *src,
const input_t *up_ftr,
const input_t *down_ftr,
const input_t *alpha,
const input_t *beta,
int batch_size,
int channels,
int seq_len)
{
// Up and downsample filters
input_t up_filter[FILTER_SIZE];
input_t down_filter[FILTER_SIZE];
// Load data from global memory including extra indices reserved for replication paddings
input_t elements[2 * FILTER_SIZE + 2 * BUFFER_SIZE + 2 * UPSAMPLE_REPLICATION_PAD] = {0};
input_t intermediates[2 * FILTER_SIZE + 2 * BUFFER_SIZE + DOWNSAMPLE_REPLICATION_PAD_LEFT + DOWNSAMPLE_REPLICATION_PAD_RIGHT] = {0};
// Output stores downsampled output before writing to dst
output_t output[BUFFER_SIZE];
// blockDim/threadIdx = (128, 1, 1)
// gridDim/blockIdx = (seq_blocks, channels, batches)
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
int local_offset = threadIdx.x * BUFFER_SIZE;
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
// intermediate have double the seq_len
int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
int intermediate_seq_offset = blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_local_offset;
// Get values needed for replication padding before moving pointer
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
input_t seq_left_most_value = right_most_pntr[0];
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
// Move src and dst pointers
src += block_offset + local_offset;
dst += block_offset + local_offset;
// Alpha and beta values for snake activatons. Applies exp by default
alpha = alpha + blockIdx.y;
input_t alpha_val = expf(alpha[0]);
beta = beta + blockIdx.y;
input_t beta_val = expf(beta[0]);
#pragma unroll
for (int it = 0; it < FILTER_SIZE; it += 1)
{
up_filter[it] = up_ftr[it];
down_filter[it] = down_ftr[it];
}
// Apply replication padding for upsampling, matching torch impl
#pragma unroll
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE; it += 1)
{
int element_index = seq_offset + it; // index for element
if ((element_index < 0) && (element_index >= -UPSAMPLE_REPLICATION_PAD))
{
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_left_most_value;
}
if ((element_index >= seq_len) && (element_index < seq_len + UPSAMPLE_REPLICATION_PAD))
{
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_right_most_value;
}
if ((element_index >= 0) && (element_index < seq_len))
{
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * src[it];
}
}
// Apply upsampling strided convolution and write to intermediates. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT for replication padding of the downsampilng conv later
#pragma unroll
for (int it = 0; it < (2 * BUFFER_SIZE + 2 * FILTER_SIZE); it += 1)
{
input_t acc = 0.0;
int element_index = intermediate_seq_offset + it; // index for intermediate
#pragma unroll
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
{
if ((element_index + f_idx) >= 0)
{
acc += up_filter[f_idx] * elements[it + f_idx];
}
}
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] = acc;
}
// Apply activation function. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT and DOWNSAMPLE_REPLICATION_PAD_RIGHT for replication padding of the downsampilng conv later
double no_div_by_zero = 0.000000001;
#pragma unroll
for (int it = 0; it < 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it += 1)
{
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] += (1.0 / (beta_val + no_div_by_zero)) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val);
}
// Apply replication padding before downsampling conv from intermediates
#pragma unroll
for (int it = 0; it < DOWNSAMPLE_REPLICATION_PAD_LEFT; it += 1)
{
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT];
}
#pragma unroll
for (int it = DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it < DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE + DOWNSAMPLE_REPLICATION_PAD_RIGHT; it += 1)
{
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE - 1];
}
// Apply downsample strided convolution (assuming stride=2) from intermediates
#pragma unroll
for (int it = 0; it < BUFFER_SIZE; it += 1)
{
input_t acc = 0.0;
#pragma unroll
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
{
// Add constant DOWNSAMPLE_REPLICATION_PAD_RIGHT to match torch implementation
acc += down_filter[f_idx] * intermediates[it * 2 + f_idx + DOWNSAMPLE_REPLICATION_PAD_RIGHT];
}
output[it] = acc;
}
// Write output to dst
#pragma unroll
for (int it = 0; it < BUFFER_SIZE; it += ELEMENTS_PER_LDG_STG)
{
int element_index = seq_offset + it;
if (element_index < seq_len)
{
dst[it] = output[it];
}
}
}
template <typename input_t, typename output_t, typename acc_t>
void dispatch_anti_alias_activation_forward(
output_t *dst,
const input_t *src,
const input_t *up_ftr,
const input_t *down_ftr,
const input_t *alpha,
const input_t *beta,
int batch_size,
int channels,
int seq_len)
{
if (seq_len == 0)
{
return;
}
else
{
// Use 128 threads per block to maximimize gpu utilization
constexpr int threads_per_block = 128;
constexpr int seq_len_per_block = 4096;
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
dim3 blocks(blocks_per_seq_len, channels, batch_size);
dim3 threads(threads_per_block, 1, 1);
anti_alias_activation_forward<input_t, output_t, acc_t>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, up_ftr, down_ftr, alpha, beta, batch_size, channels, seq_len);
}
}
}
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta)
{
// Input is a 3d tensor with dimensions [batches, channels, seq_len]
const int batches = input.size(0);
const int channels = input.size(1);
const int seq_len = input.size(2);
// Output
auto act_options = input.options().requires_grad(false);
torch::Tensor anti_alias_activation_results =
torch::empty({batches, channels, seq_len}, act_options);
void *input_ptr = static_cast<void *>(input.data_ptr());
void *up_filter_ptr = static_cast<void *>(up_filter.data_ptr());
void *down_filter_ptr = static_cast<void *>(down_filter.data_ptr());
void *alpha_ptr = static_cast<void *>(alpha.data_ptr());
void *beta_ptr = static_cast<void *>(beta.data_ptr());
void *anti_alias_activation_results_ptr = static_cast<void *>(anti_alias_activation_results.data_ptr());
DISPATCH_FLOAT_HALF_AND_BFLOAT(
input.scalar_type(),
"dispatch anti alias activation_forward",
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
reinterpret_cast<scalar_t *>(anti_alias_activation_results_ptr),
reinterpret_cast<const scalar_t *>(input_ptr),
reinterpret_cast<const scalar_t *>(up_filter_ptr),
reinterpret_cast<const scalar_t *>(down_filter_ptr),
reinterpret_cast<const scalar_t *>(alpha_ptr),
reinterpret_cast<const scalar_t *>(beta_ptr),
batches,
channels,
seq_len););
return anti_alias_activation_results;
}

View File

@@ -0,0 +1,29 @@
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*This code is copied fron NVIDIA apex:
* https://github.com/NVIDIA/apex
* with minor changes. */
#ifndef TORCH_CHECK
#define TORCH_CHECK AT_CHECK
#endif
#ifdef VERSION_GE_1_3
#define DATA_PTR data_ptr
#else
#define DATA_PTR data
#endif

View File

@@ -0,0 +1,86 @@
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
import os
import pathlib
import subprocess
from torch.utils import cpp_extension
"""
Setting this param to a list has a problem of generating different compilation commands (with diferent order of architectures) and leading to recompilation of fused kernels.
Set it to empty stringo avoid recompilation and assign arch flags explicity in extra_cuda_cflags below
"""
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
def load():
# Check if cuda 11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, _ = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
if int(bare_metal_major) >= 11:
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
# Build path
srcpath = pathlib.Path(__file__).parent.absolute()
buildpath = srcpath / "build"
_create_build_dir(buildpath)
# Helper function to build the kernels.
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
return cpp_extension.load(
name=name,
sources=sources,
build_directory=buildpath,
extra_cflags=[
"-O3",
],
extra_cuda_cflags=[
"-O3",
"-gencode",
"arch=compute_70,code=sm_70",
"--use_fast_math",
]
+ extra_cuda_flags
+ cc_flag,
verbose=True,
)
extra_cuda_flags = [
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
]
sources = [
srcpath / "anti_alias_activation.cpp",
srcpath / "anti_alias_activation_cuda.cu",
]
anti_alias_activation_cuda = _cpp_extention_load_helper(
"anti_alias_activation_cuda", sources, extra_cuda_flags
)
return anti_alias_activation_cuda
def _get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output(
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def _create_build_dir(buildpath):
try:
os.mkdir(buildpath)
except OSError:
if not os.path.isdir(buildpath):
print(f"Creation of the build directory {buildpath} failed")

View File

@@ -0,0 +1,92 @@
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ATen/ATen.h>
#include "compat.h"
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
switch (TYPE) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
switch (TYPEIN) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t_in = float; \
switch (TYPEOUT) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t_out = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_out = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_out = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
} \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_in = at::Half; \
using scalar_t_out = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_in = at::BFloat16; \
using scalar_t_out = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
}

View File

@@ -0,0 +1,6 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
from .filter import *
from .resample import *
from .act import *

View File

@@ -0,0 +1,30 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch.nn as nn
from .resample import UpSample1d, DownSample1d
class Activation1d(nn.Module):
def __init__(
self,
activation,
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
down_kernel_size: int = 12,
):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = activation
self.upsample = UpSample1d(up_ratio, up_kernel_size)
self.downsample = DownSample1d(down_ratio, down_kernel_size)
# x: [B,C,T]
def forward(self, x):
x = self.upsample(x)
x = self.act(x)
x = self.downsample(x)
return x

View File

@@ -0,0 +1,101 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
if "sinc" in dir(torch):
sinc = torch.sinc
else:
# This code is adopted from adefossez's julius.core.sinc under the MIT License
# https://adefossez.github.io/julius/julius/core.html
# LICENSE is in incl_licenses directory.
def sinc(x: torch.Tensor):
"""
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
"""
return torch.where(
x == 0,
torch.tensor(1.0, device=x.device, dtype=x.dtype),
torch.sin(math.pi * x) / math.pi / x,
)
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
# https://adefossez.github.io/julius/julius/lowpass.html
# LICENSE is in incl_licenses directory.
def kaiser_sinc_filter1d(
cutoff, half_width, kernel_size
): # return filter [1,1,kernel_size]
even = kernel_size % 2 == 0
half_size = kernel_size // 2
# For kaiser window
delta_f = 4 * half_width
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
if A > 50.0:
beta = 0.1102 * (A - 8.7)
elif A >= 21.0:
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
else:
beta = 0.0
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
if even:
time = torch.arange(-half_size, half_size) + 0.5
else:
time = torch.arange(kernel_size) - half_size
if cutoff == 0:
filter_ = torch.zeros_like(time)
else:
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
"""
Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal.
"""
filter_ /= filter_.sum()
filter = filter_.view(1, 1, kernel_size)
return filter
class LowPassFilter1d(nn.Module):
def __init__(
self,
cutoff=0.5,
half_width=0.6,
stride: int = 1,
padding: bool = True,
padding_mode: str = "replicate",
kernel_size: int = 12,
):
"""
kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible.
"""
super().__init__()
if cutoff < -0.0:
raise ValueError("Minimum cutoff must be larger than zero.")
if cutoff > 0.5:
raise ValueError("A cutoff above 0.5 does not make sense.")
self.kernel_size = kernel_size
self.even = kernel_size % 2 == 0
self.pad_left = kernel_size // 2 - int(self.even)
self.pad_right = kernel_size // 2
self.stride = stride
self.padding = padding
self.padding_mode = padding_mode
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
self.register_buffer("filter", filter)
# Input [B, C, T]
def forward(self, x):
_, C, _ = x.shape
if self.padding:
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
return out

View File

@@ -0,0 +1,58 @@
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
# LICENSE is in incl_licenses directory.
import torch.nn as nn
from torch.nn import functional as F
from .filter import LowPassFilter1d
from .filter import kaiser_sinc_filter1d
class UpSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = (
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
)
self.stride = ratio
self.pad = self.kernel_size // ratio - 1
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
self.pad_right = (
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
)
filter = kaiser_sinc_filter1d(
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
)
self.register_buffer("filter", filter)
# x: [B, C, T]
def forward(self, x):
_, C, _ = x.shape
x = F.pad(x, (self.pad, self.pad), mode="replicate")
x = self.ratio * F.conv_transpose1d(
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
)
x = x[..., self.pad_left : -self.pad_right]
return x
class DownSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = (
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
)
self.lowpass = LowPassFilter1d(
cutoff=0.5 / ratio,
half_width=0.6 / ratio,
stride=ratio,
kernel_size=self.kernel_size,
)
def forward(self, x):
xx = self.lowpass(x)
return xx

View File

@@ -0,0 +1,492 @@
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import os
import json
from pathlib import Path
from typing import Optional, Union, Dict
import torch
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm
from . import activations
from .utils import init_weights, get_padding
from .alias_free_activation.torch.act import Activation1d as TorchActivation1d
from .env import AttrDict
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
def load_hparams_from_json(path) -> AttrDict:
with open(path) as f:
data = f.read()
return AttrDict(json.loads(data))
class AMPBlock1(torch.nn.Module):
"""
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
AMPBlock1 has additional self.convs2 that contains additional Conv1d layers with a fixed dilation=1 followed by each layer in self.convs1
Args:
h (AttrDict): Hyperparameters.
channels (int): Number of convolution channels.
kernel_size (int): Size of the convolution kernel. Default is 3.
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
"""
def __init__(
self,
h: AttrDict,
channels: int,
kernel_size: int = 3,
dilation: tuple = (1, 3, 5),
activation: str = None,
):
super().__init__()
self.h = h
self.convs1 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=d,
padding=get_padding(kernel_size, d),
)
)
for d in dilation
]
)
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
)
for _ in range(len(dilation))
]
)
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(
self.convs2
) # Total number of conv layers
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from .alias_free_activation.cuda.activation1d import (
Activation1d as CudaActivation1d,
)
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
# Activation functions
if activation == "snake":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.Snake(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
elif activation == "snakebeta":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.SnakeBeta(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class AMPBlock2(torch.nn.Module):
"""
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
Unlike AMPBlock1, AMPBlock2 does not contain extra Conv1d layers with fixed dilation=1
Args:
h (AttrDict): Hyperparameters.
channels (int): Number of convolution channels.
kernel_size (int): Size of the convolution kernel. Default is 3.
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
"""
def __init__(
self,
h: AttrDict,
channels: int,
kernel_size: int = 3,
dilation: tuple = (1, 3, 5),
activation: str = None,
):
super().__init__()
self.h = h
self.convs = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=d,
padding=get_padding(kernel_size, d),
)
)
for d in dilation
]
)
self.convs.apply(init_weights)
self.num_layers = len(self.convs) # Total number of conv layers
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from .alias_free_activation.cuda.activation1d import (
Activation1d as CudaActivation1d,
)
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
# Activation functions
if activation == "snake":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.Snake(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
elif activation == "snakebeta":
self.activations = nn.ModuleList(
[
Activation1d(
activation=activations.SnakeBeta(
channels, alpha_logscale=h.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
for c, a in zip(self.convs, self.activations):
xt = a(x)
xt = c(xt)
x = xt + x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class BigVGAN(
torch.nn.Module,
PyTorchModelHubMixin,
library_name="bigvgan",
repo_url="https://github.com/NVIDIA/BigVGAN",
docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
pipeline_tag="audio-to-audio",
license="mit",
tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"],
):
"""
BigVGAN is a neural vocoder model that applies anti-aliased periodic activation for residual blocks (resblocks).
New in BigVGAN-v2: it can optionally use optimized CUDA kernels for AMP (anti-aliased multi-periodicity) blocks.
Args:
h (AttrDict): Hyperparameters.
use_cuda_kernel (bool): If set to True, loads optimized CUDA kernels for AMP. This should be used for inference only, as training is not supported with CUDA kernels.
Note:
- The `use_cuda_kernel` parameter should be used for inference only, as training with CUDA kernels is not supported.
- Ensure that the activation function is correctly specified in the hyperparameters (h.activation).
"""
def __init__(self, h: AttrDict, use_cuda_kernel: bool = False):
super().__init__()
self.h = h
self.h["use_cuda_kernel"] = use_cuda_kernel
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
from .alias_free_activation.cuda.activation1d import (
Activation1d as CudaActivation1d,
)
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
# Pre-conv
self.conv_pre = weight_norm(
Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
)
# Define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
if h.resblock == "1":
resblock_class = AMPBlock1
elif h.resblock == "2":
resblock_class = AMPBlock2
else:
raise ValueError(
f"Incorrect resblock class specified in hyperparameters. Got {h.resblock}"
)
# Transposed conv-based upsamplers. does not apply anti-aliasing
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(
nn.ModuleList(
[
weight_norm(
ConvTranspose1d(
h.upsample_initial_channel // (2 ** i),
h.upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
]
)
)
# Residual blocks using anti-aliased multi-periodicity composition modules (AMP)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
):
self.resblocks.append(
resblock_class(h, ch, k, d, activation=h.activation)
)
# Post-conv
activation_post = (
activations.Snake(ch, alpha_logscale=h.snake_logscale)
if h.activation == "snake"
else (
activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
if h.activation == "snakebeta"
else None
)
)
if activation_post is None:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
self.activation_post = Activation1d(activation=activation_post)
# Whether to use bias for the final conv_post. Default to True for backward compatibility
self.use_bias_at_final = h.get("use_bias_at_final", True)
self.conv_post = weight_norm(
Conv1d(ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final)
)
# Weight initialization
for i in range(len(self.ups)):
self.ups[i].apply(init_weights)
self.conv_post.apply(init_weights)
# Final tanh activation. Defaults to True for backward compatibility
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
def forward(self, x):
# Pre-conv
x = self.conv_pre(x)
for i in range(self.num_upsamples):
# Upsampling
for i_up in range(len(self.ups[i])):
x = self.ups[i][i_up](x)
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# Post-conv
x = self.activation_post(x)
x = self.conv_post(x)
# Final tanh activation
if self.use_tanh_at_final:
x = torch.tanh(x)
else:
x = torch.clamp(x, min=-1.0, max=1.0) # Bound the output to [-1, 1]
return x
def remove_weight_norm(self):
try:
print("Removing weight norm...")
for l in self.ups:
for l_i in l:
remove_weight_norm(l_i)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
except ValueError:
print("[INFO] Model already removed weight norm. Skipping!")
pass
# Additional methods for huggingface_hub support
def _save_pretrained(self, save_directory: Path) -> None:
"""Save weights and config.json from a Pytorch model to a local directory."""
model_path = save_directory / "bigvgan_generator.pt"
torch.save({"generator": self.state_dict()}, model_path)
config_path = save_directory / "config.json"
with open(config_path, "w") as config_file:
json.dump(self.h, config_file, indent=4)
@classmethod
def _from_pretrained(
cls,
*,
model_id: str,
revision: str,
cache_dir: str,
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Union[str, bool, None],
map_location: str = "cpu", # Additional argument
strict: bool = False, # Additional argument
use_cuda_kernel: bool = False,
**model_kwargs,
):
"""Load Pytorch pretrained weights and return the loaded model."""
# Download and load hyperparameters (h) used by BigVGAN
if os.path.isdir(model_id):
print("Loading config.json from local directory")
config_file = os.path.join(model_id, "config.json")
else:
config_file = hf_hub_download(
repo_id=model_id,
filename="config.json",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
h = load_hparams_from_json(config_file)
# instantiate BigVGAN using h
if use_cuda_kernel:
print(
f"[WARNING] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!"
)
print(
f"[WARNING] You need nvcc and ninja installed in your system that matches your PyTorch build is using to build the kernel. If not, the model will fail to initialize or generate incorrect waveform!"
)
print(
f"[WARNING] For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis"
)
model = cls(h, use_cuda_kernel=use_cuda_kernel)
# Download and load pretrained generator weight
if os.path.isdir(model_id):
print("Loading weights from local directory")
model_file = os.path.join(model_id, "bigvgan_generator.pt")
else:
print(f"Loading weights from {model_id}")
model_file = hf_hub_download(
repo_id=model_id,
filename="bigvgan_generator.pt",
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
checkpoint_dict = torch.load(model_file, map_location=map_location)
try:
model.load_state_dict(checkpoint_dict["generator"])
except RuntimeError:
print(
f"[INFO] the pretrained checkpoint does not contain weight norm. Loading the checkpoint after removing weight norm!"
)
model.remove_weight_norm()
model.load_state_dict(checkpoint_dict["generator"])
return model

