mirror of
https://github.com/snicolast/ComfyUI-IndexTTS2.git
synced 2026-01-26 14:39:44 +00:00
First Commit
This commit is contained in:
38
.gitignore
vendored
Normal file
38
.gitignore
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
/checkpoints/**
|
||||
/output/
|
||||
/temp/
|
||||
logs/
|
||||
*.log
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
.venv/
|
||||
venv/
|
||||
env/
|
||||
ENV/
|
||||
.python-version
|
||||
.pytest_cache/
|
||||
.mypy_cache/
|
||||
.ruff_cache/
|
||||
.coverage
|
||||
.coverage.*
|
||||
coverage.xml
|
||||
htmlcov/
|
||||
node_modules/
|
||||
**/node_modules/
|
||||
npm-debug.log*
|
||||
pnpm-debug.log*
|
||||
yarn-*.log*
|
||||
dist/
|
||||
build/
|
||||
web/dist/
|
||||
web/build/
|
||||
.vscode/
|
||||
.idea/
|
||||
*.code-workspace
|
||||
.DS_Store
|
||||
Thumbs.db
|
||||
ehthumbs.db
|
||||
Icon?
|
||||
*.swp
|
||||
*.swo
|
||||
57
README.md
Normal file
57
README.md
Normal file
@@ -0,0 +1,57 @@
|
||||
ComfyUI-IndexTTS2
|
||||
=================
|
||||
|
||||
Lightweight ComfyUI wrapper for IndexTTS 2 (voice cloning + emotion control). The nodes call the original IndexTTS2 inference and keep behavior faithful to the repo.
|
||||
|
||||
Original repo: https://github.com/index-tts/index-tts
|
||||
|
||||
Install
|
||||
- Copy this folder to: ComfyUI/custom_nodes/ComfyUI-IndexTTS2
|
||||
- In your ComfyUI Python environment: pip install -r requirements.txt
|
||||
- Recommended: install PyTorch with CUDA for GPU inference.
|
||||
|
||||
Models (checkpoints)
|
||||
- Download ALL files and subfolders from Hugging Face and put them under this extension's checkpoints/ folder, preserving the original structure:
|
||||
https://huggingface.co/IndexTeam/IndexTTS-2/tree/main
|
||||
- Example layout:
|
||||
ComfyUI/custom_nodes/ComfyUI-IndexTTS2/
|
||||
nodes/
|
||||
checkpoints/
|
||||
config.yaml
|
||||
gpt.pth
|
||||
s2mel.pth
|
||||
bpe.model
|
||||
feat1.pt
|
||||
feat2.pt
|
||||
wav2vec2bert_stats.pt
|
||||
qwen0.6bemo4-merge/ (required only for the Text -> Emotion node)
|
||||
|
||||
Nodes
|
||||
- IndexTTS2 Simple
|
||||
- Inputs: audio (speaker), text, emotion_control_weight (0.0-1.0), emotion_audio (optional), emotion_vector (optional)
|
||||
- Outputs: AUDIO (for Preview/Save), STRING (emotion source message)
|
||||
|
||||
- Notes: device auto-detected, FP16 on CUDA, 200 ms pause between segments (fixed), emotion precedence = vector > second audio > original audio
|
||||
|
||||
- IndexTTS2 Emotion Vector
|
||||
- 8 sliders (0.0-1.4) for: happy, angry, sad, afraid, disgusted, melancholic, surprised, calm
|
||||
- Constraint: sum of sliders must be <= 1.5 (no auto-scaling)
|
||||
- Output: EMOTION_VECTOR
|
||||
|
||||
- IndexTTS2 Emotion From Text (optional)
|
||||
- Input: short descriptive text
|
||||
- Requires: modelscope and local QwenEmotion at checkpoints/qwen0.6bemo4-merge/
|
||||
- Outputs: EMOTION_VECTOR, STRING summary
|
||||
|
||||
Examples
|
||||
- Basic: Load Audio -> IndexTTS2 Simple -> Preview/Save Audio
|
||||
- Second audio emotion: Load Audio (speaker) + Load Audio (emotion) -> IndexTTS2 Simple -> Save
|
||||
- Vector emotion: IndexTTS2 Emotion Vector -> IndexTTS2 Simple -> Save
|
||||
- Text emotion: IndexTTS2 Emotion From Text -> IndexTTS2 Simple -> Save
|
||||
|
||||
Screenshot
|
||||

|
||||
|
||||
Troubleshooting
|
||||
- Emotion vector sum exceeds maximum 1.5: lower one or more sliders or adjust the text-derived vector.
|
||||
- BigVGAN kernel message: custom CUDA kernel is disabled by default; falls back to PyTorch ops.
|
||||
15
__init__.py
Normal file
15
__init__.py
Normal file
@@ -0,0 +1,15 @@
|
||||
from .nodes.indextts2_node import IndexTTS2Simple
|
||||
from .nodes.indextts2_node_emovec import IndexTTS2EmotionVector
|
||||
from .nodes.indextts2_node_emotext import IndexTTS2EmotionFromText
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"IndexTTS2Simple": IndexTTS2Simple,
|
||||
"IndexTTS2EmotionVector": IndexTTS2EmotionVector,
|
||||
"IndexTTS2EmotionFromText": IndexTTS2EmotionFromText,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"IndexTTS2Simple": "IndexTTS2 Simple",
|
||||
"IndexTTS2EmotionVector": "IndexTTS2 Emotion Vector",
|
||||
"IndexTTS2EmotionFromText": "IndexTTS2 Emotion From Text",
|
||||
}
|
||||
0
images/.gitkeep
Normal file
0
images/.gitkeep
Normal file
BIN
images/overview.png
Normal file
BIN
images/overview.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 75 KiB |
656
indextts/BigVGAN/ECAPA_TDNN.py
Normal file
656
indextts/BigVGAN/ECAPA_TDNN.py
Normal file
@@ -0,0 +1,656 @@
|
||||
"""A popular speaker recognition and diarization model.
|
||||
|
||||
Authors
|
||||
* Hwidong Na 2020
|
||||
"""
|
||||
|
||||
import torch # noqa: F401
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from indextts.BigVGAN.nnet.CNN import Conv1d as _Conv1d
|
||||
from indextts.BigVGAN.nnet.linear import Linear
|
||||
from indextts.BigVGAN.nnet.normalization import BatchNorm1d as _BatchNorm1d
|
||||
|
||||
|
||||
def length_to_mask(length, max_len=None, dtype=None, device=None):
|
||||
"""Creates a binary mask for each sequence.
|
||||
|
||||
Reference: https://discuss.pytorch.org/t/how-to-generate-variable-length-mask/23397/3
|
||||
|
||||
Arguments
|
||||
---------
|
||||
length : torch.LongTensor
|
||||
Containing the length of each sequence in the batch. Must be 1D.
|
||||
max_len : int
|
||||
Max length for the mask, also the size of the second dimension.
|
||||
dtype : torch.dtype, default: None
|
||||
The dtype of the generated mask.
|
||||
device: torch.device, default: None
|
||||
The device to put the mask variable.
|
||||
|
||||
Returns
|
||||
-------
|
||||
mask : tensor
|
||||
The binary mask.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> length=torch.Tensor([1,2,3])
|
||||
>>> mask=length_to_mask(length)
|
||||
>>> mask
|
||||
tensor([[1., 0., 0.],
|
||||
[1., 1., 0.],
|
||||
[1., 1., 1.]])
|
||||
"""
|
||||
assert len(length.shape) == 1
|
||||
|
||||
if max_len is None:
|
||||
max_len = length.max().long().item() # using arange to generate mask
|
||||
mask = torch.arange(
|
||||
max_len, device=length.device, dtype=length.dtype
|
||||
).expand(len(length), max_len) < length.unsqueeze(1)
|
||||
|
||||
if dtype is None:
|
||||
dtype = length.dtype
|
||||
|
||||
if device is None:
|
||||
device = length.device
|
||||
|
||||
mask = torch.as_tensor(mask, dtype=dtype, device=device)
|
||||
return mask
|
||||
|
||||
|
||||
# Skip transpose as much as possible for efficiency
|
||||
class Conv1d(_Conv1d):
|
||||
"""1D convolution. Skip transpose is used to improve efficiency."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(skip_transpose=True, *args, **kwargs)
|
||||
|
||||
|
||||
class BatchNorm1d(_BatchNorm1d):
|
||||
"""1D batch normalization. Skip transpose is used to improve efficiency."""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(skip_transpose=True, *args, **kwargs)
|
||||
|
||||
|
||||
class TDNNBlock(nn.Module):
|
||||
"""An implementation of TDNN.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
in_channels : int
|
||||
Number of input channels.
|
||||
out_channels : int
|
||||
The number of output channels.
|
||||
kernel_size : int
|
||||
The kernel size of the TDNN blocks.
|
||||
dilation : int
|
||||
The dilation of the TDNN block.
|
||||
activation : torch class
|
||||
A class for constructing the activation layers.
|
||||
groups : int
|
||||
The groups size of the TDNN blocks.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
|
||||
>>> layer = TDNNBlock(64, 64, kernel_size=3, dilation=1)
|
||||
>>> out_tensor = layer(inp_tensor).transpose(1, 2)
|
||||
>>> out_tensor.shape
|
||||
torch.Size([8, 120, 64])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
dilation,
|
||||
activation=nn.ReLU,
|
||||
groups=1,
|
||||
):
|
||||
super().__init__()
|
||||
self.conv = Conv1d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
)
|
||||
self.activation = activation()
|
||||
self.norm = BatchNorm1d(input_size=out_channels)
|
||||
|
||||
def forward(self, x):
|
||||
"""Processes the input tensor x and returns an output tensor."""
|
||||
return self.norm(self.activation(self.conv(x)))
|
||||
|
||||
|
||||
class Res2NetBlock(torch.nn.Module):
|
||||
"""An implementation of Res2NetBlock w/ dilation.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
in_channels : int
|
||||
The number of channels expected in the input.
|
||||
out_channels : int
|
||||
The number of output channels.
|
||||
scale : int
|
||||
The scale of the Res2Net block.
|
||||
kernel_size: int
|
||||
The kernel size of the Res2Net block.
|
||||
dilation : int
|
||||
The dilation of the Res2Net block.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
|
||||
>>> layer = Res2NetBlock(64, 64, scale=4, dilation=3)
|
||||
>>> out_tensor = layer(inp_tensor).transpose(1, 2)
|
||||
>>> out_tensor.shape
|
||||
torch.Size([8, 120, 64])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, in_channels, out_channels, scale=8, kernel_size=3, dilation=1
|
||||
):
|
||||
super().__init__()
|
||||
assert in_channels % scale == 0
|
||||
assert out_channels % scale == 0
|
||||
|
||||
in_channel = in_channels // scale
|
||||
hidden_channel = out_channels // scale
|
||||
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
TDNNBlock(
|
||||
in_channel,
|
||||
hidden_channel,
|
||||
kernel_size=kernel_size,
|
||||
dilation=dilation,
|
||||
)
|
||||
for i in range(scale - 1)
|
||||
]
|
||||
)
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, x):
|
||||
"""Processes the input tensor x and returns an output tensor."""
|
||||
y = []
|
||||
for i, x_i in enumerate(torch.chunk(x, self.scale, dim=1)):
|
||||
if i == 0:
|
||||
y_i = x_i
|
||||
elif i == 1:
|
||||
y_i = self.blocks[i - 1](x_i)
|
||||
else:
|
||||
y_i = self.blocks[i - 1](x_i + y_i)
|
||||
y.append(y_i)
|
||||
y = torch.cat(y, dim=1)
|
||||
return y
|
||||
|
||||
|
||||
class SEBlock(nn.Module):
|
||||
"""An implementation of squeeze-and-excitation block.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
in_channels : int
|
||||
The number of input channels.
|
||||
se_channels : int
|
||||
The number of output channels after squeeze.
|
||||
out_channels : int
|
||||
The number of output channels.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
|
||||
>>> se_layer = SEBlock(64, 16, 64)
|
||||
>>> lengths = torch.rand((8,))
|
||||
>>> out_tensor = se_layer(inp_tensor, lengths).transpose(1, 2)
|
||||
>>> out_tensor.shape
|
||||
torch.Size([8, 120, 64])
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, se_channels, out_channels):
|
||||
super().__init__()
|
||||
|
||||
self.conv1 = Conv1d(
|
||||
in_channels=in_channels, out_channels=se_channels, kernel_size=1
|
||||
)
|
||||
self.relu = torch.nn.ReLU(inplace=True)
|
||||
self.conv2 = Conv1d(
|
||||
in_channels=se_channels, out_channels=out_channels, kernel_size=1
|
||||
)
|
||||
self.sigmoid = torch.nn.Sigmoid()
|
||||
|
||||
def forward(self, x, lengths=None):
|
||||
"""Processes the input tensor x and returns an output tensor."""
|
||||
L = x.shape[-1]
|
||||
if lengths is not None:
|
||||
mask = length_to_mask(lengths * L, max_len=L, device=x.device)
|
||||
mask = mask.unsqueeze(1)
|
||||
total = mask.sum(dim=2, keepdim=True)
|
||||
s = (x * mask).sum(dim=2, keepdim=True) / total
|
||||
else:
|
||||
s = x.mean(dim=2, keepdim=True)
|
||||
|
||||
s = self.relu(self.conv1(s))
|
||||
s = self.sigmoid(self.conv2(s))
|
||||
|
||||
return s * x
|
||||
|
||||
|
||||
class AttentiveStatisticsPooling(nn.Module):
|
||||
"""This class implements an attentive statistic pooling layer for each channel.
|
||||
It returns the concatenated mean and std of the input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
channels: int
|
||||
The number of input channels.
|
||||
attention_channels: int
|
||||
The number of attention channels.
|
||||
global_context: bool
|
||||
Whether to use global context.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
|
||||
>>> asp_layer = AttentiveStatisticsPooling(64)
|
||||
>>> lengths = torch.rand((8,))
|
||||
>>> out_tensor = asp_layer(inp_tensor, lengths).transpose(1, 2)
|
||||
>>> out_tensor.shape
|
||||
torch.Size([8, 1, 128])
|
||||
"""
|
||||
|
||||
def __init__(self, channels, attention_channels=128, global_context=True):
|
||||
super().__init__()
|
||||
|
||||
self.eps = 1e-12
|
||||
self.global_context = global_context
|
||||
if global_context:
|
||||
self.tdnn = TDNNBlock(channels * 3, attention_channels, 1, 1)
|
||||
else:
|
||||
self.tdnn = TDNNBlock(channels, attention_channels, 1, 1)
|
||||
self.tanh = nn.Tanh()
|
||||
self.conv = Conv1d(
|
||||
in_channels=attention_channels, out_channels=channels, kernel_size=1
|
||||
)
|
||||
|
||||
def forward(self, x, lengths=None):
|
||||
"""Calculates mean and std for a batch (input tensor).
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor
|
||||
Tensor of shape [N, C, L].
|
||||
lengths : torch.Tensor
|
||||
The corresponding relative lengths of the inputs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pooled_stats : torch.Tensor
|
||||
mean and std of batch
|
||||
"""
|
||||
L = x.shape[-1]
|
||||
|
||||
def _compute_statistics(x, m, dim=2, eps=self.eps):
|
||||
mean = (m * x).sum(dim)
|
||||
std = torch.sqrt(
|
||||
(m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps)
|
||||
)
|
||||
return mean, std
|
||||
|
||||
if lengths is None:
|
||||
lengths = torch.ones(x.shape[0], device=x.device)
|
||||
|
||||
# Make binary mask of shape [N, 1, L]
|
||||
mask = length_to_mask(lengths * L, max_len=L, device=x.device)
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
# Expand the temporal context of the pooling layer by allowing the
|
||||
# self-attention to look at global properties of the utterance.
|
||||
if self.global_context:
|
||||
# torch.std is unstable for backward computation
|
||||
# https://github.com/pytorch/pytorch/issues/4320
|
||||
total = mask.sum(dim=2, keepdim=True).float()
|
||||
mean, std = _compute_statistics(x, mask / total)
|
||||
mean = mean.unsqueeze(2).repeat(1, 1, L)
|
||||
std = std.unsqueeze(2).repeat(1, 1, L)
|
||||
attn = torch.cat([x, mean, std], dim=1)
|
||||
else:
|
||||
attn = x
|
||||
|
||||
# Apply layers
|
||||
attn = self.conv(self.tanh(self.tdnn(attn)))
|
||||
|
||||
# Filter out zero-paddings
|
||||
attn = attn.masked_fill(mask == 0, float("-inf"))
|
||||
|
||||
attn = F.softmax(attn, dim=2)
|
||||
mean, std = _compute_statistics(x, attn)
|
||||
# Append mean and std of the batch
|
||||
pooled_stats = torch.cat((mean, std), dim=1)
|
||||
pooled_stats = pooled_stats.unsqueeze(2)
|
||||
|
||||
return pooled_stats
|
||||
|
||||
|
||||
class SERes2NetBlock(nn.Module):
|
||||
"""An implementation of building block in ECAPA-TDNN, i.e.,
|
||||
TDNN-Res2Net-TDNN-SEBlock.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
in_channels: int
|
||||
Expected size of input channels.
|
||||
out_channels: int
|
||||
The number of output channels.
|
||||
res2net_scale: int
|
||||
The scale of the Res2Net block.
|
||||
se_channels : int
|
||||
The number of output channels after squeeze.
|
||||
kernel_size: int
|
||||
The kernel size of the TDNN blocks.
|
||||
dilation: int
|
||||
The dilation of the Res2Net block.
|
||||
activation : torch class
|
||||
A class for constructing the activation layers.
|
||||
groups: int
|
||||
Number of blocked connections from input channels to output channels.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> x = torch.rand(8, 120, 64).transpose(1, 2)
|
||||
>>> conv = SERes2NetBlock(64, 64, res2net_scale=4)
|
||||
>>> out = conv(x).transpose(1, 2)
|
||||
>>> out.shape
|
||||
torch.Size([8, 120, 64])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
res2net_scale=8,
|
||||
se_channels=128,
|
||||
kernel_size=1,
|
||||
dilation=1,
|
||||
activation=torch.nn.ReLU,
|
||||
groups=1,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.tdnn1 = TDNNBlock(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
dilation=1,
|
||||
activation=activation,
|
||||
groups=groups,
|
||||
)
|
||||
self.res2net_block = Res2NetBlock(
|
||||
out_channels, out_channels, res2net_scale, kernel_size, dilation
|
||||
)
|
||||
self.tdnn2 = TDNNBlock(
|
||||
out_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
dilation=1,
|
||||
activation=activation,
|
||||
groups=groups,
|
||||
)
|
||||
self.se_block = SEBlock(out_channels, se_channels, out_channels)
|
||||
|
||||
self.shortcut = None
|
||||
if in_channels != out_channels:
|
||||
self.shortcut = Conv1d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=1,
|
||||
)
|
||||
|
||||
def forward(self, x, lengths=None):
|
||||
"""Processes the input tensor x and returns an output tensor."""
|
||||
residual = x
|
||||
if self.shortcut:
|
||||
residual = self.shortcut(x)
|
||||
|
||||
x = self.tdnn1(x)
|
||||
x = self.res2net_block(x)
|
||||
x = self.tdnn2(x)
|
||||
x = self.se_block(x, lengths)
|
||||
|
||||
return x + residual
|
||||
|
||||
|
||||
class ECAPA_TDNN(torch.nn.Module):
|
||||
"""An implementation of the speaker embedding model in a paper.
|
||||
"ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in
|
||||
TDNN Based Speaker Verification" (https://arxiv.org/abs/2005.07143).
|
||||
|
||||
Arguments
|
||||
---------
|
||||
input_size : int
|
||||
Expected size of the input dimension.
|
||||
device : str
|
||||
Device used, e.g., "cpu" or "cuda".
|
||||
lin_neurons : int
|
||||
Number of neurons in linear layers.
|
||||
activation : torch class
|
||||
A class for constructing the activation layers.
|
||||
channels : list of ints
|
||||
Output channels for TDNN/SERes2Net layer.
|
||||
kernel_sizes : list of ints
|
||||
List of kernel sizes for each layer.
|
||||
dilations : list of ints
|
||||
List of dilations for kernels in each layer.
|
||||
attention_channels: int
|
||||
The number of attention channels.
|
||||
res2net_scale : int
|
||||
The scale of the Res2Net block.
|
||||
se_channels : int
|
||||
The number of output channels after squeeze.
|
||||
global_context: bool
|
||||
Whether to use global context.
|
||||
groups : list of ints
|
||||
List of groups for kernels in each layer.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> input_feats = torch.rand([5, 120, 80])
|
||||
>>> compute_embedding = ECAPA_TDNN(80, lin_neurons=192)
|
||||
>>> outputs = compute_embedding(input_feats)
|
||||
>>> outputs.shape
|
||||
torch.Size([5, 1, 192])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size,
|
||||
device="cpu",
|
||||
lin_neurons=192,
|
||||
activation=torch.nn.ReLU,
|
||||
channels=[512, 512, 512, 512, 1536],
|
||||
kernel_sizes=[5, 3, 3, 3, 1],
|
||||
dilations=[1, 2, 3, 4, 1],
|
||||
attention_channels=128,
|
||||
res2net_scale=8,
|
||||
se_channels=128,
|
||||
global_context=True,
|
||||
groups=[1, 1, 1, 1, 1],
|
||||
):
|
||||
super().__init__()
|
||||
assert len(channels) == len(kernel_sizes)
|
||||
assert len(channels) == len(dilations)
|
||||
self.channels = channels
|
||||
self.blocks = nn.ModuleList()
|
||||
|
||||
# The initial TDNN layer
|
||||
self.blocks.append(
|
||||
TDNNBlock(
|
||||
input_size,
|
||||
channels[0],
|
||||
kernel_sizes[0],
|
||||
dilations[0],
|
||||
activation,
|
||||
groups[0],
|
||||
)
|
||||
)
|
||||
|
||||
# SE-Res2Net layers
|
||||
for i in range(1, len(channels) - 1):
|
||||
self.blocks.append(
|
||||
SERes2NetBlock(
|
||||
channels[i - 1],
|
||||
channels[i],
|
||||
res2net_scale=res2net_scale,
|
||||
se_channels=se_channels,
|
||||
kernel_size=kernel_sizes[i],
|
||||
dilation=dilations[i],
|
||||
activation=activation,
|
||||
groups=groups[i],
|
||||
)
|
||||
)
|
||||
|
||||
# Multi-layer feature aggregation
|
||||
self.mfa = TDNNBlock(
|
||||
channels[-2] * (len(channels) - 2),
|
||||
channels[-1],
|
||||
kernel_sizes[-1],
|
||||
dilations[-1],
|
||||
activation,
|
||||
groups=groups[-1],
|
||||
)
|
||||
|
||||
# Attentive Statistical Pooling
|
||||
self.asp = AttentiveStatisticsPooling(
|
||||
channels[-1],
|
||||
attention_channels=attention_channels,
|
||||
global_context=global_context,
|
||||
)
|
||||
self.asp_bn = BatchNorm1d(input_size=channels[-1] * 2)
|
||||
|
||||
# Final linear transformation
|
||||
self.fc = Conv1d(
|
||||
in_channels=channels[-1] * 2,
|
||||
out_channels=lin_neurons,
|
||||
kernel_size=1,
|
||||
)
|
||||
|
||||
def forward(self, x, lengths=None):
|
||||
"""Returns the embedding vector.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor
|
||||
Tensor of shape (batch, time, channel).
|
||||
lengths : torch.Tensor
|
||||
Corresponding relative lengths of inputs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : torch.Tensor
|
||||
Embedding vector.
|
||||
"""
|
||||
# Minimize transpose for efficiency
|
||||
x = x.transpose(1, 2)
|
||||
|
||||
xl = []
|
||||
for layer in self.blocks:
|
||||
try:
|
||||
x = layer(x, lengths=lengths)
|
||||
except TypeError:
|
||||
x = layer(x)
|
||||
xl.append(x)
|
||||
|
||||
# Multi-layer feature aggregation
|
||||
x = torch.cat(xl[1:], dim=1)
|
||||
x = self.mfa(x)
|
||||
|
||||
# Attentive Statistical Pooling
|
||||
x = self.asp(x, lengths=lengths)
|
||||
x = self.asp_bn(x)
|
||||
|
||||
# Final linear transformation
|
||||
x = self.fc(x)
|
||||
|
||||
x = x.transpose(1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class Classifier(torch.nn.Module):
|
||||
"""This class implements the cosine similarity on the top of features.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
input_size : int
|
||||
Expected size of input dimension.
|
||||
device : str
|
||||
Device used, e.g., "cpu" or "cuda".
|
||||
lin_blocks : int
|
||||
Number of linear layers.
|
||||
lin_neurons : int
|
||||
Number of neurons in linear layers.
|
||||
out_neurons : int
|
||||
Number of classes.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> classify = Classifier(input_size=2, lin_neurons=2, out_neurons=2)
|
||||
>>> outputs = torch.tensor([ [1., -1.], [-9., 1.], [0.9, 0.1], [0.1, 0.9] ])
|
||||
>>> outputs = outputs.unsqueeze(1)
|
||||
>>> cos = classify(outputs)
|
||||
>>> (cos < -1.0).long().sum()
|
||||
tensor(0)
|
||||
>>> (cos > 1.0).long().sum()
|
||||
tensor(0)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size,
|
||||
device="cpu",
|
||||
lin_blocks=0,
|
||||
lin_neurons=192,
|
||||
out_neurons=1211,
|
||||
):
|
||||
super().__init__()
|
||||
self.blocks = nn.ModuleList()
|
||||
|
||||
for block_index in range(lin_blocks):
|
||||
self.blocks.extend(
|
||||
[
|
||||
_BatchNorm1d(input_size=input_size),
|
||||
Linear(input_size=input_size, n_neurons=lin_neurons),
|
||||
]
|
||||
)
|
||||
input_size = lin_neurons
|
||||
|
||||
# Final Layer
|
||||
self.weight = nn.Parameter(
|
||||
torch.FloatTensor(out_neurons, input_size, device=device)
|
||||
)
|
||||
nn.init.xavier_uniform_(self.weight)
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the output probabilities over speakers.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor
|
||||
Torch tensor.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : torch.Tensor
|
||||
Output probabilities over speakers.
|
||||
"""
|
||||
for layer in self.blocks:
|
||||
x = layer(x)
|
||||
|
||||
# Need to be normalized
|
||||
x = F.linear(F.normalize(x.squeeze(1)), F.normalize(self.weight))
|
||||
return x.unsqueeze(1)
|
||||
0
indextts/BigVGAN/__init__.py
Normal file
0
indextts/BigVGAN/__init__.py
Normal file
122
indextts/BigVGAN/activations.py
Normal file
122
indextts/BigVGAN/activations.py
Normal file
@@ -0,0 +1,122 @@
|
||||
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch
|
||||
from torch import nn, pow, sin
|
||||
from torch.nn import Parameter
|
||||
|
||||
|
||||
class Snake(nn.Module):
|
||||
'''
|
||||
Implementation of a sine-based periodic activation function
|
||||
Shape:
|
||||
- Input: (B, C, T)
|
||||
- Output: (B, C, T), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||
https://arxiv.org/abs/2006.08195
|
||||
Examples:
|
||||
>>> a1 = snake(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
|
||||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||||
'''
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- alpha: trainable parameter
|
||||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||
alpha will be trained along with the rest of your model.
|
||||
'''
|
||||
super(Snake, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale: # log scale alphas initialized to zeros
|
||||
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
||||
else: # linear scale alphas initialized to ones
|
||||
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
||||
|
||||
self.alpha.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
Snake ∶= x + 1/a * sin^2 (xa)
|
||||
'''
|
||||
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SnakeBeta(nn.Module):
|
||||
'''
|
||||
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
||||
Shape:
|
||||
- Input: (B, C, T)
|
||||
- Output: (B, C, T), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter that controls frequency
|
||||
- beta - trainable parameter that controls magnitude
|
||||
References:
|
||||
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||
https://arxiv.org/abs/2006.08195
|
||||
Examples:
|
||||
>>> a1 = snakebeta(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
|
||||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||||
'''
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- alpha - trainable parameter that controls frequency
|
||||
- beta - trainable parameter that controls magnitude
|
||||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||
beta is initialized to 1 by default, higher values = higher-magnitude.
|
||||
alpha will be trained along with the rest of your model.
|
||||
'''
|
||||
super(SnakeBeta, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale: # log scale alphas initialized to zeros
|
||||
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
||||
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
||||
else: # linear scale alphas initialized to ones
|
||||
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
||||
self.beta = Parameter(torch.ones(in_features) * alpha)
|
||||
|
||||
self.alpha.requires_grad = alpha_trainable
|
||||
self.beta.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
||||
'''
|
||||
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||||
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
beta = torch.exp(beta)
|
||||
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||
|
||||
return x
|
||||
0
indextts/BigVGAN/alias_free_activation/__init__.py
Normal file
0
indextts/BigVGAN/alias_free_activation/__init__.py
Normal file
1
indextts/BigVGAN/alias_free_activation/cuda/.gitignore
vendored
Normal file
1
indextts/BigVGAN/alias_free_activation/cuda/.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
/build
|
||||
76
indextts/BigVGAN/alias_free_activation/cuda/activation1d.py
Normal file
76
indextts/BigVGAN/alias_free_activation/cuda/activation1d.py
Normal file
@@ -0,0 +1,76 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
|
||||
from indextts.BigVGAN.alias_free_activation.cuda import load
|
||||
from indextts.BigVGAN.alias_free_activation.torch.resample import DownSample1d, UpSample1d
|
||||
|
||||
anti_alias_activation_cuda = load.load()
|
||||
|
||||
|
||||
class FusedAntiAliasActivation(torch.autograd.Function):
|
||||
"""
|
||||
Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
|
||||
The hyperparameters are hard-coded in the kernel to maximize speed.
|
||||
NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
|
||||
activation_results = anti_alias_activation_cuda.forward(
|
||||
inputs, up_ftr, down_ftr, alpha, beta
|
||||
)
|
||||
|
||||
return activation_results
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, output_grads):
|
||||
raise NotImplementedError
|
||||
return output_grads, None, None
|
||||
|
||||
|
||||
class Activation1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
activation,
|
||||
up_ratio: int = 2,
|
||||
down_ratio: int = 2,
|
||||
up_kernel_size: int = 12,
|
||||
down_kernel_size: int = 12,
|
||||
fused: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.up_ratio = up_ratio
|
||||
self.down_ratio = down_ratio
|
||||
self.act = activation
|
||||
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||||
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||||
|
||||
self.fused = fused # Whether to use fused CUDA kernel or not
|
||||
|
||||
def forward(self, x):
|
||||
if not self.fused:
|
||||
x = self.upsample(x)
|
||||
x = self.act(x)
|
||||
x = self.downsample(x)
|
||||
return x
|
||||
else:
|
||||
if self.act.__class__.__name__ == "Snake":
|
||||
beta = self.act.alpha.data # Snake uses same params for alpha and beta
|
||||
else:
|
||||
beta = (
|
||||
self.act.beta.data
|
||||
) # Snakebeta uses different params for alpha and beta
|
||||
alpha = self.act.alpha.data
|
||||
if (
|
||||
not self.act.alpha_logscale
|
||||
): # Exp baked into cuda kernel, cancel it out with a log
|
||||
alpha = torch.log(alpha)
|
||||
beta = torch.log(beta)
|
||||
|
||||
x = FusedAntiAliasActivation.apply(
|
||||
x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta
|
||||
)
|
||||
return x
|
||||
@@ -0,0 +1,23 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <torch/extension.h>
|
||||
|
||||
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta);
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &fwd_cuda, "Anti-Alias Activation forward (CUDA)");
|
||||
}
|
||||
@@ -0,0 +1,256 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_profiler_api.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <torch/extension.h>
|
||||
#include "type_shim.h"
|
||||
#include <assert.h>
|
||||
#include <cfloat>
|
||||
#include <limits>
|
||||
#include <stdint.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
|
||||
namespace
|
||||
{
|
||||
// Hard-coded hyperparameters
|
||||
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
|
||||
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
|
||||
constexpr int BUFFER_SIZE = 32;
|
||||
constexpr int FILTER_SIZE = 12;
|
||||
constexpr int HALF_FILTER_SIZE = 6;
|
||||
constexpr int UPSAMPLE_REPLICATION_PAD = 5; // 5 on each side, matching torch impl
|
||||
constexpr int DOWNSAMPLE_REPLICATION_PAD_LEFT = 5; // matching torch impl
|
||||
constexpr int DOWNSAMPLE_REPLICATION_PAD_RIGHT = 6; // matching torch impl
|
||||
|
||||
template <typename input_t, typename output_t, typename acc_t>
|
||||
__global__ void anti_alias_activation_forward(
|
||||
output_t *dst,
|
||||
const input_t *src,
|
||||
const acc_t *up_ftr,
|
||||
const acc_t *down_ftr,
|
||||
const acc_t *alpha,
|
||||
const acc_t *beta,
|
||||
int batch_size,
|
||||
int channels,
|
||||
int seq_len)
|
||||
{
|
||||
// Up and downsample filters
|
||||
input_t up_filter[FILTER_SIZE];
|
||||
input_t down_filter[FILTER_SIZE];
|
||||
|
||||
// Load data from global memory including extra indices reserved for replication paddings
|
||||
input_t elements[2 * FILTER_SIZE + 2 * BUFFER_SIZE + 2 * UPSAMPLE_REPLICATION_PAD] = {0};
|
||||
input_t intermediates[2 * FILTER_SIZE + 2 * BUFFER_SIZE + DOWNSAMPLE_REPLICATION_PAD_LEFT + DOWNSAMPLE_REPLICATION_PAD_RIGHT] = {0};
|
||||
|
||||
// Output stores downsampled output before writing to dst
|
||||
output_t output[BUFFER_SIZE];
|
||||
|
||||
// blockDim/threadIdx = (128, 1, 1)
|
||||
// gridDim/blockIdx = (seq_blocks, channels, batches)
|
||||
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
||||
int local_offset = threadIdx.x * BUFFER_SIZE;
|
||||
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
|
||||
|
||||
// intermediate have double the seq_len
|
||||
int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
|
||||
int intermediate_seq_offset = blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_local_offset;
|
||||
|
||||
// Get values needed for replication padding before moving pointer
|
||||
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
||||
input_t seq_left_most_value = right_most_pntr[0];
|
||||
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
|
||||
|
||||
// Move src and dst pointers
|
||||
src += block_offset + local_offset;
|
||||
dst += block_offset + local_offset;
|
||||
|
||||
// Alpha and beta values for snake activatons. Applies exp by default
|
||||
alpha = alpha + blockIdx.y;
|
||||
beta = beta + blockIdx.y;
|
||||
|
||||
acc_t alpha_val = expf(alpha[0]);
|
||||
acc_t beta_val = expf(beta[0]);
|
||||
|
||||
#pragma unroll
|
||||
for (int it = 0; it < FILTER_SIZE; it += 1)
|
||||
{
|
||||
up_filter[it] = up_ftr[it];
|
||||
down_filter[it] = down_ftr[it];
|
||||
}
|
||||
|
||||
// Apply replication padding for upsampling, matching torch impl
|
||||
#pragma unroll
|
||||
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE; it += 1)
|
||||
{
|
||||
int element_index = seq_offset + it; // index for element
|
||||
if ((element_index < 0) && (element_index >= -UPSAMPLE_REPLICATION_PAD))
|
||||
{
|
||||
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_left_most_value;
|
||||
}
|
||||
if ((element_index >= seq_len) && (element_index < seq_len + UPSAMPLE_REPLICATION_PAD))
|
||||
{
|
||||
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_right_most_value;
|
||||
}
|
||||
if ((element_index >= 0) && (element_index < seq_len))
|
||||
{
|
||||
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * src[it];
|
||||
}
|
||||
}
|
||||
|
||||
// Apply upsampling strided convolution and write to intermediates. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT for replication padding of the downsampilng conv later
|
||||
#pragma unroll
|
||||
for (int it = 0; it < (2 * BUFFER_SIZE + 2 * FILTER_SIZE); it += 1)
|
||||
{
|
||||
acc_t acc = 0.0;
|
||||
int element_index = intermediate_seq_offset + it; // index for intermediate
|
||||
#pragma unroll
|
||||
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
||||
{
|
||||
if ((element_index + f_idx) >= 0)
|
||||
{
|
||||
acc += up_filter[f_idx] * elements[it + f_idx];
|
||||
}
|
||||
}
|
||||
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] = acc;
|
||||
}
|
||||
|
||||
// Apply activation function. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT and DOWNSAMPLE_REPLICATION_PAD_RIGHT for replication padding of the downsampilng conv later
|
||||
double no_div_by_zero = 0.000000001;
|
||||
#pragma unroll
|
||||
for (int it = 0; it < 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it += 1)
|
||||
{
|
||||
acc_t a = sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val);
|
||||
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] += (1.0 / (beta_val + no_div_by_zero)) * a * a;
|
||||
}
|
||||
|
||||
// Apply replication padding before downsampling conv from intermediates
|
||||
#pragma unroll
|
||||
for (int it = 0; it < DOWNSAMPLE_REPLICATION_PAD_LEFT; it += 1)
|
||||
{
|
||||
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int it = DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it < DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE + DOWNSAMPLE_REPLICATION_PAD_RIGHT; it += 1)
|
||||
{
|
||||
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE - 1];
|
||||
}
|
||||
|
||||
// Apply downsample strided convolution (assuming stride=2) from intermediates
|
||||
#pragma unroll
|
||||
for (int it = 0; it < BUFFER_SIZE; it += 1)
|
||||
{
|
||||
acc_t acc = 0.0;
|
||||
#pragma unroll
|
||||
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
||||
{
|
||||
// Add constant DOWNSAMPLE_REPLICATION_PAD_RIGHT to match torch implementation
|
||||
acc += down_filter[f_idx] * intermediates[it * 2 + f_idx + DOWNSAMPLE_REPLICATION_PAD_RIGHT];
|
||||
}
|
||||
output[it] = acc;
|
||||
}
|
||||
|
||||
// Write output to dst
|
||||
#pragma unroll
|
||||
for (int it = 0; it < BUFFER_SIZE; it += ELEMENTS_PER_LDG_STG)
|
||||
{
|
||||
int element_index = seq_offset + it;
|
||||
if (element_index < seq_len)
|
||||
{
|
||||
dst[it] = output[it];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <typename input_t, typename output_t, typename acc_t>
|
||||
void dispatch_anti_alias_activation_forward(
|
||||
output_t *dst,
|
||||
const input_t *src,
|
||||
const acc_t *up_ftr,
|
||||
const acc_t *down_ftr,
|
||||
const acc_t *alpha,
|
||||
const acc_t *beta,
|
||||
int batch_size,
|
||||
int channels,
|
||||
int seq_len)
|
||||
{
|
||||
if (seq_len == 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Use 128 threads per block to maximimize gpu utilization
|
||||
constexpr int threads_per_block = 128;
|
||||
constexpr int seq_len_per_block = 4096;
|
||||
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
|
||||
dim3 blocks(blocks_per_seq_len, channels, batch_size);
|
||||
dim3 threads(threads_per_block, 1, 1);
|
||||
|
||||
anti_alias_activation_forward<input_t, output_t, acc_t>
|
||||
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, up_ftr, down_ftr, alpha, beta, batch_size, channels, seq_len);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta)
|
||||
{
|
||||
// Input is a 3d tensor with dimensions [batches, channels, seq_len]
|
||||
const int batches = input.size(0);
|
||||
const int channels = input.size(1);
|
||||
const int seq_len = input.size(2);
|
||||
|
||||
// Output
|
||||
auto act_options = input.options().requires_grad(false);
|
||||
|
||||
torch::Tensor anti_alias_activation_results =
|
||||
torch::empty({batches, channels, seq_len}, act_options);
|
||||
|
||||
using float32 = float;
|
||||
// The dtype of input is float16, bfloat16, or float32
|
||||
// The dtype of up_filter, down_filter, alpha, and beta is float32
|
||||
// printf("input scalar type: %d\n", input.scalar_type());
|
||||
// printf("up_filter scalar type: %d\n", up_filter.scalar_type());
|
||||
// printf("down_filter scalar type: %d\n", down_filter.scalar_type());
|
||||
// printf("alpha scalar type: %d\n", alpha.scalar_type());
|
||||
// printf("beta scalar type: %d\n", beta.scalar_type());
|
||||
void *input_ptr = static_cast<void *>(input.data_ptr());
|
||||
float32 *up_filter_ptr = static_cast<float32 *>(up_filter.data_ptr());
|
||||
float32 *down_filter_ptr = static_cast<float32 *>(down_filter.data_ptr());
|
||||
float32 *alpha_ptr = static_cast<float32 *>(alpha.data_ptr());
|
||||
float32 *beta_ptr = static_cast<float32 *>(beta.data_ptr());
|
||||
void *anti_alias_activation_results_ptr = static_cast<void *>(anti_alias_activation_results.data_ptr());
|
||||
|
||||
DISPATCH_FLOAT_HALF_AND_BFLOAT(
|
||||
input.scalar_type(),
|
||||
"dispatch anti alias activation_forward",
|
||||
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float32>(
|
||||
reinterpret_cast<scalar_t *>(anti_alias_activation_results_ptr),
|
||||
reinterpret_cast<const scalar_t *>(input_ptr),
|
||||
reinterpret_cast<const float32 *>(up_filter_ptr),
|
||||
reinterpret_cast<const float32 *>(down_filter_ptr),
|
||||
reinterpret_cast<const float32 *>(alpha_ptr),
|
||||
reinterpret_cast<const float32 *>(beta_ptr),
|
||||
batches,
|
||||
channels,
|
||||
seq_len););
|
||||
return anti_alias_activation_results;
|
||||
}
|
||||
29
indextts/BigVGAN/alias_free_activation/cuda/compat.h
Normal file
29
indextts/BigVGAN/alias_free_activation/cuda/compat.h
Normal file
@@ -0,0 +1,29 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/*This code is copied fron NVIDIA apex:
|
||||
* https://github.com/NVIDIA/apex
|
||||
* with minor changes. */
|
||||
|
||||
#ifndef TORCH_CHECK
|
||||
#define TORCH_CHECK AT_CHECK
|
||||
#endif
|
||||
|
||||
#ifdef VERSION_GE_1_3
|
||||
#define DATA_PTR data_ptr
|
||||
#else
|
||||
#define DATA_PTR data
|
||||
#endif
|
||||
121
indextts/BigVGAN/alias_free_activation/cuda/load.py
Normal file
121
indextts/BigVGAN/alias_free_activation/cuda/load.py
Normal file
@@ -0,0 +1,121 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import os
|
||||
import pathlib
|
||||
import subprocess
|
||||
|
||||
from torch.utils import cpp_extension
|
||||
|
||||
"""
|
||||
Setting this param to a list has a problem of generating different compilation commands (with diferent order of architectures) and leading to recompilation of fused kernels.
|
||||
Set it to empty stringo avoid recompilation and assign arch flags explicity in extra_cuda_cflags below
|
||||
"""
|
||||
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
|
||||
|
||||
|
||||
import re
|
||||
import shutil
|
||||
import tempfile
|
||||
|
||||
# 补丁修复:sources 路径含中文字符时,生成 build.ninja 乱码导致编译失败
|
||||
# 使用临时目录来规避 ninja 编译失败(比如中文路径)
|
||||
def chinese_path_compile_support(sources, buildpath):
|
||||
pattern = re.compile(r'[\u4e00-\u9fff]')
|
||||
if not bool(pattern.search(str(sources[0].resolve()))):
|
||||
return buildpath # 检测非中文路径跳过
|
||||
# Create build directory
|
||||
resolves = [ item.name for item in sources]
|
||||
ninja_compile_dir = os.path.join(tempfile.gettempdir(), "BigVGAN", "cuda")
|
||||
os.makedirs(ninja_compile_dir, exist_ok=True)
|
||||
new_buildpath = os.path.join(ninja_compile_dir, "build")
|
||||
os.makedirs(new_buildpath, exist_ok=True)
|
||||
print(f"ninja_buildpath: {new_buildpath}")
|
||||
# Copy files to directory
|
||||
sources.clear()
|
||||
current_dir = os.path.dirname(__file__)
|
||||
ALLOWED_EXTENSIONS = {'.py', '.cu', '.cpp', '.h'}
|
||||
for filename in os.listdir(current_dir):
|
||||
item = pathlib.Path(current_dir).joinpath(filename)
|
||||
tar_path = pathlib.Path(ninja_compile_dir).joinpath(item.name)
|
||||
if not item.suffix.lower() in ALLOWED_EXTENSIONS:continue
|
||||
pathlib.Path(shutil.copy2(item, tar_path))
|
||||
if tar_path.name in resolves:sources.append(tar_path)
|
||||
return new_buildpath
|
||||
|
||||
|
||||
|
||||
def load():
|
||||
# Check if cuda 11 is installed for compute capability 8.0
|
||||
cc_flag = []
|
||||
_, bare_metal_major, _ = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
|
||||
if int(bare_metal_major) >= 11:
|
||||
cc_flag.append("-gencode")
|
||||
cc_flag.append("arch=compute_80,code=sm_80")
|
||||
|
||||
# Build path
|
||||
srcpath = pathlib.Path(__file__).parent.absolute()
|
||||
buildpath = srcpath / "build"
|
||||
_create_build_dir(buildpath)
|
||||
|
||||
# Helper function to build the kernels.
|
||||
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
|
||||
return cpp_extension.load(
|
||||
name=name,
|
||||
sources=sources,
|
||||
build_directory=buildpath,
|
||||
extra_cflags=[
|
||||
"-O3",
|
||||
],
|
||||
extra_cuda_cflags=[
|
||||
"-O3",
|
||||
"-gencode",
|
||||
"arch=compute_70,code=sm_70",
|
||||
"--use_fast_math",
|
||||
]
|
||||
+ extra_cuda_flags
|
||||
+ cc_flag,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
extra_cuda_flags = [
|
||||
"-U__CUDA_NO_HALF_OPERATORS__",
|
||||
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
||||
"--expt-relaxed-constexpr",
|
||||
"--expt-extended-lambda",
|
||||
]
|
||||
|
||||
sources = [
|
||||
srcpath / "anti_alias_activation.cpp",
|
||||
srcpath / "anti_alias_activation_cuda.cu",
|
||||
]
|
||||
|
||||
# 兼容方案:ninja 特殊字符路径编译支持处理(比如中文路径)
|
||||
buildpath = chinese_path_compile_support(sources, buildpath)
|
||||
|
||||
anti_alias_activation_cuda = _cpp_extention_load_helper(
|
||||
"anti_alias_activation_cuda", sources, extra_cuda_flags
|
||||
)
|
||||
|
||||
return anti_alias_activation_cuda
|
||||
|
||||
|
||||
def _get_cuda_bare_metal_version(cuda_dir):
|
||||
raw_output = subprocess.check_output(
|
||||
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
|
||||
)
|
||||
output = raw_output.split()
|
||||
release_idx = output.index("release") + 1
|
||||
release = output[release_idx].split(".")
|
||||
bare_metal_major = release[0]
|
||||
bare_metal_minor = release[1][0]
|
||||
|
||||
return raw_output, bare_metal_major, bare_metal_minor
|
||||
|
||||
|
||||
def _create_build_dir(buildpath):
|
||||
try:
|
||||
os.mkdir(buildpath)
|
||||
except OSError:
|
||||
if not os.path.isdir(buildpath):
|
||||
print(f"Creation of the build directory {buildpath} failed")
|
||||
92
indextts/BigVGAN/alias_free_activation/cuda/type_shim.h
Normal file
92
indextts/BigVGAN/alias_free_activation/cuda/type_shim.h
Normal file
@@ -0,0 +1,92 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include "compat.h"
|
||||
|
||||
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
|
||||
switch (TYPE) \
|
||||
{ \
|
||||
case at::ScalarType::Float: \
|
||||
{ \
|
||||
using scalar_t = float; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::Half: \
|
||||
{ \
|
||||
using scalar_t = at::Half; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::BFloat16: \
|
||||
{ \
|
||||
using scalar_t = at::BFloat16; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
||||
}
|
||||
|
||||
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
|
||||
switch (TYPEIN) \
|
||||
{ \
|
||||
case at::ScalarType::Float: \
|
||||
{ \
|
||||
using scalar_t_in = float; \
|
||||
switch (TYPEOUT) \
|
||||
{ \
|
||||
case at::ScalarType::Float: \
|
||||
{ \
|
||||
using scalar_t_out = float; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::Half: \
|
||||
{ \
|
||||
using scalar_t_out = at::Half; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::BFloat16: \
|
||||
{ \
|
||||
using scalar_t_out = at::BFloat16; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
|
||||
} \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::Half: \
|
||||
{ \
|
||||
using scalar_t_in = at::Half; \
|
||||
using scalar_t_out = at::Half; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::BFloat16: \
|
||||
{ \
|
||||
using scalar_t_in = at::BFloat16; \
|
||||
using scalar_t_out = at::BFloat16; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
|
||||
}
|
||||
6
indextts/BigVGAN/alias_free_activation/torch/__init__.py
Normal file
6
indextts/BigVGAN/alias_free_activation/torch/__init__.py
Normal file
@@ -0,0 +1,6 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
from .act import *
|
||||
from .filter import *
|
||||
from .resample import *
|
||||
31
indextts/BigVGAN/alias_free_activation/torch/act.py
Normal file
31
indextts/BigVGAN/alias_free_activation/torch/act.py
Normal file
@@ -0,0 +1,31 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
from .resample import DownSample1d, UpSample1d
|
||||
|
||||
|
||||
class Activation1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
activation,
|
||||
up_ratio: int = 2,
|
||||
down_ratio: int = 2,
|
||||
up_kernel_size: int = 12,
|
||||
down_kernel_size: int = 12,
|
||||
):
|
||||
super().__init__()
|
||||
self.up_ratio = up_ratio
|
||||
self.down_ratio = down_ratio
|
||||
self.act = activation
|
||||
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||||
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||||
|
||||
# x: [B,C,T]
|
||||
def forward(self, x):
|
||||
x = self.upsample(x)
|
||||
x = self.act(x)
|
||||
x = self.downsample(x)
|
||||
|
||||
return x
|
||||
102
indextts/BigVGAN/alias_free_activation/torch/filter.py
Normal file
102
indextts/BigVGAN/alias_free_activation/torch/filter.py
Normal file
@@ -0,0 +1,102 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
if "sinc" in dir(torch):
|
||||
sinc = torch.sinc
|
||||
else:
|
||||
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/core.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def sinc(x: torch.Tensor):
|
||||
"""
|
||||
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
||||
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
||||
"""
|
||||
return torch.where(
|
||||
x == 0,
|
||||
torch.tensor(1.0, device=x.device, dtype=x.dtype),
|
||||
torch.sin(math.pi * x) / math.pi / x,
|
||||
)
|
||||
|
||||
|
||||
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/lowpass.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def kaiser_sinc_filter1d(
|
||||
cutoff, half_width, kernel_size
|
||||
): # return filter [1,1,kernel_size]
|
||||
even = kernel_size % 2 == 0
|
||||
half_size = kernel_size // 2
|
||||
|
||||
# For kaiser window
|
||||
delta_f = 4 * half_width
|
||||
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
||||
if A > 50.0:
|
||||
beta = 0.1102 * (A - 8.7)
|
||||
elif A >= 21.0:
|
||||
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
|
||||
else:
|
||||
beta = 0.0
|
||||
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
||||
|
||||
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
||||
if even:
|
||||
time = torch.arange(-half_size, half_size) + 0.5
|
||||
else:
|
||||
time = torch.arange(kernel_size) - half_size
|
||||
if cutoff == 0:
|
||||
filter_ = torch.zeros_like(time)
|
||||
else:
|
||||
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
||||
"""
|
||||
Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal.
|
||||
"""
|
||||
filter_ /= filter_.sum()
|
||||
filter = filter_.view(1, 1, kernel_size)
|
||||
|
||||
return filter
|
||||
|
||||
|
||||
class LowPassFilter1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
cutoff=0.5,
|
||||
half_width=0.6,
|
||||
stride: int = 1,
|
||||
padding: bool = True,
|
||||
padding_mode: str = "replicate",
|
||||
kernel_size: int = 12,
|
||||
):
|
||||
"""
|
||||
kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible.
|
||||
"""
|
||||
super().__init__()
|
||||
if cutoff < -0.0:
|
||||
raise ValueError("Minimum cutoff must be larger than zero.")
|
||||
if cutoff > 0.5:
|
||||
raise ValueError("A cutoff above 0.5 does not make sense.")