View File

@@ -0,0 +1,63 @@
{
"resblock": "1",
"num_gpus": 0,
"batch_size": 32,
"learning_rate": 0.0001,
"adam_b1": 0.8,
"adam_b2": 0.99,
"lr_decay": 0.9999996,
"seed": 1234,
"upsample_rates": [4,4,2,2,2,2],
"upsample_kernel_sizes": [8,8,4,4,4,4],
"upsample_initial_channel": 1536,
"resblock_kernel_sizes": [3,7,11],
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
"use_tanh_at_final": false,
"use_bias_at_final": false,
"activation": "snakebeta",
"snake_logscale": true,
"use_cqtd_instead_of_mrd": true,
"cqtd_filters": 128,
"cqtd_max_filters": 1024,
"cqtd_filters_scale": 1,
"cqtd_dilations": [1, 2, 4],
"cqtd_hop_lengths": [512, 256, 256],
"cqtd_n_octaves": [9, 9, 9],
"cqtd_bins_per_octaves": [24, 36, 48],
"mpd_reshapes": [2, 3, 5, 7, 11],
"use_spectral_norm": false,
"discriminator_channel_mult": 1,
"use_multiscale_melloss": true,
"lambda_melloss": 15,
"clip_grad_norm": 500,
"segment_size": 65536,
"num_mels": 80,
"num_freq": 1025,
"n_fft": 1024,
"hop_size": 256,
"win_size": 1024,
"sampling_rate": 22050,
"fmin": 0,
"fmax": null,
"fmax_for_loss": null,
"normalize_volume": true,
"num_workers": 4,
"dist_config": {
"dist_backend": "nccl",
"dist_url": "tcp://localhost:54321",
"world_size": 1
}
}

View File

@@ -0,0 +1,18 @@
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import os
import shutil
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def build_env(config, config_name, path):
t_path = os.path.join(path, config_name)
if config != t_path:
os.makedirs(path, exist_ok=True)
shutil.copyfile(config, os.path.join(path, config_name))

View File

@@ -0,0 +1,354 @@
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import math
import os
import random
import torch
import torch.utils.data
import numpy as np
from librosa.util import normalize
from scipy.io.wavfile import read
from librosa.filters import mel as librosa_mel_fn
import pathlib
from tqdm import tqdm
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)
def load_wav(full_path, sr_target):
sampling_rate, data = read(full_path)
if sampling_rate != sr_target:
raise RuntimeError(
f"Sampling rate of the file {full_path} is {sampling_rate} Hz, but the model requires {sr_target} Hz"
)
return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
return dynamic_range_compression_torch(magnitudes)
def spectral_de_normalize_torch(magnitudes):
return dynamic_range_decompression_torch(magnitudes)
mel_basis_cache = {}
hann_window_cache = {}
def mel_spectrogram(
y: torch.Tensor,
n_fft: int,
num_mels: int,
sampling_rate: int,
hop_size: int,
win_size: int,
fmin: int,
fmax: int = None,
center: bool = False,
) -> torch.Tensor:
"""
Calculate the mel spectrogram of an input signal.
This function uses slaney norm for the librosa mel filterbank (using librosa.filters.mel) and uses Hann window for STFT (using torch.stft).
Args:
y (torch.Tensor): Input signal.
n_fft (int): FFT size.
num_mels (int): Number of mel bins.
sampling_rate (int): Sampling rate of the input signal.
hop_size (int): Hop size for STFT.
win_size (int): Window size for STFT.
fmin (int): Minimum frequency for mel filterbank.
fmax (int): Maximum frequency for mel filterbank. If None, defaults to half the sampling rate (fmax = sr / 2.0) inside librosa_mel_fn
center (bool): Whether to pad the input to center the frames. Default is False.
Returns:
torch.Tensor: Mel spectrogram.
"""
if torch.min(y) < -1.0:
print(f"[WARNING] Min value of input waveform signal is {torch.min(y)}")
if torch.max(y) > 1.0:
print(f"[WARNING] Max value of input waveform signal is {torch.max(y)}")
device = y.device
key = f"{n_fft}_{num_mels}_{sampling_rate}_{hop_size}_{win_size}_{fmin}_{fmax}_{device}"
if key not in mel_basis_cache:
mel = librosa_mel_fn(
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
)
mel_basis_cache[key] = torch.from_numpy(mel).float().to(device)
hann_window_cache[key] = torch.hann_window(win_size).to(device)
mel_basis = mel_basis_cache[key]
hann_window = hann_window_cache[key]
padding = (n_fft - hop_size) // 2
y = torch.nn.functional.pad(
y.unsqueeze(1), (padding, padding), mode="reflect"
).squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window,
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)
mel_spec = torch.matmul(mel_basis, spec)
mel_spec = spectral_normalize_torch(mel_spec)
return mel_spec
def get_mel_spectrogram(wav, h):
"""
Generate mel spectrogram from a waveform using given hyperparameters.
Args:
wav (torch.Tensor): Input waveform.
h: Hyperparameters object with attributes n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax.
Returns:
torch.Tensor: Mel spectrogram.
"""
return mel_spectrogram(
wav,
h.n_fft,
h.num_mels,
h.sampling_rate,
h.hop_size,
h.win_size,
h.fmin,
h.fmax,
)
def get_dataset_filelist(a):
training_files = []
validation_files = []
list_unseen_validation_files = []
with open(a.input_training_file, "r", encoding="utf-8") as fi:
training_files = [
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
for x in fi.read().split("\n")
if len(x) > 0
]
print(f"first training file: {training_files[0]}")
with open(a.input_validation_file, "r", encoding="utf-8") as fi:
validation_files = [
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
for x in fi.read().split("\n")
if len(x) > 0
]
print(f"first validation file: {validation_files[0]}")
for i in range(len(a.list_input_unseen_validation_file)):
with open(a.list_input_unseen_validation_file[i], "r", encoding="utf-8") as fi:
unseen_validation_files = [
os.path.join(a.list_input_unseen_wavs_dir[i], x.split("|")[0] + ".wav")
for x in fi.read().split("\n")
if len(x) > 0
]
print(
f"first unseen {i}th validation fileset: {unseen_validation_files[0]}"
)
list_unseen_validation_files.append(unseen_validation_files)
return training_files, validation_files, list_unseen_validation_files
class MelDataset(torch.utils.data.Dataset):
def __init__(
self,
training_files,
hparams,
segment_size,
n_fft,
num_mels,
hop_size,
win_size,
sampling_rate,
fmin,
fmax,
split=True,
shuffle=True,
n_cache_reuse=1,
device=None,
fmax_loss=None,
fine_tuning=False,
base_mels_path=None,
is_seen=True,
):
self.audio_files = training_files
random.seed(1234)
if shuffle:
random.shuffle(self.audio_files)
self.hparams = hparams
self.is_seen = is_seen
if self.is_seen:
self.name = pathlib.Path(self.audio_files[0]).parts[0]
else:
self.name = "-".join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/")
self.segment_size = segment_size
self.sampling_rate = sampling_rate
self.split = split
self.n_fft = n_fft
self.num_mels = num_mels
self.hop_size = hop_size
self.win_size = win_size
self.fmin = fmin
self.fmax = fmax
self.fmax_loss = fmax_loss
self.cached_wav = None
self.n_cache_reuse = n_cache_reuse
self._cache_ref_count = 0
self.device = device
self.fine_tuning = fine_tuning
self.base_mels_path = base_mels_path
print("[INFO] checking dataset integrity...")
for i in tqdm(range(len(self.audio_files))):
assert os.path.exists(
self.audio_files[i]
), f"{self.audio_files[i]} not found"
def __getitem__(self, index):
filename = self.audio_files[index]
if self._cache_ref_count == 0:
audio, sampling_rate = load_wav(filename, self.sampling_rate)
audio = audio / MAX_WAV_VALUE
if not self.fine_tuning:
audio = normalize(audio) * 0.95
self.cached_wav = audio
if sampling_rate != self.sampling_rate:
raise ValueError(
f"{sampling_rate} SR doesn't match target {self.sampling_rate} SR"
)
self._cache_ref_count = self.n_cache_reuse
else:
audio = self.cached_wav
self._cache_ref_count -= 1
audio = torch.FloatTensor(audio)
audio = audio.unsqueeze(0)
if not self.fine_tuning:
if self.split:
if audio.size(1) >= self.segment_size:
max_audio_start = audio.size(1) - self.segment_size
audio_start = random.randint(0, max_audio_start)
audio = audio[:, audio_start : audio_start + self.segment_size]
else:
audio = torch.nn.functional.pad(
audio, (0, self.segment_size - audio.size(1)), "constant"
)
mel = mel_spectrogram(
audio,
self.n_fft,
self.num_mels,
self.sampling_rate,
self.hop_size,
self.win_size,
self.fmin,
self.fmax,
center=False,
)
else: # Validation step
# Match audio length to self.hop_size * n for evaluation
if (audio.size(1) % self.hop_size) != 0:
audio = audio[:, : -(audio.size(1) % self.hop_size)]
mel = mel_spectrogram(
audio,
self.n_fft,
self.num_mels,
self.sampling_rate,
self.hop_size,
self.win_size,
self.fmin,
self.fmax,
center=False,
)
assert (
audio.shape[1] == mel.shape[2] * self.hop_size
), f"audio shape {audio.shape} mel shape {mel.shape}"
else:
mel = np.load(
os.path.join(
self.base_mels_path,
os.path.splitext(os.path.split(filename)[-1])[0] + ".npy",
)
)
mel = torch.from_numpy(mel)
if len(mel.shape) < 3:
mel = mel.unsqueeze(0)
if self.split:
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
if audio.size(1) >= self.segment_size:
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
mel = mel[:, :, mel_start : mel_start + frames_per_seg]
audio = audio[
:,
mel_start
* self.hop_size : (mel_start + frames_per_seg)
* self.hop_size,
]
else:
mel = torch.nn.functional.pad(
mel, (0, frames_per_seg - mel.size(2)), "constant"
)
audio = torch.nn.functional.pad(
audio, (0, self.segment_size - audio.size(1)), "constant"
)
mel_loss = mel_spectrogram(
audio,
self.n_fft,
self.num_mels,
self.sampling_rate,
self.hop_size,
self.win_size,
self.fmin,
self.fmax_loss,
center=False,
)
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
def __len__(self):
return len(self.audio_files)

View File

@@ -0,0 +1,99 @@
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import glob
import os
import matplotlib
import torch
from torch.nn.utils import weight_norm
matplotlib.use("Agg")
import matplotlib.pylab as plt
from .meldataset import MAX_WAV_VALUE
from scipy.io.wavfile import write
def plot_spectrogram(spectrogram):
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
fig.canvas.draw()
plt.close()
return fig
def plot_spectrogram_clipped(spectrogram, clip_max=2.0):
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(
spectrogram,
aspect="auto",
origin="lower",
interpolation="none",
vmin=1e-6,
vmax=clip_max,
)
plt.colorbar(im, ax=ax)
fig.canvas.draw()
plt.close()
return fig
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def apply_weight_norm(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
weight_norm(m)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print(f"Loading '{filepath}'")
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def save_checkpoint(filepath, obj):
print(f"Saving checkpoint to {filepath}")
torch.save(obj, filepath)
print("Complete.")
def scan_checkpoint(cp_dir, prefix, renamed_file=None):
# Fallback to original scanning logic first
pattern = os.path.join(cp_dir, prefix + "????????")
cp_list = glob.glob(pattern)
if len(cp_list) > 0:
last_checkpoint_path = sorted(cp_list)[-1]
print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'")
return last_checkpoint_path
# If no pattern-based checkpoints are found, check for renamed file
if renamed_file:
renamed_path = os.path.join(cp_dir, renamed_file)
if os.path.isfile(renamed_path):
print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'")
return renamed_path
return None
def save_audio(audio, path, sr):
# wav: torch with 1d shape
audio = audio * MAX_WAV_VALUE
audio = audio.cpu().numpy().astype("int16")
write(path, sr, audio)

View File

@@ -0,0 +1,115 @@
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
from collections import OrderedDict
import torch
from torch import nn
import torch.nn.functional as F
from indextts.s2mel.modules.campplus.layers import DenseLayer, StatsPool, TDNNLayer, CAMDenseTDNNBlock, TransitLayer, BasicResBlock, get_nonlinear
class FCM(nn.Module):
def __init__(self,
block=BasicResBlock,
num_blocks=[2, 2],
m_channels=32,
feat_dim=80):
super(FCM, self).__init__()
self.in_planes = m_channels
self.conv1 = nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(m_channels)
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=2)
self.layer2 = self._make_layer(block, m_channels, num_blocks[1], stride=2)
self.conv2 = nn.Conv2d(m_channels, m_channels, kernel_size=3, stride=(2, 1), padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(m_channels)
self.out_channels = m_channels * (feat_dim // 8)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
x = x.unsqueeze(1)
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = F.relu(self.bn2(self.conv2(out)))
shape = out.shape
out = out.reshape(shape[0], shape[1]*shape[2], shape[3])
return out
class CAMPPlus(nn.Module):
def __init__(self,
feat_dim=80,
embedding_size=512,
growth_rate=32,
bn_size=4,
init_channels=128,
config_str='batchnorm-relu',
memory_efficient=True):
super(CAMPPlus, self).__init__()
self.head = FCM(feat_dim=feat_dim)
channels = self.head.out_channels
self.xvector = nn.Sequential(
OrderedDict([
('tdnn',
TDNNLayer(channels,
init_channels,
5,
stride=2,
dilation=1,
padding=-1,
config_str=config_str)),
]))
channels = init_channels
for i, (num_layers, kernel_size,
dilation) in enumerate(zip((12, 24, 16), (3, 3, 3), (1, 2, 2))):
block = CAMDenseTDNNBlock(num_layers=num_layers,
in_channels=channels,
out_channels=growth_rate,
bn_channels=bn_size * growth_rate,
kernel_size=kernel_size,
dilation=dilation,
config_str=config_str,
memory_efficient=memory_efficient)
self.xvector.add_module('block%d' % (i + 1), block)
channels = channels + num_layers * growth_rate
self.xvector.add_module(
'transit%d' % (i + 1),
TransitLayer(channels,
channels // 2,
bias=False,
config_str=config_str))
channels //= 2
self.xvector.add_module(
'out_nonlinear', get_nonlinear(config_str, channels))
self.xvector.add_module('stats', StatsPool())
self.xvector.add_module(
'dense',
DenseLayer(channels * 2, embedding_size, config_str='batchnorm_'))
for m in self.modules():
if isinstance(m, (nn.Conv1d, nn.Linear)):
nn.init.kaiming_normal_(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias)
def forward(self, x):
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
x = self.head(x)
x = self.xvector(x)
return x

View File

@@ -0,0 +1,70 @@
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import torch
import torch.nn as nn
import torch.nn.functional as F
from modules.campplus.layers import DenseLayer
class CosineClassifier(nn.Module):
def __init__(
self,
input_dim,
num_blocks=0,
inter_dim=512,
out_neurons=1000,
):
super().__init__()
self.blocks = nn.ModuleList()
for index in range(num_blocks):
self.blocks.append(
DenseLayer(input_dim, inter_dim, config_str='batchnorm')
)
input_dim = inter_dim
self.weight = nn.Parameter(
torch.FloatTensor(out_neurons, input_dim)
)
nn.init.xavier_uniform_(self.weight)
def forward(self, x):
# x: [B, dim]
for layer in self.blocks:
x = layer(x)
# normalized
x = F.linear(F.normalize(x), F.normalize(self.weight))
return x
class LinearClassifier(nn.Module):
def __init__(
self,
input_dim,
num_blocks=0,
inter_dim=512,
out_neurons=1000,
):
super().__init__()
self.blocks = nn.ModuleList()
self.nonlinear = nn.ReLU(inplace=True)
for index in range(num_blocks):
self.blocks.append(
DenseLayer(input_dim, inter_dim, bias=True)
)
input_dim = inter_dim
self.linear = nn.Linear(input_dim, out_neurons, bias=True)
def forward(self, x):
# x: [B, dim]
x = self.nonlinear(x)
for layer in self.blocks:
x = layer(x)
x = self.linear(x)
return x

View File

@@ -0,0 +1,253 @@
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import torch
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch import nn
def get_nonlinear(config_str, channels):
nonlinear = nn.Sequential()
for name in config_str.split('-'):
if name == 'relu':
nonlinear.add_module('relu', nn.ReLU(inplace=True))
elif name == 'prelu':
nonlinear.add_module('prelu', nn.PReLU(channels))
elif name == 'batchnorm':
nonlinear.add_module('batchnorm', nn.BatchNorm1d(channels))
elif name == 'batchnorm_':
nonlinear.add_module('batchnorm',
nn.BatchNorm1d(channels, affine=False))
else:
raise ValueError('Unexpected module ({}).'.format(name))
return nonlinear
def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2):
mean = x.mean(dim=dim)
std = x.std(dim=dim, unbiased=unbiased)
stats = torch.cat([mean, std], dim=-1)
if keepdim:
stats = stats.unsqueeze(dim=dim)
return stats
class StatsPool(nn.Module):
def forward(self, x):
return statistics_pooling(x)
class TDNNLayer(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
bias=False,
config_str='batchnorm-relu'):
super(TDNNLayer, self).__init__()
if padding < 0:
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
kernel_size)
padding = (kernel_size - 1) // 2 * dilation
self.linear = nn.Conv1d(in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
self.nonlinear = get_nonlinear(config_str, out_channels)
def forward(self, x):
x = self.linear(x)
x = self.nonlinear(x)
return x
class CAMLayer(nn.Module):
def __init__(self,
bn_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
bias,
reduction=2):
super(CAMLayer, self).__init__()
self.linear_local = nn.Conv1d(bn_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
self.linear1 = nn.Conv1d(bn_channels, bn_channels // reduction, 1)
self.relu = nn.ReLU(inplace=True)
self.linear2 = nn.Conv1d(bn_channels // reduction, out_channels, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
y = self.linear_local(x)
context = x.mean(-1, keepdim=True)+self.seg_pooling(x)
context = self.relu(self.linear1(context))
m = self.sigmoid(self.linear2(context))
return y*m
def seg_pooling(self, x, seg_len=100, stype='avg'):
if stype == 'avg':
seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
elif stype == 'max':
seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
else:
raise ValueError('Wrong segment pooling type.')
shape = seg.shape
seg = seg.unsqueeze(-1).expand(*shape, seg_len).reshape(*shape[:-1], -1)
seg = seg[..., :x.shape[-1]]
return seg
class CAMDenseTDNNLayer(nn.Module):
def __init__(self,
in_channels,
out_channels,
bn_channels,
kernel_size,
stride=1,
dilation=1,
bias=False,
config_str='batchnorm-relu',
memory_efficient=False):
super(CAMDenseTDNNLayer, self).__init__()
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
kernel_size)
padding = (kernel_size - 1) // 2 * dilation
self.memory_efficient = memory_efficient
self.nonlinear1 = get_nonlinear(config_str, in_channels)
self.linear1 = nn.Conv1d(in_channels, bn_channels, 1, bias=False)
self.nonlinear2 = get_nonlinear(config_str, bn_channels)
self.cam_layer = CAMLayer(bn_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
def bn_function(self, x):
return self.linear1(self.nonlinear1(x))
def forward(self, x):
if self.training and self.memory_efficient:
x = cp.checkpoint(self.bn_function, x)
else:
x = self.bn_function(x)
x = self.cam_layer(self.nonlinear2(x))
return x
class CAMDenseTDNNBlock(nn.ModuleList):
def __init__(self,
num_layers,
in_channels,
out_channels,
bn_channels,
kernel_size,
stride=1,
dilation=1,
bias=False,
config_str='batchnorm-relu',
memory_efficient=False):
super(CAMDenseTDNNBlock, self).__init__()
for i in range(num_layers):
layer = CAMDenseTDNNLayer(in_channels=in_channels + i * out_channels,
out_channels=out_channels,
bn_channels=bn_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
bias=bias,
config_str=config_str,
memory_efficient=memory_efficient)
self.add_module('tdnnd%d' % (i + 1), layer)
def forward(self, x):
for layer in self:
x = torch.cat([x, layer(x)], dim=1)
return x
class TransitLayer(nn.Module):
def __init__(self,
in_channels,
out_channels,
bias=True,
config_str='batchnorm-relu'):
super(TransitLayer, self).__init__()
self.nonlinear = get_nonlinear(config_str, in_channels)
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
def forward(self, x):
x = self.nonlinear(x)
x = self.linear(x)
return x
class DenseLayer(nn.Module):
def __init__(self,
in_channels,
out_channels,
bias=False,
config_str='batchnorm-relu'):
super(DenseLayer, self).__init__()
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
self.nonlinear = get_nonlinear(config_str, out_channels)
def forward(self, x):
if len(x.shape) == 2:
x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1)
else:
x = self.linear(x)
x = self.nonlinear(x)
return x
class BasicResBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicResBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes,
planes,
kernel_size=3,
stride=(stride, 1),
padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes,
planes,
kernel_size=3,
stride=1,
padding=1,
bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes,
self.expansion * planes,
kernel_size=1,
stride=(stride, 1),
bias=False),
nn.BatchNorm2d(self.expansion * planes))
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out

View File

@@ -0,0 +1,632 @@
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from munch import Munch
import json
import argparse
from torch.nn.parallel import DistributedDataParallel as DDP
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def kl_divergence(m_p, logs_p, m_q, logs_q):
"""KL(P||Q)"""
kl = (logs_q - logs_p) - 0.5
kl += (
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
)
return kl
def rand_gumbel(shape):
"""Sample from the Gumbel distribution, protect from overflows."""
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
return -torch.log(-torch.log(uniform_samples))
def rand_gumbel_like(x):
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
return g
def slice_segments(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :, :segment_size])
for i in range(x.size(0)):
idx_str = ids_str[i]
idx_end = idx_str + segment_size
ret[i] = x[i, :, idx_str:idx_end]
return ret
def slice_segments_audio(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :segment_size])
for i in range(x.size(0)):
idx_str = ids_str[i]
idx_end = idx_str + segment_size
ret[i] = x[i, idx_str:idx_end]
return ret
def rand_slice_segments(x, x_lengths=None, segment_size=4):
b, d, t = x.size()
if x_lengths is None:
x_lengths = t
ids_str_max = x_lengths - segment_size + 1
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(
dtype=torch.long
)
ret = slice_segments(x, ids_str, segment_size)
return ret, ids_str
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
position = torch.arange(length, dtype=torch.float)
num_timescales = channels // 2
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
num_timescales - 1
)
inv_timescales = min_timescale * torch.exp(
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
)
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
signal = F.pad(signal, [0, 0, 0, channels % 2])
signal = signal.view(1, channels, length)
return signal
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return x + signal.to(dtype=x.dtype, device=x.device)
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
def subsequent_mask(length):
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
return mask
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def shift_1d(x):
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
return x
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def avg_with_mask(x, mask):
assert mask.dtype == torch.float, "Mask should be float"
if mask.ndim == 2:
mask = mask.unsqueeze(1)
if mask.shape[1] == 1:
mask = mask.expand_as(x)
return (x * mask).sum() / mask.sum()
def generate_path(duration, mask):
"""
duration: [b, 1, t_x]
mask: [b, 1, t_y, t_x]
"""
device = duration.device
b, _, t_y, t_x = mask.shape
cum_duration = torch.cumsum(duration, -1)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
path = path.unsqueeze(1).transpose(2, 3) * mask
return path
def clip_grad_value_(parameters, clip_value, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
if clip_value is not None:
clip_value = float(clip_value)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
if clip_value is not None:
p.grad.data.clamp_(min=-clip_value, max=clip_value)
total_norm = total_norm ** (1.0 / norm_type)
return total_norm
def log_norm(x, mean=-4, std=4, dim=2):
"""
normalized log mel -> mel -> norm -> log(norm)
"""
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
return x
def load_F0_models(path):
# load F0 model
from .JDC.model import JDCNet
F0_model = JDCNet(num_class=1, seq_len=192)
params = torch.load(path, map_location="cpu")["net"]
F0_model.load_state_dict(params)
_ = F0_model.train()
return F0_model
def modify_w2v_forward(self, output_layer=15):
"""
change forward method of w2v encoder to get its intermediate layer output
:param self:
:param layer:
:return:
"""
from transformers.modeling_outputs import BaseModelOutput
def forward(
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
conv_attention_mask = attention_mask
if attention_mask is not None:
# make sure padded tokens output 0
hidden_states = hidden_states.masked_fill(
~attention_mask.bool().unsqueeze(-1), 0.0
)
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
dtype=hidden_states.dtype
)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0],
1,
attention_mask.shape[-1],
attention_mask.shape[-1],
)
hidden_states = self.dropout(hidden_states)
if self.embed_positions is not None:
relative_position_embeddings = self.embed_positions(hidden_states)
else:
relative_position_embeddings = None
deepspeed_zero3_is_enabled = False
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = (
True
if self.training and (dropout_probability < self.config.layerdrop)
else False
)
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
relative_position_embeddings,
output_attentions,
conv_attention_mask,
)
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
relative_position_embeddings=relative_position_embeddings,
output_attentions=output_attentions,
conv_attention_mask=conv_attention_mask,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if i == output_layer - 1:
break
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attentions]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
return forward
MATPLOTLIB_FLAG = False
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
import logging
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger("matplotlib")
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def normalize_f0(f0_sequence):
# Remove unvoiced frames (replace with -1)
voiced_indices = np.where(f0_sequence > 0)[0]
f0_voiced = f0_sequence[voiced_indices]
# Convert to log scale
log_f0 = np.log2(f0_voiced)
# Calculate mean and standard deviation
mean_f0 = np.mean(log_f0)
std_f0 = np.std(log_f0)
# Normalize the F0 sequence
normalized_f0 = (log_f0 - mean_f0) / std_f0
# Create the normalized F0 sequence with unvoiced frames
normalized_sequence = np.zeros_like(f0_sequence)
normalized_sequence[voiced_indices] = normalized_f0
normalized_sequence[f0_sequence <= 0] = -1 # Assign -1 to unvoiced frames
return normalized_sequence
class MyModel(nn.Module):
def __init__(self,args, use_emovec=False, use_gpt_latent=False):
super(MyModel, self).__init__()
from indextts.s2mel.modules.flow_matching import CFM
from indextts.s2mel.modules.length_regulator import InterpolateRegulator
length_regulator = InterpolateRegulator(
channels=args.length_regulator.channels,
sampling_ratios=args.length_regulator.sampling_ratios,
is_discrete=args.length_regulator.is_discrete,
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
codebook_size=args.length_regulator.content_codebook_size,
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
)
if use_gpt_latent:
self.models = nn.ModuleDict({
'cfm': CFM(args),
'length_regulator': length_regulator,
'gpt_layer': torch.nn.Sequential(torch.nn.Linear(1280, 256), torch.nn.Linear(256, 128), torch.nn.Linear(128, 1024))
})
else:
self.models = nn.ModuleDict({
'cfm': CFM(args),
'length_regulator': length_regulator
})
def forward(self, x, target_lengths, prompt_len, cond, y):
x = self.models['cfm'](x, target_lengths, prompt_len, cond, y)
return x
def forward2(self, S_ori,target_lengths,F0_ori):
x = self.models['length_regulator'](S_ori, ylens=target_lengths, f0=F0_ori)
return x
def forward_emovec(self, x):
x = self.models['emo_layer'](x)
return x
def forward_emo_encoder(self, x):
x = self.models['emo_encoder'](x)
return x
def forward_gpt(self,x):
x = self.models['gpt_layer'](x)
return x
def build_model(args, stage="DiT"):
if stage == "DiT":
from modules.flow_matching import CFM
from modules.length_regulator import InterpolateRegulator
length_regulator = InterpolateRegulator(
channels=args.length_regulator.channels,
sampling_ratios=args.length_regulator.sampling_ratios,
is_discrete=args.length_regulator.is_discrete,
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
codebook_size=args.length_regulator.content_codebook_size,
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
)
cfm = CFM(args)
nets = Munch(
cfm=cfm,
length_regulator=length_regulator,
)
elif stage == 'codec':
from dac.model.dac import Encoder
from modules.quantize import (
FAquantizer,
)
encoder = Encoder(
d_model=args.DAC.encoder_dim,
strides=args.DAC.encoder_rates,
d_latent=1024,
causal=args.causal,
lstm=args.lstm,
)
quantizer = FAquantizer(
in_dim=1024,
n_p_codebooks=1,
n_c_codebooks=args.n_c_codebooks,
n_t_codebooks=2,
n_r_codebooks=3,
codebook_size=1024,
codebook_dim=8,
quantizer_dropout=0.5,
causal=args.causal,
separate_prosody_encoder=args.separate_prosody_encoder,
timbre_norm=args.timbre_norm,
)
nets = Munch(
encoder=encoder,
quantizer=quantizer,
)
elif stage == "mel_vocos":
from modules.vocos import Vocos
decoder = Vocos(args)
nets = Munch(
decoder=decoder,
)
else:
raise ValueError(f"Unknown stage: {stage}")
return nets
def load_checkpoint(
model,
optimizer,
path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
load_ema=False,
):
state = torch.load(path, map_location="cpu")
params = state["net"]
if load_ema and "ema" in state:
print("Loading EMA")
for key in model:
i = 0
for param_name in params[key]:
if "input_pos" in param_name:
continue
assert params[key][param_name].shape == state["ema"][key][0][i].shape
params[key][param_name] = state["ema"][key][0][i].clone()
i += 1
for key in model:
if key in params and key not in ignore_modules:
if not is_distributed:
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
for k in list(params[key].keys()):
if k.startswith("module."):
params[key][k[len("module.") :]] = params[key][k]
del params[key][k]
model_state_dict = model[key].state_dict()
# 过滤出形状匹配的键值对
filtered_state_dict = {
k: v
for k, v in params[key].items()
if k in model_state_dict and v.shape == model_state_dict[k].shape
}
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
if skipped_keys:
print(
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
)
print("%s loaded" % key)
model[key].load_state_dict(filtered_state_dict, strict=False)
_ = [model[key].eval() for key in model]
if not load_only_params:
epoch = state["epoch"] + 1
iters = state["iters"]
optimizer.load_state_dict(state["optimizer"])
optimizer.load_scheduler_state_dict(state["scheduler"])
else:
epoch = 0
iters = 0
return model, optimizer, epoch, iters
def load_checkpoint2(
model,
optimizer,
path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
load_ema=False,
):
state = torch.load(path, map_location="cpu")
params = state["net"]
if load_ema and "ema" in state:
print("Loading EMA")
for key in model.models:
i = 0
for param_name in params[key]:
if "input_pos" in param_name:
continue
assert params[key][param_name].shape == state["ema"][key][0][i].shape
params[key][param_name] = state["ema"][key][0][i].clone()
i += 1
for key in model.models:
if key in params and key not in ignore_modules:
if not is_distributed:
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
for k in list(params[key].keys()):
if k.startswith("module."):
params[key][k[len("module.") :]] = params[key][k]
del params[key][k]
model_state_dict = model.models[key].state_dict()
# 过滤出形状匹配的键值对
filtered_state_dict = {
k: v
for k, v in params[key].items()
if k in model_state_dict and v.shape == model_state_dict[k].shape
}
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
if skipped_keys:
print(
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
)
print("%s loaded" % key)
model.models[key].load_state_dict(filtered_state_dict, strict=False)
model.eval()
# _ = [model[key].eval() for key in model]
if not load_only_params:
epoch = state["epoch"] + 1
iters = state["iters"]
optimizer.load_state_dict(state["optimizer"])
optimizer.load_scheduler_state_dict(state["scheduler"])
else:
epoch = 0
iters = 0
return model, optimizer, epoch, iters
def recursive_munch(d):
if isinstance(d, dict):
return Munch((k, recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [recursive_munch(v) for v in d]
else:
return d