|
||||
self.kernel_size = kernel_size
|
||||
self.even = kernel_size % 2 == 0
|
||||
self.pad_left = kernel_size // 2 - int(self.even)
|
||||
self.pad_right = kernel_size // 2
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.padding_mode = padding_mode
|
||||
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
# Input [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
if self.padding:
|
||||
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
|
||||
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
||||
|
||||
return out
|
||||
58
indextts/BigVGAN/alias_free_activation/torch/resample.py
Normal file
58
indextts/BigVGAN/alias_free_activation/torch/resample.py
Normal file
@@ -0,0 +1,58 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .filter import LowPassFilter1d, kaiser_sinc_filter1d
|
||||
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = (
|
||||
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
)
|
||||
self.stride = ratio
|
||||
self.pad = self.kernel_size // ratio - 1
|
||||
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
||||
self.pad_right = (
|
||||
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
||||
)
|
||||
filter = kaiser_sinc_filter1d(
|
||||
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
|
||||
)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
# x: [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
x = F.pad(x, (self.pad, self.pad), mode="replicate")
|
||||
x = self.ratio * F.conv_transpose1d(
|
||||
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
|
||||
)
|
||||
x = x[..., self.pad_left : -self.pad_right]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DownSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = (
|
||||
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
)
|
||||
self.lowpass = LowPassFilter1d(
|
||||
cutoff=0.5 / ratio,
|
||||
half_width=0.6 / ratio,
|
||||
stride=ratio,
|
||||
kernel_size=self.kernel_size,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
xx = self.lowpass(x)
|
||||
|
||||
return xx
|
||||
6
indextts/BigVGAN/alias_free_torch/__init__.py
Normal file
6
indextts/BigVGAN/alias_free_torch/__init__.py
Normal file
@@ -0,0 +1,6 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
from .act import *
|
||||
from .filter import *
|
||||
from .resample import *
|
||||
29
indextts/BigVGAN/alias_free_torch/act.py
Normal file
29
indextts/BigVGAN/alias_free_torch/act.py
Normal file
@@ -0,0 +1,29 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
from .resample import DownSample1d, UpSample1d
|
||||
|
||||
|
||||
class Activation1d(nn.Module):
|
||||
def __init__(self,
|
||||
activation,
|
||||
up_ratio: int = 2,
|
||||
down_ratio: int = 2,
|
||||
up_kernel_size: int = 12,
|
||||
down_kernel_size: int = 12):
|
||||
super().__init__()
|
||||
self.up_ratio = up_ratio
|
||||
self.down_ratio = down_ratio
|
||||
self.act = activation
|
||||
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||||
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||||
|
||||
# x: [B,C,T]
|
||||
def forward(self, x):
|
||||
x = self.upsample(x)
|
||||
x = self.act(x)
|
||||
x = self.downsample(x)
|
||||
|
||||
return x
|
||||
96
indextts/BigVGAN/alias_free_torch/filter.py
Normal file
96
indextts/BigVGAN/alias_free_torch/filter.py
Normal file
@@ -0,0 +1,96 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
if 'sinc' in dir(torch):
|
||||
sinc = torch.sinc
|
||||
else:
|
||||
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/core.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def sinc(x: torch.Tensor):
|
||||
"""
|
||||
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
||||
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
||||
"""
|
||||
return torch.where(x == 0,
|
||||
torch.tensor(1., device=x.device, dtype=x.dtype),
|
||||
torch.sin(math.pi * x) / math.pi / x)
|
||||
|
||||
|
||||
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/lowpass.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
|
||||
even = (kernel_size % 2 == 0)
|
||||
half_size = kernel_size // 2
|
||||
|
||||
#For kaiser window
|
||||
delta_f = 4 * half_width
|
||||
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
||||
if A > 50.:
|
||||
beta = 0.1102 * (A - 8.7)
|
||||
elif A >= 21.:
|
||||
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
|
||||
else:
|
||||
beta = 0.
|
||||
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
||||
|
||||
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
||||
if even:
|
||||
time = (torch.arange(-half_size, half_size) + 0.5)
|
||||
else:
|
||||
time = torch.arange(kernel_size) - half_size
|
||||
if cutoff == 0:
|
||||
filter_ = torch.zeros_like(time)
|
||||
else:
|
||||
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
||||
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
||||
# of the constant component in the input signal.
|
||||
filter_ /= filter_.sum()
|
||||
filter = filter_.view(1, 1, kernel_size)
|
||||
|
||||
return filter
|
||||
|
||||
|
||||
class LowPassFilter1d(nn.Module):
|
||||
def __init__(self,
|
||||
cutoff=0.5,
|
||||
half_width=0.6,
|
||||
stride: int = 1,
|
||||
padding: bool = True,
|
||||
padding_mode: str = 'replicate',
|
||||
kernel_size: int = 12):
|
||||
# kernel_size should be even number for stylegan3 setup,
|
||||
# in this implementation, odd number is also possible.
|
||||
super().__init__()
|
||||
if cutoff < -0.:
|
||||
raise ValueError("Minimum cutoff must be larger than zero.")
|
||||
if cutoff > 0.5:
|
||||
raise ValueError("A cutoff above 0.5 does not make sense.")
|
||||
self.kernel_size = kernel_size
|
||||
self.even = (kernel_size % 2 == 0)
|
||||
self.pad_left = kernel_size // 2 - int(self.even)
|
||||
self.pad_right = kernel_size // 2
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.padding_mode = padding_mode
|
||||
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
#input [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
if self.padding:
|
||||
x = F.pad(x, (self.pad_left, self.pad_right),
|
||||
mode=self.padding_mode)
|
||||
out = F.conv1d(x, self.filter.expand(C, -1, -1),
|
||||
stride=self.stride, groups=C)
|
||||
|
||||
return out
|
||||
49
indextts/BigVGAN/alias_free_torch/resample.py
Normal file
49
indextts/BigVGAN/alias_free_torch/resample.py
Normal file
@@ -0,0 +1,49 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .filter import LowPassFilter1d, kaiser_sinc_filter1d
|
||||
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
self.stride = ratio
|
||||
self.pad = self.kernel_size // ratio - 1
|
||||
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
||||
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
||||
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
|
||||
half_width=0.6 / ratio,
|
||||
kernel_size=self.kernel_size)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
# x: [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
x = F.pad(x, (self.pad, self.pad), mode='replicate')
|
||||
x = self.ratio * F.conv_transpose1d(
|
||||
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
||||
x = x[..., self.pad_left:-self.pad_right]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DownSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
|
||||
half_width=0.6 / ratio,
|
||||
stride=ratio,
|
||||
kernel_size=self.kernel_size)
|
||||
|
||||
def forward(self, x):
|
||||
xx = self.lowpass(x)
|
||||
|
||||
return xx
|
||||
534
indextts/BigVGAN/bigvgan.py
Normal file
534
indextts/BigVGAN/bigvgan.py
Normal file
@@ -0,0 +1,534 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
||||
from torch.nn import Conv1d, ConvTranspose1d
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
|
||||
import indextts.BigVGAN.activations as activations
|
||||
from indextts.BigVGAN.alias_free_activation.torch.act import \
|
||||
Activation1d as TorchActivation1d
|
||||
from indextts.BigVGAN.ECAPA_TDNN import ECAPA_TDNN
|
||||
from indextts.BigVGAN.env import AttrDict
|
||||
from indextts.BigVGAN.utils import get_padding, init_weights
|
||||
|
||||
|
||||
def load_hparams_from_json(path) -> AttrDict:
|
||||
with open(path) as f:
|
||||
data = f.read()
|
||||
return AttrDict(json.loads(data))
|
||||
|
||||
|
||||
class AMPBlock1(torch.nn.Module):
|
||||
"""
|
||||
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
|
||||
AMPBlock1 has additional self.convs2 that contains additional Conv1d layers with a fixed dilation=1 followed by each layer in self.convs1
|
||||
|
||||
Args:
|
||||
h (AttrDict): Hyperparameters.
|
||||
channels (int): Number of convolution channels.
|
||||
kernel_size (int): Size of the convolution kernel. Default is 3.
|
||||
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
|
||||
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
h: AttrDict,
|
||||
channels: int,
|
||||
kernel_size: int = 3,
|
||||
dilation: tuple = (1, 3, 5),
|
||||
activation: str = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.h = h
|
||||
|
||||
self.convs1 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
dilation=d,
|
||||
padding=get_padding(kernel_size, d),
|
||||
)
|
||||
)
|
||||
for d in dilation
|
||||
]
|
||||
)
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
)
|
||||
for _ in range(len(dilation))
|
||||
]
|
||||
)
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
self.num_layers = len(self.convs1) + len(
|
||||
self.convs2
|
||||
) # Total number of conv layers
|
||||
|
||||
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
||||
if self.h.get("use_cuda_kernel", False):
|
||||
from alias_free_activation.cuda.activation1d import \
|
||||
Activation1d as CudaActivation1d
|
||||
|
||||
Activation1d = CudaActivation1d
|
||||
else:
|
||||
Activation1d = TorchActivation1d
|
||||
|
||||
# Activation functions
|
||||
if activation == "snake":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.Snake(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
elif activation == "snakebeta":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
||||
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
||||
xt = a1(x)
|
||||
xt = c1(xt)
|
||||
xt = a2(xt)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class AMPBlock2(torch.nn.Module):
|
||||
"""
|
||||
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
|
||||
Unlike AMPBlock1, AMPBlock2 does not contain extra Conv1d layers with fixed dilation=1
|
||||
|
||||
Args:
|
||||
h (AttrDict): Hyperparameters.
|
||||
channels (int): Number of convolution channels.
|
||||
kernel_size (int): Size of the convolution kernel. Default is 3.
|
||||
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
|
||||
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
h: AttrDict,
|
||||
channels: int,
|
||||
kernel_size: int = 3,
|
||||
dilation: tuple = (1, 3, 5),
|
||||
activation: str = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.h = h
|
||||
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
dilation=d,
|
||||
padding=get_padding(kernel_size, d),
|
||||
)
|
||||
)
|
||||
for d in dilation
|
||||
]
|
||||
)
|
||||
self.convs.apply(init_weights)
|
||||
|
||||
self.num_layers = len(self.convs) # Total number of conv layers
|
||||
|
||||
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
||||
if self.h.get("use_cuda_kernel", False):
|
||||
from alias_free_activation.cuda.activation1d import \
|
||||
Activation1d as CudaActivation1d
|
||||
|
||||
Activation1d = CudaActivation1d
|
||||
else:
|
||||
Activation1d = TorchActivation1d
|
||||
|
||||
# Activation functions
|
||||
if activation == "snake":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.Snake(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
elif activation == "snakebeta":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
for c, a in zip(self.convs, self.activations):
|
||||
xt = a(x)
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
'''
|
||||
PyTorchModelHubMixin,
|
||||
library_name="bigvgan",
|
||||
repo_url="https://github.com/NVIDIA/BigVGAN",
|
||||
docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
|
||||
pipeline_tag="audio-to-audio",
|
||||
license="mit",
|
||||
tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"],
|
||||
'''
|
||||
|
||||
|
||||
class BigVGAN(
|
||||
torch.nn.Module,
|
||||
):
|
||||
"""
|
||||
BigVGAN is a neural vocoder model that applies anti-aliased periodic activation for residual blocks (resblocks).
|
||||
New in BigVGAN-v2: it can optionally use optimized CUDA kernels for AMP (anti-aliased multi-periodicity) blocks.
|
||||
|
||||
Args:
|
||||
h (AttrDict): Hyperparameters.
|
||||
use_cuda_kernel (bool): If set to True, loads optimized CUDA kernels for AMP. This should be used for inference only, as training is not supported with CUDA kernels.
|
||||
|
||||
Note:
|
||||
- The `use_cuda_kernel` parameter should be used for inference only, as training with CUDA kernels is not supported.
|
||||
- Ensure that the activation function is correctly specified in the hyperparameters (h.activation).
|
||||
"""
|
||||
|
||||
def __init__(self, h: AttrDict, use_cuda_kernel: bool = False):
|
||||
super().__init__()
|
||||
self.h = h
|
||||
self.h["use_cuda_kernel"] = use_cuda_kernel
|
||||
|
||||
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
||||
if self.h.get("use_cuda_kernel", False):
|
||||
from alias_free_activation.cuda.activation1d import \
|
||||
Activation1d as CudaActivation1d
|
||||
|
||||
Activation1d = CudaActivation1d
|
||||
else:
|
||||
Activation1d = TorchActivation1d
|
||||
|
||||
self.num_kernels = len(h.resblock_kernel_sizes)
|
||||
self.num_upsamples = len(h.upsample_rates)
|
||||
|
||||
self.feat_upsample = h.feat_upsample
|
||||
self.cond_in_each_up_layer = h.cond_d_vector_in_each_upsampling_layer
|
||||
|
||||
# Pre-conv
|
||||
self.conv_pre = weight_norm(
|
||||
Conv1d(h.gpt_dim, h.upsample_initial_channel, 7, 1, padding=3)
|
||||
)
|
||||
|
||||
# Define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
||||
if h.resblock == "1":
|
||||
resblock_class = AMPBlock1
|
||||
elif h.resblock == "2":
|
||||
resblock_class = AMPBlock2
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Incorrect resblock class specified in hyperparameters. Got {h.resblock}"
|
||||
)
|
||||
|
||||
# Transposed conv-based upsamplers. does not apply anti-aliasing
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
||||
self.ups.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
ConvTranspose1d(
|
||||
h.upsample_initial_channel // (2**i),
|
||||
h.upsample_initial_channel // (2 ** (i + 1)),
|
||||
k,
|
||||
u,
|
||||
padding=(k - u) // 2,
|
||||
)
|
||||
)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
# Residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
||||
for j, (k, d) in enumerate(
|
||||
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
|
||||
):
|
||||
self.resblocks.append(
|
||||
resblock_class(h, ch, k, d, activation=h.activation)
|
||||
)
|
||||
|
||||
# Post-conv
|
||||
activation_post = (
|
||||
activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
||||
if h.activation == "snake"
|
||||
else (
|
||||
activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
||||
if h.activation == "snakebeta"
|
||||
else None
|
||||
)
|
||||
)
|
||||
if activation_post is None:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
self.activation_post = Activation1d(activation=activation_post)
|
||||
|
||||
# Whether to use bias for the final conv_post. Default to True for backward compatibility
|
||||
self.use_bias_at_final = h.get("use_bias_at_final", True)
|
||||
self.conv_post = weight_norm(
|
||||
Conv1d(ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final)
|
||||
)
|
||||
|
||||
# Weight initialization
|
||||
for i in range(len(self.ups)):
|
||||
self.ups[i].apply(init_weights)
|
||||
self.conv_post.apply(init_weights)
|
||||
|
||||
# Final tanh activation. Defaults to True for backward compatibility
|
||||
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
|
||||
|
||||
self.speaker_encoder = ECAPA_TDNN(h.num_mels, lin_neurons=h.speaker_embedding_dim)
|
||||
self.cond_layer = nn.Conv1d(h.speaker_embedding_dim, h.upsample_initial_channel, 1)
|
||||
if self.cond_in_each_up_layer:
|
||||
self.conds = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
||||
self.conds.append(nn.Conv1d(h.speaker_embedding_dim, ch, 1))
|
||||
|
||||
def forward(self, x, mel_refer, lens=None):
|
||||
# Speaker reference
|
||||
speaker_embedding = self.speaker_encoder(mel_refer, lens)
|
||||
n_batch = x.size(0)
|
||||
contrastive_loss = None
|
||||
if n_batch * 2 == speaker_embedding.size(0):
|
||||
spe_emb_chunk1, spe_emb_chunk2 = speaker_embedding[:n_batch, :, :], speaker_embedding[n_batch:, :, :]
|
||||
contrastive_loss = self.cal_clip_loss(spe_emb_chunk1.squeeze(1), spe_emb_chunk2.squeeze(1),
|
||||
self.logit_scale.exp())
|
||||
|
||||
speaker_embedding = speaker_embedding[:n_batch, :, :]
|
||||
speaker_embedding = speaker_embedding.transpose(1, 2)
|
||||
|
||||
# upsample feat
|
||||
if self.feat_upsample:
|
||||
x = torch.nn.functional.interpolate(
|
||||
x.transpose(1, 2),
|
||||
scale_factor=[4],
|
||||
mode="linear",
|
||||
).squeeze(1)
|
||||
else:
|
||||
x = x.transpose(1, 2)
|
||||
|
||||
# BigVGAN
|
||||
# Pre-conv
|
||||
x = self.conv_pre(x)
|
||||
x = x + self.cond_layer(speaker_embedding)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
# Upsampling
|
||||
for i_up in range(len(self.ups[i])):
|
||||
x = self.ups[i][i_up](x)
|
||||
|
||||
if self.cond_in_each_up_layer:
|
||||
x = x + self.conds[i](speaker_embedding)
|
||||
|
||||
# AMP blocks
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
x = xs / self.num_kernels
|
||||
|
||||
# Post-conv
|
||||
x = self.activation_post(x)
|
||||
x = self.conv_post(x)
|
||||
# Final tanh activation
|
||||
if self.use_tanh_at_final:
|
||||
x = torch.tanh(x)
|
||||
else:
|
||||
x = torch.clamp(x, min=-1.0, max=1.0) # Bound the output to [-1, 1]
|
||||
|
||||
return x, contrastive_loss
|
||||
|
||||
def remove_weight_norm(self):
|
||||
try:
|
||||
print("Removing weight norm...")
|
||||
for l in self.ups:
|
||||
for l_i in l:
|
||||
remove_weight_norm(l_i)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
except ValueError:
|
||||
print("[INFO] Model already removed weight norm. Skipping!")
|
||||
pass
|
||||
|
||||
# Additional methods for huggingface_hub support
|
||||
def _save_pretrained(self, save_directory: Path) -> None:
|
||||
"""Save weights and config.json from a Pytorch model to a local directory."""
|
||||
|
||||
model_path = save_directory / "bigvgan_generator.pt"
|
||||
torch.save({"generator": self.state_dict()}, model_path)
|
||||
|
||||
config_path = save_directory / "config.json"
|
||||
with open(config_path, "w") as config_file:
|
||||
json.dump(self.h, config_file, indent=4)
|
||||
|
||||
@classmethod
|
||||
def _from_pretrained(
|
||||
cls,
|
||||
*,
|
||||
model_id: str,
|
||||
revision: str,
|
||||
cache_dir: str,
|
||||
force_download: bool,
|
||||
proxies: Optional[Dict],
|
||||
resume_download: bool,
|
||||
local_files_only: bool,
|
||||
token: Union[str, bool, None],
|
||||
map_location: str = "cpu", # Additional argument
|
||||
strict: bool = False, # Additional argument
|
||||
use_cuda_kernel: bool = False,
|
||||
**model_kwargs,
|
||||
):
|
||||
"""Load Pytorch pretrained weights and return the loaded model."""
|
||||
|
||||
# Download and load hyperparameters (h) used by BigVGAN
|
||||
if os.path.isdir(model_id):
|
||||
print("Loading config.json from local directory")
|
||||
config_file = os.path.join(model_id, "config.json")
|
||||
else:
|
||||
config_file = hf_hub_download(
|
||||
repo_id=model_id,
|
||||
filename="config.json",
|
||||
revision=revision,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
token=token,
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
h = load_hparams_from_json(config_file)
|
||||
|
||||
# instantiate BigVGAN using h
|
||||
if use_cuda_kernel:
|
||||
print(
|
||||
f"[WARNING] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!"
|
||||
)
|
||||
print(
|
||||
f"[WARNING] You need nvcc and ninja installed in your system that matches your PyTorch build is using to build the kernel. If not, the model will fail to initialize or generate incorrect waveform!"
|
||||
)
|
||||
print(
|
||||
f"[WARNING] For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis"
|
||||
)
|
||||
model = cls(h, use_cuda_kernel=use_cuda_kernel)
|
||||
|
||||
# Download and load pretrained generator weight
|
||||
if os.path.isdir(model_id):
|
||||
print("Loading weights from local directory")
|
||||
model_file = os.path.join(model_id, "bigvgan_generator.pt")
|
||||
else:
|
||||
print(f"Loading weights from {model_id}")
|
||||
model_file = hf_hub_download(
|
||||
repo_id=model_id,
|
||||
filename="bigvgan_generator.pt",
|
||||
revision=revision,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
token=token,
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
|
||||
checkpoint_dict = torch.load(model_file, map_location=map_location)
|
||||
|
||||
try:
|
||||
model.load_state_dict(checkpoint_dict["generator"])
|
||||
except RuntimeError:
|
||||
print(
|
||||
f"[INFO] the pretrained checkpoint does not contain weight norm. Loading the checkpoint after removing weight norm!"
|
||||
)
|
||||
model.remove_weight_norm()
|
||||
model.load_state_dict(checkpoint_dict["generator"])
|
||||
|
||||
return model
|
||||
451
indextts/BigVGAN/models.py
Normal file
451
indextts/BigVGAN/models.py
Normal file
@@ -0,0 +1,451 @@
|
||||
# Copyright (c) 2022 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import Conv1d, Conv2d, ConvTranspose1d
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
import indextts.BigVGAN.activations as activations
|
||||
|
||||
from indextts.BigVGAN.ECAPA_TDNN import ECAPA_TDNN
|
||||
from indextts.BigVGAN.utils import get_padding, init_weights
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
class AMPBlock1(torch.nn.Module):
|
||||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
|
||||
super(AMPBlock1, self).__init__()
|
||||
self.h = h
|
||||
|
||||
self.convs1 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2])))
|
||||
])
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1)))
|
||||
])
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
|
||||
if self.h.get("use_cuda_kernel", False):
|
||||
from indextts.BigVGAN.alias_free_activation.cuda.activation1d import Activation1d
|
||||
else:
|
||||
from indextts.BigVGAN.alias_free_torch import Activation1d
|
||||
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
else:
|
||||
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
||||
|
||||
def forward(self, x):
|
||||
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
||||
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
||||
xt = a1(x)
|
||||
xt = c1(xt)
|
||||
xt = a2(xt)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class AMPBlock2(torch.nn.Module):
|
||||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
|
||||
super(AMPBlock2, self).__init__()
|
||||
self.h = h
|
||||
|
||||
self.convs = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1])))
|
||||
])
|
||||
self.convs.apply(init_weights)
|
||||
|
||||
self.num_layers = len(self.convs) # total number of conv layers
|
||||
if self.h.get("use_cuda_kernel", False):
|
||||
from indextts.BigVGAN.alias_free_activation.cuda.activation1d import Activation1d
|
||||
else:
|
||||
from indextts.BigVGAN.alias_free_torch import Activation1d
|
||||
|
||||
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
else:
|
||||
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
||||
|
||||
def forward(self, x):
|
||||
for c, a in zip(self.convs, self.activations):
|
||||
xt = a(x)
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class BigVGAN(torch.nn.Module):
|
||||
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
|
||||
def __init__(self, h, use_cuda_kernel=False):
|
||||
"""
|
||||
Args:
|
||||
h (dict)
|
||||
use_cuda_kernel (bool): whether to use custom cuda kernel for anti-aliased activation
|
||||
"""
|
||||
super(BigVGAN, self).__init__()
|
||||
self.h = h
|
||||
self.h["use_cuda_kernel"] = use_cuda_kernel
|
||||
|
||||
self.num_kernels = len(h.resblock_kernel_sizes)
|
||||
self.num_upsamples = len(h.upsample_rates)
|
||||
|
||||
self.feat_upsample = h.feat_upsample
|
||||
self.cond_in_each_up_layer = h.cond_d_vector_in_each_upsampling_layer
|
||||
|
||||
# pre conv
|
||||
self.conv_pre = weight_norm(Conv1d(h.gpt_dim, h.upsample_initial_channel, 7, 1, padding=3))
|
||||
|
||||
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
||||
resblock = AMPBlock1 if h.resblock == "1" else AMPBlock2
|
||||
|
||||
# transposed conv-based upsamplers. does not apply anti-aliasing
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
||||
self.ups.append(nn.ModuleList([
|
||||
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
|
||||
h.upsample_initial_channel // (2 ** (i + 1)),
|
||||
k, u, padding=(k - u) // 2))
|
||||
]))
|
||||
|
||||
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
||||
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(self.h, ch, k, d, activation=h.activation))
|
||||
if use_cuda_kernel:
|
||||
from indextts.BigVGAN.alias_free_activation.cuda.activation1d import Activation1d
|
||||
else:
|
||||
from indextts.BigVGAN.alias_free_torch import Activation1d
|
||||
|
||||
# post conv
|
||||
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
|
||||
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
||||
self.activation_post = Activation1d(activation=activation_post)
|
||||
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
||||
self.activation_post = Activation1d(activation=activation_post)
|
||||
else:
|
||||
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
||||
|
||||
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
||||
|
||||
# weight initialization
|
||||
for i in range(len(self.ups)):
|
||||
self.ups[i].apply(init_weights)
|
||||
self.conv_post.apply(init_weights)
|
||||
|
||||
self.speaker_encoder = ECAPA_TDNN(h.num_mels, lin_neurons=h.speaker_embedding_dim)
|
||||
self.cond_layer = nn.Conv1d(h.speaker_embedding_dim, h.upsample_initial_channel, 1)
|
||||
if self.cond_in_each_up_layer:
|
||||
self.conds = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
||||
self.conds.append(nn.Conv1d(h.speaker_embedding_dim, ch, 1))
|
||||
|
||||
# self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
||||
|
||||
def forward(self, x, mel_ref, lens=None):
|
||||
speaker_embedding = self.speaker_encoder(mel_ref, lens)
|
||||
n_batch = x.size(0)
|
||||
contrastive_loss = None
|
||||
if n_batch * 2 == speaker_embedding.size(0):
|
||||
spe_emb_chunk1, spe_emb_chunk2 = speaker_embedding[:n_batch, :, :], speaker_embedding[n_batch:, :, :]
|
||||
contrastive_loss = self.cal_clip_loss(spe_emb_chunk1.squeeze(1), spe_emb_chunk2.squeeze(1), self.logit_scale.exp())
|
||||
|
||||
speaker_embedding = speaker_embedding[:n_batch, :, :]
|
||||
speaker_embedding = speaker_embedding.transpose(1, 2)
|
||||
|
||||
# upsample feat
|
||||
if self.feat_upsample:
|
||||
x = torch.nn.functional.interpolate(
|
||||
x.transpose(1, 2),
|
||||
scale_factor=[4],
|
||||
mode="linear",
|
||||
).squeeze(1)
|
||||
else:
|
||||
x = x.transpose(1, 2)
|
||||
|
||||
### bigVGAN ###
|
||||
# pre conv
|
||||
x = self.conv_pre(x)
|
||||
|
||||
x = x + self.cond_layer(speaker_embedding)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
# upsampling
|
||||
for i_up in range(len(self.ups[i])):
|
||||
x = self.ups[i][i_up](x)
|
||||
|
||||
if self.cond_in_each_up_layer:
|
||||
x = x + self.conds[i](speaker_embedding)
|
||||
|
||||
# AMP blocks
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
x = xs / self.num_kernels
|
||||
|
||||
# post conv
|
||||
x = self.activation_post(x)
|
||||
x = self.conv_post(x)
|
||||
x = torch.tanh(x)
|
||||
|
||||
return x, contrastive_loss
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for l in self.ups:
|
||||
for l_i in l:
|
||||
remove_weight_norm(l_i)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
|
||||
def cal_clip_loss(self, image_features, text_features, logit_scale):
|
||||
device = image_features.device
|
||||
logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale)
|
||||
labels = torch.arange(logits_per_image.shape[0], device=device, dtype=torch.long)
|
||||
total_loss = (
|
||||
F.cross_entropy(logits_per_image, labels) +
|
||||
F.cross_entropy(logits_per_text, labels)
|
||||
) / 2
|
||||
return total_loss
|
||||
|
||||
def get_logits(self, image_features, text_features, logit_scale):
|
||||
logits_per_image = logit_scale * image_features @ text_features.T
|
||||
logits_per_text = logit_scale * text_features @ image_features.T
|
||||
return logits_per_image, logits_per_text
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
self.period = period
|
||||
self.d_mult = h.discriminator_channel_mult
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(Conv2d(1, int(32 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(int(32 * self.d_mult), int(128 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(int(128 * self.d_mult), int(512 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(int(512 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(int(1024 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), 1, padding=(2, 0))),
|
||||
])
|
||||
self.conv_post = norm_f(Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0)))
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (0, n_pad), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, h):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
self.mpd_reshapes = h.mpd_reshapes
|
||||
print("mpd_reshapes: {}".format(self.mpd_reshapes))
|
||||
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes]
|
||||
self.discriminators = nn.ModuleList(discriminators)
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorR(nn.Module):
|
||||
def __init__(self, cfg, resolution):
|
||||
super().__init__()
|
||||
|
||||
self.resolution = resolution
|
||||
assert len(self.resolution) == 3, \
|
||||
"MRD layer requires list with len=3, got {}".format(self.resolution)
|
||||
self.lrelu_slope = LRELU_SLOPE
|
||||
|
||||
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
|
||||
if hasattr(cfg, "mrd_use_spectral_norm"):
|
||||
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm))
|
||||
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
|
||||
self.d_mult = cfg.discriminator_channel_mult
|
||||
if hasattr(cfg, "mrd_channel_mult"):
|
||||
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult))
|
||||
self.d_mult = cfg.mrd_channel_mult
|
||||
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(nn.Conv2d(1, int(32 * self.d_mult), (3, 9), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 3), padding=(1, 1))),
|
||||
])
|
||||
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)))
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
|
||||
x = self.spectrogram(x)
|
||||
x = x.unsqueeze(1)
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, self.lrelu_slope)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
def spectrogram(self, x):
|
||||
n_fft, hop_length, win_length = self.resolution
|
||||
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')
|
||||
x = x.squeeze(1)
|
||||
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True)
|
||||
x = torch.view_as_real(x) # [B, F, TT, 2]
|
||||
mag = torch.norm(x, p=2, dim=-1) # [B, F, TT]
|
||||
|
||||
return mag
|
||||
|
||||
|
||||
class MultiResolutionDiscriminator(nn.Module):
|
||||
def __init__(self, cfg, debug=False):
|
||||
super().__init__()
|
||||
self.resolutions = cfg.resolutions
|
||||
assert len(self.resolutions) == 3, \
|
||||
"MRD requires list of list with len=3, each element having a list with len=3. got {}".\
|
||||
format(self.resolutions)
|
||||
self.discriminators = nn.ModuleList(
|
||||
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
|
||||
)
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(x=y)
|
||||
y_d_g, fmap_g = d(x=y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
def feature_loss(fmap_r, fmap_g):
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
|
||||
return loss * 2
|
||||
|
||||
|
||||
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
||||
loss = 0
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
r_loss = torch.mean((1 - dr)**2)
|
||||
g_loss = torch.mean(dg**2)
|
||||
loss += (r_loss + g_loss)
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
|
||||
return loss, r_losses, g_losses
|
||||
|
||||
|
||||
def generator_loss(disc_outputs):
|
||||
loss = 0
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
l = torch.mean((1 - dg)**2)
|
||||
gen_losses.append(l)
|
||||
loss += l
|
||||
|
||||
return loss, gen_losses
|
||||
546
indextts/BigVGAN/nnet/CNN.py
Normal file
546
indextts/BigVGAN/nnet/CNN.py
Normal file
@@ -0,0 +1,546 @@
|
||||
"""Library implementing convolutional neural networks.
|
||||
|
||||
Authors
|
||||
* Mirco Ravanelli 2020
|
||||
* Jianyuan Zhong 2020
|
||||
* Cem Subakan 2021
|
||||
* Davide Borra 2021
|
||||
* Andreas Nautsch 2022
|
||||
* Sarthak Yadav 2022
|
||||
"""
|
||||
|
||||
import logging
|
||||
import math
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
|
||||
|
||||
class SincConv(nn.Module):
|
||||
"""This function implements SincConv (SincNet).
|
||||
|
||||
M. Ravanelli, Y. Bengio, "Speaker Recognition from raw waveform with
|
||||
SincNet", in Proc. of SLT 2018 (https://arxiv.org/abs/1808.00158)
|
||||
|
||||
Arguments
|
||||
---------
|
||||
out_channels : int
|
||||
It is the number of output channels.
|
||||
kernel_size: int
|
||||
Kernel size of the convolutional filters.
|
||||
input_shape : tuple
|
||||
The shape of the input. Alternatively use ``in_channels``.
|
||||
in_channels : int
|
||||
The number of input channels. Alternatively use ``input_shape``.
|
||||
stride : int
|
||||
Stride factor of the convolutional filters. When the stride factor > 1,
|
||||
a decimation in time is performed.
|
||||
dilation : int
|
||||
Dilation factor of the convolutional filters.
|
||||
padding : str
|
||||
(same, valid, causal). If "valid", no padding is performed.
|
||||
If "same" and stride is 1, output shape is the same as the input shape.
|
||||
"causal" results in causal (dilated) convolutions.
|
||||
padding_mode : str
|
||||
This flag specifies the type of padding. See torch.nn documentation
|
||||
for more information.
|
||||
sample_rate : int
|
||||
Sampling rate of the input signals. It is only used for sinc_conv.
|
||||
min_low_hz : float
|
||||
Lowest possible frequency (in Hz) for a filter. It is only used for
|
||||
sinc_conv.
|
||||
min_band_hz : float
|
||||
Lowest possible value (in Hz) for a filter bandwidth.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> inp_tensor = torch.rand([10, 16000])
|
||||
>>> conv = SincConv(input_shape=inp_tensor.shape, out_channels=25, kernel_size=11)
|
||||
>>> out_tensor = conv(inp_tensor)
|
||||
>>> out_tensor.shape
|
||||
torch.Size([10, 16000, 25])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
input_shape=None,
|
||||
in_channels=None,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
padding="same",
|
||||
padding_mode="reflect",
|
||||
sample_rate=16000,
|
||||
min_low_hz=50,
|
||||
min_band_hz=50,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
self.padding = padding
|
||||
self.padding_mode = padding_mode
|
||||
self.sample_rate = sample_rate
|
||||
self.min_low_hz = min_low_hz
|
||||
self.min_band_hz = min_band_hz
|
||||
|
||||
# input shape inference
|
||||
if input_shape is None and self.in_channels is None:
|
||||
raise ValueError("Must provide one of input_shape or in_channels")
|
||||
|
||||
if self.in_channels is None:
|
||||
self.in_channels = self._check_input_shape(input_shape)
|
||||
|
||||
if self.out_channels % self.in_channels != 0:
|
||||
raise ValueError(
|
||||
"Number of output channels must be divisible by in_channels"
|
||||
)
|
||||
|
||||
# Initialize Sinc filters
|
||||
self._init_sinc_conv()
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the output of the convolution.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor (batch, time, channel)
|
||||
input to convolve. 2d or 4d tensors are expected.
|
||||
|
||||
Returns
|
||||
-------
|
||||
wx : torch.Tensor
|
||||
The convolved outputs.
|
||||
"""
|
||||
x = x.transpose(1, -1)
|
||||
self.device = x.device
|
||||
|
||||
unsqueeze = x.ndim == 2
|
||||
if unsqueeze:
|
||||
x = x.unsqueeze(1)
|
||||
|
||||
if self.padding == "same":
|
||||
x = self._manage_padding(
|
||||
x, self.kernel_size, self.dilation, self.stride
|
||||
)
|
||||
|
||||
elif self.padding == "causal":
|
||||
num_pad = (self.kernel_size - 1) * self.dilation
|
||||
x = F.pad(x, (num_pad, 0))
|
||||
|
||||
elif self.padding == "valid":
|
||||
pass
|
||||
|
||||
else:
|
||||
raise ValueError(
|
||||
"Padding must be 'same', 'valid' or 'causal'. Got %s."
|
||||
% (self.padding)
|
||||
)
|
||||
|
||||
sinc_filters = self._get_sinc_filters()
|
||||
|
||||
wx = F.conv1d(
|
||||
x,
|
||||
sinc_filters,
|
||||
stride=self.stride,
|
||||
padding=0,
|
||||
dilation=self.dilation,
|
||||
groups=self.in_channels,
|
||||
)
|
||||
|
||||
if unsqueeze:
|
||||
wx = wx.squeeze(1)
|
||||
|
||||
wx = wx.transpose(1, -1)
|
||||
|
||||
return wx
|
||||
|
||||
def _check_input_shape(self, shape):
|
||||
"""Checks the input shape and returns the number of input channels."""
|
||||
|
||||
if len(shape) == 2:
|
||||
in_channels = 1
|
||||
elif len(shape) == 3:
|
||||
in_channels = shape[-1]
|
||||
else:
|
||||
raise ValueError(
|
||||
"sincconv expects 2d or 3d inputs. Got " + str(len(shape))
|
||||
)
|
||||
|
||||
# Kernel size must be odd
|
||||
if self.kernel_size % 2 == 0:
|
||||
raise ValueError(
|
||||
"The field kernel size must be an odd number. Got %s."
|
||||
% (self.kernel_size)
|
||||
)
|
||||
return in_channels
|
||||
|
||||
def _get_sinc_filters(self):
|
||||
"""This functions creates the sinc-filters to used for sinc-conv."""
|
||||
# Computing the low frequencies of the filters
|
||||
low = self.min_low_hz + torch.abs(self.low_hz_)
|
||||
|
||||
# Setting minimum band and minimum freq
|
||||
high = torch.clamp(
|
||||
low + self.min_band_hz + torch.abs(self.band_hz_),
|
||||
self.min_low_hz,
|
||||
self.sample_rate / 2,
|
||||
)
|
||||
band = (high - low)[:, 0]
|
||||
|
||||
# Passing from n_ to the corresponding f_times_t domain
|
||||
self.n_ = self.n_.to(self.device)
|
||||
self.window_ = self.window_.to(self.device)
|
||||
f_times_t_low = torch.matmul(low, self.n_)
|
||||
f_times_t_high = torch.matmul(high, self.n_)
|
||||
|
||||
# Left part of the filters.
|
||||
band_pass_left = (
|
||||
(torch.sin(f_times_t_high) - torch.sin(f_times_t_low))
|
||||
/ (self.n_ / 2)
|
||||
) * self.window_
|
||||
|
||||
# Central element of the filter
|
||||
band_pass_center = 2 * band.view(-1, 1)
|
||||
|
||||
# Right part of the filter (sinc filters are symmetric)
|
||||
band_pass_right = torch.flip(band_pass_left, dims=[1])
|
||||
|
||||
# Combining left, central, and right part of the filter
|
||||
band_pass = torch.cat(
|
||||
[band_pass_left, band_pass_center, band_pass_right], dim=1
|
||||
)
|
||||
|
||||
# Amplitude normalization
|
||||
band_pass = band_pass / (2 * band[:, None])
|
||||
|
||||
# Setting up the filter coefficients
|
||||
filters = band_pass.view(self.out_channels, 1, self.kernel_size)
|
||||
|
||||
return filters
|
||||
|
||||
def _init_sinc_conv(self):
|
||||
"""Initializes the parameters of the sinc_conv layer."""
|
||||
|
||||
# Initialize filterbanks such that they are equally spaced in Mel scale
|
||||
high_hz = self.sample_rate / 2 - (self.min_low_hz + self.min_band_hz)
|
||||
|
||||
mel = torch.linspace(
|
||||
self._to_mel(self.min_low_hz),
|
||||
self._to_mel(high_hz),
|
||||
self.out_channels + 1,
|
||||
)
|
||||
|
||||
hz = self._to_hz(mel)
|
||||
|
||||
# Filter lower frequency and bands
|
||||
self.low_hz_ = hz[:-1].unsqueeze(1)
|
||||
self.band_hz_ = (hz[1:] - hz[:-1]).unsqueeze(1)
|
||||
|
||||
# Maiking freq and bands learnable
|
||||
self.low_hz_ = nn.Parameter(self.low_hz_)
|
||||
self.band_hz_ = nn.Parameter(self.band_hz_)
|
||||
|
||||
# Hamming window
|
||||
n_lin = torch.linspace(
|
||||
0, (self.kernel_size / 2) - 1, steps=int((self.kernel_size / 2))
|
||||
)
|
||||
self.window_ = 0.54 - 0.46 * torch.cos(
|
||||
2 * math.pi * n_lin / self.kernel_size
|
||||
)
|
||||
|
||||
# Time axis (only half is needed due to symmetry)
|
||||
n = (self.kernel_size - 1) / 2.0
|
||||
self.n_ = (
|
||||
2 * math.pi * torch.arange(-n, 0).view(1, -1) / self.sample_rate
|
||||
)
|
||||
|
||||
def _to_mel(self, hz):
|
||||
"""Converts frequency in Hz to the mel scale."""
|
||||
return 2595 * np.log10(1 + hz / 700)
|
||||
|
||||
def _to_hz(self, mel):
|
||||
"""Converts frequency in the mel scale to Hz."""
|
||||
return 700 * (10 ** (mel / 2595) - 1)
|
||||
|
||||
def _manage_padding(self, x, kernel_size: int, dilation: int, stride: int):
|
||||
"""This function performs zero-padding on the time axis
|
||||
such that their lengths is unchanged after the convolution.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor
|
||||
Input tensor.
|
||||
kernel_size : int
|
||||
Size of kernel.
|
||||
dilation : int
|
||||
Dilation used.
|
||||
stride : int
|
||||
Stride.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : torch.Tensor
|
||||
"""
|
||||
|
||||
# Detecting input shape
|
||||
L_in = self.in_channels
|
||||
|
||||
# Time padding
|
||||
padding = get_padding_elem(L_in, stride, kernel_size, dilation)
|
||||
|
||||
# Applying padding
|
||||
x = F.pad(x, padding, mode=self.padding_mode)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Conv1d(nn.Module):
|
||||
"""This function implements 1d convolution.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
out_channels : int
|
||||
It is the number of output channels.
|
||||
kernel_size : int
|
||||
Kernel size of the convolutional filters.
|
||||
input_shape : tuple
|
||||
The shape of the input. Alternatively use ``in_channels``.
|
||||
in_channels : int
|
||||
The number of input channels. Alternatively use ``input_shape``.
|
||||
stride : int
|
||||
Stride factor of the convolutional filters. When the stride factor > 1,
|
||||
a decimation in time is performed.
|
||||
dilation : int
|
||||
Dilation factor of the convolutional filters.
|
||||
padding : str
|
||||
(same, valid, causal). If "valid", no padding is performed.
|
||||
If "same" and stride is 1, output shape is the same as the input shape.
|
||||
"causal" results in causal (dilated) convolutions.
|
||||
groups : int
|
||||
Number of blocked connections from input channels to output channels.
|
||||
bias : bool
|
||||
Whether to add a bias term to convolution operation.
|
||||
padding_mode : str
|
||||
This flag specifies the type of padding. See torch.nn documentation
|
||||
for more information.
|
||||
skip_transpose : bool
|
||||
If False, uses batch x time x channel convention of speechbrain.
|
||||
If True, uses batch x channel x time convention.
|
||||
weight_norm : bool
|
||||
If True, use weight normalization,
|
||||
to be removed with self.remove_weight_norm() at inference
|
||||
conv_init : str
|
||||
Weight initialization for the convolution network
|
||||
default_padding: str or int
|
||||
This sets the default padding mode that will be used by the pytorch Conv1d backend.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> inp_tensor = torch.rand([10, 40, 16])
|
||||
>>> cnn_1d = Conv1d(
|
||||
... input_shape=inp_tensor.shape, out_channels=8, kernel_size=5
|
||||
... )
|
||||
>>> out_tensor = cnn_1d(inp_tensor)
|
||||
>>> out_tensor.shape
|
||||
torch.Size([10, 40, 8])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
input_shape=None,
|
||||
in_channels=None,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
padding="same",
|
||||
groups=1,
|
||||
bias=True,
|
||||
padding_mode="reflect",
|
||||
skip_transpose=False,
|
||||
weight_norm=False,
|
||||
conv_init=None,
|
||||
default_padding=0,
|
||||
):
|
||||
super().__init__()
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
self.padding = padding
|
||||
self.padding_mode = padding_mode
|
||||
self.unsqueeze = False
|
||||
self.skip_transpose = skip_transpose
|
||||
|
||||
if input_shape is None and in_channels is None:
|
||||
raise ValueError("Must provide one of input_shape or in_channels")
|
||||
|
||||
if in_channels is None:
|
||||
in_channels = self._check_input_shape(input_shape)
|
||||
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.conv = nn.Conv1d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
self.kernel_size,
|
||||
stride=self.stride,
|
||||
dilation=self.dilation,
|
||||
padding=default_padding,
|
||||
groups=groups,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
if conv_init == "kaiming":
|
||||
nn.init.kaiming_normal_(self.conv.weight)
|
||||
elif conv_init == "zero":
|
||||
nn.init.zeros_(self.conv.weight)
|
||||
elif conv_init == "normal":
|
||||
nn.init.normal_(self.conv.weight, std=1e-6)
|
||||
|
||||
if weight_norm:
|
||||
self.conv = nn.utils.weight_norm(self.conv)
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the output of the convolution.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor (batch, time, channel)
|
||||
input to convolve. 2d or 4d tensors are expected.
|
||||
|
||||
Returns
|
||||
-------
|
||||
wx : torch.Tensor
|
||||
The convolved outputs.
|
||||
"""
|
||||
if not self.skip_transpose:
|
||||
x = x.transpose(1, -1)
|
||||
|
||||
if self.unsqueeze:
|
||||
x = x.unsqueeze(1)
|
||||
|
||||
if self.padding == "same":
|
||||
x = self._manage_padding(
|
||||
x, self.kernel_size, self.dilation, self.stride
|
||||
)
|
||||
|
||||
elif self.padding == "causal":
|
||||
num_pad = (self.kernel_size - 1) * self.dilation
|
||||
x = F.pad(x, (num_pad, 0))
|
||||
|
||||
elif self.padding == "valid":
|
||||
pass
|
||||
|
||||
else:
|
||||
raise ValueError(
|
||||
"Padding must be 'same', 'valid' or 'causal'. Got "
|
||||
+ self.padding
|
||||
)
|
||||
|
||||
wx = self.conv(x)
|
||||
|
||||
if self.unsqueeze:
|
||||
wx = wx.squeeze(1)
|
||||
|
||||
if not self.skip_transpose:
|
||||
wx = wx.transpose(1, -1)
|
||||
|
||||
return wx
|
||||
|
||||
def _manage_padding(self, x, kernel_size: int, dilation: int, stride: int):
|
||||
"""This function performs zero-padding on the time axis
|
||||
such that their lengths is unchanged after the convolution.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor
|
||||
Input tensor.
|
||||
kernel_size : int
|
||||
Size of kernel.
|
||||
dilation : int
|
||||
Dilation used.
|
||||
stride : int
|
||||
Stride.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : torch.Tensor
|
||||
The padded outputs.
|
||||
"""
|
||||
|
||||
# Detecting input shape
|
||||
L_in = self.in_channels
|
||||
|
||||
# Time padding
|
||||
padding = get_padding_elem(L_in, stride, kernel_size, dilation)
|
||||
|
||||
# Applying padding
|
||||
x = F.pad(x, padding, mode=self.padding_mode)
|
||||
|
||||
return x
|
||||
|
||||
def _check_input_shape(self, shape):
|
||||
"""Checks the input shape and returns the number of input channels."""
|
||||
|
||||
if len(shape) == 2:
|
||||
self.unsqueeze = True
|
||||
in_channels = 1
|
||||
elif self.skip_transpose:
|
||||
in_channels = shape[1]
|
||||
elif len(shape) == 3:
|
||||
in_channels = shape[2]
|
||||
else:
|
||||
raise ValueError(
|
||||
"conv1d expects 2d, 3d inputs. Got " + str(len(shape))
|
||||
)
|
||||
|
||||
# Kernel size must be odd
|
||||
if not self.padding == "valid" and self.kernel_size % 2 == 0:
|
||||
raise ValueError(
|
||||
"The field kernel size must be an odd number. Got %s."
|
||||
% (self.kernel_size)
|
||||
)
|
||||
|
||||
return in_channels
|
||||
|
||||
def remove_weight_norm(self):
|
||||
"""Removes weight normalization at inference if used during training."""
|
||||
self.conv = nn.utils.remove_weight_norm(self.conv)
|
||||
|
||||
|
||||
def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int):
|
||||
"""This function computes the number of elements to add for zero-padding.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
L_in : int
|
||||
stride: int
|
||||
kernel_size : int
|
||||
dilation : int
|
||||
|
||||
Returns
|
||||
-------
|
||||
padding : int
|
||||
The size of the padding to be added
|
||||
"""
|
||||
if stride > 1:
|
||||
padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)]
|
||||
|
||||
else:
|
||||
L_out = (
|
||||
math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1
|
||||
)
|
||||
padding = [
|
||||
math.floor((L_in - L_out) / 2),
|
||||
math.floor((L_in - L_out) / 2),
|
||||
]
|
||||
return padding
|
||||
|
||||
0
indextts/BigVGAN/nnet/__init__.py
Normal file
0
indextts/BigVGAN/nnet/__init__.py
Normal file
89
indextts/BigVGAN/nnet/linear.py
Normal file
89
indextts/BigVGAN/nnet/linear.py
Normal file
@@ -0,0 +1,89 @@
|
||||
"""Library implementing linear transformation.
|
||||
|
||||
Authors
|
||||
* Mirco Ravanelli 2020
|
||||
* Davide Borra 2021
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class Linear(torch.nn.Module):
|
||||
"""Computes a linear transformation y = wx + b.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
n_neurons : int
|
||||
It is the number of output neurons (i.e, the dimensionality of the
|
||||
output).
|
||||
input_shape : tuple
|
||||
It is the shape of the input tensor.
|
||||
input_size : int
|
||||
Size of the input tensor.
|
||||
bias : bool
|
||||
If True, the additive bias b is adopted.
|
||||
max_norm : float
|
||||
weight max-norm.
|
||||
combine_dims : bool
|
||||
If True and the input is 4D, combine 3rd and 4th dimensions of input.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> inputs = torch.rand(10, 50, 40)
|
||||
>>> lin_t = Linear(input_shape=(10, 50, 40), n_neurons=100)
|
||||
>>> output = lin_t(inputs)
|
||||
>>> output.shape
|
||||
torch.Size([10, 50, 100])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_neurons,
|
||||
input_shape=None,
|
||||
input_size=None,
|
||||
bias=True,
|
||||
max_norm=None,
|
||||
combine_dims=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.max_norm = max_norm
|
||||
self.combine_dims = combine_dims
|
||||
|
||||
if input_shape is None and input_size is None:
|
||||
raise ValueError("Expected one of input_shape or input_size")
|
||||
|
||||
if input_size is None:
|
||||
input_size = input_shape[-1]
|
||||
if len(input_shape) == 4 and self.combine_dims:
|
||||
input_size = input_shape[2] * input_shape[3]
|
||||
|
||||
# Weights are initialized following pytorch approach
|
||||
self.w = nn.Linear(input_size, n_neurons, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the linear transformation of input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor
|
||||
Input to transform linearly.
|
||||
|
||||
Returns
|
||||
-------
|
||||
wx : torch.Tensor
|
||||
The linearly transformed outputs.
|
||||
"""
|
||||
if x.ndim == 4 and self.combine_dims:
|
||||
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3])
|
||||
|
||||
if self.max_norm is not None:
|
||||
self.w.weight.data = torch.renorm(
|
||||
self.w.weight.data, p=2, dim=0, maxnorm=self.max_norm
|
||||
)
|
||||
|
||||
wx = self.w(x)
|
||||
|
||||
return wx
|
||||
670
indextts/BigVGAN/nnet/normalization.py
Normal file
670
indextts/BigVGAN/nnet/normalization.py
Normal file
@@ -0,0 +1,670 @@
|
||||
"""Library implementing normalization.
|
||||
|
||||
Authors
|
||||
* Mirco Ravanelli 2020
|
||||
* Guillermo Cámbara 2021
|
||||
* Sarthak Yadav 2022
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class BatchNorm1d(nn.Module):
|
||||
"""Applies 1d batch normalization to the input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
input_shape : tuple
|
||||
The expected shape of the input. Alternatively, use ``input_size``.
|
||||
input_size : int
|
||||
The expected size of the input. Alternatively, use ``input_shape``.
|
||||
eps : float
|
||||
This value is added to std deviation estimation to improve the numerical
|
||||
stability.
|
||||
momentum : float
|
||||
It is a value used for the running_mean and running_var computation.
|
||||
affine : bool
|
||||
When set to True, the affine parameters are learned.
|
||||
track_running_stats : bool
|
||||
When set to True, this module tracks the running mean and variance,
|
||||
and when set to False, this module does not track such statistics.
|
||||
combine_batch_time : bool
|
||||
When true, it combines batch an time axis.
|
||||
skip_transpose : bool
|
||||
Whether to skip the transposition.
|
||||
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> input = torch.randn(100, 10)
|
||||
>>> norm = BatchNorm1d(input_shape=input.shape)
|
||||
>>> output = norm(input)
|
||||
>>> output.shape
|
||||
torch.Size([100, 10])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_shape=None,
|
||||
input_size=None,
|
||||
eps=1e-05,
|
||||
momentum=0.1,
|
||||
affine=True,
|
||||
track_running_stats=True,
|
||||
combine_batch_time=False,
|
||||
skip_transpose=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.combine_batch_time = combine_batch_time
|
||||
self.skip_transpose = skip_transpose
|
||||
|
||||
if input_size is None and skip_transpose:
|
||||
input_size = input_shape[1]
|
||||
elif input_size is None:
|
||||
input_size = input_shape[-1]
|
||||
|
||||
self.norm = nn.BatchNorm1d(
|
||||
input_size,
|
||||
eps=eps,
|
||||
momentum=momentum,
|
||||
affine=affine,
|
||||
track_running_stats=track_running_stats,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the normalized input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor (batch, time, [channels])
|
||||
input to normalize. 2d or 3d tensors are expected in input
|
||||
4d tensors can be used when combine_dims=True.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x_n : torch.Tensor
|
||||
The normalized outputs.
|
||||
"""
|
||||
shape_or = x.shape
|
||||
if self.combine_batch_time:
|
||||
if x.ndim == 3:
|
||||
x = x.reshape(shape_or[0] * shape_or[1], shape_or[2])
|
||||
else:
|
||||
x = x.reshape(
|
||||
shape_or[0] * shape_or[1], shape_or[3], shape_or[2]
|
||||
)
|
||||
|
||||
elif not self.skip_transpose:
|
||||
x = x.transpose(-1, 1)
|
||||
|
||||
x_n = self.norm(x)
|
||||
|
||||
if self.combine_batch_time:
|
||||
x_n = x_n.reshape(shape_or)
|
||||
elif not self.skip_transpose:
|
||||
x_n = x_n.transpose(1, -1)
|
||||
|
||||
return x_n
|
||||
|
||||
|
||||
class BatchNorm2d(nn.Module):
|
||||
"""Applies 2d batch normalization to the input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
input_shape : tuple
|
||||
The expected shape of the input. Alternatively, use ``input_size``.
|
||||
input_size : int
|
||||
The expected size of the input. Alternatively, use ``input_shape``.
|
||||
eps : float
|
||||
This value is added to std deviation estimation to improve the numerical
|
||||
stability.
|
||||
momentum : float
|
||||
It is a value used for the running_mean and running_var computation.
|
||||
affine : bool
|
||||
When set to True, the affine parameters are learned.
|
||||
track_running_stats : bool
|
||||
When set to True, this module tracks the running mean and variance,
|
||||
and when set to False, this module does not track such statistics.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> input = torch.randn(100, 10, 5, 20)
|
||||
>>> norm = BatchNorm2d(input_shape=input.shape)
|
||||
>>> output = norm(input)
|
||||
>>> output.shape
|
||||
torch.Size([100, 10, 5, 20])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_shape=None,
|
||||
input_size=None,
|
||||
eps=1e-05,
|
||||
momentum=0.1,
|
||||
affine=True,
|
||||
track_running_stats=True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if input_shape is None and input_size is None:
|
||||
raise ValueError("Expected input_shape or input_size as input")
|
||||
|
||||
if input_size is None:
|
||||
input_size = input_shape[-1]
|
||||
|
||||
self.norm = nn.BatchNorm2d(
|
||||
input_size,
|
||||
eps=eps,
|
||||
momentum=momentum,
|
||||
affine=affine,
|
||||
track_running_stats=track_running_stats,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the normalized input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor (batch, time, channel1, channel2)
|
||||
input to normalize. 4d tensors are expected.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x_n : torch.Tensor
|
||||
The normalized outputs.
|
||||
"""
|
||||
x = x.transpose(-1, 1)
|
||||
x_n = self.norm(x)
|
||||
x_n = x_n.transpose(1, -1)
|
||||
|
||||
return x_n
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
"""Applies layer normalization to the input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
input_size : int
|
||||
The expected size of the dimension to be normalized.
|
||||
input_shape : tuple
|
||||
The expected shape of the input.
|
||||
eps : float
|
||||
This value is added to std deviation estimation to improve the numerical
|
||||
stability.
|
||||
elementwise_affine : bool
|
||||
If True, this module has learnable per-element affine parameters
|
||||
initialized to ones (for weights) and zeros (for biases).