View File

@@ -0,0 +1,257 @@
import torch
from torch import nn
import math
from indextts.s2mel.modules.gpt_fast.model import ModelArgs, Transformer
from indextts.s2mel.modules.wavenet import WN
from indextts.s2mel.modules.commons import sequence_mask
from torch.nn.utils import weight_norm
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
self.max_period = 10000
self.scale = 1000
half = frequency_embedding_size // 2
freqs = torch.exp(
-math.log(self.max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
)
self.register_buffer("freqs", freqs)
def timestep_embedding(self, t):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
args = self.scale * t[:, None].float() * self.freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if self.frequency_embedding_size % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t)
t_emb = self.mlp(t_freq)
return t_emb
class StyleEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, input_size, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size)
self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True))
self.input_size = input_size
self.dropout_prob = dropout_prob
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
else:
labels = self.style_in(labels)
embeddings = labels
return embeddings
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True))
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DiT(torch.nn.Module):
def __init__(
self,
args
):
super(DiT, self).__init__()
self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False
self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False
self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False
model_args = ModelArgs(
block_size=16384,#args.DiT.block_size,
n_layer=args.DiT.depth,
n_head=args.DiT.num_heads,
dim=args.DiT.hidden_dim,
head_dim=args.DiT.hidden_dim // args.DiT.num_heads,
vocab_size=1024,
uvit_skip_connection=self.uvit_skip_connection,
time_as_token=self.time_as_token,
)
self.transformer = Transformer(model_args)
self.in_channels = args.DiT.in_channels
self.out_channels = args.DiT.in_channels
self.num_heads = args.DiT.num_heads
self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True))
self.content_type = args.DiT.content_type # 'discrete' or 'continuous'
self.content_codebook_size = args.DiT.content_codebook_size # for discrete content
self.content_dim = args.DiT.content_dim # for continuous content
self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim) # discrete content
self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True) # continuous content
self.is_causal = args.DiT.is_causal
self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim)
# self.style_embedder1 = weight_norm(nn.Linear(1024, args.DiT.hidden_dim, bias=True))
# self.style_embedder2 = weight_norm(nn.Linear(1024, args.style_encoder.dim, bias=True))
input_pos = torch.arange(16384)
self.register_buffer("input_pos", input_pos)
self.final_layer_type = args.DiT.final_layer_type # mlp or wavenet
if self.final_layer_type == 'wavenet':
self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim)
self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim)
self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1)
self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim,
kernel_size=args.wavenet.kernel_size,
dilation_rate=args.wavenet.dilation_rate,
n_layers=args.wavenet.num_layers,
gin_channels=args.wavenet.hidden_dim,
p_dropout=args.wavenet.p_dropout,
causal=False)
self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim)
self.res_projection = nn.Linear(args.DiT.hidden_dim,
args.wavenet.hidden_dim) # residual connection from tranformer output to final output
self.wavenet_style_condition = args.wavenet.style_condition
assert args.DiT.style_condition == args.wavenet.style_condition
else:
self.final_mlp = nn.Sequential(
nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim),
nn.SiLU(),
nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels),
)
self.transformer_style_condition = args.DiT.style_condition
self.class_dropout_prob = args.DiT.class_dropout_prob
self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim)
self.long_skip_connection = args.DiT.long_skip_connection
self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim)
self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 +
args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token),
args.DiT.hidden_dim)
if self.style_as_token:
self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim)
def setup_caches(self, max_batch_size, max_seq_length):
self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False)
def forward(self, x, prompt_x, x_lens, t, style, cond, mask_content=False):
"""
x (torch.Tensor): random noise
prompt_x (torch.Tensor): reference mel + zero mel
shape: (batch_size, 80, 795+1068)
x_lens (torch.Tensor): mel frames output
shape: (batch_size, mel_timesteps)
t (torch.Tensor): radshape:
shape: (batch_size)
style (torch.Tensor): reference global style
shape: (batch_size, 192)
cond (torch.Tensor): semantic info of reference audio and altered audio
shape: (batch_size, mel_timesteps(795+1069), 512)
"""
class_dropout = False
if self.training and torch.rand(1) < self.class_dropout_prob:
class_dropout = True
if not self.training and mask_content:
class_dropout = True
# cond_in_module = self.cond_embedder if self.content_type == 'discrete' else self.cond_projection
cond_in_module = self.cond_projection
B, _, T = x.size()
t1 = self.t_embedder(t) # (N, D) # t1 [2, 512]
cond = cond_in_module(cond) # cond [2,1863,512]->[2,1863,512]
x = x.transpose(1, 2) # [2,1863,80]
prompt_x = prompt_x.transpose(1, 2) # [2,1863,80]
x_in = torch.cat([x, prompt_x, cond], dim=-1) # 80+80+512=672 [2, 1863, 672]
if self.transformer_style_condition and not self.style_as_token: # True and True
x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1) #[2, 1863, 864]
if class_dropout: #False
x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0 # 80维后全置为0
x_in = self.cond_x_merge_linear(x_in) # (N, T, D) [2, 1863, 512]
if self.style_as_token: # False
style = self.style_in(style)
style = torch.zeros_like(style) if class_dropout else style
x_in = torch.cat([style.unsqueeze(1), x_in], dim=1)
if self.time_as_token: # False
x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1)
x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1) #torch.Size([1, 1, 1863])True
input_pos = self.input_pos[:x_in.size(1)] # (T,) range01863
x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None # torch.Size([1, 1, 1863, 1863]
x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded) # [2, 1863, 512]
x_res = x_res[:, 1:] if self.time_as_token else x_res
x_res = x_res[:, 1:] if self.style_as_token else x_res
if self.long_skip_connection: #True
x_res = self.skip_linear(torch.cat([x_res, x], dim=-1))
if self.final_layer_type == 'wavenet':
x = self.conv1(x_res)
x = x.transpose(1, 2)
t2 = self.t_embedder2(t)
x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection(
x_res) # long residual connection
x = self.final_layer(x, t1).transpose(1, 2)
x = self.conv2(x)
else:
x = self.final_mlp(x_res)
x = x.transpose(1, 2)
# x [2,80,1863]
return x

View File

@@ -0,0 +1,292 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Convolutional layers wrappers and utilities."""
import math
import typing as tp
import warnings
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import spectral_norm, weight_norm
import typing as tp
import einops
class ConvLayerNorm(nn.LayerNorm):
"""
Convolution-friendly LayerNorm that moves channels to last dimensions
before running the normalization and moves them back to original position right after.
"""
def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
super().__init__(normalized_shape, **kwargs)
def forward(self, x):
x = einops.rearrange(x, 'b ... t -> b t ...')
x = super().forward(x)
x = einops.rearrange(x, 'b t ... -> b ... t')
return
CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
'time_layer_norm', 'layer_norm', 'time_group_norm'])
def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
assert norm in CONV_NORMALIZATIONS
if norm == 'weight_norm':
return weight_norm(module)
elif norm == 'spectral_norm':
return spectral_norm(module)
else:
# We already check was in CONV_NORMALIZATION, so any other choice
# doesn't need reparametrization.
return module
def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
"""Return the proper normalization module. If causal is True, this will ensure the returned
module is causal, or return an error if the normalization doesn't support causal evaluation.
"""
assert norm in CONV_NORMALIZATIONS
if norm == 'layer_norm':
assert isinstance(module, nn.modules.conv._ConvNd)
return ConvLayerNorm(module.out_channels, **norm_kwargs)
elif norm == 'time_group_norm':
if causal:
raise ValueError("GroupNorm doesn't support causal evaluation.")
assert isinstance(module, nn.modules.conv._ConvNd)
return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
else:
return nn.Identity()
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
padding_total: int = 0) -> int:
"""See `pad_for_conv1d`.
"""
length = x.shape[-1]
n_frames = (length - kernel_size + padding_total) / stride + 1
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
return ideal_length - length
def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
"""Pad for a convolution to make sure that the last window is full.
Extra padding is added at the end. This is required to ensure that we can rebuild
an output of the same length, as otherwise, even with padding, some time steps
might get removed.
For instance, with total padding = 4, kernel size = 4, stride = 2:
0 0 1 2 3 4 5 0 0 # (0s are padding)
1 2 3 # (output frames of a convolution, last 0 is never used)
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding)
1 2 3 4 # once you removed padding, we are missing one time step !
"""
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
return F.pad(x, (0, extra_padding))
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
If this is the case, we insert extra 0 padding to the right before the reflection happen.
"""
length = x.shape[-1]
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
if mode == 'reflect':
max_pad = max(padding_left, padding_right)
extra_pad = 0
if length <= max_pad:
extra_pad = max_pad - length + 1
x = F.pad(x, (0, extra_pad))
padded = F.pad(x, paddings, mode, value)
end = padded.shape[-1] - extra_pad
return padded[..., :end]
else:
return F.pad(x, paddings, mode, value)
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
assert (padding_left + padding_right) <= x.shape[-1]
end = x.shape[-1] - padding_right
return x[..., padding_left: end]
class NormConv1d(nn.Module):
"""Wrapper around Conv1d and normalization applied to this conv
to provide a uniform interface across normalization approaches.
"""
def __init__(self, *args, causal: bool = False, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
self.norm_type = norm
def forward(self, x):
x = self.conv(x)
x = self.norm(x)
return x
class NormConv2d(nn.Module):
"""Wrapper around Conv2d and normalization applied to this conv
to provide a uniform interface across normalization approaches.
"""
def __init__(self, *args, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm)
self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs)
self.norm_type = norm
def forward(self, x):
x = self.conv(x)
x = self.norm(x)
return x
class NormConvTranspose1d(nn.Module):
"""Wrapper around ConvTranspose1d and normalization applied to this conv
to provide a uniform interface across normalization approaches.
"""
def __init__(self, *args, causal: bool = False, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
self.norm_type = norm
def forward(self, x):
x = self.convtr(x)
x = self.norm(x)
return x
class NormConvTranspose2d(nn.Module):
"""Wrapper around ConvTranspose2d and normalization applied to this conv
to provide a uniform interface across normalization approaches.
"""
def __init__(self, *args, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.convtr = apply_parametrization_norm(nn.ConvTranspose2d(*args, **kwargs), norm)
self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs)
def forward(self, x):
x = self.convtr(x)
x = self.norm(x)
return x
class SConv1d(nn.Module):
"""Conv1d with some builtin handling of asymmetric or causal padding
and normalization.
"""
def __init__(self, in_channels: int, out_channels: int,
kernel_size: int, stride: int = 1, dilation: int = 1,
groups: int = 1, bias: bool = True, causal: bool = False,
norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
pad_mode: str = 'reflect', **kwargs):
super().__init__()
# warn user on unusual setup between dilation and stride
if stride > 1 and dilation > 1:
warnings.warn('SConv1d has been initialized with stride > 1 and dilation > 1'
f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).')
self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
dilation=dilation, groups=groups, bias=bias, causal=causal,
norm=norm, norm_kwargs=norm_kwargs)
self.causal = causal
self.pad_mode = pad_mode
def forward(self, x):
B, C, T = x.shape
kernel_size = self.conv.conv.kernel_size[0]
stride = self.conv.conv.stride[0]
dilation = self.conv.conv.dilation[0]
kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations
padding_total = kernel_size - stride
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
if self.causal:
# Left padding for causal
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
else:
# Asymmetric padding required for odd strides
padding_right = padding_total // 2
padding_left = padding_total - padding_right
x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
return self.conv(x)
class SConvTranspose1d(nn.Module):
"""ConvTranspose1d with some builtin handling of asymmetric or causal padding
and normalization.
"""
def __init__(self, in_channels: int, out_channels: int,
kernel_size: int, stride: int = 1, causal: bool = False,
norm: str = 'none', trim_right_ratio: float = 1.,
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
causal=causal, norm=norm, norm_kwargs=norm_kwargs)
self.causal = causal
self.trim_right_ratio = trim_right_ratio
assert self.causal or self.trim_right_ratio == 1., \
"`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
def forward(self, x):
kernel_size = self.convtr.convtr.kernel_size[0]
stride = self.convtr.convtr.stride[0]
padding_total = kernel_size - stride
y = self.convtr(x)
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
# removed at the very end, when keeping only the right length for the output,
# as removing it here would require also passing the length at the matching layer
# in the encoder.
if self.causal:
# Trim the padding on the right according to the specified ratio
# if trim_right_ratio = 1.0, trim everything from right
padding_right = math.ceil(padding_total * self.trim_right_ratio)
padding_left = padding_total - padding_right
y = unpad1d(y, (padding_left, padding_right))
else:
# Asymmetric padding required for odd strides
padding_right = padding_total // 2
padding_left = padding_total - padding_right
y = unpad1d(y, (padding_left, padding_right))
return y
class SLSTM(nn.Module):
"""
LSTM without worrying about the hidden state, nor the layout of the data.
Expects input as convolutional layout.
"""
def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True):
super().__init__()
self.skip = skip
self.lstm = nn.LSTM(dimension, dimension, num_layers)
self.hidden = None
def forward(self, x):
x = x.permute(2, 0, 1)
if self.training:
y, _ = self.lstm(x)
else:
y, self.hidden = self.lstm(x, self.hidden)
if self.skip:
y = y + x
y = y.permute(1, 2, 0)
return y

View File

@@ -0,0 +1,171 @@
from abc import ABC
import torch
import torch.nn.functional as F
from indextts.s2mel.modules.diffusion_transformer import DiT
from indextts.s2mel.modules.commons import sequence_mask
from tqdm import tqdm
class BASECFM(torch.nn.Module, ABC):
def __init__(
self,
args,
):
super().__init__()
self.sigma_min = 1e-6
self.estimator = None
self.in_channels = args.DiT.in_channels
self.criterion = torch.nn.MSELoss() if args.reg_loss_type == "l2" else torch.nn.L1Loss()
if hasattr(args.DiT, 'zero_prompt_speech_token'):
self.zero_prompt_speech_token = args.DiT.zero_prompt_speech_token
else:
self.zero_prompt_speech_token = False
@torch.inference_mode()
def inference(self, mu, x_lens, prompt, style, f0, n_timesteps, temperature=1.0, inference_cfg_rate=0.5):
"""Forward diffusion
Args:
mu (torch.Tensor): semantic info of reference audio and altered audio
shape: (batch_size, mel_timesteps(795+1069), 512)
x_lens (torch.Tensor): mel frames output
shape: (batch_size, mel_timesteps)
prompt (torch.Tensor): reference mel
shape: (batch_size, 80, 795)
style (torch.Tensor): reference global style
shape: (batch_size, 192)
f0: None
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
Returns:
sample: generated mel-spectrogram
shape: (batch_size, 80, mel_timesteps)
"""
B, T = mu.size(0), mu.size(1)
z = torch.randn([B, self.in_channels, T], device=mu.device) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
# t_span = t_span + (-1) * (torch.cos(torch.pi / 2 * t_span) - 1 + t_span)
return self.solve_euler(z, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate)
def solve_euler(self, x, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate=0.5):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): semantic info of reference audio and altered audio
shape: (batch_size, mel_timesteps(795+1069), 512)
x_lens (torch.Tensor): mel frames output
shape: (batch_size, mel_timesteps)
prompt (torch.Tensor): reference mel
shape: (batch_size, 80, 795)
style (torch.Tensor): reference global style
shape: (batch_size, 192)
"""
t, _, _ = t_span[0], t_span[-1], t_span[1] - t_span[0]
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
sol = []
# apply prompt
prompt_len = prompt.size(-1)
prompt_x = torch.zeros_like(x)
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
x[..., :prompt_len] = 0
if self.zero_prompt_speech_token:
mu[..., :prompt_len] = 0
for step in tqdm(range(1, len(t_span))):
dt = t_span[step] - t_span[step - 1]
if inference_cfg_rate > 0:
# Stack original and CFG (null) inputs for batched processing
stacked_prompt_x = torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0)
stacked_style = torch.cat([style, torch.zeros_like(style)], dim=0)
stacked_mu = torch.cat([mu, torch.zeros_like(mu)], dim=0)
stacked_x = torch.cat([x, x], dim=0)
stacked_t = torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0)
# Perform a single forward pass for both original and CFG inputs
stacked_dphi_dt = self.estimator(
stacked_x, stacked_prompt_x, x_lens, stacked_t, stacked_style, stacked_mu,
)
# Split the output back into the original and CFG components
dphi_dt, cfg_dphi_dt = stacked_dphi_dt.chunk(2, dim=0)
# Apply CFG formula
dphi_dt = (1.0 + inference_cfg_rate) * dphi_dt - inference_cfg_rate * cfg_dphi_dt
else:
dphi_dt = self.estimator(x, prompt_x, x_lens, t.unsqueeze(0), style, mu)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
x[:, :, :prompt_len] = 0
return sol[-1]
def forward(self, x1, x_lens, prompt_lens, mu, style):
"""Computes diffusion loss
Args:
mu (torch.Tensor): semantic info of reference audio and altered audio
shape: (batch_size, mel_timesteps(795+1069), 512)
x1: mel
x_lens (torch.Tensor): mel frames output
shape: (batch_size, mel_timesteps)
prompt (torch.Tensor): reference mel
shape: (batch_size, 80, 795)
style (torch.Tensor): reference global style
shape: (batch_size, 192)
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_feats, mel_timesteps)
"""
b, _, t = x1.shape
# random timestep
t = torch.rand([b, 1, 1], device=mu.device, dtype=x1.dtype)
# sample noise p(x_0)
z = torch.randn_like(x1)
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
u = x1 - (1 - self.sigma_min) * z
prompt = torch.zeros_like(x1)
for bib in range(b):
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
# range covered by prompt are set to 0
y[bib, :, :prompt_lens[bib]] = 0
if self.zero_prompt_speech_token:
mu[bib, :, :prompt_lens[bib]] = 0
estimator_out = self.estimator(y, prompt, x_lens, t.squeeze(1).squeeze(1), style, mu, prompt_lens)
loss = 0
for bib in range(b):
loss += self.criterion(estimator_out[bib, :, prompt_lens[bib]:x_lens[bib]], u[bib, :, prompt_lens[bib]:x_lens[bib]])
loss /= b
return loss, estimator_out + (1 - self.sigma_min) * z
class CFM(BASECFM):
def __init__(self, args):
super().__init__(
args
)
if args.dit_type == "DiT":
self.estimator = DiT(args)
else:
raise NotImplementedError(f"Unknown diffusion type {args.dit_type}")

View File

@@ -0,0 +1,360 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
def find_multiple(n: int, k: int) -> int:
if n % k == 0:
return n
return n + k - (n % k)
class AdaptiveLayerNorm(nn.Module):
r"""Adaptive Layer Normalization"""
def __init__(self, d_model, norm) -> None:
super(AdaptiveLayerNorm, self).__init__()
self.project_layer = nn.Linear(d_model, 2 * d_model)
self.norm = norm
self.d_model = d_model
self.eps = self.norm.eps
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
if embedding is None:
return self.norm(input)
weight, bias = torch.split(
self.project_layer(embedding),
split_size_or_sections=self.d_model,
dim=-1,
)
return weight * self.norm(input) + bias
@dataclass
class ModelArgs:
block_size: int = 2048
vocab_size: int = 32000
n_layer: int = 32
n_head: int = 32
dim: int = 4096
intermediate_size: int = None
n_local_heads: int = -1
head_dim: int = 64
rope_base: float = 10000
norm_eps: float = 1e-5
has_cross_attention: bool = False
context_dim: int = 0
uvit_skip_connection: bool = False
time_as_token: bool = False
def __post_init__(self):
if self.n_local_heads == -1:
self.n_local_heads = self.n_head
if self.intermediate_size is None:
hidden_dim = 4 * self.dim
n_hidden = int(2 * hidden_dim / 3)
self.intermediate_size = find_multiple(n_hidden, 256)
# self.head_dim = self.dim // self.n_head
@classmethod
def from_name(cls, name: str):
if name in transformer_configs:
return cls(**transformer_configs[name])
# fuzzy search
config = [config for config in transformer_configs if config.lower() in str(name).lower()]
# We may have two or more configs matched (e.g. "7B" and "Mistral-7B"). Find the best config match,
# take longer name (as it have more symbols matched)
if len(config) > 1:
config.sort(key=len, reverse=True)
assert len(config[0]) != len(config[1]), name # make sure only one 'best' match
return cls(**transformer_configs[config[0]])
transformer_configs = {
"CodeLlama-7b-Python-hf": dict(block_size=16384, vocab_size=32000, n_layer=32, dim=4096, rope_base=1000000),
"7B": dict(n_layer=32, n_head=32, dim=4096),
"13B": dict(n_layer=40, n_head=40, dim=5120),
"30B": dict(n_layer=60, n_head=52, dim=6656),
"34B": dict(n_layer=48, n_head=64, dim=8192, vocab_size=32000, n_local_heads=8, intermediate_size=22016,
rope_base=1000000), # CodeLlama-34B-Python-hf
"70B": dict(n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672),
"Mistral-7B": dict(n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=32000),
"stories15M": dict(n_layer=6, n_head=6, dim=288),
"stories110M": dict(n_layer=12, n_head=12, dim=768),
"llama-3-8b": dict(block_size=8192, n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336,
vocab_size=128256, rope_base=500000),
"llama-3-70b": dict(block_size=8192, n_layer=80, n_head=64, n_local_heads=8, dim=8192, intermediate_size=28672,
vocab_size=128256, rope_base=500000),
}
class KVCache(nn.Module):
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16):
super().__init__()
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
def update(self, input_pos, k_val, v_val):
# input_pos: [S], k_val: [B, H, S, D]
assert input_pos.shape[0] == k_val.shape[2]
k_out = self.k_cache
v_out = self.v_cache
k_out[:, :, input_pos] = k_val
v_out[:, :, input_pos] = v_val
return k_out, v_out
class Transformer(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.config = config
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer))
self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
self.freqs_cis: Optional[Tensor] = None
self.mask_cache: Optional[Tensor] = None
self.max_batch_size = -1
self.max_seq_length = -1
def setup_caches(self, max_batch_size, max_seq_length, use_kv_cache=True):
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
return
head_dim = self.config.dim // self.config.n_head
max_seq_length = find_multiple(max_seq_length, 8)
self.max_seq_length = max_seq_length
self.max_batch_size = max_batch_size
dtype = self.norm.project_layer.weight.dtype
device = self.norm.project_layer.weight.device
if not self.training and use_kv_cache:
for b in self.layers:
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype).to(device)
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim,
self.config.rope_base, dtype).to(device)
self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).to(device)
self.use_kv_cache = use_kv_cache
self.uvit_skip_connection = self.config.uvit_skip_connection
if self.uvit_skip_connection:
self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2]
self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2]
else:
self.layers_emit_skip = []
self.layers_receive_skip = []
def forward(self,
x: Tensor,
c: Tensor,
input_pos: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
context: Optional[Tensor] = None,
context_input_pos: Optional[Tensor] = None,
cross_attention_mask: Optional[Tensor] = None,
) -> Tensor:
assert self.freqs_cis is not None, "Caches must be initialized first"
if mask is None: # in case of non-causal model
if not self.training and self.use_kv_cache:
mask = self.causal_mask[None, None, input_pos]
else:
mask = self.causal_mask[None, None, input_pos]
mask = mask[..., input_pos]
freqs_cis = self.freqs_cis[input_pos]
if context is not None:
context_freqs_cis = self.freqs_cis[context_input_pos]
else:
context_freqs_cis = None
skip_in_x_list = []
for i, layer in enumerate(self.layers):
if self.uvit_skip_connection and i in self.layers_receive_skip:
skip_in_x = skip_in_x_list.pop(-1)
else:
skip_in_x = None
x = layer(x, c, input_pos, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask, skip_in_x)
if self.uvit_skip_connection and i in self.layers_emit_skip:
skip_in_x_list.append(x)
x = self.norm(x, c)
return x
@classmethod
def from_name(cls, name: str):
return cls(ModelArgs.from_name(name))
class TransformerBlock(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.attention = Attention(config)
self.feed_forward = FeedForward(config)
self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
if config.has_cross_attention:
self.has_cross_attention = True
self.cross_attention = Attention(config, is_cross_attention=True)
self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
else:
self.has_cross_attention = False
if config.uvit_skip_connection:
self.skip_in_linear = nn.Linear(config.dim * 2, config.dim)
self.uvit_skip_connection = True
else:
self.uvit_skip_connection = False
self.time_as_token = config.time_as_token
def forward(self,
x: Tensor,
c: Tensor,
input_pos: Tensor,
freqs_cis: Tensor,
mask: Tensor,
context: Optional[Tensor] = None,
context_freqs_cis: Optional[Tensor] = None,
cross_attention_mask: Optional[Tensor] = None,
skip_in_x: Optional[Tensor] = None,
) -> Tensor:
c = None if self.time_as_token else c
if self.uvit_skip_connection and skip_in_x is not None:
x = self.skip_in_linear(torch.cat([x, skip_in_x], dim=-1))
h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask, input_pos)
if self.has_cross_attention:
h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, input_pos, context, context_freqs_cis)
out = h + self.feed_forward(self.ffn_norm(h, c))
return out
class Attention(nn.Module):
def __init__(self, config: ModelArgs, is_cross_attention: bool = False):
super().__init__()
assert config.dim % config.n_head == 0
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
# key, query, value projections for all heads, but in a batch
if is_cross_attention:
self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False)
self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False)
else:
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False)
self.kv_cache = None
self.n_head = config.n_head
self.head_dim = config.head_dim
self.n_local_heads = config.n_local_heads
self.dim = config.dim
# self._register_load_state_dict_pre_hook(self.load_hook)
# def load_hook(self, state_dict, prefix, *args):
# if prefix + "wq.weight" in state_dict:
# wq = state_dict.pop(prefix + "wq.weight")
# wk = state_dict.pop(prefix + "wk.weight")
# wv = state_dict.pop(prefix + "wv.weight")
# state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def forward(self,
x: Tensor,
freqs_cis: Tensor,
mask: Tensor,
input_pos: Optional[Tensor] = None,
context: Optional[Tensor] = None,
context_freqs_cis: Optional[Tensor] = None,
) -> Tensor:
bsz, seqlen, _ = x.shape
kv_size = self.n_local_heads * self.head_dim
if context is None:
q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1)
context_seqlen = seqlen
else:
q = self.wq(x)
k, v = self.wkv(context).split([kv_size, kv_size], dim=-1)
context_seqlen = context.shape[1]
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
if self.kv_cache is not None:
k, v = self.kv_cache.update(input_pos, k, v)
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head)
y = self.wo(y)
return y
class FeedForward(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
def forward(self, x: Tensor) -> Tensor:
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(
seq_len: int, n_elem: int, base: int = 10000,
dtype: torch.dtype = torch.bfloat16
) -> Tensor:
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache.to(dtype=dtype)
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)

View File

@@ -0,0 +1,436 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import sys
import time
from pathlib import Path
from typing import Optional, Tuple
import torch
import torch._dynamo.config
import torch._inductor.config
def device_sync(device):
if "cuda" in device:
torch.cuda.synchronize(device)
elif ("cpu" in device) or ("mps" in device):
pass
else:
print(f"device={device} is not yet suppported")
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future
default_device = 'cuda' if torch.cuda.is_available() else 'cpu'
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from model import Transformer
from tokenizer import get_tokenizer
def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
probs = logits_to_probs(logits[0, -1], temperature, top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
def prefill(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> torch.Tensor:
# input_pos: [B, S]
logits = model(x, input_pos)
return sample(logits, **sampling_kwargs)[0]
def decode_one_token(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
# input_pos: [B, 1]
assert input_pos.shape[-1] == 1
logits = model(x, input_pos)
return sample(logits, **sampling_kwargs)
def decode_n_tokens(model: Transformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, callback=lambda _: _, **sampling_kwargs):
new_tokens, new_probs = [], []
for i in range(num_new_tokens):
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here
next_token, next_prob = decode_one_token(
model, cur_token, input_pos, **sampling_kwargs
)
input_pos += 1
new_tokens.append(next_token.clone())
callback(new_tokens[-1])
new_probs.append(next_prob.clone())
cur_token = next_token.view(1, -1)
return new_tokens, new_probs
def model_forward(model, x, input_pos):
return model(x, input_pos)
def speculative_decode(
model: Transformer,
draft_model: Transformer,
cur_token: torch.Tensor,
input_pos: int,
speculate_k: int,
**sampling_kwargs
) -> torch.Tensor:
# draft model inference sequentially
device = cur_token.device
orig_input_pos = torch.tensor([input_pos], dtype=torch.int64, device=cur_token.device)
draft_tokens, draft_probs = decode_n_tokens(draft_model, cur_token.view(1, -1), orig_input_pos.clone(), speculate_k, **sampling_kwargs)
draft_tokens = torch.cat(draft_tokens)
# parallel inference on target model using draft tokens
target_logits = model_forward(
model,
torch.cat([cur_token.view(1), draft_tokens]).view(1, -1),
torch.arange(input_pos, input_pos + speculate_k + 1, device=cur_token.device)
)
target_probs = logits_to_probs(target_logits[0], **sampling_kwargs)
draft_probs = torch.stack(draft_probs)
# q: target prob, p: draft prob
# q >= p: always accept draft token
# q < p: q/p prob to accept draft token
p = draft_probs[torch.arange(0, speculate_k, device=device), draft_tokens]
q = target_probs[torch.arange(0, speculate_k, device=device), draft_tokens]
accept_draft_prob = torch.minimum(torch.ones(()), q[:speculate_k]/ p)
rejected_locations = (torch.rand_like(accept_draft_prob) > accept_draft_prob).nonzero()
if rejected_locations.shape[0] == 0: # All draft tokens have been accepted
accept_length = speculate_k + 1
last_token = multinomial_sample_one_no_sync(target_probs[-1])
# fill last token into draft model
model_forward(
draft_model,
draft_tokens[-1].view(1, -1),
orig_input_pos + speculate_k,
)
return torch.cat([draft_tokens, last_token])
else:
accept_length = rejected_locations[0].item()
p = draft_probs[accept_length]
q = target_probs[accept_length]
new = q - p
new = torch.where(new > 0, new, 0.0)
new = new / new.sum()
next_token = multinomial_sample_one_no_sync(new)
return torch.cat([draft_tokens[:accept_length], next_token])
@torch.no_grad()
def generate(
model: Transformer,
prompt: torch.Tensor,
max_new_tokens: int,
*,
interactive: bool,
draft_model: Transformer,
speculate_k: Optional[int] = 8,
callback = lambda x: x,
**sampling_kwargs
) -> torch.Tensor:
"""
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
"""
is_speculative = draft_model is not None
# create an empty tensor of the expected final shape and fill in the current tokens
T = prompt.size(0)
T_new = T + max_new_tokens
if interactive:
max_seq_length = 350
else:
max_seq_length = min(T_new, model.config.block_size)
device, dtype = prompt.device, prompt.dtype
max_seq_length = max_seq_length + speculate_k + 1 if is_speculative else max_seq_length
with torch.device(device):
model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length)
if is_speculative and draft_model is not model:
draft_model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length)
# create an empty tensor of the expected final shape and fill in the current tokens
empty = torch.empty(T_new, dtype=dtype, device=device)
empty[:T] = prompt
seq = empty
input_pos = torch.arange(0, T, device=device)
next_token = prefill(model, prompt.view(1, -1), input_pos, **sampling_kwargs).clone()
if is_speculative:
prefill(draft_model, prompt.view(1, -1), input_pos, **sampling_kwargs)
seq[T] = next_token
input_pos = torch.tensor([T], device=device, dtype=torch.int)
accept_counts = [0] * (speculate_k + 1)
if is_speculative:
input_pos = input_pos.item() # for speculative decoding easier to keep on host
while input_pos < T_new - 1:
cur_token = next_token.view(())
next_tokens = speculative_decode(
model, draft_model, cur_token, input_pos, speculate_k, **sampling_kwargs
)
accept_counts[len(next_tokens) - 1] += 1
num_added = min(T_new - input_pos - 1, len(next_tokens))
seq[input_pos + 1 : input_pos + num_added + 1] = next_tokens[: num_added]
for i in next_tokens[: num_added,]:
callback(i)
input_pos = input_pos + num_added
next_token = next_tokens[-1]
else:
generated_tokens, _ = decode_n_tokens(model, next_token.view(1, -1), input_pos, max_new_tokens - 1, callback=callback, **sampling_kwargs)
seq[T + 1:] = torch.cat(generated_tokens)
generate_stats = {
'accept_counts': accept_counts
}
return seq, generate_stats
def encode_tokens(tokenizer, string, bos=True, device=default_device):
tokens = tokenizer.encode(string)
if bos:
tokens = [tokenizer.bos_id()] + tokens
return torch.tensor(tokens, dtype=torch.int, device=device)
def _load_model(checkpoint_path, device, precision, use_tp):
use_cuda = 'cuda' in device
with torch.device('meta'):
model = Transformer.from_name(checkpoint_path.parent.name)
if "int8" in str(checkpoint_path):
print("Using int8 weight-only quantization!")
from quantize import WeightOnlyInt8QuantHandler
simple_quantizer = WeightOnlyInt8QuantHandler(model)
model = simple_quantizer.convert_for_runtime()
if "int4" in str(checkpoint_path):
print("Using int4 weight-only quantization!")
path_comps = checkpoint_path.name.split(".")
groupsize = int(path_comps[-2][1:])
from quantize import WeightOnlyInt4QuantHandler
simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize)
model = simple_quantizer.convert_for_runtime()
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True)
if "model" in checkpoint and "stories" in str(checkpoint_path):
checkpoint = checkpoint["model"]
model.load_state_dict(checkpoint, assign=True)
if use_tp:
from tp import apply_tp
print("Applying tensor parallel to model ...")
apply_tp(model)
model = model.to(device=device, dtype=precision)
return model.eval()
def _get_model_size(model):
model_size = 0
for name, child in model.named_children():
if not isinstance(child, torch.nn.Embedding):
model_size += sum(
[
p.numel() * p.dtype.itemsize
for p in itertools.chain(child.parameters(), child.buffers())
]
)
return model_size
B_INST, E_INST = "[INST]", "[/INST]"
def main(
prompt: str = "Hello, my name is",
interactive: bool = False,
num_samples: int = 5,
max_new_tokens: int = 100,
top_k: int = 200,
temperature: float = 0.8,
checkpoint_path: Path = Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"),
compile: bool = True,
compile_prefill: bool = False,
profile: Optional[Path] = None,
draft_checkpoint_path: Optional[Path] = None,
speculate_k: int = 5,
device=default_device,
) -> None:
"""Generates text samples based on a pre-trained Transformer model and tokenizer.
"""
assert checkpoint_path.is_file(), checkpoint_path
tokenizer_path = checkpoint_path.parent / "tokenizer.model"
assert tokenizer_path.is_file(), str(tokenizer_path)
global print
from tp import maybe_init_dist
rank = maybe_init_dist()
use_tp = rank is not None
if use_tp:
if rank != 0:
# only print on rank 0
print = lambda *args, **kwargs: None
print(f"Using device={device}")
precision = torch.bfloat16
is_speculative = draft_checkpoint_path is not None
is_chat = "chat" in str(checkpoint_path)
print("Loading model ...")
t0 = time.time()
model = _load_model(checkpoint_path, device, precision, use_tp)
if is_speculative:
draft_model = _load_model(draft_checkpoint_path, device, precision, use_tp)
else:
draft_model = None
device_sync(device=device) # MKG
print(f"Time to load model: {time.time() - t0:.02f} seconds")
tokenizer = get_tokenizer(tokenizer_path, checkpoint_path)
encoded = encode_tokens(tokenizer, prompt, bos=True, device=device)
prompt_length = encoded.size(0)
torch.manual_seed(1234)
model_size = _get_model_size(model)
if compile:
if is_speculative and use_tp: # and ("cuda" in device):
torch._inductor.config.triton.cudagraph_trees = False # Bug with cudagraph trees in this case
if is_speculative:
global model_forward, logits_to_prob
model_forward = torch.compile(model_forward, mode="reduce-overhead", fullgraph=True)
global decode_one_token, prefill
decode_one_token = torch.compile(decode_one_token, mode="reduce-overhead", fullgraph=True)
# Uncomment to squeeze more perf out of prefill
if compile_prefill:
prefill = torch.compile(prefill, fullgraph=True, dynamic=True)
aggregate_metrics = {
'tokens_per_sec': [],
'accept_counts': [],
}
start = -1 if compile else 0
for i in range(start, num_samples):
device_sync(device=device) # MKG
if i >= 0 and interactive:
prompt = input("What is your prompt? ")
if is_chat:
prompt = f"{B_INST} {prompt.strip()} {E_INST}"
encoded = encode_tokens(tokenizer, prompt, bos=True, device=device)
if interactive and i >= 0:
buffer = []
period_id = tokenizer.encode('.')[0]
done_generating = False
def callback(x):
nonlocal done_generating
if done_generating:
return
buffer.append(tokenizer.decode([period_id] + x.tolist())[1:])
if x.item() == tokenizer.eos_id():
done_generating = True
if len(buffer) == 4 or done_generating:
print(''.join(buffer), end='', flush=True)
buffer.clear()
# print(, end='', flush=True)
else:
callback = lambda x : x
t0 = time.perf_counter()
import contextlib
if (i != num_samples - 1 or not profile) or (use_tp and rank != 0):
prof = contextlib.nullcontext()
else:
torch.profiler._utils._init_for_cuda_graphs()
prof = torch.profiler.profile()
with prof:
y, metrics = generate(
model,
encoded,
max_new_tokens,
draft_model=draft_model,
speculate_k=speculate_k,
interactive=interactive,
callback=callback,
temperature=temperature,
top_k=top_k,
)
aggregate_metrics['accept_counts'].append(metrics['accept_counts'])
if i == -1:
print(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")
continue
if hasattr(prof, "export_chrome_trace"):
if use_tp:
prof.export_chrome_trace(f"{profile}_rank_{rank}.json")
else:
prof.export_chrome_trace(f"{profile}.json")
device_sync(device=device) # MKG
t = time.perf_counter() - t0
if not interactive:
print(tokenizer.decode(y.tolist()))
else:
print()
tokens_generated = y.size(0) - prompt_length
tokens_sec = tokens_generated / t
aggregate_metrics['tokens_per_sec'].append(tokens_sec)
print(f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_sec:.02f} tokens/sec")
print(f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s")
print("==========")
if is_speculative:
counts_aggregated = [sum(i) for i in zip(*aggregate_metrics['accept_counts'])]
acceptance_probs = [i/sum(counts_aggregated) for i in counts_aggregated]
print(f"Acceptance probs: {acceptance_probs}")
print(f"Mean Accepted: {sum([idx * i for idx, i in enumerate(counts_aggregated)])/sum(counts_aggregated)}")
print(f"Average tokens/sec: {torch.mean(torch.tensor(aggregate_metrics['tokens_per_sec'])).item():.2f}")
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB")
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Your CLI description.')
parser.add_argument('--prompt', type=str, default="Hello, my name is", help='Input prompt.')
parser.add_argument('--interactive', action='store_true', help='Whether to launch in interactive mode')
parser.add_argument('--num_samples', type=int, default=5, help='Number of samples.')
parser.add_argument('--max_new_tokens', type=int, default=200, help='Maximum number of new tokens.')
parser.add_argument('--top_k', type=int, default=200, help='Top-k for sampling.')
parser.add_argument('--temperature', type=float, default=0.8, help='Temperature for sampling.')
parser.add_argument('--checkpoint_path', type=Path, default=Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"), help='Model checkpoint path.')
parser.add_argument('--compile', action='store_true', help='Whether to compile the model.')
parser.add_argument('--compile_prefill', action='store_true', help='Whether to compile the prefill (improves prefill perf, but higher compile times)')
parser.add_argument('--profile', type=Path, default=None, help='Profile path.')
parser.add_argument('--speculate_k', type=int, default=5, help='Speculative execution depth.')
parser.add_argument('--draft_checkpoint_path', type=Path, default=None, help='Draft checkpoint path.')
parser.add_argument('--device', type=str, default=default_device, help='Device to use')
args = parser.parse_args()
main(
args.prompt, args.interactive, args.num_samples, args.max_new_tokens, args.top_k,
args.temperature, args.checkpoint_path, args.compile, args.compile_prefill, args.profile, args.draft_checkpoint_path,
args.speculate_k, args.device
)