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> input = torch.randn(100, 101, 128)
|
||||
>>> norm = LayerNorm(input_shape=input.shape)
|
||||
>>> output = norm(input)
|
||||
>>> output.shape
|
||||
torch.Size([100, 101, 128])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size=None,
|
||||
input_shape=None,
|
||||
eps=1e-05,
|
||||
elementwise_affine=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.elementwise_affine = elementwise_affine
|
||||
|
||||
if input_shape is not None:
|
||||
input_size = input_shape[2:]
|
||||
|
||||
self.norm = torch.nn.LayerNorm(
|
||||
input_size,
|
||||
eps=self.eps,
|
||||
elementwise_affine=self.elementwise_affine,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the normalized input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor (batch, time, channels)
|
||||
input to normalize. 3d or 4d tensors are expected.
|
||||
|
||||
Returns
|
||||
-------
|
||||
The normalized outputs.
|
||||
"""
|
||||
return self.norm(x)
|
||||
|
||||
|
||||
class InstanceNorm1d(nn.Module):
|
||||
"""Applies 1d instance normalization to the input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
input_shape : tuple
|
||||
The expected shape of the input. Alternatively, use ``input_size``.
|
||||
input_size : int
|
||||
The expected size of the input. Alternatively, use ``input_shape``.
|
||||
eps : float
|
||||
This value is added to std deviation estimation to improve the numerical
|
||||
stability.
|
||||
momentum : float
|
||||
It is a value used for the running_mean and running_var computation.
|
||||
track_running_stats : bool
|
||||
When set to True, this module tracks the running mean and variance,
|
||||
and when set to False, this module does not track such statistics.
|
||||
affine : bool
|
||||
A boolean value that when set to True, this module has learnable
|
||||
affine parameters, initialized the same way as done for
|
||||
batch normalization. Default: False.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> input = torch.randn(100, 10, 20)
|
||||
>>> norm = InstanceNorm1d(input_shape=input.shape)
|
||||
>>> output = norm(input)
|
||||
>>> output.shape
|
||||
torch.Size([100, 10, 20])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_shape=None,
|
||||
input_size=None,
|
||||
eps=1e-05,
|
||||
momentum=0.1,
|
||||
track_running_stats=True,
|
||||
affine=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if input_shape is None and input_size is None:
|
||||
raise ValueError("Expected input_shape or input_size as input")
|
||||
|
||||
if input_size is None:
|
||||
input_size = input_shape[-1]
|
||||
|
||||
self.norm = nn.InstanceNorm1d(
|
||||
input_size,
|
||||
eps=eps,
|
||||
momentum=momentum,
|
||||
track_running_stats=track_running_stats,
|
||||
affine=affine,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the normalized input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor (batch, time, channels)
|
||||
input to normalize. 3d tensors are expected.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x_n : torch.Tensor
|
||||
The normalized outputs.
|
||||
"""
|
||||
x = x.transpose(-1, 1)
|
||||
x_n = self.norm(x)
|
||||
x_n = x_n.transpose(1, -1)
|
||||
|
||||
return x_n
|
||||
|
||||
|
||||
class InstanceNorm2d(nn.Module):
|
||||
"""Applies 2d instance normalization to the input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
input_shape : tuple
|
||||
The expected shape of the input. Alternatively, use ``input_size``.
|
||||
input_size : int
|
||||
The expected size of the input. Alternatively, use ``input_shape``.
|
||||
eps : float
|
||||
This value is added to std deviation estimation to improve the numerical
|
||||
stability.
|
||||
momentum : float
|
||||
It is a value used for the running_mean and running_var computation.
|
||||
track_running_stats : bool
|
||||
When set to True, this module tracks the running mean and variance,
|
||||
and when set to False, this module does not track such statistics.
|
||||
affine : bool
|
||||
A boolean value that when set to True, this module has learnable
|
||||
affine parameters, initialized the same way as done for
|
||||
batch normalization. Default: False.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> input = torch.randn(100, 10, 20, 2)
|
||||
>>> norm = InstanceNorm2d(input_shape=input.shape)
|
||||
>>> output = norm(input)
|
||||
>>> output.shape
|
||||
torch.Size([100, 10, 20, 2])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_shape=None,
|
||||
input_size=None,
|
||||
eps=1e-05,
|
||||
momentum=0.1,
|
||||
track_running_stats=True,
|
||||
affine=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if input_shape is None and input_size is None:
|
||||
raise ValueError("Expected input_shape or input_size as input")
|
||||
|
||||
if input_size is None:
|
||||
input_size = input_shape[-1]
|
||||
|
||||
self.norm = nn.InstanceNorm2d(
|
||||
input_size,
|
||||
eps=eps,
|
||||
momentum=momentum,
|
||||
track_running_stats=track_running_stats,
|
||||
affine=affine,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the normalized input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor (batch, time, channel1, channel2)
|
||||
input to normalize. 4d tensors are expected.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x_n : torch.Tensor
|
||||
The normalized outputs.
|
||||
"""
|
||||
x = x.transpose(-1, 1)
|
||||
x_n = self.norm(x)
|
||||
x_n = x_n.transpose(1, -1)
|
||||
|
||||
return x_n
|
||||
|
||||
|
||||
class GroupNorm(nn.Module):
|
||||
"""Applies group normalization to the input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
input_shape : tuple
|
||||
The expected shape of the input. Alternatively, use ``input_size``.
|
||||
input_size : int
|
||||
The expected size of the input. Alternatively, use ``input_shape``.
|
||||
num_groups : int
|
||||
Number of groups to separate the channels into.
|
||||
eps : float
|
||||
This value is added to std deviation estimation to improve the numerical
|
||||
stability.
|
||||
affine : bool
|
||||
A boolean value that when set to True, this module has learnable per-channel
|
||||
affine parameters initialized to ones (for weights) and zeros (for biases).
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> input = torch.randn(100, 101, 128)
|
||||
>>> norm = GroupNorm(input_size=128, num_groups=128)
|
||||
>>> output = norm(input)
|
||||
>>> output.shape
|
||||
torch.Size([100, 101, 128])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_shape=None,
|
||||
input_size=None,
|
||||
num_groups=None,
|
||||
eps=1e-05,
|
||||
affine=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.affine = affine
|
||||
|
||||
if input_shape is None and input_size is None:
|
||||
raise ValueError("Expected input_shape or input_size as input")
|
||||
|
||||
if num_groups is None:
|
||||
raise ValueError("Expected num_groups as input")
|
||||
|
||||
if input_shape is not None:
|
||||
input_size = input_shape[-1]
|
||||
|
||||
self.norm = torch.nn.GroupNorm(
|
||||
num_groups,
|
||||
input_size,
|
||||
eps=self.eps,
|
||||
affine=self.affine,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the normalized input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor (batch, time, channels)
|
||||
input to normalize. 3d or 4d tensors are expected.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x_n : torch.Tensor
|
||||
The normalized outputs.
|
||||
"""
|
||||
x = x.transpose(-1, 1)
|
||||
x_n = self.norm(x)
|
||||
x_n = x_n.transpose(1, -1)
|
||||
|
||||
return x_n
|
||||
|
||||
|
||||
class ExponentialMovingAverage(nn.Module):
|
||||
"""
|
||||
Applies learnable exponential moving average, as required by learnable PCEN layer
|
||||
|
||||
Arguments
|
||||
---------
|
||||
input_size : int
|
||||
The expected size of the input.
|
||||
coeff_init: float
|
||||
Initial smoothing coefficient value
|
||||
per_channel: bool
|
||||
Controls whether every smoothing coefficients are learned
|
||||
independently for every input channel
|
||||
trainable: bool
|
||||
whether to learn the PCEN parameters or use fixed
|
||||
skip_transpose : bool
|
||||
If False, uses batch x time x channel convention of speechbrain.
|
||||
If True, uses batch x channel x time convention.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> inp_tensor = torch.rand([10, 50, 40])
|
||||
>>> pcen = ExponentialMovingAverage(40)
|
||||
>>> out_tensor = pcen(inp_tensor)
|
||||
>>> out_tensor.shape
|
||||
torch.Size([10, 50, 40])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
coeff_init: float = 0.04,
|
||||
per_channel: bool = False,
|
||||
trainable: bool = True,
|
||||
skip_transpose: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self._coeff_init = coeff_init
|
||||
self._per_channel = per_channel
|
||||
self.skip_transpose = skip_transpose
|
||||
self.trainable = trainable
|
||||
weights = (
|
||||
torch.ones(
|
||||
input_size,
|
||||
)
|
||||
if self._per_channel
|
||||
else torch.ones(
|
||||
1,
|
||||
)
|
||||
)
|
||||
self._weights = nn.Parameter(
|
||||
weights * self._coeff_init, requires_grad=trainable
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the normalized input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor (batch, time, channels)
|
||||
input to normalize.
|
||||
"""
|
||||
if not self.skip_transpose:
|
||||
x = x.transpose(1, -1)
|
||||
w = torch.clamp(self._weights, min=0.0, max=1.0)
|
||||
initial_state = x[:, :, 0]
|
||||
|
||||
def scan(init_state, x, w):
|
||||
"""Loops and accumulates."""
|
||||
x = x.permute(2, 0, 1)
|
||||
acc = init_state
|
||||
results = []
|
||||
for ix in range(x.shape[0]):
|
||||
acc = (w * x[ix]) + ((1.0 - w) * acc)
|
||||
results.append(acc.unsqueeze(0))
|
||||
results = torch.cat(results, dim=0)
|
||||
results = results.permute(1, 2, 0)
|
||||
return results
|
||||
|
||||
output = scan(initial_state, x, w)
|
||||
if not self.skip_transpose:
|
||||
output = output.transpose(1, -1)
|
||||
return output
|
||||
|
||||
|
||||
class PCEN(nn.Module):
|
||||
"""
|
||||
This class implements a learnable Per-channel energy normalization (PCEN) layer, supporting both
|
||||
original PCEN as specified in [1] as well as sPCEN as specified in [2]
|
||||
|
||||
[1] Yuxuan Wang, Pascal Getreuer, Thad Hughes, Richard F. Lyon, Rif A. Saurous, "Trainable Frontend For
|
||||
Robust and Far-Field Keyword Spotting", in Proc of ICASSP 2017 (https://arxiv.org/abs/1607.05666)
|
||||
|
||||
[2] Neil Zeghidour, Olivier Teboul, F{\'e}lix de Chaumont Quitry & Marco Tagliasacchi, "LEAF: A LEARNABLE FRONTEND
|
||||
FOR AUDIO CLASSIFICATION", in Proc of ICLR 2021 (https://arxiv.org/abs/2101.08596)
|
||||
|
||||
The default argument values correspond with those used by [2].
|
||||
|
||||
Arguments
|
||||
---------
|
||||
input_size : int
|
||||
The expected size of the input.
|
||||
alpha: float
|
||||
specifies alpha coefficient for PCEN
|
||||
smooth_coef: float
|
||||
specified smooth coefficient for PCEN
|
||||
delta: float
|
||||
specifies delta coefficient for PCEN
|
||||
root: float
|
||||
specifies root coefficient for PCEN
|
||||
floor: float
|
||||
specifies floor coefficient for PCEN
|
||||
trainable: bool
|
||||
whether to learn the PCEN parameters or use fixed
|
||||
per_channel_smooth_coef: bool
|
||||
whether to learn independent smooth coefficients for every channel.
|
||||
when True, essentially using sPCEN from [2]
|
||||
skip_transpose : bool
|
||||
If False, uses batch x time x channel convention of speechbrain.
|
||||
If True, uses batch x channel x time convention.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> inp_tensor = torch.rand([10, 50, 40])
|
||||
>>> pcen = PCEN(40, alpha=0.96) # sPCEN
|
||||
>>> out_tensor = pcen(inp_tensor)
|
||||
>>> out_tensor.shape
|
||||
torch.Size([10, 50, 40])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size,
|
||||
alpha: float = 0.96,
|
||||
smooth_coef: float = 0.04,
|
||||
delta: float = 2.0,
|
||||
root: float = 2.0,
|
||||
floor: float = 1e-12,
|
||||
trainable: bool = True,
|
||||
per_channel_smooth_coef: bool = True,
|
||||
skip_transpose: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self._smooth_coef = smooth_coef
|
||||
self._floor = floor
|
||||
self._per_channel_smooth_coef = per_channel_smooth_coef
|
||||
self.skip_transpose = skip_transpose
|
||||
self.alpha = nn.Parameter(
|
||||
torch.ones(input_size) * alpha, requires_grad=trainable
|
||||
)
|
||||
self.delta = nn.Parameter(
|
||||
torch.ones(input_size) * delta, requires_grad=trainable
|
||||
)
|
||||
self.root = nn.Parameter(
|
||||
torch.ones(input_size) * root, requires_grad=trainable
|
||||
)
|
||||
|
||||
self.ema = ExponentialMovingAverage(
|
||||
input_size,
|
||||
coeff_init=self._smooth_coef,
|
||||
per_channel=self._per_channel_smooth_coef,
|
||||
skip_transpose=True,
|
||||
trainable=trainable,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""Returns the normalized input tensor.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
x : torch.Tensor (batch, time, channels)
|
||||
input to normalize.
|
||||
|
||||
Returns
|
||||
-------
|
||||
output : torch.Tensor
|
||||
The normalized outputs.
|
||||
"""
|
||||
if not self.skip_transpose:
|
||||
x = x.transpose(1, -1)
|
||||
alpha = torch.min(
|
||||
self.alpha, torch.tensor(1.0, dtype=x.dtype, device=x.device)
|
||||
)
|
||||
root = torch.max(
|
||||
self.root, torch.tensor(1.0, dtype=x.dtype, device=x.device)
|
||||
)
|
||||
ema_smoother = self.ema(x)
|
||||
one_over_root = 1.0 / root
|
||||
output = (
|
||||
x / (self._floor + ema_smoother) ** alpha.view(1, -1, 1)
|
||||
+ self.delta.view(1, -1, 1)
|
||||
) ** one_over_root.view(1, -1, 1) - self.delta.view(
|
||||
1, -1, 1
|
||||
) ** one_over_root.view(
|
||||
1, -1, 1
|
||||
)
|
||||
if not self.skip_transpose:
|
||||
output = output.transpose(1, -1)
|
||||
return output
|
||||
101
indextts/BigVGAN/utils.py
Normal file
101
indextts/BigVGAN/utils.py
Normal file
@@ -0,0 +1,101 @@
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import glob
|
||||
import os
|
||||
|
||||
import matplotlib
|
||||
import matplotlib.pylab as plt
|
||||
import torch
|
||||
from scipy.io.wavfile import write
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
matplotlib.use("Agg")
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
def plot_spectrogram(spectrogram):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
|
||||
fig.canvas.draw()
|
||||
plt.close()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def plot_spectrogram_clipped(spectrogram, clip_max=2.0):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(
|
||||
spectrogram,
|
||||
aspect="auto",
|
||||
origin="lower",
|
||||
interpolation="none",
|
||||
vmin=1e-6,
|
||||
vmax=clip_max,
|
||||
)
|
||||
plt.colorbar(im, ax=ax)
|
||||
|
||||
fig.canvas.draw()
|
||||
plt.close()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def apply_weight_norm(m):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
weight_norm(m)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def load_checkpoint(filepath, device):
|
||||
assert os.path.isfile(filepath)
|
||||
print(f"Loading '{filepath}'")
|
||||
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||
print("Complete.")
|
||||
return checkpoint_dict
|
||||
|
||||
|
||||
def save_checkpoint(filepath, obj):
|
||||
print(f"Saving checkpoint to {filepath}")
|
||||
torch.save(obj, filepath)
|
||||
print("Complete.")
|
||||
|
||||
|
||||
def scan_checkpoint(cp_dir, prefix, renamed_file=None):
|
||||
# Fallback to original scanning logic first
|
||||
pattern = os.path.join(cp_dir, prefix + "????????")
|
||||
cp_list = glob.glob(pattern)
|
||||
|
||||
if len(cp_list) > 0:
|
||||
last_checkpoint_path = sorted(cp_list)[-1]
|
||||
print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'")
|
||||
return last_checkpoint_path
|
||||
|
||||
# If no pattern-based checkpoints are found, check for renamed file
|
||||
if renamed_file:
|
||||
renamed_path = os.path.join(cp_dir, renamed_file)
|
||||
if os.path.isfile(renamed_path):
|
||||
print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'")
|
||||
return renamed_path
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def save_audio(audio, path, sr):
|
||||
# wav: torch with 1d shape
|
||||
audio = audio * MAX_WAV_VALUE
|
||||
audio = audio.cpu().numpy().astype("int16")
|
||||
write(path, sr, audio)
|
||||
0
indextts/__init__.py
Normal file
0
indextts/__init__.py
Normal file
65
indextts/cli.py
Normal file
65
indextts/cli.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
# Suppress warnings from tensorflow and other libraries
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||
def main():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description="IndexTTS Command Line")
|
||||
parser.add_argument("text", type=str, help="Text to be synthesized")
|
||||
parser.add_argument("-v", "--voice", type=str, required=True, help="Path to the audio prompt file (wav format)")
|
||||
parser.add_argument("-o", "--output_path", type=str, default="gen.wav", help="Path to the output wav file")
|
||||
parser.add_argument("-c", "--config", type=str, default="checkpoints/config.yaml", help="Path to the config file. Default is 'checkpoints/config.yaml'")
|
||||
parser.add_argument("--model_dir", type=str, default="checkpoints", help="Path to the model directory. Default is 'checkpoints'")
|
||||
parser.add_argument("--fp16", action="store_true", default=False, help="Use FP16 for inference if available")
|
||||
parser.add_argument("-f", "--force", action="store_true", default=False, help="Force to overwrite the output file if it exists")
|
||||
parser.add_argument("-d", "--device", type=str, default=None, help="Device to run the model on (cpu, cuda, mps, xpu)." )
|
||||
args = parser.parse_args()
|
||||
if len(args.text.strip()) == 0:
|
||||
print("ERROR: Text is empty.")
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
if not os.path.exists(args.voice):
|
||||
print(f"Audio prompt file {args.voice} does not exist.")
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
if not os.path.exists(args.config):
|
||||
print(f"Config file {args.config} does not exist.")
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
|
||||
output_path = args.output_path
|
||||
if os.path.exists(output_path):
|
||||
if not args.force:
|
||||
print(f"ERROR: Output file {output_path} already exists. Use --force to overwrite.")
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
else:
|
||||
os.remove(output_path)
|
||||
|
||||
try:
|
||||
import torch
|
||||
except ImportError:
|
||||
print("ERROR: PyTorch is not installed. Please install it first.")
|
||||
sys.exit(1)
|
||||
|
||||
if args.device is None:
|
||||
if torch.cuda.is_available():
|
||||
args.device = "cuda:0"
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
args.device = "xpu"
|
||||
elif hasattr(torch, "mps") and torch.mps.is_available():
|
||||
args.device = "mps"
|
||||
else:
|
||||
args.device = "cpu"
|
||||
args.fp16 = False # Disable FP16 on CPU
|
||||
print("WARNING: Running on CPU may be slow.")
|
||||
|
||||
# TODO: Add CLI support for IndexTTS2.
|
||||
from indextts.infer import IndexTTS
|
||||
tts = IndexTTS(cfg_path=args.config, model_dir=args.model_dir, use_fp16=args.fp16, device=args.device)
|
||||
tts.infer(audio_prompt=args.voice, text=args.text.strip(), output_path=output_path)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
0
indextts/gpt/__init__.py
Normal file
0
indextts/gpt/__init__.py
Normal file
0
indextts/gpt/conformer/__init__.py
Normal file
0
indextts/gpt/conformer/__init__.py
Normal file
312
indextts/gpt/conformer/attention.py
Normal file
312
indextts/gpt/conformer/attention.py
Normal file
@@ -0,0 +1,312 @@
|
||||
# Copyright (c) 2019 Shigeki Karita
|
||||
# 2020 Mobvoi Inc (Binbin Zhang)
|
||||
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Multi-Head Attention layer definition."""
|
||||
|
||||
import math
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class MultiHeadedAttention(nn.Module):
|
||||
"""Multi-Head Attention layer.
|
||||
|
||||
Args:
|
||||
n_head (int): The number of heads.
|
||||
n_feat (int): The number of features.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
def __init__(self, n_head: int, n_feat: int, dropout_rate: float):
|
||||
"""Construct an MultiHeadedAttention object."""
|
||||
super().__init__()
|
||||
assert n_feat % n_head == 0
|
||||
# We assume d_v always equals d_k
|
||||
self.d_k = n_feat // n_head
|
||||
self.h = n_head
|
||||
self.linear_q = nn.Linear(n_feat, n_feat)
|
||||
self.linear_k = nn.Linear(n_feat, n_feat)
|
||||
self.linear_v = nn.Linear(n_feat, n_feat)
|
||||
self.linear_out = nn.Linear(n_feat, n_feat)
|
||||
self.dropout = nn.Dropout(p=dropout_rate)
|
||||
|
||||
def forward_qkv(
|
||||
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Transform query, key and value.
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||||
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||||
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Transformed query tensor, size
|
||||
(#batch, n_head, time1, d_k).
|
||||
torch.Tensor: Transformed key tensor, size
|
||||
(#batch, n_head, time2, d_k).
|
||||
torch.Tensor: Transformed value tensor, size
|
||||
(#batch, n_head, time2, d_k).
|
||||
|
||||
"""
|
||||
n_batch = query.size(0)
|
||||
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
||||
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
||||
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
||||
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
||||
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
||||
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
||||
|
||||
return q, k, v
|
||||
|
||||
def forward_attention(
|
||||
self, value: torch.Tensor, scores: torch.Tensor,
|
||||
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
|
||||
) -> torch.Tensor:
|
||||
"""Compute attention context vector.
|
||||
|
||||
Args:
|
||||
value (torch.Tensor): Transformed value, size
|
||||
(#batch, n_head, time2, d_k).
|
||||
scores (torch.Tensor): Attention score, size
|
||||
(#batch, n_head, time1, time2).
|
||||
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
|
||||
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Transformed value (#batch, time1, d_model)
|
||||
weighted by the attention score (#batch, time1, time2).
|
||||
|
||||
"""
|
||||
n_batch = value.size(0)
|
||||
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
|
||||
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
|
||||
# 1st chunk to ease the onnx export.]
|
||||
# 2. pytorch training
|
||||
if mask.size(2) > 0 : # time2 > 0
|
||||
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||||
# For last chunk, time2 might be larger than scores.size(-1)
|
||||
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
|
||||
scores = scores.masked_fill(mask, -float('inf'))
|
||||
attn = torch.softmax(scores, dim=-1).masked_fill(
|
||||
mask, 0.0) # (batch, head, time1, time2)
|
||||
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
|
||||
# 1. onnx(16/-1, -1/-1, 16/0)
|
||||
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
|
||||
else:
|
||||
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
||||
|
||||
p_attn = self.dropout(attn)
|
||||
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
||||
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
|
||||
self.h * self.d_k)
|
||||
) # (batch, time1, d_model)
|
||||
|
||||
return self.linear_out(x) # (batch, time1, d_model)
|
||||
|
||||
def forward(self, query: torch.Tensor, key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
pos_emb: torch.Tensor = torch.empty(0),
|
||||
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute scaled dot product attention.
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||||
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||||
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||||
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
||||
(#batch, time1, time2).
|
||||
1.When applying cross attention between decoder and encoder,
|
||||
the batch padding mask for input is in (#batch, 1, T) shape.
|
||||
2.When applying self attention of encoder,
|
||||
the mask is in (#batch, T, T) shape.
|
||||
3.When applying self attention of decoder,
|
||||
the mask is in (#batch, L, L) shape.
|
||||
4.If the different position in decoder see different block
|
||||
of the encoder, such as Mocha, the passed in mask could be
|
||||
in (#batch, L, T) shape. But there is no such case in current
|
||||
Wenet.
|
||||
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time1, d_model).
|
||||
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
|
||||
"""
|
||||
q, k, v = self.forward_qkv(query, key, value)
|
||||
|
||||
# NOTE(xcsong):
|
||||
# when export onnx model, for 1st chunk, we feed
|
||||
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
||||
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
||||
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
||||
# and we will always do splitting and
|
||||
# concatnation(this will simplify onnx export). Note that
|
||||
# it's OK to concat & split zero-shaped tensors(see code below).
|
||||
# when export jit model, for 1st chunk, we always feed
|
||||
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
||||
# >>> a = torch.ones((1, 2, 0, 4))
|
||||
# >>> b = torch.ones((1, 2, 3, 4))
|
||||
# >>> c = torch.cat((a, b), dim=2)
|
||||
# >>> torch.equal(b, c) # True
|
||||
# >>> d = torch.split(a, 2, dim=-1)
|
||||
# >>> torch.equal(d[0], d[1]) # True
|
||||
if cache.size(0) > 0:
|
||||
key_cache, value_cache = torch.split(
|
||||
cache, cache.size(-1) // 2, dim=-1)
|
||||
k = torch.cat([key_cache, k], dim=2)
|
||||
v = torch.cat([value_cache, v], dim=2)
|
||||
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
||||
# non-trivial to calculate `next_cache_start` here.
|
||||
new_cache = torch.cat((k, v), dim=-1)
|
||||
|
||||
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
||||
return self.forward_attention(v, scores, mask), new_cache
|
||||
|
||||
|
||||
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
||||
"""Multi-Head Attention layer with relative position encoding.
|
||||
Paper: https://arxiv.org/abs/1901.02860
|
||||
Args:
|
||||
n_head (int): The number of heads.
|
||||
n_feat (int): The number of features.
|
||||
dropout_rate (float): Dropout rate.
|
||||
"""
|
||||
def __init__(self, n_head, n_feat, dropout_rate):
|
||||
"""Construct an RelPositionMultiHeadedAttention object."""
|
||||
super().__init__(n_head, n_feat, dropout_rate)
|
||||
# linear transformation for positional encoding
|
||||
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
||||
# these two learnable bias are used in matrix c and matrix d
|
||||
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
||||
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
||||
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
||||
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
||||
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
||||
|
||||
def rel_shift(self, x, zero_triu: bool = False):
|
||||
"""Compute relative positinal encoding.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, time, size).
|
||||
zero_triu (bool): If true, return the lower triangular part of
|
||||
the matrix.
|
||||
Returns:
|
||||
torch.Tensor: Output tensor.
|
||||
"""
|
||||
|
||||
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
|
||||
device=x.device,
|
||||
dtype=x.dtype)
|
||||
x_padded = torch.cat([zero_pad, x], dim=-1)
|
||||
|
||||
x_padded = x_padded.view(x.size()[0],
|
||||
x.size()[1],
|
||||
x.size(3) + 1, x.size(2))
|
||||
x = x_padded[:, :, 1:].view_as(x)
|
||||
|
||||
if zero_triu:
|
||||
ones = torch.ones((x.size(2), x.size(3)))
|
||||
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, query: torch.Tensor,
|
||||
key: torch.Tensor, value: torch.Tensor,
|
||||
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
pos_emb: torch.Tensor = torch.empty(0),
|
||||
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||||
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||||
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||||
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
||||
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
||||
pos_emb (torch.Tensor): Positional embedding tensor
|
||||
(#batch, time2, size).
|
||||
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time1, d_model).
|
||||
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
||||
where `cache_t == chunk_size * num_decoding_left_chunks`
|
||||
and `head * d_k == size`
|
||||
"""
|
||||
q, k, v = self.forward_qkv(query, key, value)
|
||||
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
||||
|
||||
# NOTE(xcsong):
|
||||
# when export onnx model, for 1st chunk, we feed
|
||||
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
||||
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
||||
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
||||
# and we will always do splitting and
|
||||
# concatnation(this will simplify onnx export). Note that
|
||||
# it's OK to concat & split zero-shaped tensors(see code below).
|
||||
# when export jit model, for 1st chunk, we always feed
|
||||
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
||||
# >>> a = torch.ones((1, 2, 0, 4))
|
||||
# >>> b = torch.ones((1, 2, 3, 4))
|
||||
# >>> c = torch.cat((a, b), dim=2)
|
||||
# >>> torch.equal(b, c) # True
|
||||
# >>> d = torch.split(a, 2, dim=-1)
|
||||
# >>> torch.equal(d[0], d[1]) # True
|
||||
if cache.size(0) > 0:
|
||||
key_cache, value_cache = torch.split(
|
||||
cache, cache.size(-1) // 2, dim=-1)
|
||||
k = torch.cat([key_cache, k], dim=2)
|
||||
v = torch.cat([value_cache, v], dim=2)
|
||||
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
||||
# non-trivial to calculate `next_cache_start` here.
|
||||
new_cache = torch.cat((k, v), dim=-1)
|
||||
|
||||
n_batch_pos = pos_emb.size(0)
|
||||
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
||||
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
||||
|
||||
# (batch, head, time1, d_k)
|
||||
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
||||
# (batch, head, time1, d_k)
|
||||
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
||||
|
||||
# compute attention score
|
||||
# first compute matrix a and matrix c
|
||||
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
||||
# (batch, head, time1, time2)
|
||||
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
||||
|
||||
# compute matrix b and matrix d
|
||||
# (batch, head, time1, time2)
|
||||
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
||||
# Remove rel_shift since it is useless in speech recognition,
|
||||
# and it requires special attention for streaming.
|
||||
# matrix_bd = self.rel_shift(matrix_bd)
|
||||
|
||||
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
||||
self.d_k) # (batch, head, time1, time2)
|
||||
|
||||
return self.forward_attention(v, scores, mask), new_cache
|
||||
163
indextts/gpt/conformer/embedding.py
Normal file
163
indextts/gpt/conformer/embedding.py
Normal file
@@ -0,0 +1,163 @@
|
||||
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
|
||||
"""Positonal Encoding Module."""
|
||||
|
||||
import math
|
||||
from typing import Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class PositionalEncoding(torch.nn.Module):
|
||||
"""Positional encoding.
|
||||
|
||||
:param int d_model: embedding dim
|
||||
:param float dropout_rate: dropout rate
|
||||
:param int max_len: maximum input length
|
||||
|
||||
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
|
||||
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
|
||||
"""
|
||||
def __init__(self,
|
||||
d_model: int,
|
||||
dropout_rate: float,
|
||||
max_len: int = 5000,
|
||||
reverse: bool = False):
|
||||
"""Construct an PositionalEncoding object."""
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
self.max_len = max_len
|
||||
|
||||
pe = torch.zeros(self.max_len, self.d_model)
|
||||
position = torch.arange(0, self.max_len).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2) *
|
||||
-(math.log(10000.0) / self.d_model))
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self,
|
||||
x: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0) \
|
||||
-> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Add positional encoding.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input. Its shape is (batch, time, ...)
|
||||
offset (int, torch.tensor): position offset
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
|
||||
torch.Tensor: for compatibility to RelPositionalEncoding
|
||||
"""
|
||||
|
||||
self.pe = self.pe.to(x.device)
|
||||
pos_emb = self.position_encoding(offset, x.size(1), False)
|
||||
x = x * self.xscale + pos_emb
|
||||
return self.dropout(x), self.dropout(pos_emb)
|
||||
|
||||
def position_encoding(self, offset: Union[int, torch.Tensor], size: int,
|
||||
apply_dropout: bool = True) -> torch.Tensor:
|
||||
""" For getting encoding in a streaming fashion
|
||||
|
||||
Attention!!!!!
|
||||
we apply dropout only once at the whole utterance level in a none
|
||||
streaming way, but will call this function several times with
|
||||
increasing input size in a streaming scenario, so the dropout will
|
||||
be applied several times.
|
||||
|
||||
Args:
|
||||
offset (int or torch.tensor): start offset
|
||||
size (int): required size of position encoding
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Corresponding encoding
|
||||
"""
|
||||
# How to subscript a Union type:
|
||||
# https://github.com/pytorch/pytorch/issues/69434
|
||||
if isinstance(offset, int):
|
||||
assert offset + size < self.max_len
|
||||
pos_emb = self.pe[:, offset:offset + size]
|
||||
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
|
||||
assert offset + size < self.max_len
|
||||
pos_emb = self.pe[:, offset:offset + size]
|
||||
else: # for batched streaming decoding on GPU
|
||||
assert torch.max(offset) + size < self.max_len
|
||||
index = offset.unsqueeze(1) + \
|
||||
torch.arange(0, size).to(offset.device) # B X T
|
||||
flag = index > 0
|
||||
# remove negative offset
|
||||
index = index * flag
|
||||
pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
|
||||
|
||||
if apply_dropout:
|
||||
pos_emb = self.dropout(pos_emb)
|
||||
return pos_emb
|
||||
|
||||
class RelPositionalEncoding(PositionalEncoding):
|
||||
"""Relative positional encoding module.
|
||||
See : Appendix B in https://arxiv.org/abs/1901.02860
|
||||
Args:
|
||||
d_model (int): Embedding dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
max_len (int): Maximum input length.
|
||||
"""
|
||||
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
|
||||
"""Initialize class."""
|
||||
super().__init__(d_model, dropout_rate, max_len, reverse=True)
|
||||
|
||||
def forward(self,
|
||||
x: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0) \
|
||||
-> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute positional encoding.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||
Returns:
|
||||
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||
torch.Tensor: Positional embedding tensor (1, time, `*`).
|
||||
"""
|
||||
self.pe = self.pe.to(x.device)
|
||||
x = x * self.xscale
|
||||
pos_emb = self.position_encoding(offset, x.size(1), False)
|
||||
return self.dropout(x), self.dropout(pos_emb)
|
||||
|
||||
|
||||
class NoPositionalEncoding(torch.nn.Module):
|
||||
""" No position encoding
|
||||
"""
|
||||
def __init__(self, d_model: int, dropout_rate: float):
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
|
||||
def forward(self,
|
||||
x: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0) \
|
||||
-> Tuple[torch.Tensor, torch.Tensor]:
|
||||
""" Just return zero vector for interface compatibility
|
||||
"""
|
||||
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
|
||||
return self.dropout(x), pos_emb
|
||||
|
||||
def position_encoding(
|
||||
self, offset: Union[int, torch.Tensor], size: int) -> torch.Tensor:
|
||||
return torch.zeros(1, size, self.d_model)
|
||||
348
indextts/gpt/conformer/subsampling.py
Normal file
348
indextts/gpt/conformer/subsampling.py
Normal file
@@ -0,0 +1,348 @@
|
||||
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||
|
||||
|
||||
"""Subsampling layer definition."""
|
||||
|
||||
from typing import Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class BaseSubsampling(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.right_context = 0
|
||||
self.subsampling_rate = 1
|
||||
|
||||
def position_encoding(self, offset: Union[int, torch.Tensor],
|
||||
size: int) -> torch.Tensor:
|
||||
return self.pos_enc.position_encoding(offset, size)
|
||||
|
||||
|
||||
class LinearNoSubsampling(BaseSubsampling):
|
||||
"""Linear transform the input without subsampling
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an linear object."""
|
||||
super().__init__()
|
||||
self.out = torch.nn.Sequential(
|
||||
torch.nn.Linear(idim, odim),
|
||||
torch.nn.LayerNorm(odim, eps=1e-5),
|
||||
torch.nn.Dropout(dropout_rate),
|
||||
)
|
||||
self.pos_enc = pos_enc_class
|
||||
self.right_context = 0
|
||||
self.subsampling_rate = 1
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Input x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: linear input tensor (#batch, time', odim),
|
||||
where time' = time .
|
||||
torch.Tensor: linear input mask (#batch, 1, time'),
|
||||
where time' = time .
|
||||
|
||||
"""
|
||||
x = self.out(x)
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask
|
||||
|
||||
|
||||
class Conv2dSubsampling3(BaseSubsampling):
|
||||
"""Convolutional 2D subsampling (to 1/3 length).
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv2dSubsampling3 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(1, odim, 5, 3),
|
||||
torch.nn.ReLU()
|
||||
)
|
||||
self.out = torch.nn.Sequential(
|
||||
torch.nn.Linear(odim * ((idim - 2) // 3), odim))
|
||||
self.pos_enc = pos_enc_class
|
||||
# The right context for every conv layer is computed by:
|
||||
# (kernel_size - 1) * frame_rate_of_this_layer
|
||||
self.subsampling_rate = 3
|
||||
# 4 = (5 - 1) * 1
|
||||
self.right_context = 4
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 3.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 3.
|
||||
torch.Tensor: positional encoding
|
||||
|
||||
"""
|
||||
x = x.unsqueeze(1) # (b, c=1, t, f)
|
||||
x = self.conv(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, :-2:3]
|
||||
|
||||
|
||||
class Conv2dSubsampling2(BaseSubsampling):
|
||||
"""Convolutional 2D subsampling (to 1/2 length).
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv2dSubsampling4 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(1, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
)
|
||||
self.out = torch.nn.Sequential(
|
||||
torch.nn.Linear(odim * ((idim - 1) // 2), odim))
|
||||
self.pos_enc = pos_enc_class
|
||||
# The right context for every conv layer is computed by:
|
||||
# (kernel_size - 1) * frame_rate_of_this_layer
|
||||
self.subsampling_rate = 2
|
||||
# 2 = (3 - 1) * 1
|
||||
self.right_context = 2
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 2.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 2.
|
||||
torch.Tensor: positional encoding
|
||||
|
||||
"""
|
||||
x = x.unsqueeze(1) # (b, c=1, t, f)
|
||||
x = self.conv(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, 2::2]
|
||||
|
||||
|
||||
class Conv2dSubsampling4(BaseSubsampling):
|
||||
"""Convolutional 2D subsampling (to 1/4 length).
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv2dSubsampling4 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(1, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
)
|
||||
self.out = torch.nn.Sequential(
|
||||
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
|
||||
self.pos_enc = pos_enc_class
|
||||
# The right context for every conv layer is computed by:
|
||||
# (kernel_size - 1) * frame_rate_of_this_layer
|
||||
self.subsampling_rate = 4
|
||||
# 6 = (3 - 1) * 1 + (3 - 1) * 2
|
||||
self.right_context = 6
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 4.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 4.
|
||||
torch.Tensor: positional encoding
|
||||
|
||||
"""
|
||||
x = x.unsqueeze(1) # (b, c=1, t, f)
|
||||
x = self.conv(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
|
||||
|
||||
|
||||
class Conv2dSubsampling6(BaseSubsampling):
|
||||
"""Convolutional 2D subsampling (to 1/6 length).
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
pos_enc (torch.nn.Module): Custom position encoding layer.
|
||||
"""
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv2dSubsampling6 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(1, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 5, 3),
|
||||
torch.nn.ReLU(),
|
||||
)
|
||||
self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
|
||||
odim)
|
||||
self.pos_enc = pos_enc_class
|
||||
# 10 = (3 - 1) * 1 + (5 - 1) * 2
|
||||
self.subsampling_rate = 6
|
||||
self.right_context = 10
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 6.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 6.
|
||||
torch.Tensor: positional encoding
|
||||
"""
|
||||
x = x.unsqueeze(1) # (b, c, t, f)
|
||||
x = self.conv(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
|
||||
|
||||
|
||||
class Conv2dSubsampling8(BaseSubsampling):
|
||||
"""Convolutional 2D subsampling (to 1/8 length).
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv2dSubsampling8 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(1, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
)
|
||||
self.linear = torch.nn.Linear(
|
||||
odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
|
||||
self.pos_enc = pos_enc_class
|
||||
self.subsampling_rate = 8
|
||||
# 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
|
||||
self.right_context = 14
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: Union[int, torch.Tensor] = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 8.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 8.
|
||||
torch.Tensor: positional encoding
|
||||
"""
|
||||
x = x.unsqueeze(1) # (b, c, t, f)
|
||||
x = self.conv(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]
|
||||
520
indextts/gpt/conformer_encoder.py
Normal file
520
indextts/gpt/conformer_encoder.py
Normal file
@@ -0,0 +1,520 @@
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from indextts.gpt.conformer.attention import (MultiHeadedAttention,
|
||||
RelPositionMultiHeadedAttention)
|
||||
from indextts.gpt.conformer.embedding import (NoPositionalEncoding,
|
||||
PositionalEncoding,
|
||||
RelPositionalEncoding)
|
||||
from indextts.gpt.conformer.subsampling import (Conv2dSubsampling2,
|
||||
Conv2dSubsampling4,
|
||||
Conv2dSubsampling6,
|
||||
Conv2dSubsampling8,
|
||||
LinearNoSubsampling)
|
||||
from indextts.utils.common import make_pad_mask
|
||||
|
||||
|
||||
class PositionwiseFeedForward(torch.nn.Module):
|
||||
"""Positionwise feed forward layer.
|
||||
|
||||
FeedForward are appied on each position of the sequence.
|
||||
The output dim is same with the input dim.
|
||||
|
||||
Args:
|
||||
idim (int): Input dimenstion.
|
||||
hidden_units (int): The number of hidden units.
|
||||
dropout_rate (float): Dropout rate.
|
||||
activation (torch.nn.Module): Activation function
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
idim: int,
|
||||
hidden_units: int,
|
||||
dropout_rate: float,
|
||||
activation: torch.nn.Module = torch.nn.ReLU()):
|
||||
"""Construct a PositionwiseFeedForward object."""
|
||||
super(PositionwiseFeedForward, self).__init__()
|
||||
self.w_1 = torch.nn.Linear(idim, hidden_units)
|
||||
self.activation = activation
|
||||
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||
self.w_2 = torch.nn.Linear(hidden_units, idim)
|
||||
|
||||
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
||||
"""Forward function.
|
||||
|
||||
Args:
|
||||
xs: input tensor (B, L, D)
|
||||
Returns:
|
||||
output tensor, (B, L, D)
|
||||
"""
|
||||
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
|
||||
|
||||
|
||||
class ConvolutionModule(nn.Module):
|
||||
"""ConvolutionModule in Conformer model."""
|
||||
|
||||
def __init__(self,
|
||||
channels: int,
|
||||
kernel_size: int = 15,
|
||||
activation: nn.Module = nn.ReLU(),
|
||||
bias: bool = True):
|
||||
"""Construct an ConvolutionModule object.
|
||||
Args:
|
||||
channels (int): The number of channels of conv layers.
|
||||
kernel_size (int): Kernel size of conv layers.
|
||||
causal (int): Whether use causal convolution or not
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.pointwise_conv1 = nn.Conv1d(
|
||||
channels,
|
||||
2 * channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
# self.lorder is used to distinguish if it's a causal convolution,
|
||||
# if self.lorder > 0: it's a causal convolution, the input will be
|
||||
# padded with self.lorder frames on the left in forward.
|
||||
# else: it's a symmetrical convolution
|
||||
# kernel_size should be an odd number for none causal convolution
|
||||
assert (kernel_size - 1) % 2 == 0
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.lorder = 0
|
||||
|
||||
self.depthwise_conv = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=padding,
|
||||
groups=channels,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
self.use_layer_norm = True
|
||||
self.norm = nn.LayerNorm(channels)
|
||||
|
||||
self.pointwise_conv2 = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
self.activation = activation
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
cache: torch.Tensor = torch.zeros((0, 0, 0)),
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute convolution module.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, channels).
|
||||
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
|
||||
(0, 0, 0) means fake mask.
|
||||
cache (torch.Tensor): left context cache, it is only
|
||||
used in causal convolution (#batch, channels, cache_t),
|
||||
(0, 0, 0) meas fake cache.
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time, channels).
|
||||
"""
|
||||
# exchange the temporal dimension and the feature dimension
|
||||
x = x.transpose(1, 2) # (#batch, channels, time)
|
||||
|
||||
# mask batch padding
|
||||
if mask_pad.size(2) > 0: # time > 0
|
||||
x.masked_fill_(~mask_pad, 0.0)
|
||||
|
||||
if self.lorder > 0:
|
||||
if cache.size(2) == 0: # cache_t == 0
|
||||
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
|
||||
else:
|
||||
assert cache.size(0) == x.size(0) # equal batch
|
||||
assert cache.size(1) == x.size(1) # equal channel
|
||||
x = torch.cat((cache, x), dim=2)
|
||||
assert (x.size(2) > self.lorder)
|
||||
new_cache = x[:, :, -self.lorder:]
|
||||
else:
|
||||
# It's better we just return None if no cache is required,
|
||||
# However, for JIT export, here we just fake one tensor instead of
|
||||
# None.
|
||||
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
||||
|
||||
# GLU mechanism
|
||||
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
|
||||
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
|
||||
|
||||
# 1D Depthwise Conv
|
||||
x = self.depthwise_conv(x)
|
||||
if self.use_layer_norm:
|
||||
x = x.transpose(1, 2)
|
||||
x = self.activation(self.norm(x))
|
||||
if self.use_layer_norm:
|
||||
x = x.transpose(1, 2)
|
||||
x = self.pointwise_conv2(x)
|
||||
# mask batch padding
|
||||
if mask_pad.size(2) > 0: # time > 0
|
||||
x.masked_fill_(~mask_pad, 0.0)
|
||||
|
||||
return x.transpose(1, 2), new_cache
|
||||
|
||||
|
||||
class ConformerEncoderLayer(nn.Module):
|
||||
"""Encoder layer module.
|
||||
Args:
|
||||
size (int): Input dimension.
|
||||
self_attn (torch.nn.Module): Self-attention module instance.
|
||||
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
||||
instance can be used as the argument.
|
||||
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||||
`PositionwiseFeedForward` instance can be used as the argument.
|
||||
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
|
||||
instance.
|
||||
`PositionwiseFeedForward` instance can be used as the argument.
|
||||
conv_module (torch.nn.Module): Convolution module instance.
|
||||
`ConvlutionModule` instance can be used as the argument.
|
||||
dropout_rate (float): Dropout rate.
|
||||
normalize_before (bool):
|
||||
True: use layer_norm before each sub-block.
|
||||
False: use layer_norm after each sub-block.
|
||||
concat_after (bool): Whether to concat attention layer's input and
|
||||
output.
|
||||
True: x -> x + linear(concat(x, att(x)))
|
||||
False: x -> x + att(x)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size: int,
|
||||
self_attn: torch.nn.Module,
|
||||
feed_forward: Optional[nn.Module] = None,
|
||||
feed_forward_macaron: Optional[nn.Module] = None,
|
||||
conv_module: Optional[nn.Module] = None,
|
||||
dropout_rate: float = 0.1,
|
||||
normalize_before: bool = True,
|
||||
concat_after: bool = False,
|
||||
):
|
||||
"""Construct an EncoderLayer object."""
|
||||
super().__init__()
|
||||
self.self_attn = self_attn
|
||||
self.feed_forward = feed_forward
|
||||
self.feed_forward_macaron = feed_forward_macaron
|
||||
self.conv_module = conv_module
|
||||
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
|
||||
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
|
||||
if feed_forward_macaron is not None:
|
||||
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
|
||||
self.ff_scale = 0.5
|
||||
else:
|
||||
self.ff_scale = 1.0
|
||||
if self.conv_module is not None:
|
||||
self.norm_conv = nn.LayerNorm(size,
|
||||
eps=1e-5) # for the CNN module
|
||||
self.norm_final = nn.LayerNorm(
|
||||
size, eps=1e-5) # for the final output of the block
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
self.size = size
|
||||
self.normalize_before = normalize_before
|
||||
self.concat_after = concat_after
|
||||
if self.concat_after:
|
||||
self.concat_linear = nn.Linear(size + size, size)
|
||||
else:
|
||||
self.concat_linear = nn.Identity()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
||||
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
||||
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Compute encoded features.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): (#batch, time, size)
|
||||
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
|
||||
(0, 0, 0) means fake mask.
|
||||
pos_emb (torch.Tensor): positional encoding, must not be None
|
||||
for ConformerEncoderLayer.
|
||||
mask_pad (torch.Tensor): batch padding mask used for conv module.
|
||||
(#batch, 1,time), (0, 0, 0) means fake mask.
|
||||
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
|
||||
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
||||
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
||||
(#batch=1, size, cache_t2)
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time, size).
|
||||
torch.Tensor: Mask tensor (#batch, time, time).
|
||||
torch.Tensor: att_cache tensor,
|
||||
(#batch=1, head, cache_t1 + time, d_k * 2).
|
||||
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
|
||||
"""
|
||||
|
||||
# whether to use macaron style
|
||||
if self.feed_forward_macaron is not None:
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm_ff_macaron(x)
|
||||
x = residual + self.ff_scale * self.dropout(
|
||||
self.feed_forward_macaron(x))
|
||||
if not self.normalize_before:
|
||||
x = self.norm_ff_macaron(x)
|
||||
|
||||
# multi-headed self-attention module
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm_mha(x)
|
||||
|
||||
x_att, new_att_cache = self.self_attn(
|
||||
x, x, x, mask, pos_emb, att_cache)
|
||||
if self.concat_after:
|
||||
x_concat = torch.cat((x, x_att), dim=-1)
|
||||
x = residual + self.concat_linear(x_concat)
|
||||
else:
|
||||
x = residual + self.dropout(x_att)
|
||||
if not self.normalize_before:
|
||||
x = self.norm_mha(x)
|
||||
|
||||
# convolution module
|
||||
# Fake new cnn cache here, and then change it in conv_module
|
||||
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
||||
if self.conv_module is not None:
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm_conv(x)
|
||||
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
|
||||
x = residual + self.dropout(x)
|
||||
|
||||
if not self.normalize_before:
|
||||
x = self.norm_conv(x)
|
||||
|
||||
# feed forward module
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm_ff(x)
|
||||
|
||||
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
|
||||
if not self.normalize_before:
|
||||
x = self.norm_ff(x)
|
||||
|
||||
if self.conv_module is not None:
|
||||
x = self.norm_final(x)
|
||||
|
||||
return x, mask, new_att_cache, new_cnn_cache
|
||||
|
||||
|
||||
class BaseEncoder(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int = 256,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.0,
|
||||
input_layer: str = "conv2d",
|
||||
pos_enc_layer_type: str = "abs_pos",
|
||||
normalize_before: bool = True,
|
||||
concat_after: bool = False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
input_size (int): input dim
|
||||
output_size (int): dimension of attention
|
||||
attention_heads (int): the number of heads of multi head attention
|
||||
linear_units (int): the hidden units number of position-wise feed
|
||||
forward
|
||||
num_blocks (int): the number of decoder blocks
|
||||
dropout_rate (float): dropout rate
|
||||
attention_dropout_rate (float): dropout rate in attention
|
||||
positional_dropout_rate (float): dropout rate after adding
|
||||
positional encoding
|
||||
input_layer (str): input layer type.
|
||||
optional [linear, conv2d, conv2d6, conv2d8]
|
||||
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
||||
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
||||
normalize_before (bool):
|
||||
True: use layer_norm before each sub-block of a layer.
|
||||
False: use layer_norm after each sub-block of a layer.
|
||||
concat_after (bool): whether to concat attention layer's input
|
||||
and output.
|
||||
True: x -> x + linear(concat(x, att(x)))
|
||||
False: x -> x + att(x)
|
||||
static_chunk_size (int): chunk size for static chunk training and
|
||||
decoding
|
||||
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
||||
training or not, You can only use fixed chunk(chunk_size > 0)
|
||||
or dyanmic chunk size(use_dynamic_chunk = True)
|
||||
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
||||
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
||||
dynamic chunk training
|
||||
"""
|
||||
super().__init__()
|
||||
self._output_size = output_size
|
||||
|
||||
if pos_enc_layer_type == "abs_pos":
|
||||
pos_enc_class = PositionalEncoding
|
||||
elif pos_enc_layer_type == "rel_pos":
|
||||
pos_enc_class = RelPositionalEncoding
|
||||
elif pos_enc_layer_type == "no_pos":
|
||||
pos_enc_class = NoPositionalEncoding
|
||||
else:
|
||||
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
|
||||
|
||||
if input_layer == "linear":
|
||||
subsampling_class = LinearNoSubsampling
|
||||
elif input_layer == "conv2d2":
|
||||
subsampling_class = Conv2dSubsampling2
|
||||
elif input_layer == "conv2d":
|
||||
subsampling_class = Conv2dSubsampling4
|
||||
elif input_layer == "conv2d6":
|
||||
subsampling_class = Conv2dSubsampling6
|
||||
elif input_layer == "conv2d8":
|
||||
subsampling_class = Conv2dSubsampling8
|
||||
else:
|
||||
raise ValueError("unknown input_layer: " + input_layer)
|
||||
|
||||
self.embed = subsampling_class(
|
||||
input_size,
|
||||
output_size,
|
||||
dropout_rate,
|
||||
pos_enc_class(output_size, dropout_rate),
|
||||
)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
||||
|
||||
def output_size(self) -> int:
|
||||
return self._output_size
|
||||
|
||||
def forward(
|
||||
self,
|
||||
xs: torch.Tensor,
|
||||
xs_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Embed positions in tensor.
|
||||
|
||||
Args:
|
||||
xs: padded input tensor (B, T, D)
|
||||
xs_lens: input length (B)
|
||||
decoding_chunk_size: decoding chunk size for dynamic chunk
|
||||
0: default for training, use random dynamic chunk.
|
||||
<0: for decoding, use full chunk.
|
||||
>0: for decoding, use fixed chunk size as set.
|
||||
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
||||
the chunk size is decoding_chunk_size.
|
||||
>=0: use num_decoding_left_chunks
|
||||
<0: use all left chunks
|
||||
Returns:
|
||||
encoder output tensor xs, and subsampled masks
|
||||
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
||||
masks: torch.Tensor batch padding mask after subsample
|
||||
(B, 1, T' ~= T/subsample_rate)
|
||||
"""
|
||||
T = xs.size(1)
|
||||
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
||||
xs, pos_emb, masks = self.embed(xs, masks)
|
||||
chunk_masks = masks
|
||||
mask_pad = masks # (B, 1, T/subsample_rate)
|
||||
for layer in self.encoders:
|
||||
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||
if self.normalize_before:
|
||||
xs = self.after_norm(xs)
|
||||
# Here we assume the mask is not changed in encoder layers, so just
|
||||
# return the masks before encoder layers, and the masks will be used
|
||||
# for cross attention with decoder later
|
||||
return xs, masks
|
||||
|
||||
|
||||
class ConformerEncoder(BaseEncoder):
|
||||
"""Conformer encoder module."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int = 256,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.0,
|
||||
input_layer: str = "conv2d",
|
||||
pos_enc_layer_type: str = "rel_pos",
|
||||
normalize_before: bool = True,
|
||||
concat_after: bool = False,
|
||||
macaron_style: bool = False,
|
||||
use_cnn_module: bool = True,
|
||||
cnn_module_kernel: int = 15,
|
||||
):
|
||||
"""Construct ConformerEncoder
|
||||
|
||||
Args:
|
||||
input_size to use_dynamic_chunk, see in BaseEncoder
|
||||
positionwise_conv_kernel_size (int): Kernel size of positionwise
|
||||
conv1d layer.
|
||||
macaron_style (bool): Whether to use macaron style for
|
||||
positionwise layer.
|
||||
selfattention_layer_type (str): Encoder attention layer type,
|
||||
the parameter has no effect now, it's just for configure
|
||||
compatibility.
|
||||
activation_type (str): Encoder activation function type.
|
||||
use_cnn_module (bool): Whether to use convolution module.
|
||||
cnn_module_kernel (int): Kernel size of convolution module.
|
||||
causal (bool): whether to use causal convolution or not.
|
||||
"""
|
||||
|
||||
super().__init__(input_size, output_size, attention_heads,
|
||||
linear_units, num_blocks, dropout_rate,
|
||||
input_layer, pos_enc_layer_type, normalize_before,
|
||||
concat_after)
|
||||
|
||||
activation = torch.nn.SiLU()
|
||||
|
||||
# self-attention module definition
|
||||
if pos_enc_layer_type != "rel_pos":
|
||||
encoder_selfattn_layer = MultiHeadedAttention
|
||||
else:
|
||||
encoder_selfattn_layer = RelPositionMultiHeadedAttention
|
||||
encoder_selfattn_layer_args = (
|
||||
attention_heads,
|
||||
output_size,
|
||||
dropout_rate,
|
||||
)
|
||||
|
||||
# feed-forward module definition
|
||||
positionwise_layer = PositionwiseFeedForward
|
||||
positionwise_layer_args = (
|
||||
output_size,
|
||||
linear_units,
|
||||
dropout_rate,
|
||||
activation,
|
||||
)
|
||||
# convolution module definition
|
||||
convolution_layer = ConvolutionModule
|
||||
convolution_layer_args = (output_size,
|
||||
cnn_module_kernel,
|
||||
activation,)
|
||||
|
||||
self.encoders = torch.nn.ModuleList([
|
||||
ConformerEncoderLayer(
|
||||
output_size,
|
||||
encoder_selfattn_layer(*encoder_selfattn_layer_args),
|
||||
positionwise_layer(*positionwise_layer_args),
|
||||
positionwise_layer(
|
||||
*positionwise_layer_args) if macaron_style else None,
|
||||
convolution_layer(
|
||||
*convolution_layer_args) if use_cnn_module else None,
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
concat_after,
|
||||
) for _ in range(num_blocks)
|
||||
])
|
||||
713
indextts/gpt/model.py
Normal file
713
indextts/gpt/model.py
Normal file
@@ -0,0 +1,713 @@
|
||||
import functools
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import transformers
|
||||
from transformers import GPT2Config, LogitsProcessorList
|
||||
from indextts.gpt.transformers_gpt2 import GPT2PreTrainedModel, GPT2Model
|
||||
|
||||
# from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList
|
||||
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
||||
from transformers.utils.model_parallel_utils import (assert_device_map,
|
||||
get_device_map)
|
||||
|
||||
from indextts.gpt.conformer_encoder import ConformerEncoder
|
||||
from indextts.gpt.perceiver import PerceiverResampler
|
||||
from indextts.utils.arch_util import AttentionBlock
|
||||
from indextts.utils.typical_sampling import TypicalLogitsWarper
|
||||
|
||||
|
||||
def null_position_embeddings(range, dim):
|
||||
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
"""
|
||||
Basic residual convolutional block that uses GroupNorm.
|
||||
"""
|
||||
|
||||
def __init__(self, chan):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
||||
nn.GroupNorm(chan // 8, chan),
|
||||
nn.ReLU(),
|
||||
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
||||
nn.GroupNorm(chan // 8, chan)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return F.relu(self.net(x) + x)
|
||||
|
||||
|
||||
class GPT2InferenceModel(GPT2PreTrainedModel):
|
||||
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache=False):
|
||||
super().__init__(config)
|
||||
# Note: the argument named `text_pos_emb` here actually represents the mel position embedding
|
||||
self.transformer = gpt
|
||||
self.text_pos_embedding = text_pos_emb
|
||||
self.embeddings = embeddings
|
||||
self.final_norm = norm
|
||||
self.lm_head = nn.Sequential(norm, linear)
|
||||
self.kv_cache = kv_cache
|
||||
|
||||
# Model parallel
|
||||
self.model_parallel = False
|
||||
self.device_map = None
|
||||
self.cached_mel_emb = None
|
||||
|
||||
def parallelize(self, device_map=None):
|
||||
self.device_map = (
|
||||
get_device_map(len(self.transformer.h), range(max(1, torch.cuda.device_count())))
|
||||
if device_map is None
|
||||
else device_map
|
||||
)
|
||||
assert_device_map(self.device_map, len(self.transformer.h))
|
||||
self.transformer.parallelize(self.device_map)
|
||||
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
||||
self.model_parallel = True
|
||||
|
||||
def deparallelize(self):
|
||||
self.transformer.deparallelize()
|
||||
self.transformer = self.transformer.to("cpu")
|
||||
self.lm_head = self.lm_head.to("cpu")
|
||||
self.model_parallel = False
|
||||
torch.cuda.empty_cache()
|
||||
if torch.backends.mps.is_available():
|
||||
torch.mps.empty_cache()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def store_mel_emb(self, mel_emb):
|
||||
self.cached_mel_emb = mel_emb
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
||||
token_type_ids = kwargs.get("token_type_ids", None) # usually None
|
||||
if not self.kv_cache:
|
||||
past_key_values = None
|
||||
# only last token for inputs_ids if past is defined in kwargs
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
if token_type_ids is not None:
|
||||
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 0)
|
||||
if past_key_values:
|
||||
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||
else:
|
||||
position_ids = None
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"position_ids": position_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"token_type_ids": token_type_ids,
|
||||
}
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
labels=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
assert self.cached_mel_emb is not None
|
||||
assert inputs_embeds is None # Not supported by this inference model.
|
||||
assert labels is None # Training not supported by this inference model.
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
# Create embedding
|
||||
mel_len = self.cached_mel_emb.shape[1]
|
||||
if input_ids.shape[1] != 1:
|
||||
text_inputs = input_ids[:, mel_len:]
|
||||
text_emb = self.embeddings(text_inputs)
|
||||
text_emb = text_emb + self.text_pos_embedding(text_emb)
|
||||
if self.cached_mel_emb.shape[0] != text_emb.shape[0]:
|
||||
mel_emb = self.cached_mel_emb.repeat_interleave(
|
||||
text_emb.shape[0] // self.cached_mel_emb.shape[0], 0
|
||||
)
|
||||
else: # this outcome only occurs once per loop in most cases
|
||||
mel_emb = self.cached_mel_emb
|
||||
emb = torch.cat([mel_emb, text_emb], dim=1)
|
||||
else:
|
||||
emb = self.embeddings(input_ids)
|
||||
emb = emb + self.text_pos_embedding.get_fixed_embedding(
|
||||
attention_mask.shape[1] - mel_len, attention_mask.device
|
||||
)
|
||||
transformer_outputs = self.transformer(
|
||||
inputs_embeds=emb,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
# Set device for model parallelism
|
||||
if self.model_parallel:
|
||||
if torch.backends.mps.is_available():
|
||||
self.to(self.transformer.first_device)
|
||||
else:
|
||||
torch.cuda.set_device(self.transformer.first_device)
|
||||
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
||||
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
||||
if not return_dict:
|
||||
return (lm_logits,) + transformer_outputs[1:]
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=None,
|
||||
logits=lm_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
cross_attentions=transformer_outputs.cross_attentions,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past, beam_idx):
|
||||
"""
|
||||
This function is used to re-order the :obj:`past_key_values` cache if
|
||||
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
||||
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
||||
"""
|
||||
return tuple(
|
||||
tuple(
|
||||
past_state.index_select(0, beam_idx.to(past_state.device))
|
||||
for past_state in layer_past
|
||||
)
|
||||
for layer_past in past
|
||||
)
|
||||
|
||||
|
||||
class ConditioningEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
spec_dim,
|
||||
embedding_dim,
|
||||
attn_blocks=6,
|
||||
num_attn_heads=4,
|
||||
do_checkpointing=False,
|
||||
mean=False):
|
||||
super().__init__()
|
||||
attn = []
|
||||
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
|
||||
for a in range(attn_blocks):
|
||||
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
|
||||
self.attn = nn.Sequential(*attn)
|
||||
self.dim = embedding_dim
|
||||
self.do_checkpointing = do_checkpointing
|
||||
self.mean = mean
|
||||
|
||||
def forward(self, x):
|
||||
h = self.init(x)
|
||||
h = self.attn(h)
|
||||
if self.mean:
|
||||
return h.mean(dim=2)
|
||||
else:
|
||||
return h
|
||||
# return h[:, :, 0]
|
||||
|
||||
|
||||
class LearnedPositionEmbeddings(nn.Module):
|
||||
def __init__(self, seq_len, model_dim, init=.02):
|
||||
super().__init__()
|
||||
self.emb = nn.Embedding(seq_len, model_dim)
|
||||
# Initializing this way is standard for GPT-2
|
||||
self.emb.weight.data.normal_(mean=0.0, std=init)
|
||||
|
||||
def forward(self, x):
|
||||
sl = x.shape[1]
|
||||
return self.emb(torch.arange(0, sl, device=x.device))
|
||||
|
||||
def get_fixed_embedding(self, ind, dev):
|
||||
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
|
||||
|
||||
|
||||
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing, activation_function):
|
||||
"""
|
||||
GPT-2 implemented by the HuggingFace library.
|
||||
"""
|
||||
from transformers import GPT2Config, GPT2Model
|
||||
gpt_config = GPT2Config(vocab_size=256, # Unused.
|
||||
n_positions=max_mel_seq_len + max_text_seq_len,
|
||||
n_ctx=max_mel_seq_len + max_text_seq_len,
|
||||
n_embd=model_dim,
|
||||
n_layer=layers,
|
||||
n_head=heads,
|
||||
activation_function=activation_function or "gelu_new",
|
||||
gradient_checkpointing=checkpointing,
|
||||
use_cache=not checkpointing)
|
||||
gpt = GPT2Model(gpt_config)
|
||||
# Override the built in positional embeddings
|
||||
del gpt.wpe
|
||||
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
|
||||
# Built-in token embeddings are unused.
|
||||
del gpt.wte
|
||||
return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim), \
|
||||
None, None
|
||||
|
||||
|
||||
class MelEncoder(nn.Module):
|
||||
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1),
|
||||
nn.Sequential(*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)]),
|
||||
nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1),
|
||||
nn.GroupNorm(channels // 16, channels // 2),
|
||||
nn.ReLU(),
|
||||
nn.Sequential(*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)]),
|
||||
nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1),
|
||||
nn.GroupNorm(channels // 8, channels),
|
||||
nn.ReLU(),
|
||||
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
|
||||
)
|
||||
self.reduction = 4
|
||||
|
||||
def forward(self, x):
|
||||
for e in self.encoder:
|
||||
x = e(x)
|
||||
return x.permute(0, 2, 1)
|
||||
|
||||
|
||||
class UnifiedVoice(nn.Module):
|
||||
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
|
||||
mel_length_compression=1024, number_text_tokens=256,
|
||||
start_text_token=0, stop_text_token=1, number_mel_codes=8194, start_mel_token=8192, stop_mel_token=8193,
|
||||
train_solo_embeddings=False, use_mel_codes_as_input=True,
|
||||
checkpointing=True, types=1, activation_function=None,
|
||||
condition_num_latent=32, condition_type="perceiver", condition_module=None):
|
||||
"""
|
||||
Args:
|
||||
layers: Number of layers in transformer stack.
|
||||
model_dim: Operating dimensions of the transformer
|
||||
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
|
||||
max_text_tokens: Maximum number of text tokens that will be encountered by model.
|
||||
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
|
||||
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
|
||||
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
|
||||
number_text_tokens:
|
||||
start_text_token:
|
||||
stop_text_token:
|
||||
number_mel_codes:
|
||||
start_mel_token:
|
||||
stop_mel_token:
|
||||
train_solo_embeddings:
|
||||
use_mel_codes_as_input:
|
||||
checkpointing:
|
||||
condition_type: perceiver, gst or default encoder
|
||||
"""
|
||||
super().__init__()
|
||||
self.number_text_tokens = number_text_tokens
|
||||
self.start_text_token = start_text_token
|
||||
self.stop_text_token = stop_text_token
|
||||
self.number_mel_codes = number_mel_codes
|
||||
self.start_mel_token = start_mel_token
|
||||
self.stop_mel_token = stop_mel_token
|
||||
self.layers = layers
|
||||
self.heads = heads
|
||||
self.max_mel_tokens = max_mel_tokens
|
||||
self.max_text_tokens = max_text_tokens
|
||||
self.model_dim = model_dim
|
||||
self.max_conditioning_inputs = max_conditioning_inputs
|
||||
self.mel_length_compression = mel_length_compression
|
||||
self.condition_type = condition_type
|
||||
self.cond_num = condition_num_latent
|
||||
self.cond_mask_pad = nn.ConstantPad1d((self.cond_num, 0), True)
|
||||
if condition_type == "perceiver":
|
||||
self.conditioning_encoder = ConditioningEncoder(100, model_dim, num_attn_heads=heads)
|
||||
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=model_dim, num_latents=self.cond_num)
|
||||
elif condition_type == "conformer_perceiver" or condition_type == "conformer_encoder":
|
||||
self.conditioning_encoder = ConformerEncoder(input_size=100,
|
||||
output_size=condition_module['output_size'],
|
||||
linear_units=condition_module['linear_units'],
|
||||
attention_heads=condition_module['attention_heads'],
|
||||
num_blocks=condition_module['num_blocks'],
|
||||
input_layer=condition_module['input_layer'])
|
||||
if condition_type == "conformer_perceiver":
|
||||
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=condition_module['output_size'],
|
||||
ff_mult=condition_module['perceiver_mult'],
|
||||
heads=condition_module['attention_heads'],
|
||||
num_latents=self.cond_num)
|
||||
else:
|
||||
self.conditioning_encoder = ConditioningEncoder(100, model_dim, num_attn_heads=heads, mean=True)
|
||||
|
||||
self.text_embedding = nn.Embedding(self.number_text_tokens * types + 1, model_dim)
|
||||
if use_mel_codes_as_input:
|
||||
self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim)
|
||||
else:
|
||||
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1)
|
||||
self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \
|
||||
build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens + 2 + self.max_conditioning_inputs,
|
||||
self.max_text_tokens + 2, checkpointing, activation_function)
|
||||
if train_solo_embeddings:
|
||||
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
|
||||
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
|
||||
else:
|
||||
self.mel_solo_embedding = 0
|
||||
self.text_solo_embedding = 0
|
||||
|
||||
self.final_norm = nn.LayerNorm(model_dim)
|
||||
self.text_head = nn.Linear(model_dim, self.number_text_tokens * types + 1)
|
||||
self.mel_head = nn.Linear(model_dim, self.number_mel_codes)
|
||||
|
||||
# Initialize the embeddings per the GPT-2 scheme
|
||||
embeddings = [self.text_embedding]
|
||||
if use_mel_codes_as_input:
|
||||
embeddings.append(self.mel_embedding)
|
||||
for module in embeddings:
|
||||
module.weight.data.normal_(mean=0.0, std=.02)
|
||||
|
||||
def post_init_gpt2_config(self, use_deepspeed=False, kv_cache=False, half=False):
|
||||
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
|
||||
gpt_config = GPT2Config(
|
||||
vocab_size=self.number_mel_codes,
|
||||
n_positions=seq_length,
|
||||
n_ctx=seq_length,
|
||||
n_embd=self.model_dim,
|
||||
n_layer=self.layers,
|
||||
n_head=self.heads,
|
||||
gradient_checkpointing=False,
|
||||
use_cache=True,
|
||||
)
|
||||
self.inference_model = GPT2InferenceModel(
|
||||
gpt_config,
|
||||
self.gpt,
|
||||
self.mel_pos_embedding,
|
||||
self.mel_embedding,
|
||||
self.final_norm,
|
||||
self.mel_head,
|
||||
kv_cache=kv_cache,
|
||||
)
|
||||
if use_deepspeed and half and torch.cuda.is_available():
|
||||
import deepspeed
|
||||
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
|
||||
mp_size=1,
|
||||
replace_with_kernel_inject=False,
|
||||
dtype=torch.float16)
|
||||
self.inference_model = self.ds_engine.module.eval()
|
||||
elif use_deepspeed and torch.cuda.is_available():
|
||||
import deepspeed
|
||||
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
|
||||
mp_size=1,
|
||||
replace_with_kernel_inject=False,
|
||||
dtype=torch.float32)
|
||||
self.inference_model = self.ds_engine.module.eval()
|
||||
else:
|
||||
self.inference_model = self.inference_model.eval()
|
||||
|
||||
# self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head)
|
||||
self.gpt.wte = self.mel_embedding
|
||||
|
||||
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
|
||||
inp = F.pad(input, (1, 0), value=start_token)
|
||||
tar = F.pad(input, (0, 1), value=stop_token)
|
||||
return inp, tar
|
||||
|
||||
def set_mel_padding(self, mel_input_tokens, mel_lengths):
|
||||
"""
|
||||
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
|
||||
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
|
||||
preformatting to create a working TTS model.
|
||||
"""
|
||||
for b in range(len(mel_lengths)):
|
||||
# Due to the convolutional nature of how these tokens are generated,
|
||||
# it would be best if the model predicts a token past the actual last token.
|
||||
actual_end = mel_lengths[b]
|
||||
if actual_end < mel_input_tokens.shape[-1]:
|
||||
mel_input_tokens[b, actual_end:] = self.stop_mel_token
|
||||
return mel_input_tokens
|
||||
|
||||
def set_text_padding(self, text_input_tokens, text_lengths):
|
||||
"""
|
||||
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
|
||||
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
|
||||
preformatting to create a working TTS model.
|
||||
"""
|
||||
for b in range(len(text_lengths)):
|
||||
# Due to the convolutional nature of how these tokens are generated,
|
||||
# it would be best if the model predicts a token past the actual last token.
|
||||
actual_end = text_lengths[b]
|
||||
if actual_end < text_input_tokens.shape[-1]:
|
||||
text_input_tokens[b, actual_end:] = self.stop_text_token
|
||||
return text_input_tokens
|
||||
|
||||
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False):
|
||||
if second_inputs is not None:
|
||||
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
|
||||
else:
|
||||
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1)
|
||||
|
||||
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
|
||||
if get_attns:
|
||||
return gpt_out.attentions
|
||||
|
||||
offset = speech_conditioning_inputs.shape[1]
|
||||
enc = gpt_out.last_hidden_state[:, offset:]
|
||||
enc = self.final_norm(enc)
|
||||
|
||||
if return_latent:
|
||||
return enc[:, :first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:]
|
||||
|
||||
first_logits = enc[:, :first_inputs.shape[1]]
|
||||
first_logits = first_head(first_logits)
|
||||
first_logits = first_logits.permute(0, 2, 1)
|
||||
if second_inputs is not None:
|
||||
second_logits = enc[:, -second_inputs.shape[1]:]
|
||||
second_logits = second_head(second_logits)
|
||||
second_logits = second_logits.permute(0, 2, 1)
|
||||
return first_logits, second_logits
|
||||
else:
|
||||
return first_logits
|
||||
|
||||
def get_conditioning(self, speech_conditioning_input, cond_mel_lengths=None):
|
||||
if self.condition_type == "perceiver":
|
||||
if speech_conditioning_input.ndim == 4:
|
||||
speech_conditioning_input = speech_conditioning_input.squeeze(1)
|
||||
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input) # (b, d, s)
|
||||
conds = self.perceiver_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 32, d)
|
||||
elif self.condition_type == "conformer_perceiver":
|
||||
speech_conditioning_input, mask = self.conditioning_encoder(speech_conditioning_input.transpose(1, 2),
|
||||
cond_mel_lengths) # (b, s, d), (b, 1, s)
|
||||
if self.condition_type == "conformer_perceiver":
|
||||
# conds_mask = torch.cat([torch.ones((mask.shape[0], self.cond_num), dtype=torch.bool), mask.squeeze(1)], dim=1)
|
||||
conds_mask = self.cond_mask_pad(mask.squeeze(1))
|
||||
conds = self.perceiver_encoder(speech_conditioning_input, conds_mask) # (b, 32, d)
|
||||
elif self.condition_type == "gst":
|
||||
if speech_conditioning_input.ndim == 4:
|
||||
speech_conditioning_input = speech_conditioning_input.squeeze(1)
|
||||
conds = self.gst_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 1, d)
|
||||
else:
|
||||
speech_conditioning_input = (
|
||||
speech_conditioning_input.unsqueeze(1)
|
||||
if len(speech_conditioning_input.shape) == 3
|
||||
else speech_conditioning_input
|
||||
)
|
||||
conds = []
|
||||
for j in range(speech_conditioning_input.shape[1]):
|
||||
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
|
||||
conds = torch.stack(conds, dim=1)
|
||||
conds = conds.mean(dim=1)
|
||||
conds = conds.unsqueeze(1)
|
||||
return conds
|
||||
|
||||
def forward(self, speech_conditioning_latent, text_inputs, text_lengths, mel_codes, wav_lengths,
|
||||
cond_mel_lengths=None, types=None, text_first=True, raw_mels=None, return_attentions=False,
|
||||
return_latent=False, clip_inputs=False):
|
||||
"""
|
||||
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
|
||||
(actuated by `text_first`).
|
||||
|
||||
speech_conditioning_input: MEL float tensor, (b,1024)
|
||||
text_inputs: long tensor, (b,t)
|
||||
text_lengths: long tensor, (b,)
|
||||
mel_inputs: long tensor, (b,m)
|
||||
wav_lengths: long tensor, (b,)
|
||||
raw_mels: MEL float tensor (b,80,s)
|
||||
|
||||
If return_attentions is specified, only logits are returned.
|
||||
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
|
||||
If clip_inputs is True, the inputs will be clipped to the smallest input size across each input modality.
|
||||
"""
|
||||
|
||||
speech_conditioning_latent = self.get_conditioning(speech_conditioning_latent, cond_mel_lengths)
|
||||
# Types are expressed by expanding the text embedding space.
|
||||
if types is not None:
|
||||
text_inputs = text_inputs * (1 + types).unsqueeze(-1)
|
||||
|
||||
if clip_inputs:
|
||||
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
|
||||
# chopping the inputs by the maximum actual length.
|
||||
max_text_len = text_lengths.max()
|
||||
text_inputs = text_inputs[:, :max_text_len]
|
||||
max_mel_len = wav_lengths.max() // self.mel_length_compression
|
||||
mel_codes = mel_codes[:, :max_mel_len]
|
||||
if raw_mels is not None:
|
||||
raw_mels = raw_mels[:, :, :max_mel_len * 4]
|
||||
|
||||
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
|
||||
# mel_codes_lengths = torch.div(wav_lengths, self.mel_length_compression, rounding_mode='trunc')
|
||||
mel_codes_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 1
|
||||
mel_codes = self.set_mel_padding(mel_codes, mel_codes_lengths)
|
||||
text_inputs = self.set_text_padding(text_inputs, text_lengths)
|
||||
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
||||
mel_codes = F.pad(mel_codes, (0, 1), value=self.stop_mel_token)
|
||||
|
||||
conds = speech_conditioning_latent
|
||||
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
||||
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
||||
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
|
||||
if raw_mels is not None:
|
||||
mel_inp = F.pad(raw_mels, (0, 8))
|
||||
else:
|
||||
mel_inp = mel_codes
|
||||
mel_emb = self.mel_embedding(mel_inp)
|
||||
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
|
||||
|
||||
if text_first:
|
||||
# print(f"conds: {conds.shape}, text_emb: {text_emb.shape}, mel_emb: {mel_emb.shape}")
|
||||
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions, return_latent=return_latent)
|
||||
if return_latent:
|
||||
return mel_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
|
||||
else:
|
||||
mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions, return_latent=return_latent)
|
||||
if return_latent:
|
||||
return text_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
|
||||
|
||||
if return_attentions:
|
||||
return mel_logits
|
||||
|
||||
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
||||
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
||||
return loss_text.mean(), loss_mel.mean(), mel_logits
|
||||
|
||||
def prepare_gpt_inputs(
|
||||
self,
|
||||
conditional_latents: torch.Tensor,
|
||||
text_inputs: torch.Tensor,
|
||||
):
|
||||
|
||||
"""
|
||||
Prepare the inputs for the GPT2InferenceModel to generate.
|
||||
Args:
|
||||
conds_latent: (b, 32, dim) audio conditioning embedding by `get_conditioning()`
|
||||
text_inputs: (b, L)
|
||||
Returns:
|
||||
input_ids: (b, s+1) the input ids for the GPT2InferenceModel.generate()
|
||||
inputs_embeds: (b, s+1, dim) the input embeddings for the GPT2InferenceModel.forward()
|
||||
attention_mask: (b, s+1) the attention mask for the GPT2InferenceModel.generate()
|
||||
"""
|
||||
b, L = text_inputs.shape[:2]
|
||||
device = text_inputs.device
|
||||
single_cond = conditional_latents.ndim == 3 and conditional_latents.shape[0] == 1
|
||||
if not single_cond:
|
||||
assert conditional_latents.shape[0] == b, f"batch size mismatch: {conditional_latents.shape[0]} vs {b}"
|
||||
batched_mel_emb = []
|
||||
attention_masks = []
|
||||
target_len = conditional_latents.shape[1] + L + 2
|
||||
for i in range(b):
|
||||
valid_mask = (text_inputs[i] != self.stop_text_token) & (text_inputs[i] != self.start_text_token)
|
||||
text_input = text_inputs[i][valid_mask]
|
||||
text_input = F.pad(text_input, (1, 0), value=self.start_text_token)
|
||||
text_input = F.pad(text_input, (0, 1), value=self.stop_text_token)
|
||||
text_input_pos = torch.arange(0, text_input.size(-1), device=device)
|
||||
text_emb = self.text_embedding(text_input) + self.text_pos_embedding.emb(text_input_pos)
|
||||
# concatenate [conditional latents][text embeddings]
|
||||
conds_text_emb = [
|
||||
conditional_latents.squeeze(0) if single_cond else conditional_latents[i],
|
||||
text_emb,
|
||||
]
|
||||
# +1 for the start_mel_token
|
||||
attention_mask = torch.ones(target_len+1, dtype=torch.long, device=device)
|
||||
# check this text input is padded
|
||||
padding: int = L + 2 - text_input.size(-1)
|
||||
# pad left of [cond][text] -> [pad][cond][text]
|
||||
if padding > 0:
|
||||
pad = torch.zeros((padding, conditional_latents.size(-1)), dtype=text_emb.dtype, device=device) # [p, dim]
|
||||
conds_text_emb.insert(0, pad)
|
||||
attention_mask[:padding] = 0
|
||||
mel_emb = torch.cat(conds_text_emb) #[s, dim]
|
||||
assert mel_emb.shape[0] == target_len, f"mel_emb.shape: {mel_emb.shape}, target_len: {target_len}"
|
||||
batched_mel_emb.append(mel_emb)
|
||||
attention_masks.append(attention_mask)
|
||||
# [b, s, dim]
|
||||
batched_mel_emb = torch.stack(batched_mel_emb, dim=0)
|
||||
# [b, s+1]
|
||||
attention_mask = torch.stack(attention_masks, dim=0)
|
||||
# [b, s+1]
|
||||
fake_inputs = torch.ones(
|
||||
(
|
||||
batched_mel_emb.shape[0],
|
||||
batched_mel_emb.shape[1] + 1, # +1 for the start_mel_token
|
||||
),
|
||||
dtype=torch.long,
|
||||
device=device,
|
||||
)
|
||||
fake_inputs[:, -1] = self.start_mel_token
|
||||
return fake_inputs, batched_mel_emb, attention_mask
|
||||
def inference_speech(self, speech_conditioning_mel, text_inputs, cond_mel_lengths=None, input_tokens=None, num_return_sequences=1,
|
||||
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
|
||||
"""
|
||||
Args:
|
||||
speech_conditioning_mel: (b, n_mels, frames) or (n_mels, frames)
|
||||
text_inputs: (b, L)
|
||||
cond_mel_lengths: lengths of the conditioning mel spectrograms in shape (b,) or (1,)
|
||||
input_tokens: additional tokens for generation in shape (b, s) or (s,)
|
||||
max_generate_length: limit the number of generated tokens
|
||||
hf_generate_kwargs: kwargs for `GPT2InferenceModel.generate(**hf_generate_kwargs)`
|
||||
"""
|
||||
if speech_conditioning_mel.ndim == 2:
|
||||
speech_conditioning_mel = speech_conditioning_mel.unsqueeze(0)
|
||||
if cond_mel_lengths is None:
|
||||
cond_mel_lengths = torch.tensor([speech_conditioning_mel.shape[-1]], device=speech_conditioning_mel.device)
|
||||
conds_latent = self.get_conditioning(speech_conditioning_mel, cond_mel_lengths)
|
||||
input_ids, inputs_embeds, attention_mask = self.prepare_gpt_inputs(conds_latent, text_inputs)
|
||||
self.inference_model.store_mel_emb(inputs_embeds)
|
||||
if input_tokens is None:
|
||||
inputs = input_ids
|
||||
else:
|
||||
if input_tokens.ndim == 1:
|
||||
input_tokens = input_tokens.unsqueeze(0)
|
||||
assert num_return_sequences % input_tokens.shape[0] == 0, \
|
||||
"The num_return_sequences must be divisible by the batch number of input_tokens"
|
||||
assert num_return_sequences % text_inputs.shape[0] == 0, \
|
||||
"The num_return_sequences must be divisible by the batch number of text_inputs"
|
||||
b = num_return_sequences // input_ids.shape[0]
|
||||
if b > 1:
|
||||
input_ids = input_ids.repeat(b, 1)
|
||||
attention_mask = attention_mask.repeat(b, 1)
|
||||
input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1)
|
||||
inputs = torch.cat([input_ids, input_tokens], dim=1)
|
||||
attention_mask = F.pad(attention_mask, (0, input_tokens.shape[1]), value=1)
|
||||
trunc_index = inputs.shape[1]
|
||||
logits_processor = LogitsProcessorList()
|
||||
if typical_sampling:
|
||||
# employ custom typical sampling
|
||||
if not (typical_mass > 0.0 and typical_mass < 1.0):
|
||||
raise ValueError(f"`typical_mass` has to be a float > 0 and < 1, but is {typical_mass}")
|
||||
min_tokens_to_keep = 2 if hf_generate_kwargs.get("num_beams", 1) > 1 else 1
|
||||
logits_processor.append(TypicalLogitsWarper(mass=typical_mass, min_tokens_to_keep=min_tokens_to_keep))
|
||||
max_length = (trunc_index + self.max_mel_tokens - 1) if max_generate_length is None else trunc_index + max_generate_length
|
||||
output = self.inference_model.generate(inputs,
|
||||
bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token,
|
||||
eos_token_id=self.stop_mel_token, attention_mask=attention_mask,
|
||||
max_length=max_length, logits_processor=logits_processor,
|
||||
num_return_sequences=num_return_sequences,
|
||||
**hf_generate_kwargs)
|
||||
if isinstance(output, torch.Tensor):
|
||||
return output[:, trunc_index:]
|
||||
# GenerateOutput
|
||||
output.sequences = output.sequences[:, trunc_index:]
|
||||
return output
|
||||
747
indextts/gpt/model_v2.py
Normal file
747
indextts/gpt/model_v2.py
Normal file
@@ -0,0 +1,747 @@
|
||||
import functools
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import transformers
|
||||
from transformers import GPT2Config, LogitsProcessorList
|
||||
from indextts.gpt.transformers_gpt2 import GPT2PreTrainedModel, GPT2Model
|
||||
|
||||
# from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList
|
||||
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
||||
from transformers.utils.model_parallel_utils import (assert_device_map,
|
||||
get_device_map)
|
||||
|
||||
from indextts.gpt.conformer_encoder import ConformerEncoder
|
||||
from indextts.gpt.perceiver import PerceiverResampler
|
||||
from indextts.utils.arch_util import AttentionBlock
|
||||
from indextts.utils.typical_sampling import TypicalLogitsWarper
|
||||
|
||||
|
||||
def null_position_embeddings(range, dim):
|
||||
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
"""
|
||||
Basic residual convolutional block that uses GroupNorm.
|
||||
"""
|
||||
|
||||
def __init__(self, chan):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
||||
nn.GroupNorm(chan // 8, chan),
|
||||
nn.ReLU(),
|
||||
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
||||
nn.GroupNorm(chan // 8, chan)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return F.relu(self.net(x) + x)
|
||||
|
||||
|
||||
class GPT2InferenceModel(GPT2PreTrainedModel):
|
||||
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache=False):
|
||||
super().__init__(config)
|
||||
# Note: the argument named `text_pos_emb` here actually represents the mel position embedding
|
||||
self.transformer = gpt
|
||||
self.text_pos_embedding = text_pos_emb
|
||||
self.embeddings = embeddings
|
||||
self.final_norm = norm
|
||||
self.lm_head = nn.Sequential(norm, linear)
|
||||
self.kv_cache = kv_cache
|
||||
|
||||
# Model parallel
|
||||
self.model_parallel = False
|
||||
self.device_map = None
|
||||
self.cached_mel_emb = None
|
||||
|
||||
def parallelize(self, device_map=None):
|
||||
self.device_map = (
|
||||
get_device_map(len(self.transformer.h), range(max(1, torch.cuda.device_count())))
|
||||
if device_map is None
|
||||
else device_map
|
||||
)
|
||||
assert_device_map(self.device_map, len(self.transformer.h))
|
||||
self.transformer.parallelize(self.device_map)
|
||||
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
||||
self.model_parallel = True
|
||||
|
||||
def deparallelize(self):
|
||||
self.transformer.deparallelize()
|
||||
self.transformer = self.transformer.to("cpu")
|
||||
self.lm_head = self.lm_head.to("cpu")
|
||||
self.model_parallel = False
|
||||
torch.cuda.empty_cache()
|
||||
if torch.backends.mps.is_available():
|
||||
torch.mps.empty_cache()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def store_mel_emb(self, mel_emb):
|
||||
self.cached_mel_emb = mel_emb
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
||||
token_type_ids = kwargs.get("token_type_ids", None) # usually None
|
||||
if not self.kv_cache:
|
||||
past_key_values = None
|
||||
# only last token for inputs_ids if past is defined in kwargs
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
if token_type_ids is not None:
|
||||
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 0)
|
||||
if past_key_values:
|
||||
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||
else:
|
||||
position_ids = None
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"position_ids": position_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"token_type_ids": token_type_ids,
|
||||
}
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
labels=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
assert self.cached_mel_emb is not None
|
||||
assert inputs_embeds is None # Not supported by this inference model.
|
||||
assert labels is None # Training not supported by this inference model.
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
# Create embedding
|
||||
mel_len = self.cached_mel_emb.shape[1]
|
||||
if input_ids.shape[1] != 1:
|
||||
text_inputs = input_ids[:, mel_len:]
|
||||
text_emb = self.embeddings(text_inputs)
|
||||
text_emb = text_emb + self.text_pos_embedding(text_emb)
|
||||
if self.cached_mel_emb.shape[0] != text_emb.shape[0]:
|
||||
mel_emb = self.cached_mel_emb.repeat_interleave(
|
||||
text_emb.shape[0] // self.cached_mel_emb.shape[0], 0
|
||||
)
|
||||
else: # this outcome only occurs once per loop in most cases
|
||||
mel_emb = self.cached_mel_emb
|
||||
emb = torch.cat([mel_emb, text_emb], dim=1)
|
||||
else:
|
||||
emb = self.embeddings(input_ids)
|
||||
emb = emb + self.text_pos_embedding.get_fixed_embedding(
|
||||
attention_mask.shape[1] - mel_len, attention_mask.device
|
||||
)
|
||||
transformer_outputs = self.transformer(
|
||||
inputs_embeds=emb,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
# Set device for model parallelism
|
||||
if self.model_parallel:
|
||||
if torch.backends.mps.is_available():
|
||||
self.to(self.transformer.first_device)
|
||||
else:
|
||||
torch.cuda.set_device(self.transformer.first_device)
|
||||
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
||||
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
||||
if not return_dict:
|
||||
return (lm_logits,) + transformer_outputs[1:]
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=None,
|
||||
logits=lm_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
cross_attentions=transformer_outputs.cross_attentions,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past, beam_idx):
|
||||
"""
|
||||
This function is used to re-order the :obj:`past_key_values` cache if
|
||||
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
||||
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
||||
"""
|
||||
return tuple(
|
||||
tuple(
|
||||
past_state.index_select(0, beam_idx.to(past_state.device))
|
||||
for past_state in layer_past
|
||||
)
|
||||
for layer_past in past
|
||||
)
|
||||
|
||||
|
||||
class ConditioningEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
spec_dim,
|
||||
embedding_dim,
|
||||
attn_blocks=6,
|
||||
num_attn_heads=4,
|
||||
do_checkpointing=False,
|
||||
mean=False):
|
||||
super().__init__()
|
||||
attn = []
|
||||
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
|
||||
for a in range(attn_blocks):
|
||||
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
|
||||
self.attn = nn.Sequential(*attn)
|
||||
self.dim = embedding_dim
|
||||
self.do_checkpointing = do_checkpointing
|
||||
self.mean = mean
|
||||
|
||||
def forward(self, x):
|
||||
h = self.init(x)
|
||||
h = self.attn(h)
|
||||
if self.mean:
|
||||
return h.mean(dim=2)
|
||||
else:
|
||||
return h
|
||||
# return h[:, :, 0]
|
||||
|
||||
|
||||
class LearnedPositionEmbeddings(nn.Module):
|
||||
def __init__(self, seq_len, model_dim, init=.02):
|
||||
super().__init__()
|
||||
self.emb = nn.Embedding(seq_len, model_dim)
|
||||
# Initializing this way is standard for GPT-2
|
||||
self.emb.weight.data.normal_(mean=0.0, std=init)
|
||||
|
||||
def forward(self, x):
|
||||
sl = x.shape[1]
|
||||
return self.emb(torch.arange(0, sl, device=x.device))
|
||||
|
||||
def get_fixed_embedding(self, ind, dev):
|
||||
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
|
||||
|
||||
|
||||
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
|
||||
"""
|
||||
GPT-2 implemented by the HuggingFace library.
|
||||
"""
|
||||
from transformers import GPT2Config, GPT2Model
|
||||
gpt_config = GPT2Config(vocab_size=256, # Unused.
|
||||
n_positions=max_mel_seq_len + max_text_seq_len,
|
||||
n_ctx=max_mel_seq_len + max_text_seq_len,
|
||||
n_embd=model_dim,
|
||||
n_layer=layers,
|
||||
n_head=heads,
|
||||
gradient_checkpointing=checkpointing,
|
||||
use_cache=not checkpointing)
|
||||
gpt = GPT2Model(gpt_config)
|
||||
# Override the built in positional embeddings
|
||||
del gpt.wpe
|
||||
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
|
||||
# Built-in token embeddings are unused.
|
||||
del gpt.wte
|
||||
return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim), \
|
||||
None, None
|
||||
|
||||
|
||||
class MelEncoder(nn.Module):
|
||||
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1),
|
||||
nn.Sequential(*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)]),
|
||||
nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1),
|
||||
nn.GroupNorm(channels // 16, channels // 2),
|
||||
nn.ReLU(),
|
||||
nn.Sequential(*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)]),
|
||||
nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1),
|
||||
nn.GroupNorm(channels // 8, channels),
|
||||
nn.ReLU(),
|
||||
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
|
||||
)
|
||||
self.reduction = 4
|
||||
|
||||
def forward(self, x):
|
||||
for e in self.encoder:
|
||||
x = e(x)
|
||||
return x.permute(0, 2, 1)
|
||||
|
||||
|
||||
class UnifiedVoice(nn.Module):
|
||||
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
|
||||
mel_length_compression=1024, number_text_tokens=256,
|
||||
start_text_token=0, stop_text_token=1, number_mel_codes=8194, start_mel_token=8192, stop_mel_token=8193,
|
||||
train_solo_embeddings=False, use_mel_codes_as_input=True,
|
||||
checkpointing=True, types=1,
|
||||
condition_num_latent=32, condition_type="perceiver", condition_module=None, emo_condition_module=None):
|
||||
"""
|
||||
Args:
|
||||
layers: Number of layers in transformer stack.
|
||||
model_dim: Operating dimensions of the transformer
|
||||
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
|
||||
max_text_tokens: Maximum number of text tokens that will be encountered by model.
|
||||
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
|
||||
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
|
||||
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
|
||||
number_text_tokens:
|
||||
start_text_token:
|
||||
stop_text_token:
|
||||
number_mel_codes:
|
||||
start_mel_token:
|
||||
stop_mel_token:
|
||||
train_solo_embeddings:
|
||||
use_mel_codes_as_input:
|
||||
checkpointing:
|
||||
condition_type: perceiver, gst or default encoder
|
||||
"""
|
||||
super().__init__()
|
||||
self.number_text_tokens = number_text_tokens
|
||||
self.start_text_token = start_text_token
|
||||
self.stop_text_token = stop_text_token
|
||||
self.number_mel_codes = number_mel_codes
|
||||
self.start_mel_token = start_mel_token
|
||||
self.stop_mel_token = stop_mel_token
|
||||
self.layers = layers
|
||||
self.heads = heads
|
||||
self.max_mel_tokens = max_mel_tokens
|
||||
self.max_text_tokens = max_text_tokens
|
||||
self.model_dim = model_dim
|
||||
self.max_conditioning_inputs = max_conditioning_inputs
|
||||
self.mel_length_compression = mel_length_compression
|
||||
self.condition_type = condition_type
|
||||
self.cond_num = condition_num_latent
|
||||
self.cond_mask_pad = nn.ConstantPad1d((self.cond_num, 0), True)
|
||||
self.emo_cond_mask_pad = nn.ConstantPad1d((1, 0), True)
|
||||
if condition_type == "perceiver":
|
||||
self.conditioning_encoder = ConditioningEncoder(1024, model_dim, num_attn_heads=heads)
|
||||
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=model_dim, num_latents=self.cond_num)
|
||||
elif condition_type == "conformer_perceiver" or condition_type == "conformer_encoder":
|
||||
self.conditioning_encoder = ConformerEncoder(input_size=1024,
|
||||
output_size=condition_module['output_size'],
|
||||
linear_units=condition_module['linear_units'],
|
||||
attention_heads=condition_module['attention_heads'],
|
||||
num_blocks=condition_module['num_blocks'],
|
||||
input_layer=condition_module['input_layer'])
|
||||
if condition_type == "conformer_perceiver":
|
||||
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=condition_module['output_size'],
|
||||
ff_mult=condition_module['perceiver_mult'],
|
||||
heads=condition_module['attention_heads'],
|
||||
num_latents=self.cond_num)
|
||||
else:
|
||||
self.conditioning_encoder = ConditioningEncoder(1024, model_dim, num_attn_heads=heads, mean=True)
|
||||
|
||||
self.emo_conditioning_encoder = ConformerEncoder(input_size=1024,
|
||||
output_size=emo_condition_module['output_size'],
|
||||
linear_units=emo_condition_module['linear_units'],
|
||||
attention_heads=emo_condition_module['attention_heads'],
|
||||
num_blocks=emo_condition_module['num_blocks'],
|
||||
input_layer=emo_condition_module['input_layer'])
|
||||
self.emo_perceiver_encoder = PerceiverResampler(1024, dim_context=emo_condition_module['output_size'],
|
||||
ff_mult=emo_condition_module['perceiver_mult'],
|
||||
heads=emo_condition_module['attention_heads'],
|
||||
num_latents=1)
|
||||
|
||||
|
||||
|
||||
self.text_embedding = nn.Embedding(self.number_text_tokens * types + 1, model_dim)
|
||||
self.emo_layer = nn.Linear(model_dim, model_dim)
|
||||
self.emovec_layer = nn.Linear(1024, model_dim)
|
||||
|
||||
if use_mel_codes_as_input:
|
||||
self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim)
|
||||
else:
|
||||
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1)
|
||||
self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \
|
||||
build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens + 2 + self.max_conditioning_inputs,
|
||||
self.max_text_tokens + 2, checkpointing)
|
||||
if train_solo_embeddings:
|
||||
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
|
||||
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
|
||||
else:
|
||||
self.mel_solo_embedding = 0
|
||||
self.text_solo_embedding = 0
|
||||
|
||||
self.final_norm = nn.LayerNorm(model_dim)
|
||||
self.text_head = nn.Linear(model_dim, self.number_text_tokens * types + 1)
|
||||
self.mel_head = nn.Linear(model_dim, self.number_mel_codes)
|
||||
|
||||
self.speed_emb = nn.Embedding(2, model_dim)
|
||||
self.speed_emb.weight.data.normal_(mean=0.0, std=0.0)
|
||||
|
||||
# Initialize the embeddings per the GPT-2 scheme
|
||||
embeddings = [self.text_embedding]
|
||||
if use_mel_codes_as_input:
|
||||
embeddings.append(self.mel_embedding)
|
||||
for module in embeddings:
|
||||
module.weight.data.normal_(mean=0.0, std=.02)
|
||||
|
||||
def post_init_gpt2_config(self, use_deepspeed=False, kv_cache=False, half=False):
|
||||
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
|
||||
gpt_config = GPT2Config(
|
||||
vocab_size=self.number_mel_codes,
|
||||
n_positions=seq_length,
|
||||
n_ctx=seq_length,
|
||||
n_embd=self.model_dim,
|
||||
n_layer=self.layers,
|
||||
n_head=self.heads,
|
||||
gradient_checkpointing=False,
|
||||
use_cache=True,
|
||||
)
|
||||
self.inference_model = GPT2InferenceModel(
|
||||
gpt_config,
|
||||
self.gpt,
|
||||
self.mel_pos_embedding,
|
||||
self.mel_embedding,
|
||||
self.final_norm,
|
||||
self.mel_head,
|
||||
kv_cache=kv_cache,
|
||||
)
|
||||
if use_deepspeed and half and torch.cuda.is_available():
|
||||
import deepspeed
|
||||
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
|
||||
mp_size=1,
|
||||
replace_with_kernel_inject=True,
|
||||
dtype=torch.float16)
|
||||
self.inference_model = self.ds_engine.module.eval()
|
||||
elif use_deepspeed and torch.cuda.is_available():
|
||||
import deepspeed
|
||||
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
|
||||
mp_size=1,
|
||||
replace_with_kernel_inject=True,
|
||||
dtype=torch.float32)
|
||||
self.inference_model = self.ds_engine.module.eval()
|
||||
else:
|
||||
self.inference_model = self.inference_model.eval()
|
||||
|
||||
# self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head)
|
||||
self.gpt.wte = self.mel_embedding
|
||||
|
||||
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
|
||||
inp = F.pad(input, (1, 0), value=start_token)
|
||||
tar = F.pad(input, (0, 1), value=stop_token)
|
||||
return inp, tar
|
||||
|
||||
def set_mel_padding(self, mel_input_tokens, mel_lengths):
|
||||
"""
|
||||
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
|
||||
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
|
||||
preformatting to create a working TTS model.
|
||||
"""
|
||||
for b in range(len(mel_lengths)):
|
||||
# Due to the convolutional nature of how these tokens are generated,
|
||||
# it would be best if the model predicts a token past the actual last token.
|
||||
actual_end = mel_lengths[b]
|
||||
if actual_end < mel_input_tokens.shape[-1]:
|
||||
mel_input_tokens[b, actual_end:] = self.stop_mel_token
|
||||
return mel_input_tokens
|
||||
|
||||
def set_text_padding(self, text_input_tokens, text_lengths):
|
||||
"""
|
||||
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
|
||||
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
|
||||
preformatting to create a working TTS model.
|
||||
"""
|
||||
for b in range(len(text_lengths)):
|
||||
# Due to the convolutional nature of how these tokens are generated,
|
||||
# it would be best if the model predicts a token past the actual last token.
|
||||
actual_end = text_lengths[b]
|
||||
if actual_end < text_input_tokens.shape[-1]:
|
||||
text_input_tokens[b, actual_end:] = self.stop_text_token
|
||||
return text_input_tokens
|
||||
|
||||
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False):
|
||||
if second_inputs is not None:
|
||||
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
|
||||
else:
|
||||
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1)
|
||||
|
||||
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
|
||||
if get_attns:
|
||||
return gpt_out.attentions
|
||||
|
||||
offset = speech_conditioning_inputs.shape[1]
|
||||
enc = gpt_out.last_hidden_state[:, offset:]
|
||||
enc = self.final_norm(enc)
|
||||
|
||||
if return_latent:
|
||||
return enc[:, :first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:]
|
||||
|
||||
first_logits = enc[:, :first_inputs.shape[1]]
|
||||
first_logits = first_head(first_logits)
|
||||
first_logits = first_logits.permute(0, 2, 1)
|
||||
if second_inputs is not None:
|
||||
second_logits = enc[:, -second_inputs.shape[1]:]
|
||||
second_logits = second_head(second_logits)
|
||||
second_logits = second_logits.permute(0, 2, 1)
|
||||
return first_logits, second_logits
|
||||
else:
|
||||
return first_logits
|
||||
|
||||
def get_conditioning(self, speech_conditioning_input, cond_mel_lengths=None):
|
||||
if self.condition_type == "perceiver":
|
||||
if speech_conditioning_input.ndim == 4:
|
||||
speech_conditioning_input = speech_conditioning_input.squeeze(1)
|
||||
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input) # (b, d, s)
|
||||
conds = self.perceiver_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 32, d)
|
||||
elif self.condition_type == "conformer_perceiver":
|
||||
speech_conditioning_input, mask = self.conditioning_encoder(speech_conditioning_input.transpose(1, 2),
|
||||
cond_mel_lengths) # (b, s, d), (b, 1, s)
|
||||
if self.condition_type == "conformer_perceiver":
|
||||
# conds_mask = torch.cat([torch.ones((mask.shape[0], self.cond_num), dtype=torch.bool), mask.squeeze(1)], dim=1)
|
||||
conds_mask = self.cond_mask_pad(mask.squeeze(1))
|
||||
conds = self.perceiver_encoder(speech_conditioning_input, conds_mask) # (b, 32, d)
|
||||
elif self.condition_type == "gst":
|
||||
if speech_conditioning_input.ndim == 4:
|
||||
speech_conditioning_input = speech_conditioning_input.squeeze(1)
|
||||
conds = self.gst_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 1, d)
|
||||
else:
|
||||
speech_conditioning_input = (
|
||||
speech_conditioning_input.unsqueeze(1)
|
||||
if len(speech_conditioning_input.shape) == 3
|
||||
else speech_conditioning_input
|
||||
)
|
||||
conds = []
|
||||
for j in range(speech_conditioning_input.shape[1]):
|
||||
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
|
||||
conds = torch.stack(conds, dim=1)
|
||||
conds = conds.mean(dim=1)
|
||||
conds = conds.unsqueeze(1)
|
||||
return conds
|
||||
|
||||
|
||||
def get_emo_conditioning(self, speech_conditioning_input, cond_mel_lengths=None):
|
||||
speech_conditioning_input, mask = self.emo_conditioning_encoder(speech_conditioning_input.transpose(1, 2),
|
||||
cond_mel_lengths) # (b, s, d), (b, 1, s)
|
||||
conds_mask = self.emo_cond_mask_pad(mask.squeeze(1))
|
||||
conds = self.emo_perceiver_encoder(speech_conditioning_input, conds_mask) # (b, 1, d)
|
||||
return conds.squeeze(1)
|
||||
|
||||
|
||||
def forward(self, speech_conditioning_latent, text_inputs, text_lengths, mel_codes, mel_codes_lengths, emo_speech_conditioning_latent,
|
||||
cond_mel_lengths=None, emo_cond_mel_lengths=None, emo_vec=None, use_speed=None, do_spk_cond=False):
|
||||
"""
|
||||
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
|
||||
|
||||
speech_conditioning_input: MEL float tensor, (b,1024)
|
||||
text_inputs: long tensor, (b,t)
|
||||
text_lengths: long tensor, (b,)
|
||||
mel_inputs: long tensor, (b,m)
|
||||
wav_lengths: long tensor, (b,)
|
||||
|
||||
If return_attentions is specified, only logits are returned.