View File

@@ -0,0 +1,360 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
def find_multiple(n: int, k: int) -> int:
if n % k == 0:
return n
return n + k - (n % k)
class AdaptiveLayerNorm(nn.Module):
r"""Adaptive Layer Normalization"""
def __init__(self, d_model, norm) -> None:
super(AdaptiveLayerNorm, self).__init__()
self.project_layer = nn.Linear(d_model, 2 * d_model)
self.norm = norm
self.d_model = d_model
self.eps = self.norm.eps
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
if embedding is None:
return self.norm(input)
weight, bias = torch.split(
self.project_layer(embedding),
split_size_or_sections=self.d_model,
dim=-1,
)
return weight * self.norm(input) + bias
@dataclass
class ModelArgs:
block_size: int = 2048
vocab_size: int = 32000
n_layer: int = 32
n_head: int = 32
dim: int = 4096
intermediate_size: int = None
n_local_heads: int = -1
head_dim: int = 64
rope_base: float = 10000
norm_eps: float = 1e-5
has_cross_attention: bool = False
context_dim: int = 0
uvit_skip_connection: bool = False
time_as_token: bool = False
def __post_init__(self):
if self.n_local_heads == -1:
self.n_local_heads = self.n_head
if self.intermediate_size is None:
hidden_dim = 4 * self.dim
n_hidden = int(2 * hidden_dim / 3)
self.intermediate_size = find_multiple(n_hidden, 256)
# self.head_dim = self.dim // self.n_head
@classmethod
def from_name(cls, name: str):
if name in transformer_configs:
return cls(**transformer_configs[name])
# fuzzy search
config = [config for config in transformer_configs if config.lower() in str(name).lower()]
# We may have two or more configs matched (e.g. "7B" and "Mistral-7B"). Find the best config match,
# take longer name (as it have more symbols matched)
if len(config) > 1:
config.sort(key=len, reverse=True)
assert len(config[0]) != len(config[1]), name # make sure only one 'best' match
return cls(**transformer_configs[config[0]])
transformer_configs = {
"CodeLlama-7b-Python-hf": dict(block_size=16384, vocab_size=32000, n_layer=32, dim=4096, rope_base=1000000),
"7B": dict(n_layer=32, n_head=32, dim=4096),
"13B": dict(n_layer=40, n_head=40, dim=5120),
"30B": dict(n_layer=60, n_head=52, dim=6656),
"34B": dict(n_layer=48, n_head=64, dim=8192, vocab_size=32000, n_local_heads=8, intermediate_size=22016,
rope_base=1000000), # CodeLlama-34B-Python-hf
"70B": dict(n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672),
"Mistral-7B": dict(n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=32000),
"stories15M": dict(n_layer=6, n_head=6, dim=288),
"stories110M": dict(n_layer=12, n_head=12, dim=768),
"llama-3-8b": dict(block_size=8192, n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336,
vocab_size=128256, rope_base=500000),
"llama-3-70b": dict(block_size=8192, n_layer=80, n_head=64, n_local_heads=8, dim=8192, intermediate_size=28672,
vocab_size=128256, rope_base=500000),
}
class KVCache(nn.Module):
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16):
super().__init__()
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
def update(self, input_pos, k_val, v_val):
# input_pos: [S], k_val: [B, H, S, D]
assert input_pos.shape[0] == k_val.shape[2]
k_out = self.k_cache
v_out = self.v_cache
k_out[:, :, input_pos] = k_val
v_out[:, :, input_pos] = v_val
return k_out, v_out
class Transformer(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.config = config
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer))
self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
self.freqs_cis: Optional[Tensor] = None
self.mask_cache: Optional[Tensor] = None
self.max_batch_size = -1
self.max_seq_length = -1
def setup_caches(self, max_batch_size, max_seq_length, use_kv_cache=True):
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
return
head_dim = self.config.dim // self.config.n_head
max_seq_length = find_multiple(max_seq_length, 8)
self.max_seq_length = max_seq_length
self.max_batch_size = max_batch_size
dtype = self.norm.project_layer.weight.dtype
device = self.norm.project_layer.weight.device
if not self.training and use_kv_cache:
for b in self.layers:
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype).to(device)
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim,
self.config.rope_base, dtype).to(device)
self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).to(device)
self.use_kv_cache = use_kv_cache
self.uvit_skip_connection = self.config.uvit_skip_connection
if self.uvit_skip_connection:
self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2]
self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2]
else:
self.layers_emit_skip = []
self.layers_receive_skip = []
def forward(self,
x: Tensor,
c: Tensor,
input_pos: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
context: Optional[Tensor] = None,
context_input_pos: Optional[Tensor] = None,
cross_attention_mask: Optional[Tensor] = None,
) -> Tensor:
assert self.freqs_cis is not None, "Caches must be initialized first"
if mask is None: # in case of non-causal model
if not self.training and self.use_kv_cache:
mask = self.causal_mask[None, None, input_pos]
else:
mask = self.causal_mask[None, None, input_pos]
mask = mask[..., input_pos]
freqs_cis = self.freqs_cis[input_pos]
if context is not None:
context_freqs_cis = self.freqs_cis[context_input_pos]
else:
context_freqs_cis = None
skip_in_x_list = []
for i, layer in enumerate(self.layers):
if self.uvit_skip_connection and i in self.layers_receive_skip:
skip_in_x = skip_in_x_list.pop(-1)
else:
skip_in_x = None
x = layer(x, c, input_pos, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask, skip_in_x)
if self.uvit_skip_connection and i in self.layers_emit_skip:
skip_in_x_list.append(x)
x = self.norm(x, c)
return x
@classmethod
def from_name(cls, name: str):
return cls(ModelArgs.from_name(name))
class TransformerBlock(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.attention = Attention(config)
self.feed_forward = FeedForward(config)
self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
if config.has_cross_attention:
self.has_cross_attention = True
self.cross_attention = Attention(config, is_cross_attention=True)
self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
else:
self.has_cross_attention = False
if config.uvit_skip_connection:
self.skip_in_linear = nn.Linear(config.dim * 2, config.dim)
self.uvit_skip_connection = True
else:
self.uvit_skip_connection = False
self.time_as_token = config.time_as_token
def forward(self,
x: Tensor,
c: Tensor,
input_pos: Tensor,
freqs_cis: Tensor,
mask: Tensor,
context: Optional[Tensor] = None,
context_freqs_cis: Optional[Tensor] = None,
cross_attention_mask: Optional[Tensor] = None,
skip_in_x: Optional[Tensor] = None,
) -> Tensor:
c = None if self.time_as_token else c
if self.uvit_skip_connection and skip_in_x is not None:
x = self.skip_in_linear(torch.cat([x, skip_in_x], dim=-1))
h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask, input_pos)
if self.has_cross_attention:
h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, input_pos, context, context_freqs_cis)
out = h + self.feed_forward(self.ffn_norm(h, c))
return out
class Attention(nn.Module):
def __init__(self, config: ModelArgs, is_cross_attention: bool = False):
super().__init__()
assert config.dim % config.n_head == 0
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
# key, query, value projections for all heads, but in a batch
if is_cross_attention:
self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False)
self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False)
else:
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False)
self.kv_cache = None
self.n_head = config.n_head
self.head_dim = config.head_dim
self.n_local_heads = config.n_local_heads
self.dim = config.dim
# self._register_load_state_dict_pre_hook(self.load_hook)
# def load_hook(self, state_dict, prefix, *args):
# if prefix + "wq.weight" in state_dict:
# wq = state_dict.pop(prefix + "wq.weight")
# wk = state_dict.pop(prefix + "wk.weight")
# wv = state_dict.pop(prefix + "wv.weight")
# state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def forward(self,
x: Tensor,
freqs_cis: Tensor,
mask: Tensor,
input_pos: Optional[Tensor] = None,
context: Optional[Tensor] = None,
context_freqs_cis: Optional[Tensor] = None,
) -> Tensor:
bsz, seqlen, _ = x.shape
kv_size = self.n_local_heads * self.head_dim
if context is None:
q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1)
context_seqlen = seqlen
else:
q = self.wq(x)
k, v = self.wkv(context).split([kv_size, kv_size], dim=-1)
context_seqlen = context.shape[1]
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
if self.kv_cache is not None:
k, v = self.kv_cache.update(input_pos, k, v)
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head)
y = self.wo(y)
return y
class FeedForward(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
def forward(self, x: Tensor) -> Tensor:
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(
seq_len: int, n_elem: int, base: int = 10000,
dtype: torch.dtype = torch.bfloat16
) -> Tensor:
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache.to(dtype=dtype)
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)