|
||||
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
|
||||
"""
|
||||
|
||||
if do_spk_cond:
|
||||
speech_conditioning_latent = self.get_conditioning(speech_conditioning_latent.transpose(1,2), cond_mel_lengths)
|
||||
else:
|
||||
speech_conditioning_latent = speech_conditioning_latent
|
||||
|
||||
if emo_vec is None:
|
||||
emo_vec_syn_ori = self.get_emo_conditioning(emo_speech_conditioning_latent.transpose(1,2), emo_cond_mel_lengths)
|
||||
emo_vec_syn = self.emovec_layer(emo_vec_syn_ori)
|
||||
emo_vec = self.emo_layer(emo_vec_syn)
|
||||
|
||||
text_inputs = self.set_text_padding(text_inputs, text_lengths)
|
||||
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
||||
|
||||
mel_codes = self.set_mel_padding(mel_codes, mel_codes_lengths)
|
||||
mel_codes = F.pad(mel_codes, (0, 1), value=self.stop_mel_token)
|
||||
|
||||
duration_emb = self.speed_emb(torch.zeros_like(use_speed))
|
||||
duration_emb_half = self.speed_emb(torch.ones_like(use_speed))
|
||||
conds = torch.cat((speech_conditioning_latent + emo_vec.unsqueeze(1), duration_emb_half.unsqueeze(1), duration_emb.unsqueeze(1)), 1)
|
||||
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
||||
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
||||
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
|
||||
|
||||
mel_emb = self.mel_embedding(mel_codes)
|
||||
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
|
||||
|
||||
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=False, return_latent=True)
|
||||
return mel_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
|
||||
|
||||
def prepare_gpt_inputs(
|
||||
self,
|
||||
conditional_latents: torch.Tensor,
|
||||
text_inputs: torch.Tensor,
|
||||
):
|
||||
|
||||
"""
|
||||
Prepare the inputs for the GPT2InferenceModel to generate.
|
||||
Args:
|
||||
conds_latent: (b, 32, dim) audio conditioning embedding by `get_conditioning()`
|
||||
text_inputs: (b, L)
|
||||
Returns:
|
||||
input_ids: (b, s+1) the input ids for the GPT2InferenceModel.generate()
|
||||
inputs_embeds: (b, s+1, dim) the input embeddings for the GPT2InferenceModel.forward()
|
||||
attention_mask: (b, s+1) the attention mask for the GPT2InferenceModel.generate()
|
||||
"""
|
||||
b, L = text_inputs.shape[:2]
|
||||
device = text_inputs.device
|
||||
single_cond = conditional_latents.ndim == 3 and conditional_latents.shape[0] == 1
|
||||
if not single_cond:
|
||||
assert conditional_latents.shape[0] == b, f"batch size mismatch: {conditional_latents.shape[0]} vs {b}"
|
||||
batched_mel_emb = []
|
||||
attention_masks = []
|
||||
target_len = conditional_latents.shape[1] + L + 2
|
||||
for i in range(b):
|
||||
valid_mask = (text_inputs[i] != self.stop_text_token) & (text_inputs[i] != self.start_text_token)
|
||||
text_input = text_inputs[i][valid_mask]
|
||||
text_input = F.pad(text_input, (1, 0), value=self.start_text_token)
|
||||
text_input = F.pad(text_input, (0, 1), value=self.stop_text_token)
|
||||
text_input_pos = torch.arange(0, text_input.size(-1), device=device)
|
||||
text_emb = self.text_embedding(text_input) + self.text_pos_embedding.emb(text_input_pos)
|
||||
# concatenate [conditional latents][text embeddings]
|
||||
conds_text_emb = [
|
||||
conditional_latents.squeeze(0) if single_cond else conditional_latents[i],
|
||||
text_emb,
|
||||
]
|
||||
# +1 for the start_mel_token
|
||||
attention_mask = torch.ones(target_len+1, dtype=torch.long, device=device)
|
||||
# check this text input is padded
|
||||
padding: int = L + 2 - text_input.size(-1)
|
||||
# pad left of [cond][text] -> [pad][cond][text]
|
||||
if padding > 0:
|
||||
pad = torch.zeros((padding, conditional_latents.size(-1)), dtype=text_emb.dtype, device=device) # [p, dim]
|
||||
conds_text_emb.insert(0, pad)
|
||||
attention_mask[:padding] = 0
|
||||
mel_emb = torch.cat(conds_text_emb) #[s, dim]
|
||||
assert mel_emb.shape[0] == target_len, f"mel_emb.shape: {mel_emb.shape}, target_len: {target_len}"
|
||||
batched_mel_emb.append(mel_emb)
|
||||
attention_masks.append(attention_mask)
|
||||
# [b, s, dim]
|
||||
batched_mel_emb = torch.stack(batched_mel_emb, dim=0)
|
||||
# [b, s+1]
|
||||
attention_mask = torch.stack(attention_masks, dim=0)
|
||||
# [b, s+1]
|
||||
fake_inputs = torch.ones(
|
||||
(
|
||||
batched_mel_emb.shape[0],
|
||||
batched_mel_emb.shape[1] + 1, # +1 for the start_mel_token
|
||||
),
|
||||
dtype=torch.long,
|
||||
device=device,
|
||||
)
|
||||
fake_inputs[:, -1] = self.start_mel_token
|
||||
return fake_inputs, batched_mel_emb, attention_mask
|
||||
|
||||
def inference_speech(self, speech_condition, text_inputs, emo_speech_condition=None, cond_lengths=None, emo_cond_lengths=None, emo_vec=None, use_speed=False, input_tokens=None, num_return_sequences=1,
|
||||
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
|
||||
"""
|
||||
Args:
|
||||
speech_condition: (b, d, frames) or (d, frames)
|
||||
text_inputs: (b, L)
|
||||
cond_mel_lengths: lengths of the conditioning mel spectrograms in shape (b,) or (1,)
|
||||
input_tokens: additional tokens for generation in shape (b, s) or (s,)
|
||||
max_generate_length: limit the number of generated tokens
|
||||
hf_generate_kwargs: kwargs for `GPT2InferenceModel.generate(**hf_generate_kwargs)`
|
||||
"""
|
||||
|
||||
if speech_condition.ndim == 2:
|
||||
speech_condition = speech_condition.unsqueeze(0)
|
||||
if emo_speech_condition is None:
|
||||
emo_speech_condition = speech_condition
|
||||
if cond_lengths is None:
|
||||
cond_lengths = torch.tensor([speech_condition.shape[-1]], device=speech_condition.device)
|
||||
if emo_cond_lengths is None:
|
||||
emo_cond_lengths = torch.tensor([emo_speech_condition.shape[-1]], device=speech_condition.device)
|
||||
|
||||
speech_conditioning_latent = self.get_conditioning(speech_condition.transpose(1,2), cond_lengths)
|
||||
if emo_vec is None:
|
||||
print('compute emo vec')
|
||||
emo_vec = self.get_emo_conditioning(emo_speech_condition.transpose(1,2), emo_cond_lengths)
|
||||
emo_vec = self.emovec_layer(emo_vec)
|
||||
emo_vec = self.emo_layer(emo_vec)
|
||||
else:
|
||||
print('Use the specified emotion vector')
|
||||
|
||||
tmp = torch.zeros(text_inputs.size(0)).to(text_inputs.device)
|
||||
duration_emb = self.speed_emb(torch.zeros_like(tmp).long())
|
||||
duration_emb_half = self.speed_emb(torch.ones_like(tmp).long())
|
||||
conds_latent = torch.cat((speech_conditioning_latent + emo_vec.unsqueeze(1), duration_emb_half.unsqueeze(1), duration_emb.unsqueeze(1)), 1)
|
||||
input_ids, inputs_embeds, attention_mask = self.prepare_gpt_inputs(conds_latent, text_inputs)
|
||||
self.inference_model.store_mel_emb(inputs_embeds)
|
||||
if input_tokens is None:
|
||||
inputs = input_ids
|
||||
else:
|
||||
if input_tokens.ndim == 1:
|
||||
input_tokens = input_tokens.unsqueeze(0)
|
||||
assert num_return_sequences % input_tokens.shape[0] == 0, \
|
||||
"The num_return_sequences must be divisible by the batch number of input_tokens"
|
||||
assert num_return_sequences % text_inputs.shape[0] == 0, \
|
||||
"The num_return_sequences must be divisible by the batch number of text_inputs"
|
||||
b = num_return_sequences // input_ids.shape[0]
|
||||
if b > 1:
|
||||
input_ids = input_ids.repeat(b, 1)
|
||||
attention_mask = attention_mask.repeat(b, 1)
|
||||
input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1)
|
||||
inputs = torch.cat([input_ids, input_tokens], dim=1)
|
||||
attention_mask = F.pad(attention_mask, (0, input_tokens.shape[1]), value=1)
|
||||
trunc_index = inputs.shape[1]
|
||||
logits_processor = LogitsProcessorList()
|
||||
if typical_sampling:
|
||||
# employ custom typical sampling
|
||||
if not (typical_mass > 0.0 and typical_mass < 1.0):
|
||||
raise ValueError(f"`typical_mass` has to be a float > 0 and < 1, but is {typical_mass}")
|
||||
min_tokens_to_keep = 2 if hf_generate_kwargs.get("num_beams", 1) > 1 else 1
|
||||
logits_processor.append(TypicalLogitsWarper(mass=typical_mass, min_tokens_to_keep=min_tokens_to_keep))
|
||||
max_length = (trunc_index + self.max_mel_tokens - 1) if max_generate_length is None else trunc_index + max_generate_length
|
||||
output = self.inference_model.generate(inputs,
|
||||
bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token,
|
||||
eos_token_id=self.stop_mel_token, attention_mask=attention_mask,
|
||||
max_length=max_length, logits_processor=logits_processor,
|
||||
num_return_sequences=num_return_sequences,
|
||||
**hf_generate_kwargs)
|
||||
if isinstance(output, torch.Tensor):
|
||||
return output[:, trunc_index:], speech_conditioning_latent
|
||||
# GenerateOutput
|
||||
output.sequences = output.sequences[:, trunc_index:]
|
||||
return output, speech_conditioning_latent
|
||||
|
||||
def get_emovec(self, emo_speech_conditioning_latent, emo_cond_lengths):
|
||||
emo_vec_syn_ori = self.get_emo_conditioning(emo_speech_conditioning_latent.transpose(1,2), emo_cond_lengths)
|
||||
emo_vec_syn = self.emovec_layer(emo_vec_syn_ori)
|
||||
emo_vec = self.emo_layer(emo_vec_syn)
|
||||
return emo_vec
|
||||
|
||||
def merge_emovec(self, speech_conditioning_latent, emo_speech_conditioning_latent, cond_lengths, emo_cond_lengths, alpha = 1.0):
|
||||
emo_vec = self.get_emovec(emo_speech_conditioning_latent, emo_cond_lengths)
|
||||
base_vec = self.get_emovec(speech_conditioning_latent, cond_lengths)
|
||||
|
||||
out = base_vec + alpha * (emo_vec - base_vec)
|
||||
return out
|
||||
317
indextts/gpt/perceiver.py
Normal file
317
indextts/gpt/perceiver.py
Normal file
@@ -0,0 +1,317 @@
|
||||
# Adapted from https://github.com/lucidrains/naturalspeech2-pytorch/blob/659bec7f7543e7747e809e950cc2f84242fbeec7/naturalspeech2_pytorch/naturalspeech2_pytorch.py#L532
|
||||
|
||||
from collections import namedtuple
|
||||
from functools import wraps
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
from packaging import version
|
||||
from torch import einsum, nn
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def once(fn):
|
||||
called = False
|
||||
|
||||
@wraps(fn)
|
||||
def inner(x):
|
||||
nonlocal called
|
||||
if called:
|
||||
return
|
||||
called = True
|
||||
return fn(x)
|
||||
|
||||
return inner
|
||||
|
||||
|
||||
print_once = once(print)
|
||||
|
||||
|
||||
# main class
|
||||
class Attend(nn.Module):
|
||||
def __init__(self, dropout=0.0, causal=False, use_flash=False):
|
||||
super().__init__()
|
||||
self.dropout = dropout
|
||||
self.attn_dropout = nn.Dropout(dropout)
|
||||
|
||||
self.causal = causal
|
||||
self.register_buffer("mask", None, persistent=False)
|
||||
|
||||
self.use_flash = use_flash
|
||||
assert not (
|
||||
use_flash and version.parse(torch.__version__) < version.parse("2.0.0")
|
||||
), "in order to use flash attention, you must be using pytorch 2.0 or above"
|
||||
|
||||
# determine efficient attention configs for cuda and cpu
|
||||
self.config = namedtuple("EfficientAttentionConfig", ["enable_flash", "enable_math", "enable_mem_efficient"])
|
||||
self.cpu_config = self.config(True, True, True)
|
||||
self.cuda_config = None
|
||||
|
||||
if not torch.cuda.is_available() or not use_flash:
|
||||
return
|
||||
|
||||
device_properties = torch.cuda.get_device_properties(torch.device("cuda"))
|
||||
|
||||
if device_properties.major == 8 and device_properties.minor == 0:
|
||||
print_once("A100 GPU detected, using flash attention if input tensor is on cuda")
|
||||
self.cuda_config = self.config(True, False, False)
|
||||
else:
|
||||
print_once("Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda")
|
||||
self.cuda_config = self.config(False, True, True)
|
||||
|
||||
def get_mask(self, n, device):
|
||||
if exists(self.mask) and self.mask.shape[-1] >= n:
|
||||
return self.mask[:n, :n]
|
||||
|
||||
mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1)
|
||||
self.register_buffer("mask", mask, persistent=False)
|
||||
return mask
|
||||
|
||||
def flash_attn(self, q, k, v, mask=None):
|
||||
_, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda
|
||||
|
||||
# Recommended for multi-query single-key-value attention by Tri Dao
|
||||
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
|
||||
|
||||
if k.ndim == 3:
|
||||
k = rearrange(k, "b ... -> b 1 ...").expand_as(q)
|
||||
|
||||
if v.ndim == 3:
|
||||
v = rearrange(v, "b ... -> b 1 ...").expand_as(q)
|
||||
|
||||
# Check if mask exists and expand to compatible shape
|
||||
# The mask is B L, so it would have to be expanded to B H N L
|
||||
|
||||
if exists(mask):
|
||||
mask = rearrange(mask, "b j -> b 1 1 j")
|
||||
mask = mask.expand(-1, heads, q_len, -1)
|
||||
|
||||
# Check if there is a compatible device for flash attention
|
||||
|
||||
config = self.cuda_config if is_cuda else self.cpu_config
|
||||
|
||||
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
|
||||
|
||||
with torch.backends.cuda.sdp_kernel(**config._asdict()):
|
||||
out = F.scaled_dot_product_attention(
|
||||
q, k, v, attn_mask=mask, dropout_p=self.dropout if self.training else 0.0, is_causal=self.causal
|
||||
)
|
||||
|
||||
return out
|
||||
|
||||
def forward(self, q, k, v, mask=None):
|
||||
"""
|
||||
einstein notation
|
||||
b - batch
|
||||
h - heads
|
||||
n, i, j - sequence length (base sequence length, source, target)
|
||||
d - feature dimension
|
||||
"""
|
||||
|
||||
n, device = q.shape[-2], q.device
|
||||
|
||||
scale = q.shape[-1] ** -0.5
|
||||
|
||||
if self.use_flash:
|
||||
return self.flash_attn(q, k, v, mask=mask)
|
||||
|
||||
kv_einsum_eq = "b j d" if k.ndim == 3 else "b h j d"
|
||||
|
||||
# similarity
|
||||
|
||||
sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale
|
||||
|
||||
# key padding mask
|
||||
|
||||
if exists(mask):
|
||||
mask = rearrange(mask, "b j -> b 1 1 j")
|
||||
sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max)
|
||||
|
||||
# causal mask
|
||||
|
||||
if self.causal:
|
||||
causal_mask = self.get_mask(n, device)
|
||||
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
|
||||
|
||||
# attention
|
||||
|
||||
attn = sim.softmax(dim=-1)
|
||||
attn = self.attn_dropout(attn)
|
||||
|
||||
# aggregate values
|
||||
|
||||
out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def Sequential(*mods):
|
||||
return nn.Sequential(*filter(exists, mods))
|
||||
|
||||
|
||||
def exists(x):
|
||||
return x is not None
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if callable(d) else d
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dim, scale=True, dim_cond=None):
|
||||
super().__init__()
|
||||
self.cond = exists(dim_cond)
|
||||
self.to_gamma_beta = nn.Linear(dim_cond, dim * 2) if self.cond else None
|
||||
|
||||
self.scale = dim**0.5
|
||||
self.gamma = nn.Parameter(torch.ones(dim)) if scale else None
|
||||
|
||||
def forward(self, x, cond=None):
|
||||
gamma = default(self.gamma, 1)
|
||||
out = F.normalize(x, dim=-1) * self.scale * gamma
|
||||
|
||||
if not self.cond:
|
||||
return out
|
||||
|
||||
assert exists(cond)
|
||||
gamma, beta = self.to_gamma_beta(cond).chunk(2, dim=-1)
|
||||
gamma, beta = map(lambda t: rearrange(t, "b d -> b 1 d"), (gamma, beta))
|
||||
return out * gamma + beta
|
||||
|
||||
|
||||
class CausalConv1d(nn.Conv1d):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
(kernel_size,) = self.kernel_size
|
||||
(dilation,) = self.dilation
|
||||
(stride,) = self.stride
|
||||
|
||||
assert stride == 1
|
||||
self.causal_padding = dilation * (kernel_size - 1)
|
||||
|
||||
def forward(self, x):
|
||||
causal_padded_x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
||||
return super().forward(causal_padded_x)
|
||||
|
||||
|
||||
class GEGLU(nn.Module):
|
||||
def forward(self, x):
|
||||
x, gate = x.chunk(2, dim=-1)
|
||||
return F.gelu(gate) * x
|
||||
|
||||
|
||||
def FeedForward(dim, mult=4, causal_conv=False):
|
||||
dim_inner = int(dim * mult * 2 / 3)
|
||||
|
||||
conv = None
|
||||
if causal_conv:
|
||||
conv = nn.Sequential(
|
||||
Rearrange("b n d -> b d n"),
|
||||
CausalConv1d(dim_inner, dim_inner, 3),
|
||||
Rearrange("b d n -> b n d"),
|
||||
)
|
||||
|
||||
return Sequential(nn.Linear(dim, dim_inner * 2), GEGLU(), conv, nn.Linear(dim_inner, dim))
|
||||
|
||||
|
||||
class PerceiverResampler(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
depth=2,
|
||||
dim_context=None,
|
||||
num_latents=32,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
ff_mult=4,
|
||||
use_flash_attn=False,
|
||||
):
|
||||
super().__init__()
|
||||
dim_context = default(dim_context, dim)
|
||||
|
||||
self.proj_context = nn.Linear(dim_context, dim) if dim_context != dim else nn.Identity()
|
||||
|
||||
self.latents = nn.Parameter(torch.randn(num_latents, dim))
|
||||
nn.init.normal_(self.latents, std=0.02)
|
||||
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
Attention(
|
||||
dim=dim,
|
||||
dim_head=dim_head,
|
||||
heads=heads,
|
||||
use_flash=use_flash_attn,
|
||||
cross_attn_include_queries=True,
|
||||
),
|
||||
FeedForward(dim=dim, mult=ff_mult),
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
self.norm = RMSNorm(dim)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
batch = x.shape[0]
|
||||
|
||||
x = self.proj_context(x)
|
||||
|
||||
latents = repeat(self.latents, "n d -> b n d", b=batch)
|
||||
|
||||
for attn, ff in self.layers:
|
||||
latents = attn(latents, x, mask=mask) + latents
|
||||
latents = ff(latents) + latents
|
||||
|
||||
return self.norm(latents)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
dim_context=None,
|
||||
causal=False,
|
||||
dim_head=64,
|
||||
heads=8,
|
||||
dropout=0.0,
|
||||
use_flash=False,
|
||||
cross_attn_include_queries=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.scale = dim_head**-0.5
|
||||
self.heads = heads
|
||||
self.cross_attn_include_queries = cross_attn_include_queries
|
||||
|
||||
dim_inner = dim_head * heads
|
||||
dim_context = default(dim_context, dim)
|
||||
|
||||
self.attend = Attend(causal=causal, dropout=dropout, use_flash=use_flash)
|
||||
self.to_q = nn.Linear(dim, dim_inner, bias=False)
|
||||
self.to_kv = nn.Linear(dim_context, dim_inner * 2, bias=False)
|
||||
self.to_out = nn.Linear(dim_inner, dim, bias=False)
|
||||
|
||||
def forward(self, x, context=None, mask=None):
|
||||
h, has_context = self.heads, exists(context)
|
||||
|
||||
context = default(context, x)
|
||||
|
||||
if has_context and self.cross_attn_include_queries:
|
||||
context = torch.cat((x, context), dim=-2)
|
||||
|
||||
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim=-1))
|
||||
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
|
||||
|
||||
out = self.attend(q, k, v, mask=mask)
|
||||
|
||||
out = rearrange(out, "b h n d -> b n (h d)")
|
||||
return self.to_out(out)
|
||||
1013
indextts/gpt/transformers_beam_search.py
Normal file
1013
indextts/gpt/transformers_beam_search.py
Normal file
File diff suppressed because it is too large
Load Diff
4785
indextts/gpt/transformers_generation_utils.py
Normal file
4785
indextts/gpt/transformers_generation_utils.py
Normal file
File diff suppressed because it is too large
Load Diff
1882
indextts/gpt/transformers_gpt2.py
Normal file
1882
indextts/gpt/transformers_gpt2.py
Normal file
File diff suppressed because it is too large
Load Diff
5527
indextts/gpt/transformers_modeling_utils.py
Normal file
5527
indextts/gpt/transformers_modeling_utils.py
Normal file
File diff suppressed because it is too large
Load Diff
681
indextts/infer.py
Normal file
681
indextts/infer.py
Normal file
@@ -0,0 +1,681 @@
|
||||
import os
|
||||
|
||||
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
|
||||
import time
|
||||
from subprocess import CalledProcessError
|
||||
from typing import Dict, List
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from omegaconf import OmegaConf
|
||||
from tqdm import tqdm
|
||||
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
from indextts.BigVGAN.models import BigVGAN as Generator
|
||||
from indextts.gpt.model import UnifiedVoice
|
||||
from indextts.utils.checkpoint import load_checkpoint
|
||||
from indextts.utils.feature_extractors import MelSpectrogramFeatures
|
||||
|
||||
from indextts.utils.front import TextNormalizer, TextTokenizer
|
||||
|
||||
|
||||
class IndexTTS:
|
||||
def __init__(
|
||||
self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_fp16=True, device=None,
|
||||
use_cuda_kernel=None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
cfg_path (str): path to the config file.
|
||||
model_dir (str): path to the model directory.
|
||||
use_fp16 (bool): whether to use fp16.
|
||||
device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
|
||||
use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
|
||||
"""
|
||||
if device is not None:
|
||||
self.device = device
|
||||
self.use_fp16 = False if device == "cpu" else use_fp16
|
||||
self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
|
||||
elif torch.cuda.is_available():
|
||||
self.device = "cuda:0"
|
||||
self.use_fp16 = use_fp16
|
||||
self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
self.device = "xpu"
|
||||
self.use_fp16 = use_fp16
|
||||
self.use_cuda_kernel = False
|
||||
elif hasattr(torch, "mps") and torch.backends.mps.is_available():
|
||||
self.device = "mps"
|
||||
self.use_fp16 = False # Use float16 on MPS is overhead than float32
|
||||
self.use_cuda_kernel = False
|
||||
else:
|
||||
self.device = "cpu"
|
||||
self.use_fp16 = False
|
||||
self.use_cuda_kernel = False
|
||||
print(">> Be patient, it may take a while to run in CPU mode.")
|
||||
|
||||
self.cfg = OmegaConf.load(cfg_path)
|
||||
self.model_dir = model_dir
|
||||
self.dtype = torch.float16 if self.use_fp16 else None
|
||||
self.stop_mel_token = self.cfg.gpt.stop_mel_token
|
||||
|
||||
# Comment-off to load the VQ-VAE model for debugging tokenizer
|
||||
# https://github.com/index-tts/index-tts/issues/34
|
||||
#
|
||||
# from indextts.vqvae.xtts_dvae import DiscreteVAE
|
||||
# self.dvae = DiscreteVAE(**self.cfg.vqvae)
|
||||
# self.dvae_path = os.path.join(self.model_dir, self.cfg.dvae_checkpoint)
|
||||
# load_checkpoint(self.dvae, self.dvae_path)
|
||||
# self.dvae = self.dvae.to(self.device)
|
||||
# if self.use_fp16:
|
||||
# self.dvae.eval().half()
|
||||
# else:
|
||||
# self.dvae.eval()
|
||||
# print(">> vqvae weights restored from:", self.dvae_path)
|
||||
self.gpt = UnifiedVoice(**self.cfg.gpt)
|
||||
self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
|
||||
load_checkpoint(self.gpt, self.gpt_path)
|
||||
self.gpt = self.gpt.to(self.device)
|
||||
if self.use_fp16:
|
||||
self.gpt.eval().half()
|
||||
else:
|
||||
self.gpt.eval()
|
||||
print(">> GPT weights restored from:", self.gpt_path)
|
||||
if self.use_fp16:
|
||||
try:
|
||||
import deepspeed
|
||||
|
||||
use_deepspeed = True
|
||||
except (ImportError, OSError, CalledProcessError) as e:
|
||||
use_deepspeed = False
|
||||
print(f">> DeepSpeed加载失败,回退到标准推理: {e}")
|
||||
|
||||
self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=True)
|
||||
else:
|
||||
self.gpt.post_init_gpt2_config(use_deepspeed=False, kv_cache=False, half=False)
|
||||
|
||||
if self.use_cuda_kernel:
|
||||
# preload the CUDA kernel for BigVGAN
|
||||
try:
|
||||
from indextts.BigVGAN.alias_free_activation.cuda import load
|
||||
|
||||
anti_alias_activation_cuda = load.load()
|
||||
print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
|
||||
except:
|
||||
print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
|
||||
self.use_cuda_kernel = False
|
||||
self.bigvgan = Generator(self.cfg.bigvgan, use_cuda_kernel=self.use_cuda_kernel)
|
||||
self.bigvgan_path = os.path.join(self.model_dir, self.cfg.bigvgan_checkpoint)
|
||||
vocoder_dict = torch.load(self.bigvgan_path, map_location="cpu")
|
||||
self.bigvgan.load_state_dict(vocoder_dict["generator"])
|
||||
self.bigvgan = self.bigvgan.to(self.device)
|
||||
# remove weight norm on eval mode
|
||||
self.bigvgan.remove_weight_norm()
|
||||
self.bigvgan.eval()
|
||||
print(">> bigvgan weights restored from:", self.bigvgan_path)
|
||||
self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"])
|
||||
self.normalizer = TextNormalizer()
|
||||
self.normalizer.load()
|
||||
print(">> TextNormalizer loaded")
|
||||
self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
|
||||
print(">> bpe model loaded from:", self.bpe_path)
|
||||
# 缓存参考音频mel:
|
||||
self.cache_audio_prompt = None
|
||||
self.cache_cond_mel = None
|
||||
# 进度引用显示(可选)
|
||||
self.gr_progress = None
|
||||
self.model_version = self.cfg.version if hasattr(self.cfg, "version") else None
|
||||
|
||||
def remove_long_silence(self, codes: torch.Tensor, silent_token=52, max_consecutive=30):
|
||||
"""
|
||||
Shrink special tokens (silent_token and stop_mel_token) in codes
|
||||
codes: [B, T]
|
||||
"""
|
||||
code_lens = []
|
||||
codes_list = []
|
||||
device = codes.device
|
||||
dtype = codes.dtype
|
||||
isfix = False
|
||||
for i in range(0, codes.shape[0]):
|
||||
code = codes[i]
|
||||
if not torch.any(code == self.stop_mel_token).item():
|
||||
len_ = code.size(0)
|
||||
else:
|
||||
stop_mel_idx = (code == self.stop_mel_token).nonzero(as_tuple=False)
|
||||
len_ = stop_mel_idx[0].item() if len(stop_mel_idx) > 0 else code.size(0)
|
||||
|
||||
count = torch.sum(code == silent_token).item()
|
||||
if count > max_consecutive:
|
||||
# code = code.cpu().tolist()
|
||||
ncode_idx = []
|
||||
n = 0
|
||||
for k in range(len_):
|
||||
assert code[
|
||||
k] != self.stop_mel_token, f"stop_mel_token {self.stop_mel_token} should be shrinked here"
|
||||
if code[k] != silent_token:
|
||||
ncode_idx.append(k)
|
||||
n = 0
|
||||
elif code[k] == silent_token and n < 10:
|
||||
ncode_idx.append(k)
|
||||
n += 1
|
||||
# if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52):
|
||||
# n += 1
|
||||
# new code
|
||||
len_ = len(ncode_idx)
|
||||
codes_list.append(code[ncode_idx])
|
||||
isfix = True
|
||||
else:
|
||||
# shrink to len_
|
||||
codes_list.append(code[:len_])
|
||||
code_lens.append(len_)
|
||||
if isfix:
|
||||
if len(codes_list) > 1:
|
||||
codes = pad_sequence(codes_list, batch_first=True, padding_value=self.stop_mel_token)
|
||||
else:
|
||||
codes = codes_list[0].unsqueeze(0)
|
||||
else:
|
||||
# unchanged
|
||||
pass
|
||||
# clip codes to max length
|
||||
max_len = max(code_lens)
|
||||
if max_len < codes.shape[1]:
|
||||
codes = codes[:, :max_len]
|
||||
code_lens = torch.tensor(code_lens, dtype=torch.long, device=device)
|
||||
return codes, code_lens
|
||||
|
||||
def bucket_segments(self, segments, bucket_max_size=4) -> List[List[Dict]]:
|
||||
"""
|
||||
Segment data bucketing.
|
||||
if ``bucket_max_size=1``, return all segments in one bucket.
|
||||
"""
|
||||
outputs: List[Dict] = []
|
||||
for idx, sent in enumerate(segments):
|
||||
outputs.append({"idx": idx, "sent": sent, "len": len(sent)})
|
||||
|
||||
if len(outputs) > bucket_max_size:
|
||||
# split segments into buckets by segment length
|
||||
buckets: List[List[Dict]] = []
|
||||
factor = 1.5
|
||||
last_bucket = None
|
||||
last_bucket_sent_len_median = 0
|
||||
|
||||
for sent in sorted(outputs, key=lambda x: x["len"]):
|
||||
current_sent_len = sent["len"]
|
||||
if current_sent_len == 0:
|
||||
print(">> skip empty segment")
|
||||
continue
|
||||
if last_bucket is None \
|
||||
or current_sent_len >= int(last_bucket_sent_len_median * factor) \
|
||||
or len(last_bucket) >= bucket_max_size:
|
||||
# new bucket
|
||||
buckets.append([sent])
|
||||
last_bucket = buckets[-1]
|
||||
last_bucket_sent_len_median = current_sent_len
|
||||
else:
|
||||
# current bucket can hold more segments
|
||||
last_bucket.append(sent) # sorted
|
||||
mid = len(last_bucket) // 2
|
||||
last_bucket_sent_len_median = last_bucket[mid]["len"]
|
||||
last_bucket = None
|
||||
# merge all buckets with size 1
|
||||
out_buckets: List[List[Dict]] = []
|
||||
only_ones: List[Dict] = []
|
||||
for b in buckets:
|
||||
if len(b) == 1:
|
||||
only_ones.append(b[0])
|
||||
else:
|
||||
out_buckets.append(b)
|
||||
if len(only_ones) > 0:
|
||||
# merge into previous buckets if possible
|
||||
# print("only_ones:", [(o["idx"], o["len"]) for o in only_ones])
|
||||
for i in range(len(out_buckets)):
|
||||
b = out_buckets[i]
|
||||
if len(b) < bucket_max_size:
|
||||
b.append(only_ones.pop(0))
|
||||
if len(only_ones) == 0:
|
||||
break
|
||||
# combined all remaining sized 1 buckets
|
||||
if len(only_ones) > 0:
|
||||
out_buckets.extend(
|
||||
[only_ones[i:i + bucket_max_size] for i in range(0, len(only_ones), bucket_max_size)])
|
||||
return out_buckets
|
||||
return [outputs]
|
||||
|
||||
def pad_tokens_cat(self, tokens: List[torch.Tensor]) -> torch.Tensor:
|
||||
if self.model_version and self.model_version >= 1.5:
|
||||
# 1.5版本以上,直接使用stop_text_token 右侧填充,填充到最大长度
|
||||
# [1, N] -> [N,]
|
||||
tokens = [t.squeeze(0) for t in tokens]
|
||||
return pad_sequence(tokens, batch_first=True, padding_value=self.cfg.gpt.stop_text_token,
|
||||
padding_side="right")
|
||||
max_len = max(t.size(1) for t in tokens)
|
||||
outputs = []
|
||||
for tensor in tokens:
|
||||
pad_len = max_len - tensor.size(1)
|
||||
if pad_len > 0:
|
||||
n = min(8, pad_len)
|
||||
tensor = torch.nn.functional.pad(tensor, (0, n), value=self.cfg.gpt.stop_text_token)
|
||||
tensor = torch.nn.functional.pad(tensor, (0, pad_len - n), value=self.cfg.gpt.start_text_token)
|
||||
tensor = tensor[:, :max_len]
|
||||
outputs.append(tensor)
|
||||
tokens = torch.cat(outputs, dim=0)
|
||||
return tokens
|
||||
|
||||
def torch_empty_cache(self):
|
||||
try:
|
||||
if "cuda" in str(self.device):
|
||||
torch.cuda.empty_cache()
|
||||
elif "mps" in str(self.device):
|
||||
torch.mps.empty_cache()
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
def _set_gr_progress(self, value, desc):
|
||||
if self.gr_progress is not None:
|
||||
self.gr_progress(value, desc=desc)
|
||||
|
||||
# 快速推理:对于“多句长文本”,可实现至少 2~10 倍以上的速度提升~ (First modified by sunnyboxs 2025-04-16)
|
||||
def infer_fast(self, audio_prompt, text, output_path, verbose=False, max_text_tokens_per_segment=100,
|
||||
segments_bucket_max_size=4, **generation_kwargs):
|
||||
"""
|
||||
Args:
|
||||
``max_text_tokens_per_segment``: 分句的最大token数,默认``100``,可以根据GPU硬件情况调整
|
||||
- 越小,batch 越多,推理速度越*快*,占用内存更多,可能影响质量
|
||||
- 越大,batch 越少,推理速度越*慢*,占用内存和质量更接近于非快速推理
|
||||
``segments_bucket_max_size``: 分句分桶的最大容量,默认``4``,可以根据GPU内存调整
|
||||
- 越大,bucket数量越少,batch越多,推理速度越*快*,占用内存更多,可能影响质量
|
||||
- 越小,bucket数量越多,batch越少,推理速度越*慢*,占用内存和质量更接近于非快速推理
|
||||
"""
|
||||
print(">> starting fast inference...")
|
||||
|
||||
self._set_gr_progress(0, "starting fast inference...")
|
||||
if verbose:
|
||||
print(f"origin text:{text}")
|
||||
start_time = time.perf_counter()
|
||||
|
||||
# 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度
|
||||
if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt:
|
||||
audio, sr = torchaudio.load(audio_prompt)
|
||||
audio = torch.mean(audio, dim=0, keepdim=True)
|
||||
if audio.shape[0] > 1:
|
||||
audio = audio[0].unsqueeze(0)
|
||||
audio = torchaudio.transforms.Resample(sr, 24000)(audio)
|
||||
cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
|
||||
cond_mel_frame = cond_mel.shape[-1]
|
||||
if verbose:
|
||||
print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype)
|
||||
|
||||
self.cache_audio_prompt = audio_prompt
|
||||
self.cache_cond_mel = cond_mel
|
||||
else:
|
||||
cond_mel = self.cache_cond_mel
|
||||
cond_mel_frame = cond_mel.shape[-1]
|
||||
pass
|
||||
|
||||
auto_conditioning = cond_mel
|
||||
cond_mel_lengths = torch.tensor([cond_mel_frame], device=self.device)
|
||||
|
||||
# text_tokens
|
||||
text_tokens_list = self.tokenizer.tokenize(text)
|
||||
|
||||
segments = self.tokenizer.split_segments(text_tokens_list,
|
||||
max_text_tokens_per_segment=max_text_tokens_per_segment)
|
||||
if verbose:
|
||||
print(">> text token count:", len(text_tokens_list))
|
||||
print(" segments count:", len(segments))
|
||||
print(" max_text_tokens_per_segment:", max_text_tokens_per_segment)
|
||||
print(*segments, sep="\n")
|
||||
do_sample = generation_kwargs.pop("do_sample", True)
|
||||
top_p = generation_kwargs.pop("top_p", 0.8)
|
||||
top_k = generation_kwargs.pop("top_k", 30)
|
||||
temperature = generation_kwargs.pop("temperature", 1.0)
|
||||
autoregressive_batch_size = 1
|
||||
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
|
||||
num_beams = generation_kwargs.pop("num_beams", 3)
|
||||
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
|
||||
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 600)
|
||||
sampling_rate = 24000
|
||||
# lang = "EN"
|
||||
# lang = "ZH"
|
||||
wavs = []
|
||||
gpt_gen_time = 0
|
||||
gpt_forward_time = 0
|
||||
bigvgan_time = 0
|
||||
|
||||
# text processing
|
||||
all_text_tokens: List[List[torch.Tensor]] = []
|
||||
self._set_gr_progress(0.1, "text processing...")
|
||||
bucket_max_size = segments_bucket_max_size if self.device != "cpu" else 1
|
||||
all_segments = self.bucket_segments(segments, bucket_max_size=bucket_max_size)
|
||||
bucket_count = len(all_segments)
|
||||
if verbose:
|
||||
print(">> segments bucket_count:", bucket_count,
|
||||
"bucket sizes:", [(len(s), [t["idx"] for t in s]) for s in all_segments],
|
||||
"bucket_max_size:", bucket_max_size)
|
||||
for segments in all_segments:
|
||||
temp_tokens: List[torch.Tensor] = []
|
||||
all_text_tokens.append(temp_tokens)
|
||||
for item in segments:
|
||||
sent = item["sent"]
|
||||
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
|
||||
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
|
||||
if verbose:
|
||||
print(text_tokens)
|
||||
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
|
||||
# debug tokenizer
|
||||
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
|
||||
print("text_token_syms is same as segment tokens", text_token_syms == sent)
|
||||
temp_tokens.append(text_tokens)
|
||||
|
||||
# Sequential processing of bucketing data
|
||||
all_batch_num = sum(len(s) for s in all_segments)
|
||||
all_batch_codes = []
|
||||
processed_num = 0
|
||||
for item_tokens in all_text_tokens:
|
||||
batch_num = len(item_tokens)
|
||||
if batch_num > 1:
|
||||
batch_text_tokens = self.pad_tokens_cat(item_tokens)
|
||||
else:
|
||||
batch_text_tokens = item_tokens[0]
|
||||
processed_num += batch_num
|
||||
# gpt speech
|
||||
self._set_gr_progress(0.2 + 0.3 * processed_num / all_batch_num,
|
||||
f"gpt speech inference {processed_num}/{all_batch_num}...")
|
||||
m_start_time = time.perf_counter()
|
||||
with torch.no_grad():
|
||||
with torch.amp.autocast(batch_text_tokens.device.type, enabled=self.dtype is not None,
|
||||
dtype=self.dtype):
|
||||
temp_codes = self.gpt.inference_speech(auto_conditioning, batch_text_tokens,
|
||||
cond_mel_lengths=cond_mel_lengths,
|
||||
# text_lengths=text_len,
|
||||
do_sample=do_sample,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
temperature=temperature,
|
||||
num_return_sequences=autoregressive_batch_size,
|
||||
length_penalty=length_penalty,
|
||||
num_beams=num_beams,
|
||||
repetition_penalty=repetition_penalty,
|
||||
max_generate_length=max_mel_tokens,
|
||||
**generation_kwargs)
|
||||
all_batch_codes.append(temp_codes)
|
||||
gpt_gen_time += time.perf_counter() - m_start_time
|
||||
|
||||
# gpt latent
|
||||
self._set_gr_progress(0.5, "gpt latents inference...")
|
||||
all_idxs = []
|
||||
all_latents = []
|
||||
has_warned = False
|
||||
for batch_codes, batch_tokens, batch_segments in zip(all_batch_codes, all_text_tokens, all_segments):
|
||||
for i in range(batch_codes.shape[0]):
|
||||
codes = batch_codes[i] # [x]
|
||||
if not has_warned and codes[-1] != self.stop_mel_token:
|
||||
warnings.warn(
|
||||
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
|
||||
f"Consider reducing `max_text_tokens_per_segment`({max_text_tokens_per_segment}) or increasing `max_mel_tokens`.",
|
||||
category=RuntimeWarning
|
||||
)
|
||||
has_warned = True
|
||||
codes = codes.unsqueeze(0) # [x] -> [1, x]
|
||||
if verbose:
|
||||
print("codes:", codes.shape)
|
||||
print(codes)
|
||||
codes, code_lens = self.remove_long_silence(codes, silent_token=52, max_consecutive=30)
|
||||
if verbose:
|
||||
print("fix codes:", codes.shape)
|
||||
print(codes)
|
||||
print("code_lens:", code_lens)
|
||||
text_tokens = batch_tokens[i]
|
||||
all_idxs.append(batch_segments[i]["idx"])
|
||||
m_start_time = time.perf_counter()
|
||||
with torch.no_grad():
|
||||
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
|
||||
latent = \
|
||||
self.gpt(auto_conditioning, text_tokens,
|
||||
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
|
||||
code_lens * self.gpt.mel_length_compression,
|
||||
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
|
||||
device=text_tokens.device),
|
||||
return_latent=True, clip_inputs=False)
|
||||
gpt_forward_time += time.perf_counter() - m_start_time
|
||||
all_latents.append(latent)
|
||||
del all_batch_codes, all_text_tokens, all_segments
|
||||
# bigvgan chunk
|
||||
chunk_size = 2
|
||||
all_latents = [all_latents[all_idxs.index(i)] for i in range(len(all_latents))]
|
||||
if verbose:
|
||||
print(">> all_latents:", len(all_latents))
|
||||
print(" latents length:", [l.shape[1] for l in all_latents])
|
||||
chunk_latents = [all_latents[i: i + chunk_size] for i in range(0, len(all_latents), chunk_size)]
|
||||
chunk_length = len(chunk_latents)
|
||||
latent_length = len(all_latents)
|
||||
|
||||
# bigvgan chunk decode
|
||||
self._set_gr_progress(0.7, "bigvgan decoding...")
|
||||
tqdm_progress = tqdm(total=latent_length, desc="bigvgan")
|
||||
for items in chunk_latents:
|
||||
tqdm_progress.update(len(items))
|
||||
latent = torch.cat(items, dim=1)
|
||||
with torch.no_grad():
|
||||
with torch.amp.autocast(latent.device.type, enabled=self.dtype is not None, dtype=self.dtype):
|
||||
m_start_time = time.perf_counter()
|
||||
wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2))
|
||||
bigvgan_time += time.perf_counter() - m_start_time
|
||||
wav = wav.squeeze(1)
|
||||
pass
|
||||
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
|
||||
wavs.append(wav.cpu()) # to cpu before saving
|
||||
|
||||
# clear cache
|
||||
tqdm_progress.close() # 确保进度条被关闭
|
||||
del all_latents, chunk_latents
|
||||
end_time = time.perf_counter()
|
||||
self.torch_empty_cache()
|
||||
|
||||
# wav audio output
|
||||
self._set_gr_progress(0.9, "saving audio...")
|
||||
wav = torch.cat(wavs, dim=1)
|
||||
wav_length = wav.shape[-1] / sampling_rate
|
||||
print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds")
|
||||
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
|
||||
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
|
||||
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
|
||||
print(f">> Total fast inference time: {end_time - start_time:.2f} seconds")
|
||||
print(f">> Generated audio length: {wav_length:.2f} seconds")
|
||||
print(f">> [fast] bigvgan chunk_length: {chunk_length}")
|
||||
print(f">> [fast] batch_num: {all_batch_num} bucket_max_size: {bucket_max_size}",
|
||||
f"bucket_count: {bucket_count}" if bucket_max_size > 1 else "")
|
||||
print(f">> [fast] RTF: {(end_time - start_time) / wav_length:.4f}")
|
||||
|
||||
# save audio
|
||||
wav = wav.cpu() # to cpu
|
||||
if output_path:
|
||||
# 直接保存音频到指定路径中
|
||||
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
|
||||
print(">> wav file saved to:", output_path)
|
||||
return output_path
|
||||
else:
|
||||
# 返回以符合Gradio的格式要求
|
||||
wav_data = wav.type(torch.int16)
|
||||
wav_data = wav_data.numpy().T
|
||||
return (sampling_rate, wav_data)
|
||||
|
||||
# 原始推理模式
|
||||
def infer(self, audio_prompt, text, output_path, verbose=False, max_text_tokens_per_segment=120,
|
||||
**generation_kwargs):
|
||||
print(">> starting inference...")
|
||||
self._set_gr_progress(0, "starting inference...")
|
||||
if verbose:
|
||||
print(f"origin text:{text}")
|
||||
start_time = time.perf_counter()
|
||||
|
||||
# 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度
|
||||
if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt:
|
||||
audio, sr = torchaudio.load(audio_prompt)
|
||||
audio = torch.mean(audio, dim=0, keepdim=True)
|
||||
if audio.shape[0] > 1:
|
||||
audio = audio[0].unsqueeze(0)
|
||||
audio = torchaudio.transforms.Resample(sr, 24000)(audio)
|
||||
cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
|
||||
cond_mel_frame = cond_mel.shape[-1]
|
||||
if verbose:
|
||||
print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype)
|
||||
|
||||
self.cache_audio_prompt = audio_prompt
|
||||
self.cache_cond_mel = cond_mel
|
||||
else:
|
||||
cond_mel = self.cache_cond_mel
|
||||
cond_mel_frame = cond_mel.shape[-1]
|
||||
pass
|
||||
|
||||
self._set_gr_progress(0.1, "text processing...")
|
||||
auto_conditioning = cond_mel
|
||||
text_tokens_list = self.tokenizer.tokenize(text)
|
||||
segments = self.tokenizer.split_segments(text_tokens_list, max_text_tokens_per_segment)
|
||||
if verbose:
|
||||
print("text token count:", len(text_tokens_list))
|
||||
print("segments count:", len(segments))
|
||||
print("max_text_tokens_per_segment:", max_text_tokens_per_segment)
|
||||
print(*segments, sep="\n")
|
||||
do_sample = generation_kwargs.pop("do_sample", True)
|
||||
top_p = generation_kwargs.pop("top_p", 0.8)
|
||||
top_k = generation_kwargs.pop("top_k", 30)
|
||||
temperature = generation_kwargs.pop("temperature", 1.0)
|
||||
autoregressive_batch_size = 1
|
||||
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
|
||||
num_beams = generation_kwargs.pop("num_beams", 3)
|
||||
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
|
||||
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 600)
|
||||
sampling_rate = 24000
|
||||
# lang = "EN"
|
||||
# lang = "ZH"
|
||||
wavs = []
|
||||
gpt_gen_time = 0
|
||||
gpt_forward_time = 0
|
||||
bigvgan_time = 0
|
||||
progress = 0
|
||||
has_warned = False
|
||||
for sent in segments:
|
||||
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
|
||||
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
|
||||
# text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.
|
||||
# text_tokens = F.pad(text_tokens, (1, 0), value=0)
|
||||
# text_tokens = F.pad(text_tokens, (0, 1), value=1)
|
||||
if verbose:
|
||||
print(text_tokens)
|
||||
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
|
||||
# debug tokenizer
|
||||
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
|
||||
print("text_token_syms is same as segment tokens", text_token_syms == sent)
|
||||
|
||||
# text_len = torch.IntTensor([text_tokens.size(1)], device=text_tokens.device)
|
||||
# print(text_len)
|
||||
progress += 1
|
||||
self._set_gr_progress(0.2 + 0.4 * (progress - 1) / len(segments),
|
||||
f"gpt latents inference {progress}/{len(segments)}...")
|
||||
m_start_time = time.perf_counter()
|
||||
with torch.no_grad():
|
||||
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
|
||||
codes = self.gpt.inference_speech(auto_conditioning, text_tokens,
|
||||
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
|
||||
device=text_tokens.device),
|
||||
# text_lengths=text_len,
|
||||
do_sample=do_sample,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
temperature=temperature,
|
||||
num_return_sequences=autoregressive_batch_size,
|
||||
length_penalty=length_penalty,
|
||||
num_beams=num_beams,
|
||||
repetition_penalty=repetition_penalty,
|
||||
max_generate_length=max_mel_tokens,
|
||||
**generation_kwargs)
|
||||
gpt_gen_time += time.perf_counter() - m_start_time
|
||||
if not has_warned and (codes[:, -1] != self.stop_mel_token).any():
|
||||
warnings.warn(
|
||||
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
|
||||
f"Input text tokens: {text_tokens.shape[1]}. "
|
||||
f"Consider reducing `max_text_tokens_per_segment`({max_text_tokens_per_segment}) or increasing `max_mel_tokens`.",
|
||||
category=RuntimeWarning
|
||||
)
|
||||
has_warned = True
|
||||
|
||||
code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
|
||||
if verbose:
|
||||
print(codes, type(codes))
|
||||
print(f"codes shape: {codes.shape}, codes type: {codes.dtype}")
|
||||
print(f"code len: {code_lens}")
|
||||
|
||||
# remove ultra-long silence if exits
|
||||
# temporarily fix the long silence bug.
|
||||
codes, code_lens = self.remove_long_silence(codes, silent_token=52, max_consecutive=30)
|
||||
if verbose:
|
||||
print(codes, type(codes))
|
||||
print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}")
|
||||
print(f"code len: {code_lens}")
|
||||
self._set_gr_progress(0.2 + 0.4 * progress / len(segments),
|
||||
f"gpt speech inference {progress}/{len(segments)}...")
|
||||
m_start_time = time.perf_counter()
|
||||
# latent, text_lens_out, code_lens_out = \
|
||||
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
|
||||
latent = \
|
||||
self.gpt(auto_conditioning, text_tokens,
|
||||
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
|
||||
code_lens * self.gpt.mel_length_compression,
|
||||
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
|
||||
device=text_tokens.device),
|
||||
return_latent=True, clip_inputs=False)
|
||||
gpt_forward_time += time.perf_counter() - m_start_time
|
||||
|
||||
m_start_time = time.perf_counter()
|
||||
wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2))
|
||||
bigvgan_time += time.perf_counter() - m_start_time
|
||||
wav = wav.squeeze(1)
|
||||
|
||||
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
|
||||
if verbose:
|
||||
print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
|
||||
# wavs.append(wav[:, :-512])
|
||||
wavs.append(wav.cpu()) # to cpu before saving
|
||||
end_time = time.perf_counter()
|
||||
self._set_gr_progress(0.9, "saving audio...")
|
||||
wav = torch.cat(wavs, dim=1)
|
||||
wav_length = wav.shape[-1] / sampling_rate
|
||||
print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds")
|
||||
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
|
||||
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
|
||||
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
|
||||
print(f">> Total inference time: {end_time - start_time:.2f} seconds")
|
||||
print(f">> Generated audio length: {wav_length:.2f} seconds")
|
||||
print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")
|
||||
|
||||
# save audio
|
||||
wav = wav.cpu() # to cpu
|
||||
if output_path:
|
||||
# 直接保存音频到指定路径中
|
||||
if os.path.isfile(output_path):
|
||||
os.remove(output_path)
|
||||
print(">> remove old wav file:", output_path)
|
||||
if os.path.dirname(output_path) != "":
|
||||
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
|
||||
print(">> wav file saved to:", output_path)
|
||||
return output_path
|
||||
else:
|
||||
# 返回以符合Gradio的格式要求
|
||||
wav_data = wav.type(torch.int16)
|
||||
wav_data = wav_data.numpy().T
|
||||
return (sampling_rate, wav_data)
|
||||
|
||||
if __name__ == "__main__":
|
||||
prompt_wav = "examples/voice_01.wav"
|
||||
text = '欢迎大家来体验indextts2,并给予我们意见与反馈,谢谢大家。'
|
||||
|
||||
tts = IndexTTS(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_cuda_kernel=False)
|
||||
tts.infer(audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)
|
||||
737
indextts/infer_v2.py
Normal file
737
indextts/infer_v2.py
Normal file
@@ -0,0 +1,737 @@
|
||||
import os
|
||||
from subprocess import CalledProcessError
|
||||
|
||||
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
|
||||
import json
|
||||
import re
|
||||
import time
|
||||
import librosa
|
||||
import torch
|
||||
import torchaudio
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from indextts.gpt.model_v2 import UnifiedVoice
|
||||
from indextts.utils.maskgct_utils import build_semantic_model, build_semantic_codec
|
||||
from indextts.utils.checkpoint import load_checkpoint
|
||||
from indextts.utils.front import TextNormalizer, TextTokenizer
|
||||
|
||||
from indextts.s2mel.modules.commons import load_checkpoint2, MyModel
|
||||
from indextts.s2mel.modules.bigvgan import bigvgan
|
||||
from indextts.s2mel.modules.campplus.DTDNN import CAMPPlus
|
||||
from indextts.s2mel.modules.audio import mel_spectrogram
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
try:
|
||||
from modelscope import AutoModelForCausalLM
|
||||
except Exception:
|
||||
AutoModelForCausalLM = None
|
||||
from huggingface_hub import hf_hub_download
|
||||
import safetensors
|
||||
from transformers import SeamlessM4TFeatureExtractor
|
||||
import random
|
||||
import torch.nn.functional as F
|
||||
|
||||
class IndexTTS2:
|
||||
def __init__(
|
||||
self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_fp16=False, device=None,
|
||||
use_cuda_kernel=None,use_deepspeed=False
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
cfg_path (str): path to the config file.
|
||||
model_dir (str): path to the model directory.
|
||||
use_fp16 (bool): whether to use fp16.
|
||||
device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
|
||||
use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
|
||||
use_deepspeed (bool): whether to use DeepSpeed or not.
|
||||
"""
|
||||
if device is not None:
|
||||
self.device = device
|
||||
self.use_fp16 = False if device == "cpu" else use_fp16
|
||||
self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
|
||||
elif torch.cuda.is_available():
|
||||
self.device = "cuda:0"
|
||||
self.use_fp16 = use_fp16
|
||||
self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
self.device = "xpu"
|
||||
self.use_fp16 = use_fp16
|
||||
self.use_cuda_kernel = False
|
||||
elif hasattr(torch, "mps") and torch.backends.mps.is_available():
|
||||
self.device = "mps"
|
||||
self.use_fp16 = False # Use float16 on MPS is overhead than float32
|
||||
self.use_cuda_kernel = False
|
||||
else:
|
||||
self.device = "cpu"
|
||||
self.use_fp16 = False
|
||||
self.use_cuda_kernel = False
|
||||
print(">> Be patient, it may take a while to run in CPU mode.")
|
||||
|
||||
self.cfg = OmegaConf.load(cfg_path)
|
||||
self.model_dir = model_dir
|
||||
self.dtype = torch.float16 if self.use_fp16 else None
|
||||
self.stop_mel_token = self.cfg.gpt.stop_mel_token
|
||||
|
||||
# Lazy init for QwenEmotion to avoid requiring `modelscope` when not using emo_text
|
||||
self.qwen_emo = None
|
||||
self.qwen_emo_path = os.path.join(self.model_dir, self.cfg.qwen_emo_path)
|
||||
|
||||
self.gpt = UnifiedVoice(**self.cfg.gpt)
|
||||
self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
|
||||
load_checkpoint(self.gpt, self.gpt_path)
|
||||
self.gpt = self.gpt.to(self.device)
|
||||
if self.use_fp16:
|
||||
self.gpt.eval().half()
|
||||
else:
|
||||
self.gpt.eval()
|
||||
print(">> GPT weights restored from:", self.gpt_path)
|
||||
|
||||
if use_deepspeed:
|
||||
try:
|
||||
import deepspeed
|
||||
except (ImportError, OSError, CalledProcessError) as e:
|
||||
use_deepspeed = False
|
||||
print(f">> Failed to load DeepSpeed. Falling back to normal inference. Error: {e}")
|
||||
|
||||
self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=self.use_fp16)
|
||||
|
||||
if self.use_cuda_kernel:
|
||||
# preload the CUDA kernel for BigVGAN
|
||||
try:
|
||||
from indextts.BigVGAN.alias_free_activation.cuda import load
|
||||
|
||||
anti_alias_activation_cuda = load.load()
|
||||
print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
|
||||
except:
|
||||
print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
|
||||
self.use_cuda_kernel = False
|
||||
|
||||
self.extract_features = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
|
||||
self.semantic_model, self.semantic_mean, self.semantic_std = build_semantic_model(
|
||||
os.path.join(self.model_dir, self.cfg.w2v_stat))
|
||||
self.semantic_model = self.semantic_model.to(self.device)
|
||||
self.semantic_model.eval()
|
||||
self.semantic_mean = self.semantic_mean.to(self.device)
|
||||
self.semantic_std = self.semantic_std.to(self.device)
|
||||
|
||||
semantic_codec = build_semantic_codec(self.cfg.semantic_codec)
|
||||
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT", filename="semantic_codec/model.safetensors")
|
||||
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
|
||||
self.semantic_codec = semantic_codec.to(self.device)
|
||||
self.semantic_codec.eval()
|
||||
print('>> semantic_codec weights restored from: {}'.format(semantic_code_ckpt))
|
||||
|
||||
s2mel_path = os.path.join(self.model_dir, self.cfg.s2mel_checkpoint)
|
||||
s2mel = MyModel(self.cfg.s2mel, use_gpt_latent=True)
|
||||
s2mel, _, _, _ = load_checkpoint2(
|
||||
s2mel,
|
||||
None,
|
||||
s2mel_path,
|
||||
load_only_params=True,
|
||||
ignore_modules=[],
|
||||
is_distributed=False,
|
||||
)
|
||||
self.s2mel = s2mel.to(self.device)
|
||||
self.s2mel.models['cfm'].estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
||||
self.s2mel.eval()
|
||||
print(">> s2mel weights restored from:", s2mel_path)
|
||||
|
||||
# load campplus_model
|
||||
campplus_ckpt_path = hf_hub_download(
|
||||
"funasr/campplus", filename="campplus_cn_common.bin"
|
||||
)
|
||||
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
||||
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
|
||||
self.campplus_model = campplus_model.to(self.device)
|
||||
self.campplus_model.eval()
|
||||
print(">> campplus_model weights restored from:", campplus_ckpt_path)
|
||||
|
||||
bigvgan_name = self.cfg.vocoder.name
|
||||
self.bigvgan = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=self.use_cuda_kernel)
|
||||
self.bigvgan = self.bigvgan.to(self.device)
|
||||
self.bigvgan.remove_weight_norm()
|
||||
self.bigvgan.eval()
|
||||
print(">> bigvgan weights restored from:", bigvgan_name)
|
||||
|
||||
self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"])
|
||||
self.normalizer = TextNormalizer()
|
||||
self.normalizer.load()
|
||||
print(">> TextNormalizer loaded")
|
||||
self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
|
||||
print(">> bpe model loaded from:", self.bpe_path)
|
||||
|
||||
emo_matrix = torch.load(os.path.join(self.model_dir, self.cfg.emo_matrix))
|
||||
self.emo_matrix = emo_matrix.to(self.device)
|
||||
self.emo_num = list(self.cfg.emo_num)
|
||||
|
||||
spk_matrix = torch.load(os.path.join(self.model_dir, self.cfg.spk_matrix))
|
||||
self.spk_matrix = spk_matrix.to(self.device)
|
||||
|
||||
self.emo_matrix = torch.split(self.emo_matrix, self.emo_num)
|
||||
self.spk_matrix = torch.split(self.spk_matrix, self.emo_num)
|
||||
|
||||
mel_fn_args = {
|
||||
"n_fft": self.cfg.s2mel['preprocess_params']['spect_params']['n_fft'],
|
||||
"win_size": self.cfg.s2mel['preprocess_params']['spect_params']['win_length'],
|
||||
"hop_size": self.cfg.s2mel['preprocess_params']['spect_params']['hop_length'],
|
||||
"num_mels": self.cfg.s2mel['preprocess_params']['spect_params']['n_mels'],
|
||||
"sampling_rate": self.cfg.s2mel["preprocess_params"]["sr"],
|
||||
"fmin": self.cfg.s2mel['preprocess_params']['spect_params'].get('fmin', 0),
|
||||
"fmax": None if self.cfg.s2mel['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000,
|
||||
"center": False
|
||||
}
|
||||
self.mel_fn = lambda x: mel_spectrogram(x, **mel_fn_args)
|
||||
|
||||
# 缓存参考音频:
|
||||
self.cache_spk_cond = None
|
||||
self.cache_s2mel_style = None
|
||||
self.cache_s2mel_prompt = None
|
||||
self.cache_spk_audio_prompt = None
|
||||
self.cache_emo_cond = None
|
||||
self.cache_emo_audio_prompt = None
|
||||
self.cache_mel = None
|
||||
|
||||
# 进度引用显示(可选)
|
||||
self.gr_progress = None
|
||||
self.model_version = self.cfg.version if hasattr(self.cfg, "version") else None
|
||||
|
||||
@torch.no_grad()
|
||||
def get_emb(self, input_features, attention_mask):
|
||||
vq_emb = self.semantic_model(
|
||||
input_features=input_features,
|
||||
attention_mask=attention_mask,
|
||||
output_hidden_states=True,
|
||||
)
|
||||
feat = vq_emb.hidden_states[17] # (B, T, C)
|
||||
feat = (feat - self.semantic_mean) / self.semantic_std
|
||||
return feat
|
||||
|
||||
def remove_long_silence(self, codes: torch.Tensor, silent_token=52, max_consecutive=30):
|
||||
"""
|
||||
Shrink special tokens (silent_token and stop_mel_token) in codes
|
||||
codes: [B, T]
|
||||
"""
|
||||
code_lens = []
|
||||
codes_list = []
|
||||
device = codes.device
|
||||
dtype = codes.dtype
|
||||
isfix = False
|
||||
for i in range(0, codes.shape[0]):
|
||||
code = codes[i]
|
||||
if not torch.any(code == self.stop_mel_token).item():
|
||||
len_ = code.size(0)
|
||||
else:
|
||||
stop_mel_idx = (code == self.stop_mel_token).nonzero(as_tuple=False)
|
||||
len_ = stop_mel_idx[0].item() if len(stop_mel_idx) > 0 else code.size(0)
|
||||
|
||||
count = torch.sum(code == silent_token).item()
|
||||
if count > max_consecutive:
|
||||
# code = code.cpu().tolist()
|
||||
ncode_idx = []
|
||||
n = 0
|
||||
for k in range(len_):
|
||||
assert code[
|
||||
k] != self.stop_mel_token, f"stop_mel_token {self.stop_mel_token} should be shrinked here"
|
||||
if code[k] != silent_token:
|
||||
ncode_idx.append(k)
|
||||
n = 0
|
||||
elif code[k] == silent_token and n < 10:
|
||||
ncode_idx.append(k)
|
||||
n += 1
|
||||
# if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52):
|
||||
# n += 1
|
||||
# new code
|
||||
len_ = len(ncode_idx)
|
||||
codes_list.append(code[ncode_idx])
|
||||
isfix = True
|
||||
else:
|
||||
# shrink to len_
|
||||
codes_list.append(code[:len_])
|
||||
code_lens.append(len_)
|
||||
if isfix:
|
||||
if len(codes_list) > 1:
|
||||
codes = pad_sequence(codes_list, batch_first=True, padding_value=self.stop_mel_token)
|
||||
else:
|
||||
codes = codes_list[0].unsqueeze(0)
|
||||
else:
|
||||
# unchanged
|
||||
pass
|
||||
# clip codes to max length
|
||||
max_len = max(code_lens)
|
||||
if max_len < codes.shape[1]:
|
||||
codes = codes[:, :max_len]
|
||||
code_lens = torch.tensor(code_lens, dtype=torch.long, device=device)
|
||||
return codes, code_lens
|
||||
|
||||
def insert_interval_silence(self, wavs, sampling_rate=22050, interval_silence=200):
|
||||
"""
|
||||
Insert silences between generated segments.
|
||||
wavs: List[torch.tensor]
|
||||
"""
|
||||
|
||||
if not wavs or interval_silence <= 0:
|
||||
return wavs
|
||||
|
||||
# get channel_size
|
||||
channel_size = wavs[0].size(0)
|
||||
# get silence tensor
|
||||
sil_dur = int(sampling_rate * interval_silence / 1000.0)
|
||||
sil_tensor = torch.zeros(channel_size, sil_dur)
|
||||
|
||||
wavs_list = []
|
||||
for i, wav in enumerate(wavs):
|
||||
wavs_list.append(wav)
|
||||
if i < len(wavs) - 1:
|
||||
wavs_list.append(sil_tensor)
|
||||
|
||||
return wavs_list
|
||||
|
||||
def _set_gr_progress(self, value, desc):
|
||||
if self.gr_progress is not None:
|
||||
self.gr_progress(value, desc=desc)
|
||||
|
||||
# 原始推理模式
|
||||
def infer(self, spk_audio_prompt, text, output_path,
|
||||
emo_audio_prompt=None, emo_alpha=1.0,
|
||||
emo_vector=None,
|
||||
use_emo_text=False, emo_text=None, use_random=False, interval_silence=200,
|
||||
verbose=False, max_text_tokens_per_segment=120, **generation_kwargs):
|
||||
print(">> starting inference...")
|
||||
self._set_gr_progress(0, "starting inference...")
|
||||
if verbose:
|
||||
print(f"origin text:{text}, spk_audio_prompt:{spk_audio_prompt}, "
|
||||
f"emo_audio_prompt:{emo_audio_prompt}, emo_alpha:{emo_alpha}, "
|
||||
f"emo_vector:{emo_vector}, use_emo_text:{use_emo_text}, "
|
||||
f"emo_text:{emo_text}")
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if use_emo_text or emo_vector is not None:
|
||||
# we're using a text or emotion vector guidance; so we must remove
|
||||
# "emotion reference voice", to ensure we use correct emotion mixing!
|
||||
emo_audio_prompt = None
|
||||
|
||||
if use_emo_text:
|
||||
# automatically generate emotion vectors from text prompt
|
||||
if emo_text is None:
|
||||
emo_text = text # use main text prompt
|
||||
if self.qwen_emo is None:
|
||||
if AutoModelForCausalLM is None:
|
||||
raise ImportError(
|
||||
"`modelscope` is required to use emo_text. Install `modelscope` or disable 'use_emo_text'."
|
||||
)
|
||||
self.qwen_emo = QwenEmotion(self.qwen_emo_path)
|
||||
emo_dict = self.qwen_emo.inference(emo_text)
|
||||
print(f"detected emotion vectors from text: {emo_dict}")
|
||||
# convert ordered dict to list of vectors; the order is VERY important!
|
||||
emo_vector = list(emo_dict.values())
|
||||
|
||||
if emo_vector is not None:
|
||||
# we have emotion vectors; they can't be blended via alpha mixing
|
||||
# in the main inference process later, so we must pre-calculate
|
||||
# their new strengths here based on the alpha instead!
|
||||
emo_vector_scale = max(0.0, min(1.0, emo_alpha))
|
||||
if emo_vector_scale != 1.0:
|
||||
# scale each vector and truncate to 4 decimals (for nicer printing)
|
||||
emo_vector = [int(x * emo_vector_scale * 10000) / 10000 for x in emo_vector]
|
||||
print(f"scaled emotion vectors to {emo_vector_scale}x: {emo_vector}")
|
||||
|
||||
if emo_audio_prompt is None:
|
||||
# we are not using any external "emotion reference voice"; use
|
||||
# speaker's voice as the main emotion reference audio.
|
||||
emo_audio_prompt = spk_audio_prompt
|
||||
# must always use alpha=1.0 when we don't have an external reference voice
|
||||
emo_alpha = 1.0
|
||||
|
||||
# 如果参考音频改变了,才需要重新生成, 提升速度
|
||||
if self.cache_spk_cond is None or self.cache_spk_audio_prompt != spk_audio_prompt:
|
||||
audio, sr = librosa.load(spk_audio_prompt)
|
||||
audio = torch.tensor(audio).unsqueeze(0)
|
||||
audio_22k = torchaudio.transforms.Resample(sr, 22050)(audio)
|
||||
audio_16k = torchaudio.transforms.Resample(sr, 16000)(audio)
|
||||
|
||||
inputs = self.extract_features(audio_16k, sampling_rate=16000, return_tensors="pt")
|
||||
input_features = inputs["input_features"]
|
||||
attention_mask = inputs["attention_mask"]
|
||||
input_features = input_features.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
spk_cond_emb = self.get_emb(input_features, attention_mask)
|
||||
|
||||
_, S_ref = self.semantic_codec.quantize(spk_cond_emb)
|
||||
ref_mel = self.mel_fn(audio_22k.to(spk_cond_emb.device).float())
|
||||
ref_target_lengths = torch.LongTensor([ref_mel.size(2)]).to(ref_mel.device)
|
||||
feat = torchaudio.compliance.kaldi.fbank(audio_16k.to(ref_mel.device),
|
||||
num_mel_bins=80,
|
||||
dither=0,
|
||||
sample_frequency=16000)
|
||||
feat = feat - feat.mean(dim=0, keepdim=True) # feat2另外一个滤波器能量组特征[922, 80]
|
||||
style = self.campplus_model(feat.unsqueeze(0)) # 参考音频的全局style2[1,192]
|
||||
|
||||
prompt_condition = self.s2mel.models['length_regulator'](S_ref,
|
||||
ylens=ref_target_lengths,
|
||||
n_quantizers=3,
|
||||
f0=None)[0]
|
||||
|
||||
self.cache_spk_cond = spk_cond_emb
|
||||
self.cache_s2mel_style = style
|
||||
self.cache_s2mel_prompt = prompt_condition
|
||||
self.cache_spk_audio_prompt = spk_audio_prompt
|
||||
self.cache_mel = ref_mel
|
||||
else:
|
||||
style = self.cache_s2mel_style
|
||||
prompt_condition = self.cache_s2mel_prompt
|
||||
spk_cond_emb = self.cache_spk_cond
|
||||
ref_mel = self.cache_mel
|
||||
|
||||
if emo_vector is not None:
|
||||
weight_vector = torch.tensor(emo_vector).to(self.device)
|
||||
if use_random:
|
||||
random_index = [random.randint(0, x - 1) for x in self.emo_num]
|
||||
else:
|
||||
random_index = [find_most_similar_cosine(style, tmp) for tmp in self.spk_matrix]
|
||||
|
||||
emo_matrix = [tmp[index].unsqueeze(0) for index, tmp in zip(random_index, self.emo_matrix)]
|
||||
emo_matrix = torch.cat(emo_matrix, 0)
|
||||
emovec_mat = weight_vector.unsqueeze(1) * emo_matrix
|
||||
emovec_mat = torch.sum(emovec_mat, 0)
|
||||
emovec_mat = emovec_mat.unsqueeze(0)
|
||||
|
||||
if self.cache_emo_cond is None or self.cache_emo_audio_prompt != emo_audio_prompt:
|
||||
emo_audio, _ = librosa.load(emo_audio_prompt, sr=16000)
|
||||
emo_inputs = self.extract_features(emo_audio, sampling_rate=16000, return_tensors="pt")
|
||||
emo_input_features = emo_inputs["input_features"]
|
||||
emo_attention_mask = emo_inputs["attention_mask"]
|
||||
emo_input_features = emo_input_features.to(self.device)
|
||||
emo_attention_mask = emo_attention_mask.to(self.device)
|
||||
emo_cond_emb = self.get_emb(emo_input_features, emo_attention_mask)
|
||||
|
||||
self.cache_emo_cond = emo_cond_emb
|
||||
self.cache_emo_audio_prompt = emo_audio_prompt
|
||||
else:
|
||||
emo_cond_emb = self.cache_emo_cond
|
||||
|
||||
self._set_gr_progress(0.1, "text processing...")
|
||||
text_tokens_list = self.tokenizer.tokenize(text)
|
||||
segments = self.tokenizer.split_segments(text_tokens_list, max_text_tokens_per_segment)
|
||||
segments_count = len(segments)
|
||||
if verbose:
|
||||
print("text_tokens_list:", text_tokens_list)
|
||||
print("segments count:", segments_count)
|
||||
print("max_text_tokens_per_segment:", max_text_tokens_per_segment)
|
||||
print(*segments, sep="\n")
|
||||
do_sample = generation_kwargs.pop("do_sample", True)
|
||||
top_p = generation_kwargs.pop("top_p", 0.8)
|
||||
top_k = generation_kwargs.pop("top_k", 30)
|
||||
temperature = generation_kwargs.pop("temperature", 0.8)
|
||||
autoregressive_batch_size = 1
|
||||
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
|
||||
num_beams = generation_kwargs.pop("num_beams", 3)
|
||||
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
|
||||
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 1500)
|
||||
sampling_rate = 22050
|
||||
|
||||
wavs = []
|
||||
gpt_gen_time = 0
|
||||
gpt_forward_time = 0
|
||||
s2mel_time = 0
|
||||
bigvgan_time = 0
|
||||
has_warned = False
|
||||
for seg_idx, sent in enumerate(segments):
|
||||
self._set_gr_progress(0.2 + 0.7 * seg_idx / segments_count,
|
||||
f"speech synthesis {seg_idx + 1}/{segments_count}...")
|
||||
|
||||
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
|
||||
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
|
||||
if verbose:
|
||||
print(text_tokens)
|
||||
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
|
||||
# debug tokenizer
|
||||
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
|
||||
print("text_token_syms is same as segment tokens", text_token_syms == sent)
|
||||
|
||||
m_start_time = time.perf_counter()
|
||||
with torch.no_grad():
|
||||
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
|
||||
emovec = self.gpt.merge_emovec(
|
||||
spk_cond_emb,
|
||||
emo_cond_emb,
|
||||
torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
|
||||
torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
|
||||
alpha=emo_alpha
|
||||
)
|
||||
|
||||
if emo_vector is not None:
|
||||
emovec = emovec_mat + (1 - torch.sum(weight_vector)) * emovec
|
||||
# emovec = emovec_mat
|
||||
|
||||
codes, speech_conditioning_latent = self.gpt.inference_speech(
|
||||
spk_cond_emb,
|
||||
text_tokens,
|
||||
emo_cond_emb,
|
||||
cond_lengths=torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
|
||||
emo_cond_lengths=torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
|
||||
emo_vec=emovec,
|
||||
do_sample=True,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
temperature=temperature,
|
||||
num_return_sequences=autoregressive_batch_size,
|
||||
length_penalty=length_penalty,
|
||||
num_beams=num_beams,
|
||||
repetition_penalty=repetition_penalty,
|
||||
max_generate_length=max_mel_tokens,
|
||||
**generation_kwargs
|
||||
)
|
||||
|
||||
gpt_gen_time += time.perf_counter() - m_start_time
|
||||
if not has_warned and (codes[:, -1] != self.stop_mel_token).any():
|
||||
warnings.warn(
|
||||
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
|
||||
f"Input text tokens: {text_tokens.shape[1]}. "
|
||||
f"Consider reducing `max_text_tokens_per_segment`({max_text_tokens_per_segment}) or increasing `max_mel_tokens`.",
|
||||
category=RuntimeWarning
|
||||
)
|
||||
has_warned = True
|
||||
|
||||
code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
|
||||
# if verbose:
|
||||
# print(codes, type(codes))
|
||||
# print(f"codes shape: {codes.shape}, codes type: {codes.dtype}")
|
||||
# print(f"code len: {code_lens}")
|
||||
|
||||
code_lens = []
|
||||
for code in codes:
|
||||
if self.stop_mel_token not in code:
|
||||
code_lens.append(len(code))
|
||||
code_len = len(code)
|
||||
else:
|
||||
len_ = (code == self.stop_mel_token).nonzero(as_tuple=False)[0] + 1
|
||||
code_len = len_ - 1
|
||||
code_lens.append(code_len)
|
||||
codes = codes[:, :code_len]
|
||||
code_lens = torch.LongTensor(code_lens)
|
||||
code_lens = code_lens.to(self.device)
|
||||
if verbose:
|
||||
print(codes, type(codes))
|
||||
print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}")
|
||||
print(f"code len: {code_lens}")
|
||||
|
||||
m_start_time = time.perf_counter()
|
||||
use_speed = torch.zeros(spk_cond_emb.size(0)).to(spk_cond_emb.device).long()
|
||||
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
|
||||
latent = self.gpt(
|
||||
speech_conditioning_latent,
|
||||
text_tokens,
|
||||
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device),
|
||||
codes,
|
||||
torch.tensor([codes.shape[-1]], device=text_tokens.device),
|
||||
emo_cond_emb,
|
||||
cond_mel_lengths=torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
|
||||
emo_cond_mel_lengths=torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
|
||||
emo_vec=emovec,
|
||||
use_speed=use_speed,
|
||||
)
|
||||
gpt_forward_time += time.perf_counter() - m_start_time
|
||||
|
||||
dtype = None
|
||||
with torch.amp.autocast(text_tokens.device.type, enabled=dtype is not None, dtype=dtype):
|
||||
m_start_time = time.perf_counter()
|
||||
diffusion_steps = 25
|
||||
inference_cfg_rate = 0.7
|
||||
latent = self.s2mel.models['gpt_layer'](latent)
|
||||
S_infer = self.semantic_codec.quantizer.vq2emb(codes.unsqueeze(1))
|
||||
S_infer = S_infer.transpose(1, 2)
|
||||
S_infer = S_infer + latent
|
||||
target_lengths = (code_lens * 1.72).long()
|
||||
|
||||
cond = self.s2mel.models['length_regulator'](S_infer,
|
||||
ylens=target_lengths,
|
||||
n_quantizers=3,
|
||||
f0=None)[0]
|
||||
cat_condition = torch.cat([prompt_condition, cond], dim=1)
|
||||
vc_target = self.s2mel.models['cfm'].inference(cat_condition,
|
||||
torch.LongTensor([cat_condition.size(1)]).to(
|
||||
cond.device),
|
||||
ref_mel, style, None, diffusion_steps,
|
||||
inference_cfg_rate=inference_cfg_rate)
|
||||
vc_target = vc_target[:, :, ref_mel.size(-1):]
|
||||
s2mel_time += time.perf_counter() - m_start_time
|
||||
|
||||
m_start_time = time.perf_counter()
|
||||
wav = self.bigvgan(vc_target.float()).squeeze().unsqueeze(0)
|
||||
print(wav.shape)
|
||||
bigvgan_time += time.perf_counter() - m_start_time
|
||||
wav = wav.squeeze(1)
|
||||
|
||||
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
|
||||
if verbose:
|
||||
print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
|
||||
# wavs.append(wav[:, :-512])
|
||||
wavs.append(wav.cpu()) # to cpu before saving
|
||||
end_time = time.perf_counter()
|
||||
|
||||
self._set_gr_progress(0.9, "saving audio...")
|
||||
wavs = self.insert_interval_silence(wavs, sampling_rate=sampling_rate, interval_silence=interval_silence)
|
||||
wav = torch.cat(wavs, dim=1)
|
||||
wav_length = wav.shape[-1] / sampling_rate
|
||||
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
|
||||
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
|
||||
print(f">> s2mel_time: {s2mel_time:.2f} seconds")
|
||||
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
|
||||
print(f">> Total inference time: {end_time - start_time:.2f} seconds")
|
||||
print(f">> Generated audio length: {wav_length:.2f} seconds")
|
||||
print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")
|
||||
|
||||
# save audio
|
||||
wav = wav.cpu() # to cpu
|
||||
if output_path:
|
||||
# 直接保存音频到指定路径中
|
||||
if os.path.isfile(output_path):
|
||||
os.remove(output_path)
|
||||
print(">> remove old wav file:", output_path)
|
||||
if os.path.dirname(output_path) != "":
|
||||
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
|
||||
print(">> wav file saved to:", output_path)
|
||||
return output_path
|
||||
else:
|
||||
# 返回以符合Gradio的格式要求
|
||||
wav_data = wav.type(torch.int16)
|
||||
wav_data = wav_data.numpy().T
|
||||
return (sampling_rate, wav_data)
|
||||
|
||||
|
||||
def find_most_similar_cosine(query_vector, matrix):
|
||||
query_vector = query_vector.float()
|
||||
matrix = matrix.float()
|
||||
|
||||
similarities = F.cosine_similarity(query_vector, matrix, dim=1)
|
||||
most_similar_index = torch.argmax(similarities)
|
||||
return most_similar_index
|
||||
|
||||
class QwenEmotion:
|
||||
def __init__(self, model_dir):
|
||||
self.model_dir = model_dir
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
self.model_dir,
|
||||
torch_dtype="float16", # "auto"
|
||||
device_map="auto"
|
||||
)
|
||||
self.prompt = "文本情感分类"
|
||||
self.cn_key_to_en = {
|
||||
"高兴": "happy",
|
||||
"愤怒": "angry",
|
||||
"悲伤": "sad",
|
||||
"恐惧": "afraid",
|
||||
"反感": "disgusted",
|
||||
# TODO: the "低落" (melancholic) emotion will always be mapped to
|
||||
# "悲伤" (sad) by QwenEmotion's text analysis. it doesn't know the
|
||||
# difference between those emotions even if user writes exact words.
|
||||
# SEE: `self.melancholic_words` for current workaround.
|
||||
"低落": "melancholic",
|
||||
"惊讶": "surprised",
|
||||
"自然": "calm",
|
||||
}
|
||||
self.desired_vector_order = ["高兴", "愤怒", "悲伤", "恐惧", "反感", "低落", "惊讶", "自然"]
|
||||
self.melancholic_words = {
|
||||
# emotion text phrases that will force QwenEmotion's "悲伤" (sad) detection
|
||||
# to become "低落" (melancholic) instead, to fix limitations mentioned above.
|
||||
"低落",
|
||||
"melancholy",
|
||||
"melancholic",
|
||||
"depression",
|
||||
"depressed",
|
||||
"gloomy",
|
||||
}
|
||||
self.max_score = 1.2
|
||||
self.min_score = 0.0
|
||||
|
||||
def clamp_score(self, value):
|
||||
return max(self.min_score, min(self.max_score, value))
|
||||
|
||||
def convert(self, content):
|
||||
# generate emotion vector dictionary:
|
||||
# - insert values in desired order (Python 3.7+ `dict` remembers insertion order)
|
||||
# - convert Chinese keys to English
|
||||
# - clamp all values to the allowed min/max range
|
||||
# - use 0.0 for any values that were missing in `content`
|
||||
emotion_dict = {
|
||||
self.cn_key_to_en[cn_key]: self.clamp_score(content.get(cn_key, 0.0))
|
||||
for cn_key in self.desired_vector_order
|
||||
}
|
||||
|
||||
# default to a calm/neutral voice if all emotion vectors were empty
|
||||
if all(val <= 0.0 for val in emotion_dict.values()):
|
||||
print(">> no emotions detected; using default calm/neutral voice")
|
||||
emotion_dict["calm"] = 1.0
|
||||
|
||||
return emotion_dict
|
||||
|
||||
def inference(self, text_input):
|
||||
start = time.time()
|
||||
messages = [
|
||||
{"role": "system", "content": f"{self.prompt}"},
|
||||
{"role": "user", "content": f"{text_input}"}
|
||||
]
|
||||
text = self.tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
enable_thinking=False,
|
||||
)
|
||||
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = self.model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32768,
|
||||
pad_token_id=self.tokenizer.eos_token_id
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# parsing thinking content
|
||||
try:
|
||||
# rindex finding 151668 (</think>)
|
||||
index = len(output_ids) - output_ids[::-1].index(151668)
|
||||
except ValueError:
|
||||
index = 0
|
||||
|
||||
content = self.tokenizer.decode(output_ids[index:], skip_special_tokens=True)
|
||||
|
||||
# decode the JSON emotion detections as a dictionary
|
||||
try:
|
||||
content = json.loads(content)
|
||||
except json.decoder.JSONDecodeError:
|
||||
# invalid JSON; fallback to manual string parsing
|
||||
# print(">> parsing QwenEmotion response", content)
|
||||
content = {
|
||||
m.group(1): float(m.group(2))
|
||||
for m in re.finditer(r'([^\s":.,]+?)"?\s*:\s*([\d.]+)', content)
|
||||
}
|
||||
# print(">> dict result", content)
|
||||
|
||||
# workaround for QwenEmotion's inability to distinguish "悲伤" (sad) vs "低落" (melancholic).
|
||||
# if we detect any of the IndexTTS "melancholic" words, we swap those vectors
|
||||
# to encode the "sad" emotion as "melancholic" (instead of sadness).
|
||||
text_input_lower = text_input.lower()
|
||||
if any(word in text_input_lower for word in self.melancholic_words):
|
||||
# print(">> before vec swap", content)
|
||||
content["悲伤"], content["低落"] = content.get("低落", 0.0), content.get("悲伤", 0.0)
|
||||
# print(">> after vec swap", content)
|
||||
|
||||
return self.convert(content)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
prompt_wav = "examples/voice_01.wav"
|
||||
text = '欢迎大家来体验indextts2,并给予我们意见与反馈,谢谢大家。'
|
||||
|
||||
tts = IndexTTS2(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_cuda_kernel=False)
|
||||
tts.infer(spk_audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)
|
||||
16
indextts/s2mel/dac/__init__.py
Normal file
16
indextts/s2mel/dac/__init__.py
Normal file
@@ -0,0 +1,16 @@
|
||||
__version__ = "1.0.0"
|
||||
|
||||
# preserved here for legacy reasons
|
||||
__model_version__ = "latest"
|
||||
|
||||
import audiotools
|
||||
|
||||
audiotools.ml.BaseModel.INTERN += ["dac.**"]
|
||||
audiotools.ml.BaseModel.EXTERN += ["einops"]
|
||||
|
||||
|
||||
from . import nn
|
||||
from . import model
|
||||
from . import utils
|
||||
from .model import DAC
|
||||
from .model import DACFile
|
||||
36
indextts/s2mel/dac/__main__.py
Normal file
36
indextts/s2mel/dac/__main__.py
Normal file
@@ -0,0 +1,36 @@
|
||||
import sys
|
||||
|
||||
import argbind
|
||||
|
||||
from dac.utils import download
|
||||
from dac.utils.decode import decode
|
||||
from dac.utils.encode import encode
|
||||
|
||||
STAGES = ["encode", "decode", "download"]
|
||||
|
||||
|
||||
def run(stage: str):
|
||||
"""Run stages.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
stage : str
|
||||
Stage to run
|
||||
"""
|
||||
if stage not in STAGES:
|
||||
raise ValueError(f"Unknown command: {stage}. Allowed commands are {STAGES}")
|
||||
stage_fn = globals()[stage]
|
||||
|
||||
if stage == "download":
|
||||
stage_fn()
|
||||
return
|
||||
|
||||
stage_fn()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
group = sys.argv.pop(1)
|
||||
args = argbind.parse_args(group=group)
|
||||
|
||||
with argbind.scope(args):
|
||||
run(group)
|
||||
4
indextts/s2mel/dac/model/__init__.py
Normal file
4
indextts/s2mel/dac/model/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .base import CodecMixin
|
||||
from .base import DACFile
|
||||
from .dac import DAC
|
||||
from .discriminator import Discriminator
|
||||
294
indextts/s2mel/dac/model/base.py
Normal file
294
indextts/s2mel/dac/model/base.py
Normal file
@@ -0,0 +1,294 @@
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
from audiotools import AudioSignal
|
||||
from torch import nn
|
||||
|
||||
SUPPORTED_VERSIONS = ["1.0.0"]
|
||||
|
||||
|
||||
@dataclass
|
||||
class DACFile:
|
||||
codes: torch.Tensor
|
||||
|
||||
# Metadata
|
||||
chunk_length: int
|
||||
original_length: int
|
||||
input_db: float
|
||||
channels: int
|
||||
sample_rate: int
|
||||
padding: bool
|
||||
dac_version: str
|
||||
|
||||
def save(self, path):
|
||||
artifacts = {
|
||||
"codes": self.codes.numpy().astype(np.uint16),
|
||||
"metadata": {
|
||||
"input_db": self.input_db.numpy().astype(np.float32),
|
||||
"original_length": self.original_length,
|
||||
"sample_rate": self.sample_rate,
|
||||
"chunk_length": self.chunk_length,
|
||||
"channels": self.channels,
|
||||
"padding": self.padding,
|
||||
"dac_version": SUPPORTED_VERSIONS[-1],
|
||||
},
|
||||
}
|
||||
path = Path(path).with_suffix(".dac")
|
||||
with open(path, "wb") as f:
|
||||
np.save(f, artifacts)
|
||||
return path
|
||||
|
||||
@classmethod
|
||||
def load(cls, path):
|
||||
artifacts = np.load(path, allow_pickle=True)[()]
|
||||
codes = torch.from_numpy(artifacts["codes"].astype(int))
|
||||
if artifacts["metadata"].get("dac_version", None) not in SUPPORTED_VERSIONS:
|
||||
raise RuntimeError(
|
||||
f"Given file {path} can't be loaded with this version of descript-audio-codec."
|
||||
)
|
||||
return cls(codes=codes, **artifacts["metadata"])
|
||||
|
||||
|
||||
class CodecMixin:
|
||||
@property
|
||||
def padding(self):
|
||||
if not hasattr(self, "_padding"):
|
||||
self._padding = True
|
||||
return self._padding
|
||||
|
||||
@padding.setter
|
||||
def padding(self, value):
|
||||
assert isinstance(value, bool)
|
||||
|
||||
layers = [
|
||||
l for l in self.modules() if isinstance(l, (nn.Conv1d, nn.ConvTranspose1d))
|
||||
]
|
||||
|
||||
for layer in layers:
|
||||
if value:
|
||||
if hasattr(layer, "original_padding"):
|
||||
layer.padding = layer.original_padding
|
||||
else:
|
||||
layer.original_padding = layer.padding
|
||||
layer.padding = tuple(0 for _ in range(len(layer.padding)))
|
||||
|
||||
self._padding = value
|
||||
|
||||
def get_delay(self):
|
||||
# Any number works here, delay is invariant to input length
|
||||
l_out = self.get_output_length(0)
|
||||
L = l_out
|
||||
|
||||
layers = []
|
||||
for layer in self.modules():
|
||||
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
|
||||
layers.append(layer)
|
||||
|
||||
for layer in reversed(layers):
|
||||
d = layer.dilation[0]
|
||||
k = layer.kernel_size[0]
|
||||
s = layer.stride[0]
|
||||
|
||||
if isinstance(layer, nn.ConvTranspose1d):
|
||||
L = ((L - d * (k - 1) - 1) / s) + 1
|
||||
elif isinstance(layer, nn.Conv1d):
|
||||
L = (L - 1) * s + d * (k - 1) + 1
|
||||
|
||||
L = math.ceil(L)
|
||||
|
||||
l_in = L
|
||||
|
||||
return (l_in - l_out) // 2
|
||||
|
||||
def get_output_length(self, input_length):
|
||||
L = input_length
|
||||
# Calculate output length
|
||||
for layer in self.modules():
|
||||
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
|
||||
d = layer.dilation[0]
|
||||
k = layer.kernel_size[0]
|
||||
s = layer.stride[0]
|
||||
|
||||
if isinstance(layer, nn.Conv1d):
|
||||
L = ((L - d * (k - 1) - 1) / s) + 1
|
||||
elif isinstance(layer, nn.ConvTranspose1d):
|
||||
L = (L - 1) * s + d * (k - 1) + 1
|
||||
|
||||
L = math.floor(L)
|
||||
return L
|
||||
|
||||
@torch.no_grad()
|
||||
def compress(
|
||||
self,
|
||||
audio_path_or_signal: Union[str, Path, AudioSignal],
|
||||
win_duration: float = 1.0,
|
||||
verbose: bool = False,
|
||||
normalize_db: float = -16,
|
||||
n_quantizers: int = None,
|
||||
) -> DACFile:
|
||||
"""Processes an audio signal from a file or AudioSignal object into
|
||||
discrete codes. This function processes the signal in short windows,
|
||||
using constant GPU memory.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
audio_path_or_signal : Union[str, Path, AudioSignal]
|
||||
audio signal to reconstruct
|
||||
win_duration : float, optional
|
||||
window duration in seconds, by default 5.0
|
||||
verbose : bool, optional
|
||||
by default False
|
||||
normalize_db : float, optional
|
||||
normalize db, by default -16
|
||||
|
||||
Returns
|
||||
-------
|
||||
DACFile
|
||||
Object containing compressed codes and metadata
|
||||
required for decompression
|
||||
"""
|
||||
audio_signal = audio_path_or_signal
|
||||
if isinstance(audio_signal, (str, Path)):
|
||||
audio_signal = AudioSignal.load_from_file_with_ffmpeg(str(audio_signal))
|
||||
|
||||
self.eval()
|
||||
original_padding = self.padding
|
||||
original_device = audio_signal.device
|
||||
|
||||
audio_signal = audio_signal.clone()
|
||||
original_sr = audio_signal.sample_rate
|
||||
|
||||
resample_fn = audio_signal.resample
|
||||
loudness_fn = audio_signal.loudness
|
||||
|
||||
# If audio is > 10 minutes long, use the ffmpeg versions
|
||||
if audio_signal.signal_duration >= 10 * 60 * 60:
|
||||
resample_fn = audio_signal.ffmpeg_resample
|
||||
loudness_fn = audio_signal.ffmpeg_loudness
|
||||
|
||||
original_length = audio_signal.signal_length
|
||||
resample_fn(self.sample_rate)
|
||||
input_db = loudness_fn()
|
||||
|
||||
if normalize_db is not None:
|
||||
audio_signal.normalize(normalize_db)
|
||||
audio_signal.ensure_max_of_audio()
|
||||
|
||||
nb, nac, nt = audio_signal.audio_data.shape
|
||||
audio_signal.audio_data = audio_signal.audio_data.reshape(nb * nac, 1, nt)
|
||||
win_duration = (
|
||||
audio_signal.signal_duration if win_duration is None else win_duration
|
||||
)
|
||||
|
||||
if audio_signal.signal_duration <= win_duration:
|
||||
# Unchunked compression (used if signal length < win duration)
|
||||
self.padding = True
|
||||
n_samples = nt
|
||||
hop = nt
|
||||
else:
|
||||
# Chunked inference
|
||||
self.padding = False
|
||||
# Zero-pad signal on either side by the delay
|
||||
audio_signal.zero_pad(self.delay, self.delay)
|
||||
n_samples = int(win_duration * self.sample_rate)
|
||||
# Round n_samples to nearest hop length multiple
|
||||
n_samples = int(math.ceil(n_samples / self.hop_length) * self.hop_length)
|
||||
hop = self.get_output_length(n_samples)
|
||||
|
||||
codes = []
|
||||
range_fn = range if not verbose else tqdm.trange
|
||||
|
||||
for i in range_fn(0, nt, hop):
|
||||
x = audio_signal[..., i : i + n_samples]
|
||||
x = x.zero_pad(0, max(0, n_samples - x.shape[-1]))
|
||||
|
||||
audio_data = x.audio_data.to(self.device)
|
||||
audio_data = self.preprocess(audio_data, self.sample_rate)
|
||||
_, c, _, _, _ = self.encode(audio_data, n_quantizers)
|
||||
codes.append(c.to(original_device))
|
||||
chunk_length = c.shape[-1]
|
||||
|
||||
codes = torch.cat(codes, dim=-1)
|
||||
|
||||
dac_file = DACFile(
|
||||
codes=codes,
|
||||
chunk_length=chunk_length,
|
||||
original_length=original_length,
|
||||
input_db=input_db,
|
||||
channels=nac,
|
||||
sample_rate=original_sr,
|
||||
padding=self.padding,
|
||||
dac_version=SUPPORTED_VERSIONS[-1],
|
||||
)
|
||||
|
||||
if n_quantizers is not None:
|
||||
codes = codes[:, :n_quantizers, :]
|
||||
|
||||
self.padding = original_padding
|
||||
return dac_file
|
||||
|
||||
@torch.no_grad()
|
||||
def decompress(
|
||||
self,
|
||||
obj: Union[str, Path, DACFile],
|
||||
verbose: bool = False,
|
||||
) -> AudioSignal:
|
||||
"""Reconstruct audio from a given .dac file
|
||||
|
||||
Parameters
|
||||
----------
|
||||
obj : Union[str, Path, DACFile]
|
||||
.dac file location or corresponding DACFile object.
|
||||
verbose : bool, optional
|
||||
Prints progress if True, by default False
|
||||
|
||||
Returns
|
||||
-------
|
||||
AudioSignal
|
||||
Object with the reconstructed audio
|
||||
"""
|
||||
self.eval()
|
||||
if isinstance(obj, (str, Path)):
|
||||
obj = DACFile.load(obj)
|
||||
|
||||
original_padding = self.padding
|
||||
self.padding = obj.padding
|
||||
|
||||
range_fn = range if not verbose else tqdm.trange
|
||||
codes = obj.codes
|
||||
original_device = codes.device
|
||||
chunk_length = obj.chunk_length
|
||||
recons = []
|
||||
|
||||
for i in range_fn(0, codes.shape[-1], chunk_length):
|
||||
c = codes[..., i : i + chunk_length].to(self.device)
|
||||
z = self.quantizer.from_codes(c)[0]
|
||||
r = self.decode(z)
|
||||
recons.append(r.to(original_device))
|
||||
|
||||
recons = torch.cat(recons, dim=-1)
|
||||
recons = AudioSignal(recons, self.sample_rate)
|
||||
|
||||
resample_fn = recons.resample
|
||||
loudness_fn = recons.loudness
|
||||
|
||||
# If audio is > 10 minutes long, use the ffmpeg versions
|
||||
if recons.signal_duration >= 10 * 60 * 60:
|
||||
resample_fn = recons.ffmpeg_resample
|
||||
loudness_fn = recons.ffmpeg_loudness
|
||||
|
||||
recons.normalize(obj.input_db)
|
||||
resample_fn(obj.sample_rate)
|
||||
recons = recons[..., : obj.original_length]
|
||||
loudness_fn()
|
||||
recons.audio_data = recons.audio_data.reshape(
|
||||
-1, obj.channels, obj.original_length
|
||||
)
|
||||
|
||||
self.padding = original_padding
|
||||
return recons
|
||||
400
indextts/s2mel/dac/model/dac.py
Normal file
400
indextts/s2mel/dac/model/dac.py
Normal file
@@ -0,0 +1,400 @@
|
||||
import math
|
||||
from typing import List
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from audiotools import AudioSignal
|
||||
from audiotools.ml import BaseModel
|
||||
from torch import nn
|
||||
|
||||
from .base import CodecMixin
|
||||
from indextts.s2mel.dac.nn.layers import Snake1d
|
||||
from indextts.s2mel.dac.nn.layers import WNConv1d
|
||||
from indextts.s2mel.dac.nn.layers import WNConvTranspose1d
|
||||
from indextts.s2mel.dac.nn.quantize import ResidualVectorQuantize
|
||||
from .encodec import SConv1d, SConvTranspose1d, SLSTM
|
||||
|
||||
|
||||
def init_weights(m):
|
||||
if isinstance(m, nn.Conv1d):
|
||||
nn.init.trunc_normal_(m.weight, std=0.02)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
|
||||
class ResidualUnit(nn.Module):
|
||||
def __init__(self, dim: int = 16, dilation: int = 1, causal: bool = False):
|
||||
super().__init__()
|
||||
conv1d_type = SConv1d# if causal else WNConv1d
|
||||
pad = ((7 - 1) * dilation) // 2
|
||||
self.block = nn.Sequential(
|
||||
Snake1d(dim),
|
||||
conv1d_type(dim, dim, kernel_size=7, dilation=dilation, padding=pad, causal=causal, norm='weight_norm'),
|
||||
Snake1d(dim),
|
||||
conv1d_type(dim, dim, kernel_size=1, causal=causal, norm='weight_norm'),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
y = self.block(x)
|
||||
pad = (x.shape[-1] - y.shape[-1]) // 2
|
||||
if pad > 0:
|
||||
x = x[..., pad:-pad]
|
||||
return x + y
|
||||
|
||||
|
||||
class EncoderBlock(nn.Module):
|
||||
def __init__(self, dim: int = 16, stride: int = 1, causal: bool = False):
|
||||
super().__init__()
|
||||
conv1d_type = SConv1d# if causal else WNConv1d
|
||||
self.block = nn.Sequential(
|
||||
ResidualUnit(dim // 2, dilation=1, causal=causal),
|
||||
ResidualUnit(dim // 2, dilation=3, causal=causal),
|
||||
ResidualUnit(dim // 2, dilation=9, causal=causal),
|
||||
Snake1d(dim // 2),
|
||||
conv1d_type(
|
||||
dim // 2,
|
||||
dim,
|
||||
kernel_size=2 * stride,
|
||||
stride=stride,
|
||||
padding=math.ceil(stride / 2),
|
||||
causal=causal,
|
||||
norm='weight_norm',
|
||||
),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.block(x)
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int = 64,
|
||||
strides: list = [2, 4, 8, 8],
|
||||
d_latent: int = 64,
|
||||
causal: bool = False,
|
||||
lstm: int = 2,
|
||||
):
|
||||
super().__init__()
|
||||
conv1d_type = SConv1d# if causal else WNConv1d
|
||||
# Create first convolution
|
||||
self.block = [conv1d_type(1, d_model, kernel_size=7, padding=3, causal=causal, norm='weight_norm')]
|
||||
|
||||
# Create EncoderBlocks that double channels as they downsample by `stride`
|
||||
for stride in strides:
|
||||
d_model *= 2
|
||||
self.block += [EncoderBlock(d_model, stride=stride, causal=causal)]
|
||||
|
||||
# Add LSTM if needed
|
||||
self.use_lstm = lstm
|
||||
if lstm:
|
||||
self.block += [SLSTM(d_model, lstm)]
|
||||
|
||||
# Create last convolution
|
||||
self.block += [
|
||||
Snake1d(d_model),
|
||||
conv1d_type(d_model, d_latent, kernel_size=3, padding=1, causal=causal, norm='weight_norm'),
|
||||
]
|
||||
|
||||
# Wrap black into nn.Sequential
|
||||
self.block = nn.Sequential(*self.block)
|
||||
self.enc_dim = d_model
|
||||
|
||||
def forward(self, x):
|
||||
return self.block(x)
|
||||
|
||||
def reset_cache(self):
|
||||
# recursively find all submodules named SConv1d in self.block and use their reset_cache method
|
||||
def reset_cache(m):
|
||||
if isinstance(m, SConv1d) or isinstance(m, SLSTM):
|
||||
m.reset_cache()
|
||||
return
|
||||
for child in m.children():
|
||||
reset_cache(child)
|
||||
|
||||
reset_cache(self.block)
|
||||
|
||||
|
||||
class DecoderBlock(nn.Module):
|
||||
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1, causal: bool = False):
|
||||
super().__init__()
|
||||
conv1d_type = SConvTranspose1d #if causal else WNConvTranspose1d
|
||||
self.block = nn.Sequential(
|
||||
Snake1d(input_dim),
|
||||
conv1d_type(
|
||||
input_dim,
|
||||
output_dim,
|
||||
kernel_size=2 * stride,
|
||||
stride=stride,
|
||||
padding=math.ceil(stride / 2),
|
||||
causal=causal,
|
||||
norm='weight_norm'
|
||||
),
|
||||
ResidualUnit(output_dim, dilation=1, causal=causal),
|
||||
ResidualUnit(output_dim, dilation=3, causal=causal),
|
||||
ResidualUnit(output_dim, dilation=9, causal=causal),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.block(x)
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_channel,
|
||||
channels,
|
||||
rates,
|
||||
d_out: int = 1,
|
||||
causal: bool = False,
|
||||
lstm: int = 2,
|
||||
):
|
||||
super().__init__()
|
||||
conv1d_type = SConv1d# if causal else WNConv1d
|
||||
# Add first conv layer
|
||||
layers = [conv1d_type(input_channel, channels, kernel_size=7, padding=3, causal=causal, norm='weight_norm')]
|
||||
|
||||
if lstm:
|
||||
layers += [SLSTM(channels, num_layers=lstm)]
|
||||
|
||||
# Add upsampling + MRF blocks
|
||||
for i, stride in enumerate(rates):
|
||||
input_dim = channels // 2**i
|
||||
output_dim = channels // 2 ** (i + 1)
|
||||
layers += [DecoderBlock(input_dim, output_dim, stride, causal=causal)]
|
||||
|
||||
# Add final conv layer
|
||||
layers += [
|
||||
Snake1d(output_dim),
|
||||
conv1d_type(output_dim, d_out, kernel_size=7, padding=3, causal=causal, norm='weight_norm'),
|
||||
nn.Tanh(),
|
||||
]
|
||||
|
||||
self.model = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
|
||||
class DAC(BaseModel, CodecMixin):
|
||||
def __init__(
|
||||
self,
|
||||
encoder_dim: int = 64,
|
||||
encoder_rates: List[int] = [2, 4, 8, 8],
|
||||
latent_dim: int = None,
|
||||
decoder_dim: int = 1536,
|
||||
decoder_rates: List[int] = [8, 8, 4, 2],
|
||||
n_codebooks: int = 9,
|
||||
codebook_size: int = 1024,
|
||||
codebook_dim: Union[int, list] = 8,
|
||||
quantizer_dropout: bool = False,
|
||||
sample_rate: int = 44100,
|
||||
lstm: int = 2,
|
||||
causal: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.encoder_dim = encoder_dim
|
||||
self.encoder_rates = encoder_rates
|
||||
self.decoder_dim = decoder_dim
|
||||
self.decoder_rates = decoder_rates
|
||||
self.sample_rate = sample_rate
|
||||
|
||||
if latent_dim is None:
|
||||
latent_dim = encoder_dim * (2 ** len(encoder_rates))
|
||||
|
||||
self.latent_dim = latent_dim
|
||||
|
||||
self.hop_length = np.prod(encoder_rates)
|
||||
self.encoder = Encoder(encoder_dim, encoder_rates, latent_dim, causal=causal, lstm=lstm)
|
||||
|
||||
self.n_codebooks = n_codebooks
|
||||
self.codebook_size = codebook_size
|
||||
self.codebook_dim = codebook_dim
|
||||
self.quantizer = ResidualVectorQuantize(
|
||||
input_dim=latent_dim,
|
||||
n_codebooks=n_codebooks,
|
||||
codebook_size=codebook_size,
|
||||
codebook_dim=codebook_dim,
|
||||
quantizer_dropout=quantizer_dropout,
|
||||
)
|
||||
|
||||
self.decoder = Decoder(
|
||||
latent_dim,
|
||||
decoder_dim,
|
||||
decoder_rates,
|
||||
lstm=lstm,
|
||||
causal=causal,
|
||||
)
|
||||
self.sample_rate = sample_rate
|
||||
self.apply(init_weights)
|
||||
|
||||
self.delay = self.get_delay()
|
||||
|
||||
def preprocess(self, audio_data, sample_rate):
|
||||
if sample_rate is None:
|
||||
sample_rate = self.sample_rate
|
||||
assert sample_rate == self.sample_rate
|
||||
|
||||
length = audio_data.shape[-1]
|
||||
right_pad = math.ceil(length / self.hop_length) * self.hop_length - length
|
||||
audio_data = nn.functional.pad(audio_data, (0, right_pad))
|
||||
|
||||
return audio_data
|
||||
|
||||
def encode(
|
||||
self,
|
||||
audio_data: torch.Tensor,
|
||||
n_quantizers: int = None,
|
||||
):
|
||||
"""Encode given audio data and return quantized latent codes
|
||||
|
||||
Parameters
|
||||
----------
|
||||
audio_data : Tensor[B x 1 x T]
|
||||
Audio data to encode
|
||||
n_quantizers : int, optional
|
||||
Number of quantizers to use, by default None
|
||||
If None, all quantizers are used.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A dictionary with the following keys:
|
||||
"z" : Tensor[B x D x T]
|
||||
Quantized continuous representation of input
|
||||
"codes" : Tensor[B x N x T]
|
||||
Codebook indices for each codebook
|
||||
(quantized discrete representation of input)
|
||||
"latents" : Tensor[B x N*D x T]
|
||||
Projected latents (continuous representation of input before quantization)
|
||||
"vq/commitment_loss" : Tensor[1]
|
||||
Commitment loss to train encoder to predict vectors closer to codebook
|
||||
entries
|
||||
"vq/codebook_loss" : Tensor[1]
|
||||
Codebook loss to update the codebook
|
||||
"length" : int
|
||||
Number of samples in input audio
|
||||
"""
|
||||
z = self.encoder(audio_data)
|
||||
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(
|
||||
z, n_quantizers
|
||||
)
|
||||
return z, codes, latents, commitment_loss, codebook_loss
|
||||
|
||||
def decode(self, z: torch.Tensor):
|
||||
"""Decode given latent codes and return audio data
|
||||
|
||||
Parameters
|
||||
----------
|
||||
z : Tensor[B x D x T]
|
||||
Quantized continuous representation of input
|
||||
length : int, optional
|
||||
Number of samples in output audio, by default None
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A dictionary with the following keys:
|
||||
"audio" : Tensor[B x 1 x length]
|
||||
Decoded audio data.