View File

@@ -0,0 +1,622 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import time
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from tokenizer import get_tokenizer
try:
from GPTQ import GenericGPTQRunner, InputRecorder
from eval import get_task_dict, evaluate, lm_eval
except:
pass
from model import Transformer
##### Quantization Primitives ######
def dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype):
# assumes symmetric quantization
# assumes axis == 0
# assumes dense memory format
# TODO(future): relax ^ as needed
# default setup for affine quantization of activations
eps = torch.finfo(torch.float32).eps
# get min and max
min_val, max_val = torch.aminmax(x, dim=1)
# calculate scales and zero_points based on min and max
# reference: https://fburl.com/code/srbiybme
min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
device = min_val_neg.device
# reference: https://fburl.com/code/4wll53rk
max_val_pos = torch.max(-min_val_neg, max_val_pos)
scales = max_val_pos / (float(quant_max - quant_min) / 2)
# ensure scales is the same dtype as the original tensor
scales = torch.clamp(scales, min=eps).to(x.dtype)
zero_points = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device)
# quantize based on qmin/qmax/scales/zp
# reference: https://www.internalfb.com/code/fbsource/[8edc275012b1]/fbcode/caffe2/torch/ao/quantization/fx/_decomposed.py?lines=63
x_div = x / scales.unsqueeze(-1)
x_round = torch.round(x_div)
x_zp = x_round + zero_points.unsqueeze(-1)
quant = torch.clamp(x_zp, quant_min, quant_max).to(target_dtype)
return quant, scales, zero_points
def get_group_qparams(w, n_bit=4, groupsize=128):
# needed for GPTQ with padding
if groupsize > w.shape[-1]:
groupsize = w.shape[-1]
assert groupsize > 1
assert w.shape[-1] % groupsize == 0
assert w.dim() == 2
to_quant = w.reshape(-1, groupsize)
assert torch.isnan(to_quant).sum() == 0
max_val = to_quant.amax(dim=1, keepdim=True)
min_val = to_quant.amin(dim=1, keepdim=True)
max_int = 2**n_bit - 1
scales = (max_val - min_val).clamp(min=1e-6) / max_int
zeros = min_val + scales * (2 ** (n_bit - 1))
return scales.to(torch.bfloat16).reshape(w.shape[0], -1), zeros.to(
torch.bfloat16
).reshape(w.shape[0], -1)
def pack_scales_and_zeros(scales, zeros):
assert scales.shape == zeros.shape
assert scales.dtype == torch.bfloat16
assert zeros.dtype == torch.bfloat16
return (
torch.cat(
[
scales.reshape(scales.size(0), scales.size(1), 1),
zeros.reshape(zeros.size(0), zeros.size(1), 1),
],
2,
)
.transpose(0, 1)
.contiguous()
)
def unpack_scales_and_zeros(scales_and_zeros):
assert len(scales_and_zeros.shape) == 3 and scales_and_zeros.shape[2] == 2
assert scales_and_zeros.dtype == torch.float
return torch.split(scales_and_zeros.transpose(0, 1), 1, 2)
def group_quantize_tensor_from_qparams(w, scales, zeros, n_bit=4, groupsize=128):
assert groupsize > 1
# needed for GPTQ single column quantize
if groupsize > w.shape[-1] and scales.shape[-1] == 1:
groupsize = w.shape[-1]
assert w.shape[-1] % groupsize == 0
assert w.dim() == 2
to_quant = w.reshape(-1, groupsize)
assert torch.isnan(to_quant).sum() == 0
scales = scales.reshape(-1, 1)
zeros = zeros.reshape(-1, 1)
min_val = zeros - scales * (2 ** (n_bit - 1))
max_int = 2**n_bit - 1
min_int = 0
w_int32 = (
to_quant.sub(min_val)
.div(scales)
.round()
.clamp_(min_int, max_int)
.to(torch.int32)
.reshape_as(w)
)
return w_int32
def group_quantize_tensor(w, n_bit=4, groupsize=128):
scales, zeros = get_group_qparams(w, n_bit, groupsize)
w_int32 = group_quantize_tensor_from_qparams(w, scales, zeros, n_bit, groupsize)
scales_and_zeros = pack_scales_and_zeros(scales, zeros)
return w_int32, scales_and_zeros
def group_dequantize_tensor_from_qparams(
w_int32, scales, zeros, n_bit=4, groupsize=128
):
assert groupsize > 1
# needed for GPTQ single column dequantize
if groupsize > w_int32.shape[-1] and scales.shape[-1] == 1:
groupsize = w_int32.shape[-1]
assert w_int32.shape[-1] % groupsize == 0
assert w_int32.dim() == 2
w_int32_grouped = w_int32.reshape(-1, groupsize)
scales = scales.reshape(-1, 1)
zeros = zeros.reshape(-1, 1)
w_dq = (
w_int32_grouped.sub(2 ** (n_bit - 1)).mul(scales).add(zeros).reshape_as(w_int32)
)
return w_dq
def group_dequantize_tensor(w_int32, scales_and_zeros, n_bit=4, groupsize=128):
scales, zeros = unpack_scales_and_zeros(scales_and_zeros)
return group_dequantize_tensor_from_qparams(
w_int32, scales, zeros, n_bit, groupsize
)
class QuantHandler:
def __init__(self, mod):
self.mod = mod
def create_quantized_state_dict(self) -> "StateDict":
pass
def convert_for_runtime(self) -> "nn.Module":
pass
class GPTQQuantHandler(QuantHandler):
"""
This class implements a GPTQ QuantHandler that can be used to apply GPTQ to a model in concert with the GenericGPTQRunner class.
Unlike the base QuantHandler class, the user does not need to implement the create_quantized_state_dict, instead they have to reimplement
__init__ such that it defines the functions for the quantization mode. User is expected to reimplement convert_for_runtime.
The following functions (which must be defined in __init__) are used to define the quantization mode for both GPTQ and
create_quantized_state_dict. Here is a description of each function.
get_qparams_func:
A function that calculates the quantization qparams for an input tensor.
Args:
weight: A 2d weight tensor with non-integer dtype.
Returns:
qparams: it can have any format but will need to be handled by the other defined functions below.
quantize_func:
A function that applies quantization to an input tensor. It should be noted
that this function needs to be able to handle quantizing the entire weight tensor, a single group,
or a single column.
Args:
weight: A 2d weight tensor with non-integer dtype.
qparams: the output from get_qparams_func
Returns:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
dequantize_func:
A function that dequantizes an input quantized weight tensor. It should be noted
that this function needs to be able to handle dequantizing the entire weight tensor, a single group,
or a single column.
Args:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
qparams: the output from get_qparams_func
Returns:
weight: A 2d weight tensor with non-integer dtype.
combine_qparams_list_func:
A function that combines several qparams into one qparam.
Args:
qparams_list: a list of qparams objects, each obtained by calling get_qparams_func
on a single group from a weight tensor
Returns:
qparams: an object of the same format as the qparams above.
skip_layer_func:
A function that determines which linear layers should be skipped during GPTQ
Args:
weight: A 2d weight tensor with non-integer dtype.
Returns:
skip: boolean indicating whether layer should be skipped
make_names_and_values_dict_func:
A function that prepares the qparams and quantized_weight and creates a dictionary indicating how they
should be inserted into the state_dict. Generally any packing of the weight and qparams should be done here.
Args:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
qparams: the output from get_qparams_func
Returns:
names_and_values_dict: a dictionary mapping the name of the parameters of the quantized module to the
corresponding quantized weights and qparams.
"""
def __init__(self):
assert self.mod is not None
assert self.get_qparams_func is not None
assert self.quantize_func is not None
assert self.dequantize_func is not None
assert self.combine_qparams_list_func is not None
assert self.make_names_and_values_dict_func is not None
@staticmethod
def get_inputs(model, tokenizer, calibration_tasks, calibration_limit, calibration_seq_length, pad_calibration_inputs) -> "MultiInput":
input_recorder = InputRecorder(
model,
tokenizer,
calibration_seq_length,
pad_calibration_inputs,
)
try:
lm_eval.tasks.initialize_tasks()
except:
pass
task_dict = get_task_dict(calibration_tasks)
print("Obtaining GPTQ calibration inputs on: ", calibration_tasks)
evaluate(
input_recorder,
task_dict,
limit=calibration_limit,
)
inputs = input_recorder.get_recorded_inputs()
assert inputs is not None, (
f"No inputs were collected, use a task other than {calibration_tasks}, "+
f"use option pad_calibration_inputs, or decrease calibration_sequence_length (currently "+
f"{calibration_seq_length})"
)
print(f"Obtained {len(inputs[0].values)} calibration samples")
return inputs
@torch.no_grad()
def create_quantized_state_dict(
self,
tokenizer,
blocksize,
percdamp,
groupsize,
calibration_tasks,
calibration_limit,
calibration_seq_length,
pad_calibration_inputs,
) -> "StateDict":
inputs = GPTQQuantHandler.get_inputs(self.mod, tokenizer, calibration_tasks, calibration_limit, calibration_seq_length, pad_calibration_inputs)
print("Tracing model for GPTQ")
GPTQ_runner = GenericGPTQRunner(
self.mod,
inputs,
blocksize,
percdamp,
groupsize,
).configure_quantization_mode(
self.get_qparams_func,
self.quantize_func,
self.dequantize_func,
self.combine_qparams_list_func,
self.make_names_and_values_dict_func,
self.skip_layer_func
)
print("Applying GPTQ to weights")
GPTQ_runner.run()
return GPTQ_runner.get_quantized_state_dict()
def convert_for_runtime(self) -> "nn.Module":
pass
##### Weight-only int8 per-channel quantized code ######
def replace_linear_weight_only_int8_per_channel(module):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
setattr(module, name, WeightOnlyInt8Linear(child.in_features, child.out_features))
else:
replace_linear_weight_only_int8_per_channel(child)
class WeightOnlyInt8QuantHandler:
def __init__(self, mod):
self.mod = mod
@torch.no_grad()
def create_quantized_state_dict(self):
cur_state_dict = self.mod.state_dict()
for fqn, mod in self.mod.named_modules():
if isinstance(mod, torch.nn.Linear):
int8_weight, scales, _ = dynamically_quantize_per_channel(mod.weight.float(), -128, 127, torch.int8)
cur_state_dict[f"{fqn}.weight"] = int8_weight
cur_state_dict[f"{fqn}.scales"] = scales.to(mod.weight.dtype)
return cur_state_dict
def convert_for_runtime(self):
replace_linear_weight_only_int8_per_channel(self.mod)
return self.mod
class WeightOnlyInt8Linear(torch.nn.Module):
__constants__ = ['in_features', 'out_features']
in_features: int
out_features: int
weight: torch.Tensor
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
self.register_buffer("scales", torch.ones(out_features, dtype=torch.bfloat16))
def forward(self, input: torch.Tensor) -> torch.Tensor:
return F.linear(input, self.weight.to(dtype=input.dtype)) * self.scales
##### weight only int4 per channel groupwise quantized code ######
def prepare_int4_weight_and_scales_and_zeros(weight_bf16, groupsize, inner_k_tiles):
weight_int32, scales_and_zeros = group_quantize_tensor(
weight_bf16, n_bit=4, groupsize=groupsize
)
weight_int4pack = torch.ops.aten._convert_weight_to_int4pack(weight_int32, inner_k_tiles)
return weight_int4pack, scales_and_zeros
def linear_forward_int4(x, weight_int4pack, scales_and_zeros, out_features, groupsize):
origin_x_size = x.size()
x = x.reshape(-1, origin_x_size[-1])
c = torch.ops.aten._weight_int4pack_mm(x, weight_int4pack, groupsize, scales_and_zeros)
new_shape = origin_x_size[:-1] + (out_features,)
c = c.reshape(new_shape)
return c
def _check_linear_int4_k(k, groupsize = 1, inner_k_tiles = 1):
return k % groupsize == 0 and k % (inner_k_tiles * 16) == 0
def replace_linear_int4(module, groupsize, inner_k_tiles, padding):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
if _check_linear_int4_k(child.in_features, groupsize, inner_k_tiles):
setattr(module, name, WeightOnlyInt4Linear(
child.in_features, child.out_features, bias=False,
groupsize=groupsize, inner_k_tiles=inner_k_tiles, padding=False,
))
elif padding:
setattr(module, name, WeightOnlyInt4Linear(
child.in_features, child.out_features, bias=False,
groupsize=groupsize, inner_k_tiles=inner_k_tiles, padding=True,
))
else:
replace_linear_int4(child, groupsize, inner_k_tiles, padding)
class WeightOnlyInt4QuantHandler:
def __init__(self, mod, groupsize=128, inner_k_tiles=8, padding=True):
self.mod = mod
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
self.padding = padding
assert groupsize in [32, 64, 128, 256]
assert inner_k_tiles in [2, 4, 8]
@torch.no_grad()
def create_quantized_state_dict(self, use_cuda = True):
if use_cuda:
device="cuda"
else:
device="cpu"
cur_state_dict = self.mod.state_dict()
for fqn, mod in self.mod.named_modules():
if isinstance(mod, torch.nn.Linear):
assert not mod.bias
out_features = mod.out_features
in_features = mod.in_features
assert out_features % 8 == 0, "require out_features % 8 == 0"
print(f"linear: {fqn}, in={in_features}, out={out_features}")
weight = mod.weight.data
if not _check_linear_int4_k(in_features, self.groupsize, self.inner_k_tiles):
if self.padding:
from model import find_multiple
import torch.nn.functional as F
print(f"warning: {fqn} is padded to satisfy in_features % 1024 == 0")
padded_in_features = find_multiple(in_features, 1024)
weight = F.pad(weight, pad=(0, padded_in_features - in_features))
else:
print(f"warning: {fqn} is skipped, int4 requires that in_features is 32, 64, or is divisible by 1024, " +
"and that groupsize and inner_k_tiles*16 evenly divide into it")
continue
weight_int4pack, scales_and_zeros = prepare_int4_weight_and_scales_and_zeros(
weight.to(torch.bfloat16).to(device=device), self.groupsize, self.inner_k_tiles
)
cur_state_dict[f"{fqn}.weight"] = weight_int4pack.to('cpu')
cur_state_dict[f"{fqn}.scales_and_zeros"] = scales_and_zeros.to('cpu')
return cur_state_dict
def convert_for_runtime(self):
replace_linear_int4(self.mod, self.groupsize, self.inner_k_tiles, self.padding)
return self.mod
class WeightOnlyInt4GPTQQuantHandler(GPTQQuantHandler):
def __init__(self, mod, groupsize=128, inner_k_tiles=8, padding=True):
from model import find_multiple
self.mod = mod
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
self.padding = padding
self.get_qparams_func = lambda w: get_group_qparams(w, 4, groupsize)
self.quantize_func = lambda w, qparams: \
group_quantize_tensor_from_qparams(w, qparams[0], qparams[1], 4, groupsize)
self.dequantize_func = lambda q, qparams: \
group_dequantize_tensor_from_qparams(q, qparams[0], qparams[1], 4, groupsize).float()
self.combine_qparams_list_func = lambda qparams_list: \
[torch.cat(x, dim=1) for x in zip(*qparams_list)]
# skip unless padding=True or its correctly sized
self.skip_layer_func = lambda linear_weight: not (
_check_linear_int4_k(linear_weight.shape[-1], groupsize, inner_k_tiles) or padding
)
# we need to do the padding here, both for q and the qparams if necessary
def make_names_and_values_dict_func(q, qparams):
k = q.shape[1]
new_k = find_multiple(k, 1024)
# how much we need to pad the weight
delta_k = new_k - q.shape[1]
final_q = torch.ops.aten._convert_weight_to_int4pack(F.pad(q, pad=(0, delta_k)), inner_k_tiles)
scales_and_zeros = pack_scales_and_zeros(*qparams)
# how many new groups we need for padded weight
delta_groups = new_k // groupsize - scales_and_zeros.shape[0]
final_s_and_z = F.pad(scales_and_zeros, pad=(0,0,0,0,0, delta_groups), value=1)
return {"weight": final_q, "scales_and_zeros": final_s_and_z}
self.make_names_and_values_dict_func = make_names_and_values_dict_func
super().__init__()
def convert_for_runtime(self):
replace_linear_int4(self.mod, self.groupsize, self.inner_k_tiles, self.padding)
return self.mod
class WeightOnlyInt4Linear(torch.nn.Module):
__constants__ = ['in_features', 'out_features']
in_features: int
out_features: int
weight: torch.Tensor
def __init__(
self, in_features: int, out_features: int,
bias=True, device=None, dtype=None, groupsize: int = 128, inner_k_tiles: int = 8, padding: bool = True,
) -> None:
super().__init__()
self.padding = padding
if padding:
from model import find_multiple
self.origin_in_features = in_features
in_features = find_multiple(in_features, 1024)
self.in_features = in_features
self.out_features = out_features
assert not bias, "require bias=False"
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
assert out_features % 8 == 0, "require out_features % 8 == 0"
assert in_features % (inner_k_tiles * 16) == 0, "require in_features % (innerKTiles * 16) == 0"
self.register_buffer(
"weight",
torch.empty((out_features // 8, in_features // (inner_k_tiles * 16), 32, inner_k_tiles // 2), dtype=torch.int32)
)
self.register_buffer(
"scales_and_zeros",
torch.empty((in_features // groupsize, out_features, 2), dtype=torch.bfloat16)
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
input = input.to(torch.bfloat16)
if self.padding:
import torch.nn.functional as F
input = F.pad(input, pad=(0, self.in_features - self.origin_in_features))
return linear_forward_int4(
input,
self.weight, self.scales_and_zeros, self.out_features, self.groupsize
)
def quantize(
checkpoint_path: Path = Path("checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"),
mode: str = 'int8',
# following arguments only available when setting int4 quantization.
groupsize: int = 128,
# following arguments only used for GPTQ
calibration_tasks: list = ["hellaswag"],
calibration_limit: int = 1000,
calibration_seq_length: int = 100,
pad_calibration_inputs: bool = False,
percdamp: float = .01,
blocksize: int = 128,
label: str = '',
) -> None:
assert checkpoint_path.is_file(), checkpoint_path
device = 'cpu'
precision = torch.bfloat16
print("Loading model ...")
t0 = time.time()
with torch.device('meta'):
model = Transformer.from_name(checkpoint_path.parent.name)
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True)
model.load_state_dict(checkpoint, assign=True)
model = model.to(dtype=precision, device=device)
if mode == 'int8':
print("Quantizing model weights for int8 weight-only symmetric per-channel quantization")
quant_handler = WeightOnlyInt8QuantHandler(model)
quantized_state_dict = quant_handler.create_quantized_state_dict()
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace('.pth', f'{label}int8.pth')
elif mode == 'int4':
print("Quantizing model weights for int4 weight-only affine per-channel groupwise quantization")
quant_handler = WeightOnlyInt4QuantHandler(model, groupsize)
quantized_state_dict = quant_handler.create_quantized_state_dict()
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace('.pth', f"{label}int4.g{groupsize}.pth")
elif mode == 'int4-gptq':
print("Quantizing model weights for int4 weight-only affine per-channel groupwise quantization using GPTQ...")
quant_handler = WeightOnlyInt4GPTQQuantHandler(model, groupsize)
tokenizer_path = checkpoint_path.parent / "tokenizer.model"
assert tokenizer_path.is_file(), str(tokenizer_path)
tokenizer = get_tokenizer(tokenizer_path, checkpoint_path)
quantized_state_dict = quant_handler.create_quantized_state_dict(
tokenizer,
blocksize,
percdamp,
groupsize,
calibration_tasks,
calibration_limit,
calibration_seq_length,
pad_calibration_inputs
)
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace('.pth', f"{label}int4-gptq.g{groupsize}.pth")
else:
raise ValueError(f"Invalid quantization mode {mode} needs to be one of [int8, int4, int4-gpptq]")
quantize_path = dir_name / new_base_name
print(f"Writing quantized weights to {quantize_path}")
quantize_path.unlink(missing_ok=True) # remove existing file if one already there
torch.save(quantized_state_dict, quantize_path)
print(f"Quantization complete took {time.time() - t0:.02f} seconds")
return
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Quantize a model.')
parser.add_argument('--checkpoint_path', type=Path, default=Path("checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"), help='Path to the model checkpoint to be quantized.')
parser.add_argument('--mode', '-q', type=str, default='int8', choices=['int8', 'int4', 'int4-gptq'], help='type of quantization to perform')
parser.add_argument('--groupsize', type=int, default=32, help='Group size for int4 quantization.')
parser.add_argument('--calibration_tasks', type=str, nargs='+', default=['wikitext'], help='tasks to do gptq calibration on, if doing gptq')
parser.add_argument('--calibration_limit', type=int, default=1000, help='number of samples to use for gptq calibration')
parser.add_argument('--calibration_seq_length', type=int, default=100, help='length of sequences to use for gptq calibration')
parser.add_argument('--pad_calibration_inputs', type=bool, default=False, help='pads sequences shorter than calibration_seq_length to that length, yielding more calibration inputs but running much slower')
parser.add_argument('--percdamp', type=float, default=.01, help='gptq percentage dampening')
parser.add_argument('--blocksize', type=int, default=128, help='blocksize for gptq')
parser.add_argument('--label', type=str, default='_', help='label to add to output filename')
args = parser.parse_args()
quantize(args.checkpoint_path, args.mode, args.groupsize, args.calibration_tasks, args.calibration_limit, args.calibration_seq_length, args.pad_calibration_inputs, args.percdamp, args.blocksize, args.label)