|
||||
"""
|
||||
return self.decoder(z)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
audio_data: torch.Tensor,
|
||||
sample_rate: int = None,
|
||||
n_quantizers: int = None,
|
||||
):
|
||||
"""Model forward pass
|
||||
|
||||
Parameters
|
||||
----------
|
||||
audio_data : Tensor[B x 1 x T]
|
||||
Audio data to encode
|
||||
sample_rate : int, optional
|
||||
Sample rate of audio data in Hz, by default None
|
||||
If None, defaults to `self.sample_rate`
|
||||
n_quantizers : int, optional
|
||||
Number of quantizers to use, by default None.
|
||||
If None, all quantizers are used.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A dictionary with the following keys:
|
||||
"z" : Tensor[B x D x T]
|
||||
Quantized continuous representation of input
|
||||
"codes" : Tensor[B x N x T]
|
||||
Codebook indices for each codebook
|
||||
(quantized discrete representation of input)
|
||||
"latents" : Tensor[B x N*D x T]
|
||||
Projected latents (continuous representation of input before quantization)
|
||||
"vq/commitment_loss" : Tensor[1]
|
||||
Commitment loss to train encoder to predict vectors closer to codebook
|
||||
entries
|
||||
"vq/codebook_loss" : Tensor[1]
|
||||
Codebook loss to update the codebook
|
||||
"length" : int
|
||||
Number of samples in input audio
|
||||
"audio" : Tensor[B x 1 x length]
|
||||
Decoded audio data.
|
||||
"""
|
||||
length = audio_data.shape[-1]
|
||||
audio_data = self.preprocess(audio_data, sample_rate)
|
||||
z, codes, latents, commitment_loss, codebook_loss = self.encode(
|
||||
audio_data, n_quantizers
|
||||
)
|
||||
|
||||
x = self.decode(z)
|
||||
return {
|
||||
"audio": x[..., :length],
|
||||
"z": z,
|
||||
"codes": codes,
|
||||
"latents": latents,
|
||||
"vq/commitment_loss": commitment_loss,
|
||||
"vq/codebook_loss": codebook_loss,
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import numpy as np
|
||||
from functools import partial
|
||||
|
||||
model = DAC().to("cpu")
|
||||
|
||||
for n, m in model.named_modules():
|
||||
o = m.extra_repr()
|
||||
p = sum([np.prod(p.size()) for p in m.parameters()])
|
||||
fn = lambda o, p: o + f" {p/1e6:<.3f}M params."
|
||||
setattr(m, "extra_repr", partial(fn, o=o, p=p))
|
||||
print(model)
|
||||
print("Total # of params: ", sum([np.prod(p.size()) for p in model.parameters()]))
|
||||
|
||||
length = 88200 * 2
|
||||
x = torch.randn(1, 1, length).to(model.device)
|
||||
x.requires_grad_(True)
|
||||
x.retain_grad()
|
||||
|
||||
# Make a forward pass
|
||||
out = model(x)["audio"]
|
||||
print("Input shape:", x.shape)
|
||||
print("Output shape:", out.shape)
|
||||
|
||||
# Create gradient variable
|
||||
grad = torch.zeros_like(out)
|
||||
grad[:, :, grad.shape[-1] // 2] = 1
|
||||
|
||||
# Make a backward pass
|
||||
out.backward(grad)
|
||||
|
||||
# Check non-zero values
|
||||
gradmap = x.grad.squeeze(0)
|
||||
gradmap = (gradmap != 0).sum(0) # sum across features
|
||||
rf = (gradmap != 0).sum()
|
||||
|
||||
print(f"Receptive field: {rf.item()}")
|
||||
|
||||
x = AudioSignal(torch.randn(1, 1, 44100 * 60), 44100)
|
||||
model.decompress(model.compress(x, verbose=True), verbose=True)
|
||||
228
indextts/s2mel/dac/model/discriminator.py
Normal file
228
indextts/s2mel/dac/model/discriminator.py
Normal file
@@ -0,0 +1,228 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from audiotools import AudioSignal
|
||||
from audiotools import ml
|
||||
from audiotools import STFTParams
|
||||
from einops import rearrange
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
|
||||
def WNConv1d(*args, **kwargs):
|
||||
act = kwargs.pop("act", True)
|
||||
conv = weight_norm(nn.Conv1d(*args, **kwargs))
|
||||
if not act:
|
||||
return conv
|
||||
return nn.Sequential(conv, nn.LeakyReLU(0.1))
|
||||
|
||||
|
||||
def WNConv2d(*args, **kwargs):
|
||||
act = kwargs.pop("act", True)
|
||||
conv = weight_norm(nn.Conv2d(*args, **kwargs))
|
||||
if not act:
|
||||
return conv
|
||||
return nn.Sequential(conv, nn.LeakyReLU(0.1))
|
||||
|
||||
|
||||
class MPD(nn.Module):
|
||||
def __init__(self, period):
|
||||
super().__init__()
|
||||
self.period = period
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
|
||||
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
|
||||
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
|
||||
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
|
||||
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
|
||||
]
|
||||
)
|
||||
self.conv_post = WNConv2d(
|
||||
1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
|
||||
)
|
||||
|
||||
def pad_to_period(self, x):
|
||||
t = x.shape[-1]
|
||||
x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
|
||||
x = self.pad_to_period(x)
|
||||
x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
|
||||
|
||||
for layer in self.convs:
|
||||
x = layer(x)
|
||||
fmap.append(x)
|
||||
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
|
||||
return fmap
|
||||
|
||||
|
||||
class MSD(nn.Module):
|
||||
def __init__(self, rate: int = 1, sample_rate: int = 44100):
|
||||
super().__init__()
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
WNConv1d(1, 16, 15, 1, padding=7),
|
||||
WNConv1d(16, 64, 41, 4, groups=4, padding=20),
|
||||
WNConv1d(64, 256, 41, 4, groups=16, padding=20),
|
||||
WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
|
||||
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
|
||||
WNConv1d(1024, 1024, 5, 1, padding=2),
|
||||
]
|
||||
)
|
||||
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
|
||||
self.sample_rate = sample_rate
|
||||
self.rate = rate
|
||||
|
||||
def forward(self, x):
|
||||
x = AudioSignal(x, self.sample_rate)
|
||||
x.resample(self.sample_rate // self.rate)
|
||||
x = x.audio_data
|
||||
|
||||
fmap = []
|
||||
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
|
||||
return fmap
|
||||
|
||||
|
||||
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
|
||||
|
||||
|
||||
class MRD(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
window_length: int,
|
||||
hop_factor: float = 0.25,
|
||||
sample_rate: int = 44100,
|
||||
bands: list = BANDS,
|
||||
):
|
||||
"""Complex multi-band spectrogram discriminator.
|
||||
Parameters
|
||||
----------
|
||||
window_length : int
|
||||
Window length of STFT.
|
||||
hop_factor : float, optional
|
||||
Hop factor of the STFT, defaults to ``0.25 * window_length``.
|
||||
sample_rate : int, optional
|
||||
Sampling rate of audio in Hz, by default 44100
|
||||
bands : list, optional
|
||||
Bands to run discriminator over.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.window_length = window_length
|
||||
self.hop_factor = hop_factor
|
||||
self.sample_rate = sample_rate
|
||||
self.stft_params = STFTParams(
|
||||
window_length=window_length,
|
||||
hop_length=int(window_length * hop_factor),
|
||||
match_stride=True,
|
||||
)
|
||||
|
||||
n_fft = window_length // 2 + 1
|
||||
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
||||
self.bands = bands
|
||||
|
||||
ch = 32
|
||||
convs = lambda: nn.ModuleList(
|
||||
[
|
||||
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
|
||||
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
||||
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
||||
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
||||
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
|
||||
]
|
||||
)
|
||||
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
||||
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
|
||||
|
||||
def spectrogram(self, x):
|
||||
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
|
||||
x = torch.view_as_real(x.stft())
|
||||
x = rearrange(x, "b 1 f t c -> (b 1) c t f")
|
||||
# Split into bands
|
||||
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
||||
return x_bands
|
||||
|
||||
def forward(self, x):
|
||||
x_bands = self.spectrogram(x)
|
||||
fmap = []
|
||||
|
||||
x = []
|
||||
for band, stack in zip(x_bands, self.band_convs):
|
||||
for layer in stack:
|
||||
band = layer(band)
|
||||
fmap.append(band)
|
||||
x.append(band)
|
||||
|
||||
x = torch.cat(x, dim=-1)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
|
||||
return fmap
|
||||
|
||||
|
||||
class Discriminator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
rates: list = [],
|
||||
periods: list = [2, 3, 5, 7, 11],
|
||||
fft_sizes: list = [2048, 1024, 512],
|
||||
sample_rate: int = 44100,
|
||||
bands: list = BANDS,
|
||||
):
|
||||
"""Discriminator that combines multiple discriminators.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rates : list, optional
|
||||
sampling rates (in Hz) to run MSD at, by default []
|
||||
If empty, MSD is not used.
|
||||
periods : list, optional
|
||||
periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
|
||||
fft_sizes : list, optional
|
||||
Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
|
||||
sample_rate : int, optional
|
||||
Sampling rate of audio in Hz, by default 44100
|
||||
bands : list, optional
|
||||
Bands to run MRD at, by default `BANDS`
|
||||
"""
|
||||
super().__init__()
|
||||
discs = []
|
||||
discs += [MPD(p) for p in periods]
|
||||
discs += [MSD(r, sample_rate=sample_rate) for r in rates]
|
||||
discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes]
|
||||
self.discriminators = nn.ModuleList(discs)
|
||||
|
||||
def preprocess(self, y):
|
||||
# Remove DC offset
|
||||
y = y - y.mean(dim=-1, keepdims=True)
|
||||
# Peak normalize the volume of input audio
|
||||
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
||||
return y
|
||||
|
||||
def forward(self, x):
|
||||
x = self.preprocess(x)
|
||||
fmaps = [d(x) for d in self.discriminators]
|
||||
return fmaps
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
disc = Discriminator()
|
||||
x = torch.zeros(1, 1, 44100)
|
||||
results = disc(x)
|
||||
for i, result in enumerate(results):
|
||||
print(f"disc{i}")
|
||||
for i, r in enumerate(result):
|
||||
print(r.shape, r.mean(), r.min(), r.max())
|
||||
print()
|
||||
320
indextts/s2mel/dac/model/encodec.py
Normal file
320
indextts/s2mel/dac/model/encodec.py
Normal file
@@ -0,0 +1,320 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Convolutional layers wrappers and utilities."""
|
||||
|
||||
import math
|
||||
import typing as tp
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import spectral_norm, weight_norm
|
||||
|
||||
import typing as tp
|
||||
|
||||
import einops
|
||||
|
||||
|
||||
class ConvLayerNorm(nn.LayerNorm):
|
||||
"""
|
||||
Convolution-friendly LayerNorm that moves channels to last dimensions
|
||||
before running the normalization and moves them back to original position right after.
|
||||
"""
|
||||
def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
|
||||
super().__init__(normalized_shape, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
x = einops.rearrange(x, 'b ... t -> b t ...')
|
||||
x = super().forward(x)
|
||||
x = einops.rearrange(x, 'b t ... -> b ... t')
|
||||
return
|
||||
|
||||
|
||||
CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
|
||||
'time_layer_norm', 'layer_norm', 'time_group_norm'])
|
||||
|
||||
|
||||
def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
|
||||
assert norm in CONV_NORMALIZATIONS
|
||||
if norm == 'weight_norm':
|
||||
return weight_norm(module)
|
||||
elif norm == 'spectral_norm':
|
||||
return spectral_norm(module)
|
||||
else:
|
||||
# We already check was in CONV_NORMALIZATION, so any other choice
|
||||
# doesn't need reparametrization.
|
||||
return module
|
||||
|
||||
|
||||
def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
|
||||
"""Return the proper normalization module. If causal is True, this will ensure the returned
|
||||
module is causal, or return an error if the normalization doesn't support causal evaluation.
|
||||
"""
|
||||
assert norm in CONV_NORMALIZATIONS
|
||||
if norm == 'layer_norm':
|
||||
assert isinstance(module, nn.modules.conv._ConvNd)
|
||||
return ConvLayerNorm(module.out_channels, **norm_kwargs)
|
||||
elif norm == 'time_group_norm':
|
||||
if causal:
|
||||
raise ValueError("GroupNorm doesn't support causal evaluation.")
|
||||
assert isinstance(module, nn.modules.conv._ConvNd)
|
||||
return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
|
||||
else:
|
||||
return nn.Identity()
|
||||
|
||||
|
||||
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
|
||||
padding_total: int = 0) -> int:
|
||||
"""See `pad_for_conv1d`.
|
||||
"""
|
||||
length = x.shape[-1]
|
||||
n_frames = (length - kernel_size + padding_total) / stride + 1
|
||||
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
|
||||
return ideal_length - length
|
||||
|
||||
|
||||
def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
|
||||
"""Pad for a convolution to make sure that the last window is full.
|
||||
Extra padding is added at the end. This is required to ensure that we can rebuild
|
||||
an output of the same length, as otherwise, even with padding, some time steps
|
||||
might get removed.
|
||||
For instance, with total padding = 4, kernel size = 4, stride = 2:
|
||||
0 0 1 2 3 4 5 0 0 # (0s are padding)
|
||||
1 2 3 # (output frames of a convolution, last 0 is never used)
|
||||
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding)
|
||||
1 2 3 4 # once you removed padding, we are missing one time step !
|
||||
"""
|
||||
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
||||
return F.pad(x, (0, extra_padding))
|
||||
|
||||
|
||||
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
|
||||
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
|
||||
If this is the case, we insert extra 0 padding to the right before the reflection happen.
|
||||
"""
|
||||
length = x.shape[-1]
|
||||
padding_left, padding_right = paddings
|
||||
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
||||
if mode == 'reflect':
|
||||
max_pad = max(padding_left, padding_right)
|
||||
extra_pad = 0
|
||||
if length <= max_pad:
|
||||
extra_pad = max_pad - length + 1
|
||||
x = F.pad(x, (0, extra_pad))
|
||||
padded = F.pad(x, paddings, mode, value)
|
||||
end = padded.shape[-1] - extra_pad
|
||||
return padded[..., :end]
|
||||
else:
|
||||
return F.pad(x, paddings, mode, value)
|
||||
|
||||
|
||||
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
|
||||
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
|
||||
padding_left, padding_right = paddings
|
||||
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
||||
assert (padding_left + padding_right) <= x.shape[-1]
|
||||
end = x.shape[-1] - padding_right
|
||||
return x[..., padding_left: end]
|
||||
|
||||
|
||||
class NormConv1d(nn.Module):
|
||||
"""Wrapper around Conv1d and normalization applied to this conv
|
||||
to provide a uniform interface across normalization approaches.
|
||||
"""
|
||||
def __init__(self, *args, causal: bool = False, norm: str = 'none',
|
||||
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
||||
super().__init__()
|
||||
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
|
||||
self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
|
||||
self.norm_type = norm
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class NormConv2d(nn.Module):
|
||||
"""Wrapper around Conv2d and normalization applied to this conv
|
||||
to provide a uniform interface across normalization approaches.
|
||||
"""
|
||||
def __init__(self, *args, norm: str = 'none',
|
||||
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
||||
super().__init__()
|
||||
self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm)
|
||||
self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs)
|
||||
self.norm_type = norm
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class NormConvTranspose1d(nn.Module):
|
||||
"""Wrapper around ConvTranspose1d and normalization applied to this conv
|
||||
to provide a uniform interface across normalization approaches.
|
||||
"""
|
||||
def __init__(self, *args, causal: bool = False, norm: str = 'none',
|
||||
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
||||
super().__init__()
|
||||
self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
|
||||
self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
|
||||
self.norm_type = norm
|
||||
|
||||
def forward(self, x):
|
||||
x = self.convtr(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class NormConvTranspose2d(nn.Module):
|
||||
"""Wrapper around ConvTranspose2d and normalization applied to this conv
|
||||
to provide a uniform interface across normalization approaches.
|
||||
"""
|
||||
def __init__(self, *args, norm: str = 'none',
|
||||
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
||||
super().__init__()
|
||||
self.convtr = apply_parametrization_norm(nn.ConvTranspose2d(*args, **kwargs), norm)
|
||||
self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.convtr(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class SConv1d(nn.Module):
|
||||
"""Conv1d with some builtin handling of asymmetric or causal padding
|
||||
and normalization.
|
||||
"""
|
||||
def __init__(self, in_channels: int, out_channels: int,
|
||||
kernel_size: int, stride: int = 1, dilation: int = 1,
|
||||
groups: int = 1, bias: bool = True, causal: bool = False,
|
||||
norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
|
||||
pad_mode: str = 'reflect', **kwargs):
|
||||
super().__init__()
|
||||
# warn user on unusual setup between dilation and stride
|
||||
if stride > 1 and dilation > 1:
|
||||
warnings.warn('SConv1d has been initialized with stride > 1 and dilation > 1'
|
||||
f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).')
|
||||
self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
|
||||
dilation=dilation, groups=groups, bias=bias, causal=causal,
|
||||
norm=norm, norm_kwargs=norm_kwargs)
|
||||
self.causal = causal
|
||||
self.pad_mode = pad_mode
|
||||
|
||||
self.cache_enabled = False
|
||||
|
||||
def reset_cache(self):
|
||||
"""Reset the cache when starting a new stream."""
|
||||
self.cache = None
|
||||
self.cache_enabled = True
|
||||
|
||||
def forward(self, x):
|
||||
B, C, T = x.shape
|
||||
kernel_size = self.conv.conv.kernel_size[0]
|
||||
stride = self.conv.conv.stride[0]
|
||||
dilation = self.conv.conv.dilation[0]
|
||||
kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations
|
||||
padding_total = kernel_size - stride
|
||||
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
||||
|
||||
if self.causal:
|
||||
# Left padding for causal
|
||||
if self.cache_enabled and self.cache is not None:
|
||||
# Concatenate the cache (previous inputs) with the new input for streaming
|
||||
x = torch.cat([self.cache, x], dim=2)
|
||||
else:
|
||||
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
|
||||
else:
|
||||
# Asymmetric padding required for odd strides
|
||||
padding_right = padding_total // 2
|
||||
padding_left = padding_total - padding_right
|
||||
x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
|
||||
|
||||
# Store the most recent input frames for future cache use
|
||||
if self.cache_enabled:
|
||||
if self.cache is None:
|
||||
# Initialize cache with zeros (at the start of streaming)
|
||||
self.cache = torch.zeros(B, C, kernel_size - 1, device=x.device)
|
||||
# Update the cache by storing the latest input frames
|
||||
if kernel_size > 1:
|
||||
self.cache = x[:, :, -kernel_size + 1:].detach() # Only store the necessary frames
|
||||
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
|
||||
class SConvTranspose1d(nn.Module):
|
||||
"""ConvTranspose1d with some builtin handling of asymmetric or causal padding
|
||||
and normalization.
|
||||
"""
|
||||
def __init__(self, in_channels: int, out_channels: int,
|
||||
kernel_size: int, stride: int = 1, causal: bool = False,
|
||||
norm: str = 'none', trim_right_ratio: float = 1.,
|
||||
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
||||
super().__init__()
|
||||
self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
|
||||
causal=causal, norm=norm, norm_kwargs=norm_kwargs)
|
||||
self.causal = causal
|
||||
self.trim_right_ratio = trim_right_ratio
|
||||
assert self.causal or self.trim_right_ratio == 1., \
|
||||
"`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
|
||||
assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
|
||||
|
||||
def forward(self, x):
|
||||
kernel_size = self.convtr.convtr.kernel_size[0]
|
||||
stride = self.convtr.convtr.stride[0]
|
||||
padding_total = kernel_size - stride
|
||||
|
||||
y = self.convtr(x)
|
||||
|
||||
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
|
||||
# removed at the very end, when keeping only the right length for the output,
|
||||
# as removing it here would require also passing the length at the matching layer
|
||||
# in the encoder.
|
||||
if self.causal:
|
||||
# Trim the padding on the right according to the specified ratio
|
||||
# if trim_right_ratio = 1.0, trim everything from right
|
||||
padding_right = math.ceil(padding_total * self.trim_right_ratio)
|
||||
padding_left = padding_total - padding_right
|
||||
y = unpad1d(y, (padding_left, padding_right))
|
||||
else:
|
||||
# Asymmetric padding required for odd strides
|
||||
padding_right = padding_total // 2
|
||||
padding_left = padding_total - padding_right
|
||||
y = unpad1d(y, (padding_left, padding_right))
|
||||
return y
|
||||
|
||||
class SLSTM(nn.Module):
|
||||
"""
|
||||
LSTM without worrying about the hidden state, nor the layout of the data.
|
||||
Expects input as convolutional layout.
|
||||
"""
|
||||
def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True):
|
||||
super().__init__()
|
||||
self.skip = skip
|
||||
self.lstm = nn.LSTM(dimension, dimension, num_layers)
|
||||
self.hidden = None
|
||||
self.cache_enabled = False
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(2, 0, 1)
|
||||
if self.training or not self.cache_enabled:
|
||||
y, _ = self.lstm(x)
|
||||
else:
|
||||
y, self.hidden = self.lstm(x, self.hidden)
|
||||
if self.skip:
|
||||
y = y + x
|
||||
y = y.permute(1, 2, 0)
|
||||
return y
|
||||
|
||||
def reset_cache(self):
|
||||
self.hidden = None
|
||||
self.cache_enabled = True
|
||||
3
indextts/s2mel/dac/nn/__init__.py
Normal file
3
indextts/s2mel/dac/nn/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from . import layers
|
||||
from . import loss
|
||||
from . import quantize
|
||||
33
indextts/s2mel/dac/nn/layers.py
Normal file
33
indextts/s2mel/dac/nn/layers.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
|
||||
def WNConv1d(*args, **kwargs):
|
||||
return weight_norm(nn.Conv1d(*args, **kwargs))
|
||||
|
||||
|
||||
def WNConvTranspose1d(*args, **kwargs):
|
||||
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
||||
|
||||
|
||||
# Scripting this brings model speed up 1.4x
|
||||
@torch.jit.script
|
||||
def snake(x, alpha):
|
||||
shape = x.shape
|
||||
x = x.reshape(shape[0], shape[1], -1)
|
||||
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
|
||||
x = x.reshape(shape)
|
||||
return x
|
||||
|
||||
|
||||
class Snake1d(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super().__init__()
|
||||
self.alpha = nn.Parameter(torch.ones(1, channels, 1))
|
||||
|
||||
def forward(self, x):
|
||||
return snake(x, self.alpha)
|
||||
368
indextts/s2mel/dac/nn/loss.py
Normal file
368
indextts/s2mel/dac/nn/loss.py
Normal file
@@ -0,0 +1,368 @@
|
||||
import typing
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from audiotools import AudioSignal
|
||||
from audiotools import STFTParams
|
||||
from torch import nn
|
||||
|
||||
|
||||
class L1Loss(nn.L1Loss):
|
||||
"""L1 Loss between AudioSignals. Defaults
|
||||
to comparing ``audio_data``, but any
|
||||
attribute of an AudioSignal can be used.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
attribute : str, optional
|
||||
Attribute of signal to compare, defaults to ``audio_data``.
|
||||
weight : float, optional
|
||||
Weight of this loss, defaults to 1.0.
|
||||
|
||||
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
|
||||
"""
|
||||
|
||||
def __init__(self, attribute: str = "audio_data", weight: float = 1.0, **kwargs):
|
||||
self.attribute = attribute
|
||||
self.weight = weight
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def forward(self, x: AudioSignal, y: AudioSignal):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
x : AudioSignal
|
||||
Estimate AudioSignal
|
||||
y : AudioSignal
|
||||
Reference AudioSignal
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor
|
||||
L1 loss between AudioSignal attributes.
|
||||
"""
|
||||
if isinstance(x, AudioSignal):
|
||||
x = getattr(x, self.attribute)
|
||||
y = getattr(y, self.attribute)
|
||||
return super().forward(x, y)
|
||||
|
||||
|
||||
class SISDRLoss(nn.Module):
|
||||
"""
|
||||
Computes the Scale-Invariant Source-to-Distortion Ratio between a batch
|
||||
of estimated and reference audio signals or aligned features.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
scaling : int, optional
|
||||
Whether to use scale-invariant (True) or
|
||||
signal-to-noise ratio (False), by default True
|
||||
reduction : str, optional
|
||||
How to reduce across the batch (either 'mean',
|
||||
'sum', or none).], by default ' mean'
|
||||
zero_mean : int, optional
|
||||
Zero mean the references and estimates before
|
||||
computing the loss, by default True
|
||||
clip_min : int, optional
|
||||
The minimum possible loss value. Helps network
|
||||
to not focus on making already good examples better, by default None
|
||||
weight : float, optional
|
||||
Weight of this loss, defaults to 1.0.
|
||||
|
||||
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scaling: int = True,
|
||||
reduction: str = "mean",
|
||||
zero_mean: int = True,
|
||||
clip_min: int = None,
|
||||
weight: float = 1.0,
|
||||
):
|
||||
self.scaling = scaling
|
||||
self.reduction = reduction
|
||||
self.zero_mean = zero_mean
|
||||
self.clip_min = clip_min
|
||||
self.weight = weight
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x: AudioSignal, y: AudioSignal):
|
||||
eps = 1e-8
|
||||
# nb, nc, nt
|
||||
if isinstance(x, AudioSignal):
|
||||
references = x.audio_data
|
||||
estimates = y.audio_data
|
||||
else:
|
||||
references = x
|
||||
estimates = y
|
||||
|
||||
nb = references.shape[0]
|
||||
references = references.reshape(nb, 1, -1).permute(0, 2, 1)
|
||||
estimates = estimates.reshape(nb, 1, -1).permute(0, 2, 1)
|
||||
|
||||
# samples now on axis 1
|
||||
if self.zero_mean:
|
||||
mean_reference = references.mean(dim=1, keepdim=True)
|
||||
mean_estimate = estimates.mean(dim=1, keepdim=True)
|
||||
else:
|
||||
mean_reference = 0
|
||||
mean_estimate = 0
|
||||
|
||||
_references = references - mean_reference
|
||||
_estimates = estimates - mean_estimate
|
||||
|
||||
references_projection = (_references**2).sum(dim=-2) + eps
|
||||
references_on_estimates = (_estimates * _references).sum(dim=-2) + eps
|
||||
|
||||
scale = (
|
||||
(references_on_estimates / references_projection).unsqueeze(1)
|
||||
if self.scaling
|
||||
else 1
|
||||
)
|
||||
|
||||
e_true = scale * _references
|
||||
e_res = _estimates - e_true
|
||||
|
||||
signal = (e_true**2).sum(dim=1)
|
||||
noise = (e_res**2).sum(dim=1)
|
||||
sdr = -10 * torch.log10(signal / noise + eps)
|
||||
|
||||
if self.clip_min is not None:
|
||||
sdr = torch.clamp(sdr, min=self.clip_min)
|
||||
|
||||
if self.reduction == "mean":
|
||||
sdr = sdr.mean()
|
||||
elif self.reduction == "sum":
|
||||
sdr = sdr.sum()
|
||||
return sdr
|
||||
|
||||
|
||||
class MultiScaleSTFTLoss(nn.Module):
|
||||
"""Computes the multi-scale STFT loss from [1].
|
||||
|
||||
Parameters
|
||||
----------
|
||||
window_lengths : List[int], optional
|
||||
Length of each window of each STFT, by default [2048, 512]
|
||||
loss_fn : typing.Callable, optional
|
||||
How to compare each loss, by default nn.L1Loss()
|
||||
clamp_eps : float, optional
|
||||
Clamp on the log magnitude, below, by default 1e-5
|
||||
mag_weight : float, optional
|
||||
Weight of raw magnitude portion of loss, by default 1.0
|
||||
log_weight : float, optional
|
||||
Weight of log magnitude portion of loss, by default 1.0
|
||||
pow : float, optional
|
||||
Power to raise magnitude to before taking log, by default 2.0
|
||||
weight : float, optional
|
||||
Weight of this loss, by default 1.0
|
||||
match_stride : bool, optional
|
||||
Whether to match the stride of convolutional layers, by default False
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
1. Engel, Jesse, Chenjie Gu, and Adam Roberts.
|
||||
"DDSP: Differentiable Digital Signal Processing."
|
||||
International Conference on Learning Representations. 2019.
|
||||
|
||||
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
window_lengths: List[int] = [2048, 512],
|
||||
loss_fn: typing.Callable = nn.L1Loss(),
|
||||
clamp_eps: float = 1e-5,
|
||||
mag_weight: float = 1.0,
|
||||
log_weight: float = 1.0,
|
||||
pow: float = 2.0,
|
||||
weight: float = 1.0,
|
||||
match_stride: bool = False,
|
||||
window_type: str = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.stft_params = [
|
||||
STFTParams(
|
||||
window_length=w,
|
||||
hop_length=w // 4,
|
||||
match_stride=match_stride,
|
||||
window_type=window_type,
|
||||
)
|
||||
for w in window_lengths
|
||||
]
|
||||
self.loss_fn = loss_fn
|
||||
self.log_weight = log_weight
|
||||
self.mag_weight = mag_weight
|
||||
self.clamp_eps = clamp_eps
|
||||
self.weight = weight
|
||||
self.pow = pow
|
||||
|
||||
def forward(self, x: AudioSignal, y: AudioSignal):
|
||||
"""Computes multi-scale STFT between an estimate and a reference
|
||||
signal.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : AudioSignal
|
||||
Estimate signal
|
||||
y : AudioSignal
|
||||
Reference signal
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor
|
||||
Multi-scale STFT loss.
|
||||
"""
|
||||
loss = 0.0
|
||||
for s in self.stft_params:
|
||||
x.stft(s.window_length, s.hop_length, s.window_type)
|
||||
y.stft(s.window_length, s.hop_length, s.window_type)
|
||||
loss += self.log_weight * self.loss_fn(
|
||||
x.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
||||
y.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
||||
)
|
||||
loss += self.mag_weight * self.loss_fn(x.magnitude, y.magnitude)
|
||||
return loss
|
||||
|
||||
|
||||
class MelSpectrogramLoss(nn.Module):
|
||||
"""Compute distance between mel spectrograms. Can be used
|
||||
in a multi-scale way.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_mels : List[int]
|
||||
Number of mels per STFT, by default [150, 80],
|
||||
window_lengths : List[int], optional
|
||||
Length of each window of each STFT, by default [2048, 512]
|
||||
loss_fn : typing.Callable, optional
|
||||
How to compare each loss, by default nn.L1Loss()
|
||||
clamp_eps : float, optional
|
||||
Clamp on the log magnitude, below, by default 1e-5
|
||||
mag_weight : float, optional
|
||||
Weight of raw magnitude portion of loss, by default 1.0
|
||||
log_weight : float, optional
|
||||
Weight of log magnitude portion of loss, by default 1.0
|
||||
pow : float, optional
|
||||
Power to raise magnitude to before taking log, by default 2.0
|
||||
weight : float, optional
|
||||
Weight of this loss, by default 1.0
|
||||
match_stride : bool, optional
|
||||
Whether to match the stride of convolutional layers, by default False
|
||||
|
||||
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_mels: List[int] = [150, 80],
|
||||
window_lengths: List[int] = [2048, 512],
|
||||
loss_fn: typing.Callable = nn.L1Loss(),
|
||||
clamp_eps: float = 1e-5,
|
||||
mag_weight: float = 1.0,
|
||||
log_weight: float = 1.0,
|
||||
pow: float = 2.0,
|
||||
weight: float = 1.0,
|
||||
match_stride: bool = False,
|
||||
mel_fmin: List[float] = [0.0, 0.0],
|
||||
mel_fmax: List[float] = [None, None],
|
||||
window_type: str = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.stft_params = [
|
||||
STFTParams(
|
||||
window_length=w,
|
||||
hop_length=w // 4,
|
||||
match_stride=match_stride,
|
||||
window_type=window_type,
|
||||
)
|
||||
for w in window_lengths
|
||||
]
|
||||
self.n_mels = n_mels
|
||||
self.loss_fn = loss_fn
|
||||
self.clamp_eps = clamp_eps
|
||||
self.log_weight = log_weight
|
||||
self.mag_weight = mag_weight
|
||||
self.weight = weight
|
||||
self.mel_fmin = mel_fmin
|
||||
self.mel_fmax = mel_fmax
|
||||
self.pow = pow
|
||||
|
||||
def forward(self, x: AudioSignal, y: AudioSignal):
|
||||
"""Computes mel loss between an estimate and a reference
|
||||
signal.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : AudioSignal
|
||||
Estimate signal
|
||||
y : AudioSignal
|
||||
Reference signal
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor
|
||||
Mel loss.
|
||||
"""
|
||||
loss = 0.0
|
||||
for n_mels, fmin, fmax, s in zip(
|
||||
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
|
||||
):
|
||||
kwargs = {
|
||||
"window_length": s.window_length,
|
||||
"hop_length": s.hop_length,
|
||||
"window_type": s.window_type,
|
||||
}
|
||||
x_mels = x.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
||||
y_mels = y.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
||||
|
||||
loss += self.log_weight * self.loss_fn(
|
||||
x_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
||||
y_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
||||
)
|
||||
loss += self.mag_weight * self.loss_fn(x_mels, y_mels)
|
||||
return loss
|
||||
|
||||
|
||||
class GANLoss(nn.Module):
|
||||
"""
|
||||
Computes a discriminator loss, given a discriminator on
|
||||
generated waveforms/spectrograms compared to ground truth
|
||||
waveforms/spectrograms. Computes the loss for both the
|
||||
discriminator and the generator in separate functions.
|
||||
"""
|
||||
|
||||
def __init__(self, discriminator):
|
||||
super().__init__()
|
||||
self.discriminator = discriminator
|
||||
|
||||
def forward(self, fake, real):
|
||||
d_fake = self.discriminator(fake.audio_data)
|
||||
d_real = self.discriminator(real.audio_data)
|
||||
return d_fake, d_real
|
||||
|
||||
def discriminator_loss(self, fake, real):
|
||||
d_fake, d_real = self.forward(fake.clone().detach(), real)
|
||||
|
||||
loss_d = 0
|
||||
for x_fake, x_real in zip(d_fake, d_real):
|
||||
loss_d += torch.mean(x_fake[-1] ** 2)
|
||||
loss_d += torch.mean((1 - x_real[-1]) ** 2)
|
||||
return loss_d
|
||||
|
||||
def generator_loss(self, fake, real):
|
||||
d_fake, d_real = self.forward(fake, real)
|
||||
|
||||
loss_g = 0
|
||||
for x_fake in d_fake:
|
||||
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
|
||||
|
||||
loss_feature = 0
|
||||
|
||||
for i in range(len(d_fake)):
|
||||
for j in range(len(d_fake[i]) - 1):
|
||||
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
|
||||
return loss_g, loss_feature
|
||||
339
indextts/s2mel/dac/nn/quantize.py
Normal file
339
indextts/s2mel/dac/nn/quantize.py
Normal file
@@ -0,0 +1,339 @@
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
from indextts.s2mel.dac.nn.layers import WNConv1d
|
||||
|
||||
class VectorQuantizeLegacy(nn.Module):
|
||||
"""
|
||||
Implementation of VQ similar to Karpathy's repo:
|
||||
https://github.com/karpathy/deep-vector-quantization
|
||||
removed in-out projection
|
||||
"""
|
||||
|
||||
def __init__(self, input_dim: int, codebook_size: int):
|
||||
super().__init__()
|
||||
self.codebook_size = codebook_size
|
||||
self.codebook = nn.Embedding(codebook_size, input_dim)
|
||||
|
||||
def forward(self, z, z_mask=None):
|
||||
"""Quantized the input tensor using a fixed codebook and returns
|
||||
the corresponding codebook vectors
|
||||
|
||||
Parameters
|
||||
----------
|
||||
z : Tensor[B x D x T]
|
||||
|
||||
Returns
|
||||
-------
|
||||
Tensor[B x D x T]
|
||||
Quantized continuous representation of input
|
||||
Tensor[1]
|
||||
Commitment loss to train encoder to predict vectors closer to codebook
|
||||
entries
|
||||
Tensor[1]
|
||||
Codebook loss to update the codebook
|
||||
Tensor[B x T]
|
||||
Codebook indices (quantized discrete representation of input)
|
||||
Tensor[B x D x T]
|
||||
Projected latents (continuous representation of input before quantization)
|
||||
"""
|
||||
|
||||
z_e = z
|
||||
z_q, indices = self.decode_latents(z)
|
||||
|
||||
if z_mask is not None:
|
||||
commitment_loss = (F.mse_loss(z_e, z_q.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
|
||||
codebook_loss = (F.mse_loss(z_q, z_e.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
|
||||
else:
|
||||
commitment_loss = F.mse_loss(z_e, z_q.detach())
|
||||
codebook_loss = F.mse_loss(z_q, z_e.detach())
|
||||
z_q = (
|
||||
z_e + (z_q - z_e).detach()
|
||||
) # noop in forward pass, straight-through gradient estimator in backward pass
|
||||
|
||||
return z_q, indices, z_e, commitment_loss, codebook_loss
|
||||
|
||||
def embed_code(self, embed_id):
|
||||
return F.embedding(embed_id, self.codebook.weight)
|
||||
|
||||
def decode_code(self, embed_id):
|
||||
return self.embed_code(embed_id).transpose(1, 2)
|
||||
|
||||
def decode_latents(self, latents):
|
||||
encodings = rearrange(latents, "b d t -> (b t) d")
|
||||
codebook = self.codebook.weight # codebook: (N x D)
|
||||
|
||||
# L2 normalize encodings and codebook (ViT-VQGAN)
|
||||
encodings = F.normalize(encodings)
|
||||
codebook = F.normalize(codebook)
|
||||
|
||||
# Compute euclidean distance with codebook
|
||||
dist = (
|
||||
encodings.pow(2).sum(1, keepdim=True)
|
||||
- 2 * encodings @ codebook.t()
|
||||
+ codebook.pow(2).sum(1, keepdim=True).t()
|
||||
)
|
||||
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
|
||||
z_q = self.decode_code(indices)
|
||||
return z_q, indices
|
||||
|
||||
class VectorQuantize(nn.Module):
|
||||
"""
|
||||
Implementation of VQ similar to Karpathy's repo:
|
||||
https://github.com/karpathy/deep-vector-quantization
|
||||
Additionally uses following tricks from Improved VQGAN
|
||||
(https://arxiv.org/pdf/2110.04627.pdf):
|
||||
1. Factorized codes: Perform nearest neighbor lookup in low-dimensional space
|
||||
for improved codebook usage
|
||||
2. l2-normalized codes: Converts euclidean distance to cosine similarity which
|
||||
improves training stability
|
||||
"""
|
||||
|
||||
def __init__(self, input_dim: int, codebook_size: int, codebook_dim: int):
|
||||
super().__init__()
|
||||
self.codebook_size = codebook_size
|
||||
self.codebook_dim = codebook_dim
|
||||
|
||||
self.in_proj = WNConv1d(input_dim, codebook_dim, kernel_size=1)
|
||||
self.out_proj = WNConv1d(codebook_dim, input_dim, kernel_size=1)
|
||||
self.codebook = nn.Embedding(codebook_size, codebook_dim)
|
||||
|
||||
def forward(self, z, z_mask=None):
|
||||
"""Quantized the input tensor using a fixed codebook and returns
|
||||
the corresponding codebook vectors
|
||||
|
||||
Parameters
|
||||
----------
|
||||
z : Tensor[B x D x T]
|
||||
|
||||
Returns
|
||||
-------
|
||||
Tensor[B x D x T]
|
||||
Quantized continuous representation of input
|
||||
Tensor[1]
|
||||
Commitment loss to train encoder to predict vectors closer to codebook
|
||||
entries
|
||||
Tensor[1]
|
||||
Codebook loss to update the codebook
|
||||
Tensor[B x T]
|
||||
Codebook indices (quantized discrete representation of input)
|
||||
Tensor[B x D x T]
|
||||
Projected latents (continuous representation of input before quantization)
|
||||
"""
|
||||
|
||||
# Factorized codes (ViT-VQGAN) Project input into low-dimensional space
|
||||
z_e = self.in_proj(z) # z_e : (B x D x T)
|
||||
z_q, indices = self.decode_latents(z_e)
|
||||
|
||||
if z_mask is not None:
|
||||
commitment_loss = (F.mse_loss(z_e, z_q.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
|
||||
codebook_loss = (F.mse_loss(z_q, z_e.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
|
||||
else:
|
||||
commitment_loss = F.mse_loss(z_e, z_q.detach())
|
||||
codebook_loss = F.mse_loss(z_q, z_e.detach())
|
||||
|
||||
z_q = (
|
||||
z_e + (z_q - z_e).detach()
|
||||
) # noop in forward pass, straight-through gradient estimator in backward pass
|
||||
|
||||
z_q = self.out_proj(z_q)
|
||||
|
||||
return z_q, commitment_loss, codebook_loss, indices, z_e
|
||||
|
||||
def embed_code(self, embed_id):
|
||||
return F.embedding(embed_id, self.codebook.weight)
|
||||
|
||||
def decode_code(self, embed_id):
|
||||
return self.embed_code(embed_id).transpose(1, 2)
|
||||
|
||||
def decode_latents(self, latents):
|
||||
encodings = rearrange(latents, "b d t -> (b t) d")
|
||||
codebook = self.codebook.weight # codebook: (N x D)
|
||||
|
||||
# L2 normalize encodings and codebook (ViT-VQGAN)
|
||||
encodings = F.normalize(encodings)
|
||||
codebook = F.normalize(codebook)
|
||||
|
||||
# Compute euclidean distance with codebook
|
||||
dist = (
|
||||
encodings.pow(2).sum(1, keepdim=True)
|
||||
- 2 * encodings @ codebook.t()
|
||||
+ codebook.pow(2).sum(1, keepdim=True).t()
|
||||
)
|
||||
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
|
||||
z_q = self.decode_code(indices)
|
||||
return z_q, indices
|
||||
|
||||
|
||||
class ResidualVectorQuantize(nn.Module):
|
||||
"""
|
||||
Introduced in SoundStream: An end2end neural audio codec
|
||||
https://arxiv.org/abs/2107.03312
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int = 512,
|
||||
n_codebooks: int = 9,
|
||||
codebook_size: int = 1024,
|
||||
codebook_dim: Union[int, list] = 8,
|
||||
quantizer_dropout: float = 0.0,
|
||||
):
|
||||
super().__init__()
|
||||
if isinstance(codebook_dim, int):
|
||||
codebook_dim = [codebook_dim for _ in range(n_codebooks)]
|
||||
|
||||
self.n_codebooks = n_codebooks
|
||||
self.codebook_dim = codebook_dim
|
||||
self.codebook_size = codebook_size
|
||||
|
||||
self.quantizers = nn.ModuleList(
|
||||
[
|
||||
VectorQuantize(input_dim, codebook_size, codebook_dim[i])
|
||||
for i in range(n_codebooks)
|
||||
]
|
||||
)
|
||||
self.quantizer_dropout = quantizer_dropout
|
||||
|
||||
def forward(self, z, n_quantizers: int = None):
|
||||
"""Quantized the input tensor using a fixed set of `n` codebooks and returns
|
||||
the corresponding codebook vectors
|
||||
Parameters
|
||||
----------
|
||||
z : Tensor[B x D x T]
|
||||
n_quantizers : int, optional
|
||||
No. of quantizers to use
|
||||
(n_quantizers < self.n_codebooks ex: for quantizer dropout)
|
||||
Note: if `self.quantizer_dropout` is True, this argument is ignored
|
||||
when in training mode, and a random number of quantizers is used.
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A dictionary with the following keys:
|
||||
|
||||
"z" : Tensor[B x D x T]
|
||||
Quantized continuous representation of input
|
||||
"codes" : Tensor[B x N x T]
|
||||
Codebook indices for each codebook
|
||||
(quantized discrete representation of input)
|
||||
"latents" : Tensor[B x N*D x T]
|
||||
Projected latents (continuous representation of input before quantization)
|
||||
"vq/commitment_loss" : Tensor[1]
|
||||
Commitment loss to train encoder to predict vectors closer to codebook
|
||||
entries
|
||||
"vq/codebook_loss" : Tensor[1]
|
||||
Codebook loss to update the codebook
|
||||
"""
|
||||
z_q = 0
|
||||
residual = z
|
||||
commitment_loss = 0
|
||||
codebook_loss = 0
|
||||
|
||||
codebook_indices = []
|
||||
latents = []
|
||||
|
||||
if n_quantizers is None:
|
||||
n_quantizers = self.n_codebooks
|
||||
if self.training:
|
||||
n_quantizers = torch.ones((z.shape[0],)) * self.n_codebooks + 1
|
||||
dropout = torch.randint(1, self.n_codebooks + 1, (z.shape[0],))
|
||||
n_dropout = int(z.shape[0] * self.quantizer_dropout)
|
||||
n_quantizers[:n_dropout] = dropout[:n_dropout]
|
||||
n_quantizers = n_quantizers.to(z.device)
|
||||
|
||||
for i, quantizer in enumerate(self.quantizers):
|
||||
if self.training is False and i >= n_quantizers:
|
||||
break
|
||||
|
||||
z_q_i, commitment_loss_i, codebook_loss_i, indices_i, z_e_i = quantizer(
|
||||
residual
|
||||
)
|
||||
|
||||
# Create mask to apply quantizer dropout
|
||||
mask = (
|
||||
torch.full((z.shape[0],), fill_value=i, device=z.device) < n_quantizers
|
||||
)
|
||||
z_q = z_q + z_q_i * mask[:, None, None]
|
||||
residual = residual - z_q_i
|
||||
|
||||
# Sum losses
|
||||
commitment_loss += (commitment_loss_i * mask).mean()
|
||||
codebook_loss += (codebook_loss_i * mask).mean()
|
||||
|
||||
codebook_indices.append(indices_i)
|
||||
latents.append(z_e_i)
|
||||
|
||||
codes = torch.stack(codebook_indices, dim=1)
|
||||
latents = torch.cat(latents, dim=1)
|
||||
|
||||
return z_q, codes, latents, commitment_loss, codebook_loss
|
||||
|
||||
def from_codes(self, codes: torch.Tensor):
|
||||
"""Given the quantized codes, reconstruct the continuous representation
|
||||
Parameters
|
||||
----------
|
||||
codes : Tensor[B x N x T]
|
||||
Quantized discrete representation of input
|
||||
Returns
|
||||
-------
|
||||
Tensor[B x D x T]
|
||||
Quantized continuous representation of input
|
||||
"""
|
||||
z_q = 0.0
|
||||
z_p = []
|
||||
n_codebooks = codes.shape[1]
|
||||
for i in range(n_codebooks):
|
||||
z_p_i = self.quantizers[i].decode_code(codes[:, i, :])
|
||||
z_p.append(z_p_i)
|
||||
|
||||
z_q_i = self.quantizers[i].out_proj(z_p_i)
|
||||
z_q = z_q + z_q_i
|
||||
return z_q, torch.cat(z_p, dim=1), codes
|
||||
|
||||
def from_latents(self, latents: torch.Tensor):
|
||||
"""Given the unquantized latents, reconstruct the
|
||||
continuous representation after quantization.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
latents : Tensor[B x N x T]
|
||||
Continuous representation of input after projection
|
||||
|
||||
Returns
|
||||
-------
|
||||
Tensor[B x D x T]
|
||||
Quantized representation of full-projected space
|
||||
Tensor[B x D x T]
|
||||
Quantized representation of latent space
|
||||
"""
|
||||
z_q = 0
|
||||
z_p = []
|
||||
codes = []
|
||||
dims = np.cumsum([0] + [q.codebook_dim for q in self.quantizers])
|
||||
|
||||
n_codebooks = np.where(dims <= latents.shape[1])[0].max(axis=0, keepdims=True)[
|
||||
0
|
||||
]
|
||||
for i in range(n_codebooks):
|
||||
j, k = dims[i], dims[i + 1]
|
||||
z_p_i, codes_i = self.quantizers[i].decode_latents(latents[:, j:k, :])
|
||||
z_p.append(z_p_i)
|
||||
codes.append(codes_i)
|
||||
|
||||
z_q_i = self.quantizers[i].out_proj(z_p_i)
|
||||
z_q = z_q + z_q_i
|
||||
|
||||
return z_q, torch.cat(z_p, dim=1), torch.stack(codes, dim=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
rvq = ResidualVectorQuantize(quantizer_dropout=True)
|
||||
x = torch.randn(16, 512, 80)
|
||||
y = rvq(x)
|
||||
print(y["latents"].shape)
|
||||
123
indextts/s2mel/dac/utils/__init__.py
Normal file
123
indextts/s2mel/dac/utils/__init__.py
Normal file
@@ -0,0 +1,123 @@
|
||||
from pathlib import Path
|
||||
|
||||
import argbind
|
||||
from audiotools import ml
|
||||
|
||||
import indextts.s2mel.dac as dac
|
||||
|
||||
DAC = dac.model.DAC
|
||||
Accelerator = ml.Accelerator
|
||||
|
||||
__MODEL_LATEST_TAGS__ = {
|
||||
("44khz", "8kbps"): "0.0.1",
|
||||
("24khz", "8kbps"): "0.0.4",
|
||||
("16khz", "8kbps"): "0.0.5",
|
||||
("44khz", "16kbps"): "1.0.0",
|
||||
}
|
||||
|
||||
__MODEL_URLS__ = {
|
||||
(
|
||||
"44khz",
|
||||
"0.0.1",
|
||||
"8kbps",
|
||||
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.1/weights.pth",
|
||||
(
|
||||
"24khz",
|
||||
"0.0.4",
|
||||
"8kbps",
|
||||
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.4/weights_24khz.pth",
|
||||
(
|
||||
"16khz",
|
||||
"0.0.5",
|
||||
"8kbps",
|
||||
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.5/weights_16khz.pth",
|
||||
(
|
||||
"44khz",
|
||||
"1.0.0",
|
||||
"16kbps",
|
||||
): "https://github.com/descriptinc/descript-audio-codec/releases/download/1.0.0/weights_44khz_16kbps.pth",
|
||||
}
|
||||
|
||||
|
||||
@argbind.bind(group="download", positional=True, without_prefix=True)
|
||||
def download(
|
||||
model_type: str = "44khz", model_bitrate: str = "8kbps", tag: str = "latest"
|
||||
):
|
||||
"""
|
||||
Function that downloads the weights file from URL if a local cache is not found.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model_type : str
|
||||
The type of model to download. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz".
|
||||
model_bitrate: str
|
||||
Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
|
||||
Only 44khz model supports 16kbps.
|
||||
tag : str
|
||||
The tag of the model to download. Defaults to "latest".
|
||||
|
||||
Returns
|
||||
-------
|
||||
Path
|
||||
Directory path required to load model via audiotools.
|
||||
"""
|
||||
model_type = model_type.lower()
|
||||
tag = tag.lower()
|
||||
|
||||
assert model_type in [
|
||||
"44khz",
|
||||
"24khz",
|
||||
"16khz",
|
||||
], "model_type must be one of '44khz', '24khz', or '16khz'"
|
||||
|
||||
assert model_bitrate in [
|
||||
"8kbps",
|
||||
"16kbps",
|
||||
], "model_bitrate must be one of '8kbps', or '16kbps'"
|
||||
|
||||
if tag == "latest":
|
||||
tag = __MODEL_LATEST_TAGS__[(model_type, model_bitrate)]
|
||||
|
||||
download_link = __MODEL_URLS__.get((model_type, tag, model_bitrate), None)
|
||||
|
||||
if download_link is None:
|
||||
raise ValueError(
|
||||
f"Could not find model with tag {tag} and model type {model_type}"
|
||||
)
|
||||
|
||||
local_path = (
|
||||
Path.home()
|
||||
/ ".cache"
|
||||
/ "descript"
|
||||
/ "dac"
|
||||
/ f"weights_{model_type}_{model_bitrate}_{tag}.pth"
|
||||
)
|
||||
if not local_path.exists():
|
||||
local_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Download the model
|
||||
import requests
|
||||
|
||||
response = requests.get(download_link)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise ValueError(
|
||||
f"Could not download model. Received response code {response.status_code}"
|
||||
)
|
||||
local_path.write_bytes(response.content)
|
||||
|
||||
return local_path
|
||||
|
||||
|
||||
def load_model(
|
||||
model_type: str = "44khz",
|
||||
model_bitrate: str = "8kbps",
|
||||
tag: str = "latest",
|
||||
load_path: str = None,
|
||||
):
|
||||
if not load_path:
|
||||
load_path = download(
|
||||
model_type=model_type, model_bitrate=model_bitrate, tag=tag
|
||||
)
|
||||
generator = DAC.load(load_path)
|
||||
return generator
|
||||
95
indextts/s2mel/dac/utils/decode.py
Normal file
95
indextts/s2mel/dac/utils/decode.py
Normal file
@@ -0,0 +1,95 @@
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import argbind
|
||||
import numpy as np
|
||||
import torch
|
||||
from audiotools import AudioSignal
|
||||
from tqdm import tqdm
|
||||
|
||||
from dac import DACFile
|
||||
from dac.utils import load_model
|
||||
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
|
||||
@argbind.bind(group="decode", positional=True, without_prefix=True)
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def decode(
|
||||
input: str,
|
||||
output: str = "",
|
||||
weights_path: str = "",
|
||||
model_tag: str = "latest",
|
||||
model_bitrate: str = "8kbps",
|
||||
device: str = "cuda",
|
||||
model_type: str = "44khz",
|
||||
verbose: bool = False,
|
||||
):
|
||||
"""Decode audio from codes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
input : str
|
||||
Path to input directory or file
|
||||
output : str, optional
|
||||
Path to output directory, by default "".
|
||||
If `input` is a directory, the directory sub-tree relative to `input` is re-created in `output`.
|
||||
weights_path : str, optional
|
||||
Path to weights file, by default "". If not specified, the weights file will be downloaded from the internet using the
|
||||
model_tag and model_type.
|
||||
model_tag : str, optional
|
||||
Tag of the model to use, by default "latest". Ignored if `weights_path` is specified.