View File

@@ -0,0 +1,55 @@
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
class ConvRNNF0Predictor(nn.Module):
def __init__(self,
num_class: int = 1,
in_channels: int = 80,
cond_channels: int = 512
):
super().__init__()
self.num_class = num_class
self.condnet = nn.Sequential(
weight_norm(
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm(
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm(
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm(
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm(
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
)
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.condnet(x)
x = x.transpose(1, 2)
return torch.abs(self.classifier(x).squeeze(-1))

View File

@@ -0,0 +1,454 @@
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HIFI-GAN"""
import typing as tp
import numpy as np
from scipy.signal import get_window
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Conv1d
from torch.nn import ConvTranspose1d
from torch.nn.utils import remove_weight_norm
from torch.nn.utils import weight_norm
from torch.distributions.uniform import Uniform
from torch import sin
from torch.nn.parameter import Parameter
"""hifigan based generator implementation.
This code is modified from https://github.com/jik876/hifi-gan
,https://github.com/kan-bayashi/ParallelWaveGAN and
https://github.com/NVIDIA/BigVGAN
"""
class Snake(nn.Module):
'''
Implementation of a sine-based periodic activation function
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter
References:
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snake(256)
>>> x = torch.randn(256)
>>> x = a1(x)
'''
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
'''
Initialization.
INPUT:
- in_features: shape of the input
- alpha: trainable parameter
alpha is initialized to 1 by default, higher values = higher-frequency.
alpha will be trained along with the rest of your model.
'''
super(Snake, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
'''
Forward pass of the function.
Applies the function to the input elementwise.
Snake = x + 1/a * sin^2 (xa)
'''
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
if self.alpha_logscale:
alpha = torch.exp(alpha)
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
class ResBlock(torch.nn.Module):
"""Residual block module in HiFiGAN/BigVGAN."""
def __init__(
self,
channels: int = 512,
kernel_size: int = 3,
dilations: tp.List[int] = [1, 3, 5],
):
super(ResBlock, self).__init__()
self.convs1 = nn.ModuleList()
self.convs2 = nn.ModuleList()
for dilation in dilations:
self.convs1.append(
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation,
padding=get_padding(kernel_size, dilation)
)
)
)
self.convs2.append(
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1)
)
)
)
self.convs1.apply(init_weights)
self.convs2.apply(init_weights)
self.activations1 = nn.ModuleList([
Snake(channels, alpha_logscale=False)
for _ in range(len(self.convs1))
])
self.activations2 = nn.ModuleList([
Snake(channels, alpha_logscale=False)
for _ in range(len(self.convs2))
])
def forward(self, x: torch.Tensor) -> torch.Tensor:
for idx in range(len(self.convs1)):
xt = self.activations1[idx](x)
xt = self.convs1[idx](xt)
xt = self.activations2[idx](xt)
xt = self.convs2[idx](xt)
x = xt + x
return x
def remove_weight_norm(self):
for idx in range(len(self.convs1)):
remove_weight_norm(self.convs1[idx])
remove_weight_norm(self.convs2[idx])
class SineGen(torch.nn.Module):
""" Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(self, samp_rate, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
def _f02uv(self, f0):
# generate uv signal
uv = (f0 > self.voiced_threshold).type(torch.float32)
return uv
@torch.no_grad()
def forward(self, f0):
"""
:param f0: [B, 1, sample_len], Hz
:return: [B, 1, sample_len]
"""
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
for i in range(self.harmonic_num + 1):
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
u_dist = Uniform(low=-np.pi, high=np.pi)
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
phase_vec[:, 0, :] = 0
# generate sine waveforms
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
# generate uv signal
uv = self._f02uv(f0)
# noise: for unvoiced should be similar to sine_amp
# std = self.sine_amp/3 -> max value ~ self.sine_amp
# . for voiced regions is self.noise_std
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
# first: set the unvoiced part to 0 by uv
# then: additive noise
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
""" SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
sine_amp, add_noise_std, voiced_threshod)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
"""
# source for harmonic branch
with torch.no_grad():
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
sine_wavs = sine_wavs.transpose(1, 2)
uv = uv.transpose(1, 2)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.sine_amp / 3
return sine_merge, noise, uv
class HiFTGenerator(nn.Module):
"""
HiFTNet Generator: Neural Source Filter + ISTFTNet
https://arxiv.org/abs/2309.09493
"""
def __init__(
self,
in_channels: int = 80,
base_channels: int = 512,
nb_harmonics: int = 8,
sampling_rate: int = 22050,
nsf_alpha: float = 0.1,
nsf_sigma: float = 0.003,
nsf_voiced_threshold: float = 10,
upsample_rates: tp.List[int] = [8, 8],
upsample_kernel_sizes: tp.List[int] = [16, 16],
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
source_resblock_kernel_sizes: tp.List[int] = [7, 11],
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
lrelu_slope: float = 0.1,
audio_limit: float = 0.99,
f0_predictor: torch.nn.Module = None,
):
super(HiFTGenerator, self).__init__()
self.out_channels = 1
self.nb_harmonics = nb_harmonics
self.sampling_rate = sampling_rate
self.istft_params = istft_params
self.lrelu_slope = lrelu_slope
self.audio_limit = audio_limit
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.m_source = SourceModuleHnNSF(
sampling_rate=sampling_rate,
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
harmonic_num=nb_harmonics,
sine_amp=nsf_alpha,
add_noise_std=nsf_sigma,
voiced_threshod=nsf_voiced_threshold)
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
self.conv_pre = weight_norm(
Conv1d(in_channels, base_channels, 7, 1, padding=3)
)
# Up
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm(
ConvTranspose1d(
base_channels // (2**i),
base_channels // (2**(i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
# Down
self.source_downs = nn.ModuleList()
self.source_resblocks = nn.ModuleList()
downsample_rates = [1] + upsample_rates[::-1][:-1]
downsample_cum_rates = np.cumprod(downsample_rates)
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
source_resblock_dilation_sizes)):
if u == 1:
self.source_downs.append(
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
)
else:
self.source_downs.append(
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
)
self.source_resblocks.append(
ResBlock(base_channels // (2 ** (i + 1)), k, d)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = base_channels // (2**(i + 1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(ResBlock(ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.reflection_pad = nn.ReflectionPad1d((1, 0))
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
self.f0_predictor = f0_predictor
def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
har_source, _, _ = self.m_source(f0)
return har_source.transpose(1, 2)
def _stft(self, x):
spec = torch.stft(
x,
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
return_complex=True)
spec = torch.view_as_real(spec) # [B, F, TT, 2]
return spec[..., 0], spec[..., 1]
def _istft(self, magnitude, phase):
magnitude = torch.clip(magnitude, max=1e2)
real = magnitude * torch.cos(phase)
img = magnitude * torch.sin(phase)
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
return inverse_transform
def forward(self, x: torch.Tensor, f0=None) -> torch.Tensor:
if f0 is None:
f0 = self.f0_predictor(x)
s = self._f02source(f0)
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, self.lrelu_slope)
x = self.ups[i](x)
if i == self.num_upsamples - 1:
x = self.reflection_pad(x)
# fusion
si = self.source_downs[i](s_stft)
si = self.source_resblocks[i](si)
x = x + si
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
x = self._istft(magnitude, phase)
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
self.source_module.remove_weight_norm()
for l in self.source_downs:
remove_weight_norm(l)
for l in self.source_resblocks:
l.remove_weight_norm()
@torch.inference_mode()
def inference(self, mel: torch.Tensor, f0=None) -> torch.Tensor:
return self.forward(x=mel, f0=f0)

View File

@@ -0,0 +1,354 @@
import math
import torch
from torch import nn
from typing import Optional, Any
from torch import Tensor
import torch.nn.functional as F
import torchaudio
import torchaudio.functional as audio_F
import random
random.seed(0)
def _get_activation_fn(activ):
if activ == 'relu':
return nn.ReLU()
elif activ == 'lrelu':
return nn.LeakyReLU(0.2)
elif activ == 'swish':
return lambda x: x*torch.sigmoid(x)
else:
raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class ConvNorm(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
super(ConvNorm, self).__init__()
if padding is None:
assert(kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = torch.nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
def forward(self, signal):
conv_signal = self.conv(signal)
return conv_signal
class CausualConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
super(CausualConv, self).__init__()
if padding is None:
assert(kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2) * 2
else:
self.padding = padding * 2
self.conv = nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=self.padding,
dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
def forward(self, x):
x = self.conv(x)
x = x[:, :, :-self.padding]
return x
class CausualBlock(nn.Module):
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
super(CausualBlock, self).__init__()
self.blocks = nn.ModuleList([
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
for i in range(n_conv)])
def forward(self, x):
for block in self.blocks:
res = x
x = block(x)
x += res
return x
def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
layers = [
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
_get_activation_fn(activ),
nn.BatchNorm1d(hidden_dim),
nn.Dropout(p=dropout_p),
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
_get_activation_fn(activ),
nn.Dropout(p=dropout_p)
]
return nn.Sequential(*layers)
class ConvBlock(nn.Module):
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
super().__init__()
self._n_groups = 8
self.blocks = nn.ModuleList([
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
for i in range(n_conv)])
def forward(self, x):
for block in self.blocks:
res = x
x = block(x)
x += res
return x
def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
layers = [
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
_get_activation_fn(activ),
nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
nn.Dropout(p=dropout_p),
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
_get_activation_fn(activ),
nn.Dropout(p=dropout_p)
]
return nn.Sequential(*layers)
class LocationLayer(nn.Module):
def __init__(self, attention_n_filters, attention_kernel_size,
attention_dim):
super(LocationLayer, self).__init__()
padding = int((attention_kernel_size - 1) / 2)
self.location_conv = ConvNorm(2, attention_n_filters,
kernel_size=attention_kernel_size,
padding=padding, bias=False, stride=1,
dilation=1)
self.location_dense = LinearNorm(attention_n_filters, attention_dim,
bias=False, w_init_gain='tanh')
def forward(self, attention_weights_cat):
processed_attention = self.location_conv(attention_weights_cat)
processed_attention = processed_attention.transpose(1, 2)
processed_attention = self.location_dense(processed_attention)
return processed_attention
class Attention(nn.Module):
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
attention_location_n_filters, attention_location_kernel_size):
super(Attention, self).__init__()
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
bias=False, w_init_gain='tanh')
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
w_init_gain='tanh')
self.v = LinearNorm(attention_dim, 1, bias=False)
self.location_layer = LocationLayer(attention_location_n_filters,
attention_location_kernel_size,
attention_dim)
self.score_mask_value = -float("inf")
def get_alignment_energies(self, query, processed_memory,
attention_weights_cat):
"""
PARAMS
------
query: decoder output (batch, n_mel_channels * n_frames_per_step)
processed_memory: processed encoder outputs (B, T_in, attention_dim)
attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
RETURNS
-------
alignment (batch, max_time)
"""
processed_query = self.query_layer(query.unsqueeze(1))
processed_attention_weights = self.location_layer(attention_weights_cat)
energies = self.v(torch.tanh(
processed_query + processed_attention_weights + processed_memory))
energies = energies.squeeze(-1)
return energies
def forward(self, attention_hidden_state, memory, processed_memory,
attention_weights_cat, mask):
"""
PARAMS
------
attention_hidden_state: attention rnn last output
memory: encoder outputs
processed_memory: processed encoder outputs
attention_weights_cat: previous and cummulative attention weights
mask: binary mask for padded data
"""
alignment = self.get_alignment_energies(
attention_hidden_state, processed_memory, attention_weights_cat)
if mask is not None:
alignment.data.masked_fill_(mask, self.score_mask_value)
attention_weights = F.softmax(alignment, dim=1)
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
attention_context = attention_context.squeeze(1)
return attention_context, attention_weights
class ForwardAttentionV2(nn.Module):
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
attention_location_n_filters, attention_location_kernel_size):
super(ForwardAttentionV2, self).__init__()
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
bias=False, w_init_gain='tanh')
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
w_init_gain='tanh')
self.v = LinearNorm(attention_dim, 1, bias=False)
self.location_layer = LocationLayer(attention_location_n_filters,
attention_location_kernel_size,
attention_dim)
self.score_mask_value = -float(1e20)
def get_alignment_energies(self, query, processed_memory,
attention_weights_cat):
"""
PARAMS
------
query: decoder output (batch, n_mel_channels * n_frames_per_step)
processed_memory: processed encoder outputs (B, T_in, attention_dim)
attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
RETURNS
-------
alignment (batch, max_time)
"""
processed_query = self.query_layer(query.unsqueeze(1))
processed_attention_weights = self.location_layer(attention_weights_cat)
energies = self.v(torch.tanh(
processed_query + processed_attention_weights + processed_memory))
energies = energies.squeeze(-1)
return energies
def forward(self, attention_hidden_state, memory, processed_memory,
attention_weights_cat, mask, log_alpha):
"""
PARAMS
------
attention_hidden_state: attention rnn last output
memory: encoder outputs
processed_memory: processed encoder outputs
attention_weights_cat: previous and cummulative attention weights
mask: binary mask for padded data
"""
log_energy = self.get_alignment_energies(
attention_hidden_state, processed_memory, attention_weights_cat)
#log_energy =
if mask is not None:
log_energy.data.masked_fill_(mask, self.score_mask_value)
#attention_weights = F.softmax(alignment, dim=1)
#content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
#log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
#log_total_score = log_alpha + content_score
#previous_attention_weights = attention_weights_cat[:,0,:]
log_alpha_shift_padded = []
max_time = log_energy.size(1)
for sft in range(2):
shifted = log_alpha[:,:max_time-sft]
shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
log_alpha_new = biased + log_energy
attention_weights = F.softmax(log_alpha_new, dim=1)
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
attention_context = attention_context.squeeze(1)
return attention_context, attention_weights, log_alpha_new
class PhaseShuffle2d(nn.Module):
def __init__(self, n=2):
super(PhaseShuffle2d, self).__init__()
self.n = n
self.random = random.Random(1)
def forward(self, x, move=None):
# x.size = (B, C, M, L)
if move is None:
move = self.random.randint(-self.n, self.n)
if move == 0:
return x
else:
left = x[:, :, :, :move]
right = x[:, :, :, move:]
shuffled = torch.cat([right, left], dim=3)
return shuffled
class PhaseShuffle1d(nn.Module):
def __init__(self, n=2):
super(PhaseShuffle1d, self).__init__()
self.n = n
self.random = random.Random(1)
def forward(self, x, move=None):
# x.size = (B, C, M, L)
if move is None:
move = self.random.randint(-self.n, self.n)
if move == 0:
return x
else:
left = x[:, :, :move]
right = x[:, :, move:]
shuffled = torch.cat([right, left], dim=2)
return shuffled
class MFCC(nn.Module):
def __init__(self, n_mfcc=40, n_mels=80):
super(MFCC, self).__init__()
self.n_mfcc = n_mfcc
self.n_mels = n_mels
self.norm = 'ortho'
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
self.register_buffer('dct_mat', dct_mat)
def forward(self, mel_specgram):
if len(mel_specgram.shape) == 2:
mel_specgram = mel_specgram.unsqueeze(0)
unsqueezed = True
else:
unsqueezed = False
# (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
# -> (channel, time, n_mfcc).tranpose(...)
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
# unpack batch
if unsqueezed:
mfcc = mfcc.squeeze(0)
return mfcc

Some files were not shown because too many files have changed in this diff Show More