|
||||
model_bitrate: str
|
||||
Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
|
||||
device : str, optional
|
||||
Device to use, by default "cuda". If "cpu", the model will be loaded on the CPU.
|
||||
model_type : str, optional
|
||||
The type of model to use. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz". Ignored if `weights_path` is specified.
|
||||
"""
|
||||
generator = load_model(
|
||||
model_type=model_type,
|
||||
model_bitrate=model_bitrate,
|
||||
tag=model_tag,
|
||||
load_path=weights_path,
|
||||
)
|
||||
generator.to(device)
|
||||
generator.eval()
|
||||
|
||||
# Find all .dac files in input directory
|
||||
_input = Path(input)
|
||||
input_files = list(_input.glob("**/*.dac"))
|
||||
|
||||
# If input is a .dac file, add it to the list
|
||||
if _input.suffix == ".dac":
|
||||
input_files.append(_input)
|
||||
|
||||
# Create output directory
|
||||
output = Path(output)
|
||||
output.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
for i in tqdm(range(len(input_files)), desc=f"Decoding files"):
|
||||
# Load file
|
||||
artifact = DACFile.load(input_files[i])
|
||||
|
||||
# Reconstruct audio from codes
|
||||
recons = generator.decompress(artifact, verbose=verbose)
|
||||
|
||||
# Compute output path
|
||||
relative_path = input_files[i].relative_to(input)
|
||||
output_dir = output / relative_path.parent
|
||||
if not relative_path.name:
|
||||
output_dir = output
|
||||
relative_path = input_files[i]
|
||||
output_name = relative_path.with_suffix(".wav").name
|
||||
output_path = output_dir / output_name
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Write to file
|
||||
recons.write(output_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = argbind.parse_args()
|
||||
with argbind.scope(args):
|
||||
decode()
|
||||
94
indextts/s2mel/dac/utils/encode.py
Normal file
94
indextts/s2mel/dac/utils/encode.py
Normal file
@@ -0,0 +1,94 @@
|
||||
import math
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import argbind
|
||||
import numpy as np
|
||||
import torch
|
||||
from audiotools import AudioSignal
|
||||
from audiotools.core import util
|
||||
from tqdm import tqdm
|
||||
|
||||
from dac.utils import load_model
|
||||
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
|
||||
@argbind.bind(group="encode", positional=True, without_prefix=True)
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def encode(
|
||||
input: str,
|
||||
output: str = "",
|
||||
weights_path: str = "",
|
||||
model_tag: str = "latest",
|
||||
model_bitrate: str = "8kbps",
|
||||
n_quantizers: int = None,
|
||||
device: str = "cuda",
|
||||
model_type: str = "44khz",
|
||||
win_duration: float = 5.0,
|
||||
verbose: bool = False,
|
||||
):
|
||||
"""Encode audio files in input path to .dac format.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
input : str
|
||||
Path to input audio file or directory
|
||||
output : str, optional
|
||||
Path to output directory, by default "". If `input` is a directory, the directory sub-tree relative to `input` is re-created in `output`.
|
||||
weights_path : str, optional
|
||||
Path to weights file, by default "". If not specified, the weights file will be downloaded from the internet using the
|
||||
model_tag and model_type.
|
||||
model_tag : str, optional
|
||||
Tag of the model to use, by default "latest". Ignored if `weights_path` is specified.
|
||||
model_bitrate: str
|
||||
Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
|
||||
n_quantizers : int, optional
|
||||
Number of quantizers to use, by default None. If not specified, all the quantizers will be used and the model will compress at maximum bitrate.
|
||||
device : str, optional
|
||||
Device to use, by default "cuda"
|
||||
model_type : str, optional
|
||||
The type of model to use. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz". Ignored if `weights_path` is specified.
|
||||
"""
|
||||
generator = load_model(
|
||||
model_type=model_type,
|
||||
model_bitrate=model_bitrate,
|
||||
tag=model_tag,
|
||||
load_path=weights_path,
|
||||
)
|
||||
generator.to(device)
|
||||
generator.eval()
|
||||
kwargs = {"n_quantizers": n_quantizers}
|
||||
|
||||
# Find all audio files in input path
|
||||
input = Path(input)
|
||||
audio_files = util.find_audio(input)
|
||||
|
||||
output = Path(output)
|
||||
output.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
for i in tqdm(range(len(audio_files)), desc="Encoding files"):
|
||||
# Load file
|
||||
signal = AudioSignal(audio_files[i])
|
||||
|
||||
# Encode audio to .dac format
|
||||
artifact = generator.compress(signal, win_duration, verbose=verbose, **kwargs)
|
||||
|
||||
# Compute output path
|
||||
relative_path = audio_files[i].relative_to(input)
|
||||
output_dir = output / relative_path.parent
|
||||
if not relative_path.name:
|
||||
output_dir = output
|
||||
relative_path = audio_files[i]
|
||||
output_name = relative_path.with_suffix(".dac").name
|
||||
output_path = output_dir / output_name
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
artifact.save(output_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = argbind.parse_args()
|
||||
with argbind.scope(args):
|
||||
encode()
|
||||
12
indextts/s2mel/hf_utils.py
Normal file
12
indextts/s2mel/hf_utils.py
Normal file
@@ -0,0 +1,12 @@
|
||||
import os
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
|
||||
def load_custom_model_from_hf(repo_id, model_filename="pytorch_model.bin", config_filename="config.yml"):
|
||||
os.makedirs("./checkpoints", exist_ok=True)
|
||||
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename, cache_dir="./checkpoints")
|
||||
if config_filename is None:
|
||||
return model_path
|
||||
config_path = hf_hub_download(repo_id=repo_id, filename=config_filename, cache_dir="./checkpoints")
|
||||
|
||||
return model_path, config_path
|
||||
@@ -0,0 +1,82 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.data
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
from scipy.io.wavfile import read
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
def load_wav(full_path):
|
||||
sampling_rate, data = read(full_path)
|
||||
return data, sampling_rate
|
||||
|
||||
|
||||
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
||||
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression(x, C=1):
|
||||
return np.exp(x) / C
|
||||
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
return torch.exp(x) / C
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes):
|
||||
output = dynamic_range_compression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
def spectral_de_normalize_torch(magnitudes):
|
||||
output = dynamic_range_decompression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
mel_basis = {}
|
||||
hann_window = {}
|
||||
|
||||
|
||||
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||||
# if torch.min(y) < -1.0:
|
||||
# print("min value is ", torch.min(y))
|
||||
# if torch.max(y) > 1.0:
|
||||
# print("max value is ", torch.max(y))
|
||||
|
||||
global mel_basis, hann_window # pylint: disable=global-statement
|
||||
if f"{str(sampling_rate)}_{str(fmax)}_{str(y.device)}" not in mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||||
mel_basis[str(sampling_rate) + "_" + str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
||||
hann_window[str(sampling_rate) + "_" + str(y.device)] = torch.hann_window(win_size).to(y.device)
|
||||
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.view_as_real(
|
||||
torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[str(sampling_rate) + "_" + str(y.device)],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=True,
|
||||
)
|
||||
)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
||||
|
||||
spec = torch.matmul(mel_basis[str(sampling_rate) + "_" + str(fmax) + "_" + str(y.device)], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
|
||||
return spec
|
||||
610
indextts/s2mel/modules/.ipynb_checkpoints/commons-checkpoint.py
Normal file
610
indextts/s2mel/modules/.ipynb_checkpoints/commons-checkpoint.py
Normal file
@@ -0,0 +1,610 @@
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from munch import Munch
|
||||
import json
|
||||
import argparse
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
def str2bool(v):
|
||||
if isinstance(v, bool):
|
||||
return v
|
||||
if v.lower() in ("yes", "true", "t", "y", "1"):
|
||||
return True
|
||||
elif v.lower() in ("no", "false", "f", "n", "0"):
|
||||
return False
|
||||
else:
|
||||
raise argparse.ArgumentTypeError("Boolean value expected.")
|
||||
|
||||
class AttrDict(dict):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(AttrDict, self).__init__(*args, **kwargs)
|
||||
self.__dict__ = self
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def intersperse(lst, item):
|
||||
result = [item] * (len(lst) * 2 + 1)
|
||||
result[1::2] = lst
|
||||
return result
|
||||
|
||||
|
||||
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
||||
"""KL(P||Q)"""
|
||||
kl = (logs_q - logs_p) - 0.5
|
||||
kl += (
|
||||
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
||||
)
|
||||
return kl
|
||||
|
||||
|
||||
def rand_gumbel(shape):
|
||||
"""Sample from the Gumbel distribution, protect from overflows."""
|
||||
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
||||
return -torch.log(-torch.log(uniform_samples))
|
||||
|
||||
|
||||
def rand_gumbel_like(x):
|
||||
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
||||
return g
|
||||
|
||||
|
||||
def slice_segments(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, :, idx_str:idx_end]
|
||||
return ret
|
||||
|
||||
|
||||
def slice_segments_audio(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, idx_str:idx_end]
|
||||
return ret
|
||||
|
||||
|
||||
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
||||
b, d, t = x.size()
|
||||
if x_lengths is None:
|
||||
x_lengths = t
|
||||
ids_str_max = x_lengths - segment_size + 1
|
||||
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(
|
||||
dtype=torch.long
|
||||
)
|
||||
ret = slice_segments(x, ids_str, segment_size)
|
||||
return ret, ids_str
|
||||
|
||||
|
||||
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
||||
position = torch.arange(length, dtype=torch.float)
|
||||
num_timescales = channels // 2
|
||||
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
||||
num_timescales - 1
|
||||
)
|
||||
inv_timescales = min_timescale * torch.exp(
|
||||
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
||||
)
|
||||
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
||||
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
||||
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
||||
signal = signal.view(1, channels, length)
|
||||
return signal
|
||||
|
||||
|
||||
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return x + signal.to(dtype=x.dtype, device=x.device)
|
||||
|
||||
|
||||
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
||||
|
||||
|
||||
def subsequent_mask(length):
|
||||
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
||||
return mask
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def shift_1d(x):
|
||||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
||||
return x
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def avg_with_mask(x, mask):
|
||||
assert mask.dtype == torch.float, "Mask should be float"
|
||||
|
||||
if mask.ndim == 2:
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
if mask.shape[1] == 1:
|
||||
mask = mask.expand_as(x)
|
||||
|
||||
return (x * mask).sum() / mask.sum()
|
||||
|
||||
|
||||
def generate_path(duration, mask):
|
||||
"""
|
||||
duration: [b, 1, t_x]
|
||||
mask: [b, 1, t_y, t_x]
|
||||
"""
|
||||
device = duration.device
|
||||
|
||||
b, _, t_y, t_x = mask.shape
|
||||
cum_duration = torch.cumsum(duration, -1)
|
||||
|
||||
cum_duration_flat = cum_duration.view(b * t_x)
|
||||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||
path = path.view(b, t_x, t_y)
|
||||
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||||
path = path.unsqueeze(1).transpose(2, 3) * mask
|
||||
return path
|
||||
|
||||
|
||||
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
||||
if isinstance(parameters, torch.Tensor):
|
||||
parameters = [parameters]
|
||||
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
||||
norm_type = float(norm_type)
|
||||
if clip_value is not None:
|
||||
clip_value = float(clip_value)
|
||||
|
||||
total_norm = 0
|
||||
for p in parameters:
|
||||
param_norm = p.grad.data.norm(norm_type)
|
||||
total_norm += param_norm.item() ** norm_type
|
||||
if clip_value is not None:
|
||||
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
||||
total_norm = total_norm ** (1.0 / norm_type)
|
||||
return total_norm
|
||||
|
||||
|
||||
def log_norm(x, mean=-4, std=4, dim=2):
|
||||
"""
|
||||
normalized log mel -> mel -> norm -> log(norm)
|
||||
"""
|
||||
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
|
||||
return x
|
||||
|
||||
|
||||
def load_F0_models(path):
|
||||
# load F0 model
|
||||
from .JDC.model import JDCNet
|
||||
|
||||
F0_model = JDCNet(num_class=1, seq_len=192)
|
||||
params = torch.load(path, map_location="cpu")["net"]
|
||||
F0_model.load_state_dict(params)
|
||||
_ = F0_model.train()
|
||||
|
||||
return F0_model
|
||||
|
||||
|
||||
def modify_w2v_forward(self, output_layer=15):
|
||||
"""
|
||||
change forward method of w2v encoder to get its intermediate layer output
|
||||
:param self:
|
||||
:param layer:
|
||||
:return:
|
||||
"""
|
||||
from transformers.modeling_outputs import BaseModelOutput
|
||||
|
||||
def forward(
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
return_dict=True,
|
||||
):
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
|
||||
conv_attention_mask = attention_mask
|
||||
if attention_mask is not None:
|
||||
# make sure padded tokens output 0
|
||||
hidden_states = hidden_states.masked_fill(
|
||||
~attention_mask.bool().unsqueeze(-1), 0.0
|
||||
)
|
||||
|
||||
# extend attention_mask
|
||||
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
|
||||
dtype=hidden_states.dtype
|
||||
)
|
||||
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
||||
attention_mask = attention_mask.expand(
|
||||
attention_mask.shape[0],
|
||||
1,
|
||||
attention_mask.shape[-1],
|
||||
attention_mask.shape[-1],
|
||||
)
|
||||
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
|
||||
if self.embed_positions is not None:
|
||||
relative_position_embeddings = self.embed_positions(hidden_states)
|
||||
else:
|
||||
relative_position_embeddings = None
|
||||
|
||||
deepspeed_zero3_is_enabled = False
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||||
dropout_probability = torch.rand([])
|
||||
|
||||
skip_the_layer = (
|
||||
True
|
||||
if self.training and (dropout_probability < self.config.layerdrop)
|
||||
else False
|
||||
)
|
||||
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
||||
# under deepspeed zero3 all gpus must run in sync
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
relative_position_embeddings,
|
||||
output_attentions,
|
||||
conv_attention_mask,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
relative_position_embeddings=relative_position_embeddings,
|
||||
output_attentions=output_attentions,
|
||||
conv_attention_mask=conv_attention_mask,
|
||||
)
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if skip_the_layer:
|
||||
layer_outputs = (None, None)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||||
|
||||
if i == output_layer - 1:
|
||||
break
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [hidden_states, all_hidden_states, all_self_attentions]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutput(
|
||||
last_hidden_state=hidden_states,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
||||
|
||||
return forward
|
||||
|
||||
|
||||
MATPLOTLIB_FLAG = False
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
import logging
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def normalize_f0(f0_sequence):
|
||||
# Remove unvoiced frames (replace with -1)
|
||||
voiced_indices = np.where(f0_sequence > 0)[0]
|
||||
f0_voiced = f0_sequence[voiced_indices]
|
||||
|
||||
# Convert to log scale
|
||||
log_f0 = np.log2(f0_voiced)
|
||||
|
||||
# Calculate mean and standard deviation
|
||||
mean_f0 = np.mean(log_f0)
|
||||
std_f0 = np.std(log_f0)
|
||||
|
||||
# Normalize the F0 sequence
|
||||
normalized_f0 = (log_f0 - mean_f0) / std_f0
|
||||
|
||||
# Create the normalized F0 sequence with unvoiced frames
|
||||
normalized_sequence = np.zeros_like(f0_sequence)
|
||||
normalized_sequence[voiced_indices] = normalized_f0
|
||||
normalized_sequence[f0_sequence <= 0] = -1 # Assign -1 to unvoiced frames
|
||||
|
||||
return normalized_sequence
|
||||
|
||||
|
||||
class MyModel(nn.Module):
|
||||
def __init__(self,args):
|
||||
super(MyModel, self).__init__()
|
||||
from modules.flow_matching import CFM
|
||||
from modules.length_regulator import InterpolateRegulator
|
||||
|
||||
length_regulator = InterpolateRegulator(
|
||||
channels=args.length_regulator.channels,
|
||||
sampling_ratios=args.length_regulator.sampling_ratios,
|
||||
is_discrete=args.length_regulator.is_discrete,
|
||||
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
|
||||
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
|
||||
codebook_size=args.length_regulator.content_codebook_size,
|
||||
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
|
||||
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
|
||||
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
|
||||
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
|
||||
)
|
||||
|
||||
self.models = nn.ModuleDict({
|
||||
'cfm': CFM(args),
|
||||
'length_regulator': length_regulator
|
||||
})
|
||||
|
||||
def forward(self, x, target_lengths, prompt_len, cond, y):
|
||||
x = self.models['cfm'](x, target_lengths, prompt_len, cond, y)
|
||||
return x
|
||||
|
||||
def forward2(self, S_ori,target_lengths,F0_ori):
|
||||
x = self.models['length_regulator'](S_ori, ylens=target_lengths, f0=F0_ori)
|
||||
return x
|
||||
|
||||
def build_model(args, stage="DiT"):
|
||||
if stage == "DiT":
|
||||
from modules.flow_matching import CFM
|
||||
from modules.length_regulator import InterpolateRegulator
|
||||
|
||||
length_regulator = InterpolateRegulator(
|
||||
channels=args.length_regulator.channels,
|
||||
sampling_ratios=args.length_regulator.sampling_ratios,
|
||||
is_discrete=args.length_regulator.is_discrete,
|
||||
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
|
||||
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
|
||||
codebook_size=args.length_regulator.content_codebook_size,
|
||||
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
|
||||
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
|
||||
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
|
||||
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
|
||||
)
|
||||
cfm = CFM(args)
|
||||
nets = Munch(
|
||||
cfm=cfm,
|
||||
length_regulator=length_regulator,
|
||||
)
|
||||
|
||||
elif stage == 'codec':
|
||||
from dac.model.dac import Encoder
|
||||
from modules.quantize import (
|
||||
FAquantizer,
|
||||
)
|
||||
|
||||
encoder = Encoder(
|
||||
d_model=args.DAC.encoder_dim,
|
||||
strides=args.DAC.encoder_rates,
|
||||
d_latent=1024,
|
||||
causal=args.causal,
|
||||
lstm=args.lstm,
|
||||
)
|
||||
|
||||
quantizer = FAquantizer(
|
||||
in_dim=1024,
|
||||
n_p_codebooks=1,
|
||||
n_c_codebooks=args.n_c_codebooks,
|
||||
n_t_codebooks=2,
|
||||
n_r_codebooks=3,
|
||||
codebook_size=1024,
|
||||
codebook_dim=8,
|
||||
quantizer_dropout=0.5,
|
||||
causal=args.causal,
|
||||
separate_prosody_encoder=args.separate_prosody_encoder,
|
||||
timbre_norm=args.timbre_norm,
|
||||
)
|
||||
|
||||
nets = Munch(
|
||||
encoder=encoder,
|
||||
quantizer=quantizer,
|
||||
)
|
||||
|
||||
elif stage == "mel_vocos":
|
||||
from modules.vocos import Vocos
|
||||
decoder = Vocos(args)
|
||||
nets = Munch(
|
||||
decoder=decoder,
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown stage: {stage}")
|
||||
|
||||
return nets
|
||||
|
||||
|
||||
def load_checkpoint(
|
||||
model,
|
||||
optimizer,
|
||||
path,
|
||||
load_only_params=True,
|
||||
ignore_modules=[],
|
||||
is_distributed=False,
|
||||
load_ema=False,
|
||||
):
|
||||
state = torch.load(path, map_location="cpu")
|
||||
params = state["net"]
|
||||
if load_ema and "ema" in state:
|
||||
print("Loading EMA")
|
||||
for key in model:
|
||||
i = 0
|
||||
for param_name in params[key]:
|
||||
if "input_pos" in param_name:
|
||||
continue
|
||||
assert params[key][param_name].shape == state["ema"][key][0][i].shape
|
||||
params[key][param_name] = state["ema"][key][0][i].clone()
|
||||
i += 1
|
||||
for key in model:
|
||||
if key in params and key not in ignore_modules:
|
||||
if not is_distributed:
|
||||
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
|
||||
for k in list(params[key].keys()):
|
||||
if k.startswith("module."):
|
||||
params[key][k[len("module.") :]] = params[key][k]
|
||||
del params[key][k]
|
||||
model_state_dict = model[key].state_dict()
|
||||
# 过滤出形状匹配的键值对
|
||||
filtered_state_dict = {
|
||||
k: v
|
||||
for k, v in params[key].items()
|
||||
if k in model_state_dict and v.shape == model_state_dict[k].shape
|
||||
}
|
||||
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
|
||||
if skipped_keys:
|
||||
print(
|
||||
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
|
||||
)
|
||||
print("%s loaded" % key)
|
||||
model[key].load_state_dict(filtered_state_dict, strict=False)
|
||||
_ = [model[key].eval() for key in model]
|
||||
|
||||
if not load_only_params:
|
||||
epoch = state["epoch"] + 1
|
||||
iters = state["iters"]
|
||||
optimizer.load_state_dict(state["optimizer"])
|
||||
optimizer.load_scheduler_state_dict(state["scheduler"])
|
||||
|
||||
else:
|
||||
epoch = 0
|
||||
iters = 0
|
||||
|
||||
return model, optimizer, epoch, iters
|
||||
|
||||
def load_checkpoint2(
|
||||
model,
|
||||
optimizer,
|
||||
path,
|
||||
load_only_params=True,
|
||||
ignore_modules=[],
|
||||
is_distributed=False,
|
||||
load_ema=False,
|
||||
):
|
||||
state = torch.load(path, map_location="cpu")
|
||||
params = state["net"]
|
||||
if load_ema and "ema" in state:
|
||||
print("Loading EMA")
|
||||
for key in model.models:
|
||||
i = 0
|
||||
for param_name in params[key]:
|
||||
if "input_pos" in param_name:
|
||||
continue
|
||||
assert params[key][param_name].shape == state["ema"][key][0][i].shape
|
||||
params[key][param_name] = state["ema"][key][0][i].clone()
|
||||
i += 1
|
||||
for key in model.models:
|
||||
if key in params and key not in ignore_modules:
|
||||
if not is_distributed:
|
||||
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
|
||||
for k in list(params[key].keys()):
|
||||
if k.startswith("module."):
|
||||
params[key][k[len("module.") :]] = params[key][k]
|
||||
del params[key][k]
|
||||
model_state_dict = model.models[key].state_dict()
|
||||
# 过滤出形状匹配的键值对
|
||||
filtered_state_dict = {
|
||||
k: v
|
||||
for k, v in params[key].items()
|
||||
if k in model_state_dict and v.shape == model_state_dict[k].shape
|
||||
}
|
||||
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
|
||||
if skipped_keys:
|
||||
print(
|
||||
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
|
||||
)
|
||||
print("%s loaded" % key)
|
||||
model.models[key].load_state_dict(filtered_state_dict, strict=False)
|
||||
model.eval()
|
||||
# _ = [model[key].eval() for key in model]
|
||||
|
||||
if not load_only_params:
|
||||
epoch = state["epoch"] + 1
|
||||
iters = state["iters"]
|
||||
optimizer.load_state_dict(state["optimizer"])
|
||||
optimizer.load_scheduler_state_dict(state["scheduler"])
|
||||
|
||||
else:
|
||||
epoch = 0
|
||||
iters = 0
|
||||
|
||||
return model, optimizer, epoch, iters
|
||||
|
||||
def recursive_munch(d):
|
||||
if isinstance(d, dict):
|
||||
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
||||
elif isinstance(d, list):
|
||||
return [recursive_munch(v) for v in d]
|
||||
else:
|
||||
return d
|
||||
@@ -0,0 +1,258 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import math
|
||||
|
||||
from modules.gpt_fast.model import ModelArgs, Transformer
|
||||
# from modules.torchscript_modules.gpt_fast_model import ModelArgs, Transformer
|
||||
from modules.wavenet import WN
|
||||
from modules.commons import sequence_mask
|
||||
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
def modulate(x, shift, scale):
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
|
||||
|
||||
#################################################################################
|
||||
# Embedding Layers for Timesteps and Class Labels #
|
||||
#################################################################################
|
||||
|
||||
class TimestepEmbedder(nn.Module):
|
||||
"""
|
||||
Embeds scalar timesteps into vector representations.
|
||||
"""
|
||||
def __init__(self, hidden_size, frequency_embedding_size=256):
|
||||
super().__init__()
|
||||
self.mlp = nn.Sequential(
|
||||
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
||||
nn.SiLU(),
|
||||
nn.Linear(hidden_size, hidden_size, bias=True),
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
self.max_period = 10000
|
||||
self.scale = 1000
|
||||
|
||||
half = frequency_embedding_size // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(self.max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||||
)
|
||||
self.register_buffer("freqs", freqs)
|
||||
|
||||
def timestep_embedding(self, t):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param t: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an (N, D) Tensor of positional embeddings.
|
||||
"""
|
||||
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
||||
|
||||
args = self.scale * t[:, None].float() * self.freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if self.frequency_embedding_size % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
return embedding
|
||||
|
||||
def forward(self, t):
|
||||
t_freq = self.timestep_embedding(t)
|
||||
t_emb = self.mlp(t_freq)
|
||||
return t_emb
|
||||
|
||||
|
||||
class StyleEmbedder(nn.Module):
|
||||
"""
|
||||
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
||||
"""
|
||||
def __init__(self, input_size, hidden_size, dropout_prob):
|
||||
super().__init__()
|
||||
use_cfg_embedding = dropout_prob > 0
|
||||
self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size)
|
||||
self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True))
|
||||
self.input_size = input_size
|
||||
self.dropout_prob = dropout_prob
|
||||
|
||||
def forward(self, labels, train, force_drop_ids=None):
|
||||
use_dropout = self.dropout_prob > 0
|
||||
if (train and use_dropout) or (force_drop_ids is not None):
|
||||
labels = self.token_drop(labels, force_drop_ids)
|
||||
else:
|
||||
labels = self.style_in(labels)
|
||||
embeddings = labels
|
||||
return embeddings
|
||||
|
||||
class FinalLayer(nn.Module):
|
||||
"""
|
||||
The final layer of DiT.
|
||||
"""
|
||||
def __init__(self, hidden_size, patch_size, out_channels):
|
||||
super().__init__()
|
||||
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True))
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
||||
)
|
||||
|
||||
def forward(self, x, c):
|
||||
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
||||
x = modulate(self.norm_final(x), shift, scale)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
class DiT(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
args
|
||||
):
|
||||
super(DiT, self).__init__()
|
||||
self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False
|
||||
self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False
|
||||
self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False
|
||||
model_args = ModelArgs(
|
||||
block_size=16384,#args.DiT.block_size,
|
||||
n_layer=args.DiT.depth,
|
||||
n_head=args.DiT.num_heads,
|
||||
dim=args.DiT.hidden_dim,
|
||||
head_dim=args.DiT.hidden_dim // args.DiT.num_heads,
|
||||
vocab_size=1024,
|
||||
uvit_skip_connection=self.uvit_skip_connection,
|
||||
time_as_token=self.time_as_token,
|
||||
)
|
||||
self.transformer = Transformer(model_args)
|
||||
self.in_channels = args.DiT.in_channels
|
||||
self.out_channels = args.DiT.in_channels
|
||||
self.num_heads = args.DiT.num_heads
|
||||
|
||||
self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True))
|
||||
|
||||
self.content_type = args.DiT.content_type # 'discrete' or 'continuous'
|
||||
self.content_codebook_size = args.DiT.content_codebook_size # for discrete content
|
||||
self.content_dim = args.DiT.content_dim # for continuous content
|
||||
self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim) # discrete content
|
||||
self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True) # continuous content
|
||||
|
||||
self.is_causal = args.DiT.is_causal
|
||||
|
||||
self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim)
|
||||
|
||||
# self.style_embedder1 = weight_norm(nn.Linear(1024, args.DiT.hidden_dim, bias=True))
|
||||
# self.style_embedder2 = weight_norm(nn.Linear(1024, args.style_encoder.dim, bias=True))
|
||||
|
||||
input_pos = torch.arange(16384)
|
||||
self.register_buffer("input_pos", input_pos)
|
||||
|
||||
self.final_layer_type = args.DiT.final_layer_type # mlp or wavenet
|
||||
if self.final_layer_type == 'wavenet':
|
||||
self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim)
|
||||
self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim)
|
||||
self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1)
|
||||
self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim,
|
||||
kernel_size=args.wavenet.kernel_size,
|
||||
dilation_rate=args.wavenet.dilation_rate,
|
||||
n_layers=args.wavenet.num_layers,
|
||||
gin_channels=args.wavenet.hidden_dim,
|
||||
p_dropout=args.wavenet.p_dropout,
|
||||
causal=False)
|
||||
self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim)
|
||||
self.res_projection = nn.Linear(args.DiT.hidden_dim,
|
||||
args.wavenet.hidden_dim) # residual connection from tranformer output to final output
|
||||
self.wavenet_style_condition = args.wavenet.style_condition
|
||||
assert args.DiT.style_condition == args.wavenet.style_condition
|
||||
else:
|
||||
self.final_mlp = nn.Sequential(
|
||||
nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim),
|
||||
nn.SiLU(),
|
||||
nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels),
|
||||
)
|
||||
self.transformer_style_condition = args.DiT.style_condition
|
||||
|
||||
|
||||
self.class_dropout_prob = args.DiT.class_dropout_prob
|
||||
self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim)
|
||||
|
||||
self.long_skip_connection = args.DiT.long_skip_connection
|
||||
self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim)
|
||||
|
||||
self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 +
|
||||
args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token),
|
||||
args.DiT.hidden_dim)
|
||||
if self.style_as_token:
|
||||
self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim)
|
||||
|
||||
def setup_caches(self, max_batch_size, max_seq_length):
|
||||
self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False)
|
||||
|
||||
def forward(self, x, prompt_x, x_lens, t, style, cond, mask_content=False):
|
||||
"""
|
||||
x (torch.Tensor): random noise
|
||||
prompt_x (torch.Tensor): reference mel + zero mel
|
||||
shape: (batch_size, 80, 795+1068)
|
||||
x_lens (torch.Tensor): mel frames output
|
||||
shape: (batch_size, mel_timesteps)
|
||||
t (torch.Tensor): radshape:
|
||||
shape: (batch_size)
|
||||
style (torch.Tensor): reference global style
|
||||
shape: (batch_size, 192)
|
||||
cond (torch.Tensor): semantic info of reference audio and altered audio
|
||||
shape: (batch_size, mel_timesteps(795+1069), 512)
|
||||
|
||||
"""
|
||||
class_dropout = False
|
||||
if self.training and torch.rand(1) < self.class_dropout_prob:
|
||||
class_dropout = True
|
||||
if not self.training and mask_content:
|
||||
class_dropout = True
|
||||
# cond_in_module = self.cond_embedder if self.content_type == 'discrete' else self.cond_projection
|
||||
cond_in_module = self.cond_projection
|
||||
|
||||
B, _, T = x.size()
|
||||
|
||||
|
||||
t1 = self.t_embedder(t) # (N, D) # t1 [2, 512]
|
||||
cond = cond_in_module(cond) # cond [2,1863,512]->[2,1863,512]
|
||||
|
||||
x = x.transpose(1, 2) # [2,1863,80]
|
||||
prompt_x = prompt_x.transpose(1, 2) # [2,1863,80]
|
||||
|
||||
x_in = torch.cat([x, prompt_x, cond], dim=-1) # 80+80+512=672 [2, 1863, 672]
|
||||
|
||||
if self.transformer_style_condition and not self.style_as_token: # True and True
|
||||
x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1) #[2, 1863, 864]
|
||||
|
||||
if class_dropout: #False
|
||||
x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0 # 80维后全置为0
|
||||
|
||||
x_in = self.cond_x_merge_linear(x_in) # (N, T, D) [2, 1863, 512]
|
||||
|
||||
if self.style_as_token: # False
|
||||
style = self.style_in(style)
|
||||
style = torch.zeros_like(style) if class_dropout else style
|
||||
x_in = torch.cat([style.unsqueeze(1), x_in], dim=1)
|
||||
|
||||
if self.time_as_token: # False
|
||||
x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1)
|
||||
|
||||
x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1) #torch.Size([1, 1, 1863])True
|
||||
input_pos = self.input_pos[:x_in.size(1)] # (T,) range(0,1863)
|
||||
x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None # torch.Size([1, 1, 1863, 1863]
|
||||
x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded) # [2, 1863, 512]
|
||||
x_res = x_res[:, 1:] if self.time_as_token else x_res
|
||||
x_res = x_res[:, 1:] if self.style_as_token else x_res
|
||||
|
||||
if self.long_skip_connection: #True
|
||||
x_res = self.skip_linear(torch.cat([x_res, x], dim=-1))
|
||||
if self.final_layer_type == 'wavenet':
|
||||
x = self.conv1(x_res)
|
||||
x = x.transpose(1, 2)
|
||||
t2 = self.t_embedder2(t)
|
||||
x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection(
|
||||
x_res) # long residual connection
|
||||
x = self.final_layer(x, t1).transpose(1, 2)
|
||||
x = self.conv2(x)
|
||||
else:
|
||||
x = self.final_mlp(x_res)
|
||||
x = x.transpose(1, 2)
|
||||
# x [2,80,1863]
|
||||
return x
|
||||
@@ -0,0 +1,171 @@
|
||||
from abc import ABC
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from modules.diffusion_transformer import DiT
|
||||
from modules.commons import sequence_mask
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
class BASECFM(torch.nn.Module, ABC):
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
super().__init__()
|
||||
self.sigma_min = 1e-6
|
||||
|
||||
self.estimator = None
|
||||
|
||||
self.in_channels = args.DiT.in_channels
|
||||
|
||||
self.criterion = torch.nn.MSELoss() if args.reg_loss_type == "l2" else torch.nn.L1Loss()
|
||||
|
||||
if hasattr(args.DiT, 'zero_prompt_speech_token'):
|
||||
self.zero_prompt_speech_token = args.DiT.zero_prompt_speech_token
|
||||
else:
|
||||
self.zero_prompt_speech_token = False
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self, mu, x_lens, prompt, style, f0, n_timesteps, temperature=1.0, inference_cfg_rate=0.5):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
mu (torch.Tensor): semantic info of reference audio and altered audio
|
||||
shape: (batch_size, mel_timesteps(795+1069), 512)
|
||||
x_lens (torch.Tensor): mel frames output
|
||||
shape: (batch_size, mel_timesteps)
|
||||
prompt (torch.Tensor): reference mel
|
||||
shape: (batch_size, 80, 795)
|
||||
style (torch.Tensor): reference global style
|
||||
shape: (batch_size, 192)
|
||||
f0: None
|
||||
n_timesteps (int): number of diffusion steps
|
||||
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
||||
|
||||
Returns:
|
||||
sample: generated mel-spectrogram
|
||||
shape: (batch_size, 80, mel_timesteps)
|
||||
"""
|
||||
B, T = mu.size(0), mu.size(1)
|
||||
z = torch.randn([B, self.in_channels, T], device=mu.device) * temperature
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
||||
# t_span = t_span + (-1) * (torch.cos(torch.pi / 2 * t_span) - 1 + t_span)
|
||||
return self.solve_euler(z, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate)
|
||||
|
||||
def solve_euler(self, x, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate=0.5):
|
||||
"""
|
||||
Fixed euler solver for ODEs.
|
||||
Args:
|
||||
x (torch.Tensor): random noise
|
||||
t_span (torch.Tensor): n_timesteps interpolated
|
||||
shape: (n_timesteps + 1,)
|
||||
mu (torch.Tensor): semantic info of reference audio and altered audio
|
||||
shape: (batch_size, mel_timesteps(795+1069), 512)
|
||||
x_lens (torch.Tensor): mel frames output
|
||||
shape: (batch_size, mel_timesteps)
|
||||
prompt (torch.Tensor): reference mel
|
||||
shape: (batch_size, 80, 795)
|
||||
style (torch.Tensor): reference global style
|
||||
shape: (batch_size, 192)
|
||||
"""
|
||||
t, _, _ = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||
|
||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||
# Or in future might add like a return_all_steps flag
|
||||
sol = []
|
||||
# apply prompt
|
||||
prompt_len = prompt.size(-1)
|
||||
prompt_x = torch.zeros_like(x)
|
||||
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
|
||||
x[..., :prompt_len] = 0
|
||||
if self.zero_prompt_speech_token:
|
||||
mu[..., :prompt_len] = 0
|
||||
for step in tqdm(range(1, len(t_span))):
|
||||
dt = t_span[step] - t_span[step - 1]
|
||||
if inference_cfg_rate > 0:
|
||||
# Stack original and CFG (null) inputs for batched processing
|
||||
stacked_prompt_x = torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0)
|
||||
stacked_style = torch.cat([style, torch.zeros_like(style)], dim=0)
|
||||
stacked_mu = torch.cat([mu, torch.zeros_like(mu)], dim=0)
|
||||
stacked_x = torch.cat([x, x], dim=0)
|
||||
stacked_t = torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0)
|
||||
|
||||
# Perform a single forward pass for both original and CFG inputs
|
||||
stacked_dphi_dt = self.estimator(
|
||||
stacked_x, stacked_prompt_x, x_lens, stacked_t, stacked_style, stacked_mu,
|
||||
)
|
||||
|
||||
# Split the output back into the original and CFG components
|
||||
dphi_dt, cfg_dphi_dt = stacked_dphi_dt.chunk(2, dim=0)
|
||||
|
||||
# Apply CFG formula
|
||||
dphi_dt = (1.0 + inference_cfg_rate) * dphi_dt - inference_cfg_rate * cfg_dphi_dt
|
||||
else:
|
||||
dphi_dt = self.estimator(x, prompt_x, x_lens, t.unsqueeze(0), style, mu)
|
||||
|
||||
x = x + dt * dphi_dt
|
||||
t = t + dt
|
||||
sol.append(x)
|
||||
if step < len(t_span) - 1:
|
||||
dt = t_span[step + 1] - t
|
||||
x[:, :, :prompt_len] = 0
|
||||
|
||||
return sol[-1]
|
||||
def forward(self, x1, x_lens, prompt_lens, mu, style):
|
||||
"""Computes diffusion loss
|
||||
|
||||
Args:
|
||||
mu (torch.Tensor): semantic info of reference audio and altered audio
|
||||
shape: (batch_size, mel_timesteps(795+1069), 512)
|
||||
x1: mel
|
||||
x_lens (torch.Tensor): mel frames output
|
||||
shape: (batch_size, mel_timesteps)
|
||||
prompt (torch.Tensor): reference mel
|
||||
shape: (batch_size, 80, 795)
|
||||
style (torch.Tensor): reference global style
|
||||
shape: (batch_size, 192)
|
||||
|
||||
Returns:
|
||||
loss: conditional flow matching loss
|
||||
y: conditional flow
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
b, _, t = x1.shape
|
||||
|
||||
# random timestep
|
||||
t = torch.rand([b, 1, 1], device=mu.device, dtype=x1.dtype)
|
||||
# sample noise p(x_0)
|
||||
z = torch.randn_like(x1)
|
||||
|
||||
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
||||
u = x1 - (1 - self.sigma_min) * z
|
||||
|
||||
prompt = torch.zeros_like(x1)
|
||||
for bib in range(b):
|
||||
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
|
||||
# range covered by prompt are set to 0
|
||||
y[bib, :, :prompt_lens[bib]] = 0
|
||||
if self.zero_prompt_speech_token:
|
||||
mu[bib, :, :prompt_lens[bib]] = 0
|
||||
|
||||
estimator_out = self.estimator(y, prompt, x_lens, t.squeeze(1).squeeze(1), style, mu, prompt_lens)
|
||||
loss = 0
|
||||
for bib in range(b):
|
||||
loss += self.criterion(estimator_out[bib, :, prompt_lens[bib]:x_lens[bib]], u[bib, :, prompt_lens[bib]:x_lens[bib]])
|
||||
loss /= b
|
||||
|
||||
return loss, estimator_out + (1 - self.sigma_min) * z
|
||||
|
||||
|
||||
|
||||
class CFM(BASECFM):
|
||||
def __init__(self, args):
|
||||
super().__init__(
|
||||
args
|
||||
)
|
||||
if args.dit_type == "DiT":
|
||||
self.estimator = DiT(args)
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown diffusion type {args.dit_type}")
|
||||
@@ -0,0 +1,141 @@
|
||||
from typing import Tuple
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from modules.commons import sequence_mask
|
||||
import numpy as np
|
||||
from dac.nn.quantize import VectorQuantize
|
||||
|
||||
# f0_bin = 256
|
||||
f0_max = 1100.0
|
||||
f0_min = 50.0
|
||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||
|
||||
def f0_to_coarse(f0, f0_bin):
|
||||
f0_mel = 1127 * (1 + f0 / 700).log()
|
||||
a = (f0_bin - 2) / (f0_mel_max - f0_mel_min)
|
||||
b = f0_mel_min * a - 1.
|
||||
f0_mel = torch.where(f0_mel > 0, f0_mel * a - b, f0_mel)
|
||||
# torch.clip_(f0_mel, min=1., max=float(f0_bin - 1))
|
||||
f0_coarse = torch.round(f0_mel).long()
|
||||
f0_coarse = f0_coarse * (f0_coarse > 0)
|
||||
f0_coarse = f0_coarse + ((f0_coarse < 1) * 1)
|
||||
f0_coarse = f0_coarse * (f0_coarse < f0_bin)
|
||||
f0_coarse = f0_coarse + ((f0_coarse >= f0_bin) * (f0_bin - 1))
|
||||
return f0_coarse
|
||||
|
||||
class InterpolateRegulator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
sampling_ratios: Tuple,
|
||||
is_discrete: bool = False,
|
||||
in_channels: int = None, # only applies to continuous input
|
||||
vector_quantize: bool = False, # whether to use vector quantization, only applies to continuous input
|
||||
codebook_size: int = 1024, # for discrete only
|
||||
out_channels: int = None,
|
||||
groups: int = 1,
|
||||
n_codebooks: int = 1, # number of codebooks
|
||||
quantizer_dropout: float = 0.0, # dropout for quantizer
|
||||
f0_condition: bool = False,
|
||||
n_f0_bins: int = 512,
|
||||
):
|
||||
super().__init__()
|
||||
self.sampling_ratios = sampling_ratios
|
||||
out_channels = out_channels or channels
|
||||
model = nn.ModuleList([])
|
||||
if len(sampling_ratios) > 0:
|
||||
self.interpolate = True
|
||||
for _ in sampling_ratios:
|
||||
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
||||
norm = nn.GroupNorm(groups, channels)
|
||||
act = nn.Mish()
|
||||
model.extend([module, norm, act])
|
||||
else:
|
||||
self.interpolate = False
|
||||
model.append(
|
||||
nn.Conv1d(channels, out_channels, 1, 1)
|
||||
)
|
||||
self.model = nn.Sequential(*model)
|
||||
self.embedding = nn.Embedding(codebook_size, channels)
|
||||
self.is_discrete = is_discrete
|
||||
|
||||
self.mask_token = nn.Parameter(torch.zeros(1, channels))
|
||||
|
||||
self.n_codebooks = n_codebooks
|
||||
if n_codebooks > 1:
|
||||
self.extra_codebooks = nn.ModuleList([
|
||||
nn.Embedding(codebook_size, channels) for _ in range(n_codebooks - 1)
|
||||
])
|
||||
self.extra_codebook_mask_tokens = nn.ParameterList([
|
||||
nn.Parameter(torch.zeros(1, channels)) for _ in range(n_codebooks - 1)
|
||||
])
|
||||
self.quantizer_dropout = quantizer_dropout
|
||||
|
||||
if f0_condition:
|
||||
self.f0_embedding = nn.Embedding(n_f0_bins, channels)
|
||||
self.f0_condition = f0_condition
|
||||
self.n_f0_bins = n_f0_bins
|
||||
self.f0_bins = torch.arange(2, 1024, 1024 // n_f0_bins)
|
||||
self.f0_mask = nn.Parameter(torch.zeros(1, channels))
|
||||
else:
|
||||
self.f0_condition = False
|
||||
|
||||
if not is_discrete:
|
||||
self.content_in_proj = nn.Linear(in_channels, channels)
|
||||
if vector_quantize:
|
||||
self.vq = VectorQuantize(channels, codebook_size, 8)
|
||||
|
||||
def forward(self, x, ylens=None, n_quantizers=None, f0=None):
|
||||
# apply token drop
|
||||
if self.training:
|
||||
n_quantizers = torch.ones((x.shape[0],)) * self.n_codebooks
|
||||
dropout = torch.randint(1, self.n_codebooks + 1, (x.shape[0],))
|
||||
n_dropout = int(x.shape[0] * self.quantizer_dropout)
|
||||
n_quantizers[:n_dropout] = dropout[:n_dropout]
|
||||
n_quantizers = n_quantizers.to(x.device)
|
||||
# decide whether to drop for each sample in batch
|
||||
else:
|
||||
n_quantizers = torch.ones((x.shape[0],), device=x.device) * (self.n_codebooks if n_quantizers is None else n_quantizers)
|
||||
if self.is_discrete:
|
||||
if self.n_codebooks > 1:
|
||||
assert len(x.size()) == 3
|
||||
x_emb = self.embedding(x[:, 0])
|
||||
for i, emb in enumerate(self.extra_codebooks):
|
||||
x_emb = x_emb + (n_quantizers > i+1)[..., None, None] * emb(x[:, i+1])
|
||||
# add mask token if not using this codebook
|
||||
# x_emb = x_emb + (n_quantizers <= i+1)[..., None, None] * self.extra_codebook_mask_tokens[i]
|
||||
x = x_emb
|
||||
elif self.n_codebooks == 1:
|
||||
if len(x.size()) == 2:
|
||||
x = self.embedding(x)
|
||||
else:
|
||||
x = self.embedding(x[:, 0])
|
||||
else:
|
||||
x = self.content_in_proj(x)
|
||||
# x in (B, T, D)
|
||||
mask = sequence_mask(ylens).unsqueeze(-1)
|
||||
if self.interpolate:
|
||||
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
||||
else:
|
||||
x = x.transpose(1, 2).contiguous()
|
||||
mask = mask[:, :x.size(2), :]
|
||||
ylens = ylens.clamp(max=x.size(2)).long()
|
||||
if self.f0_condition:
|
||||
if f0 is None:
|
||||
x = x + self.f0_mask.unsqueeze(-1)
|
||||
else:
|
||||
#quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device)) # (N, T)
|
||||
quantized_f0 = f0_to_coarse(f0, self.n_f0_bins)
|
||||
quantized_f0 = quantized_f0.clamp(0, self.n_f0_bins - 1).long()
|
||||
f0_emb = self.f0_embedding(quantized_f0)
|
||||
f0_emb = F.interpolate(f0_emb.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
||||
x = x + f0_emb
|
||||
out = self.model(x).transpose(1, 2).contiguous()
|
||||
if hasattr(self, 'vq'):
|
||||
out_q, commitment_loss, codebook_loss, codes, out, = self.vq(out.transpose(1, 2))
|
||||
out_q = out_q.transpose(1, 2)
|
||||
return out_q * mask, ylens, codes, commitment_loss, codebook_loss
|
||||
olens = ylens
|
||||
return out * mask, olens, None, None, None
|
||||
5
indextts/s2mel/modules/alias_free_torch/__init__.py
Normal file
5
indextts/s2mel/modules/alias_free_torch/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
|
||||
from .filter import *
|
||||
from .resample import *
|
||||
from .act import *
|
||||
29
indextts/s2mel/modules/alias_free_torch/act.py
Normal file
29
indextts/s2mel/modules/alias_free_torch/act.py
Normal file
@@ -0,0 +1,29 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
|
||||
import torch.nn as nn
|
||||
from .resample import UpSample1d, DownSample1d
|
||||
|
||||
|
||||
class Activation1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
activation,
|
||||
up_ratio: int = 2,
|
||||
down_ratio: int = 2,
|
||||
up_kernel_size: int = 12,
|
||||
down_kernel_size: int = 12,
|
||||
):
|
||||
super().__init__()
|
||||
self.up_ratio = up_ratio
|
||||
self.down_ratio = down_ratio
|
||||
self.act = activation
|
||||
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||||
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||||
|
||||
# x: [B,C,T]
|
||||
def forward(self, x):
|
||||
x = self.upsample(x)
|
||||
x = self.act(x)
|
||||
x = self.downsample(x)
|
||||
|
||||
return x
|
||||
96
indextts/s2mel/modules/alias_free_torch/filter.py
Normal file
96
indextts/s2mel/modules/alias_free_torch/filter.py
Normal file
@@ -0,0 +1,96 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
if "sinc" in dir(torch):
|
||||
sinc = torch.sinc
|
||||
else:
|
||||
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/core.html
|
||||
def sinc(x: torch.Tensor):
|
||||
"""
|
||||
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
||||
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
||||
"""
|
||||
return torch.where(
|
||||
x == 0,
|
||||
torch.tensor(1.0, device=x.device, dtype=x.dtype),
|
||||
torch.sin(math.pi * x) / math.pi / x,
|
||||
)
|
||||
|
||||
|
||||
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/lowpass.html
|
||||
def kaiser_sinc_filter1d(
|
||||
cutoff, half_width, kernel_size
|
||||
): # return filter [1,1,kernel_size]
|
||||
even = kernel_size % 2 == 0
|
||||
half_size = kernel_size // 2
|
||||
|
||||
# For kaiser window
|
||||
delta_f = 4 * half_width
|
||||
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
||||
if A > 50.0:
|
||||
beta = 0.1102 * (A - 8.7)
|
||||
elif A >= 21.0:
|
||||
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
|
||||
else:
|
||||
beta = 0.0
|
||||
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
||||
|
||||
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
||||
if even:
|
||||
time = torch.arange(-half_size, half_size) + 0.5
|
||||
else:
|
||||
time = torch.arange(kernel_size) - half_size
|
||||
if cutoff == 0:
|
||||
filter_ = torch.zeros_like(time)
|
||||
else:
|
||||
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
||||
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
||||
# of the constant component in the input signal.
|
||||
filter_ /= filter_.sum()
|
||||
filter = filter_.view(1, 1, kernel_size)
|
||||
|
||||
return filter
|
||||
|
||||
|
||||
class LowPassFilter1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
cutoff=0.5,
|
||||
half_width=0.6,
|
||||
stride: int = 1,
|
||||
padding: bool = True,
|
||||
padding_mode: str = "replicate",
|
||||
kernel_size: int = 12,
|
||||
):
|
||||
# kernel_size should be even number for stylegan3 setup,
|
||||
# in this implementation, odd number is also possible.
|
||||
super().__init__()
|
||||
if cutoff < -0.0:
|
||||
raise ValueError("Minimum cutoff must be larger than zero.")
|
||||
if cutoff > 0.5:
|
||||
raise ValueError("A cutoff above 0.5 does not make sense.")
|
||||
self.kernel_size = kernel_size
|
||||
self.even = kernel_size % 2 == 0
|
||||
self.pad_left = kernel_size // 2 - int(self.even)
|
||||
self.pad_right = kernel_size // 2
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.padding_mode = padding_mode
|
||||
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
# input [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
if self.padding:
|
||||
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
|
||||
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
||||
|
||||
return out
|
||||
57
indextts/s2mel/modules/alias_free_torch/resample.py
Normal file
57
indextts/s2mel/modules/alias_free_torch/resample.py
Normal file
@@ -0,0 +1,57 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from .filter import LowPassFilter1d
|
||||
from .filter import kaiser_sinc_filter1d
|
||||
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = (
|
||||
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
)
|
||||
self.stride = ratio
|
||||
self.pad = self.kernel_size // ratio - 1
|
||||
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
||||
self.pad_right = (
|
||||
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
||||
)
|
||||
filter = kaiser_sinc_filter1d(
|
||||
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
|
||||
)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
# x: [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
x = F.pad(x, (self.pad, self.pad), mode="replicate")
|
||||
x = self.ratio * F.conv_transpose1d(
|
||||
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
|
||||
)
|
||||
x = x[..., self.pad_left : -self.pad_right]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DownSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = (
|
||||
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
)
|
||||
self.lowpass = LowPassFilter1d(
|
||||
cutoff=0.5 / ratio,
|
||||
half_width=0.6 / ratio,
|
||||
stride=ratio,
|
||||
kernel_size=self.kernel_size,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
xx = self.lowpass(x)
|
||||
|
||||
return xx
|
||||
82
indextts/s2mel/modules/audio.py
Normal file
82
indextts/s2mel/modules/audio.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.data
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
from scipy.io.wavfile import read
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
def load_wav(full_path):
|
||||
sampling_rate, data = read(full_path)
|
||||
return data, sampling_rate
|
||||
|
||||
|
||||
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
||||
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression(x, C=1):
|
||||
return np.exp(x) / C
|
||||
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
return torch.exp(x) / C
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes):
|
||||
output = dynamic_range_compression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
def spectral_de_normalize_torch(magnitudes):
|
||||
output = dynamic_range_decompression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
mel_basis = {}
|
||||
hann_window = {}
|
||||
|
||||
|
||||
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||||
# if torch.min(y) < -1.0:
|
||||
# print("min value is ", torch.min(y))
|
||||
# if torch.max(y) > 1.0:
|
||||
# print("max value is ", torch.max(y))
|
||||
|
||||
global mel_basis, hann_window # pylint: disable=global-statement
|
||||
if f"{str(sampling_rate)}_{str(fmax)}_{str(y.device)}" not in mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||||
mel_basis[str(sampling_rate) + "_" + str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
||||
hann_window[str(sampling_rate) + "_" + str(y.device)] = torch.hann_window(win_size).to(y.device)
|
||||
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.view_as_real(
|
||||
torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[str(sampling_rate) + "_" + str(y.device)],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=True,
|
||||
)
|
||||
)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
||||
|
||||
spec = torch.matmul(mel_basis[str(sampling_rate) + "_" + str(fmax) + "_" + str(y.device)], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
|
||||
return spec
|
||||
120
indextts/s2mel/modules/bigvgan/activations.py
Normal file
120
indextts/s2mel/modules/bigvgan/activations.py
Normal file
@@ -0,0 +1,120 @@
|
||||
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch
|
||||
from torch import nn, sin, pow
|
||||
from torch.nn import Parameter
|
||||
|
||||
|
||||
class Snake(nn.Module):
|
||||
'''
|
||||
Implementation of a sine-based periodic activation function
|
||||
Shape:
|
||||
- Input: (B, C, T)
|
||||
- Output: (B, C, T), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||
https://arxiv.org/abs/2006.08195
|
||||
Examples:
|
||||
>>> a1 = snake(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||||
'''
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- alpha: trainable parameter
|
||||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||
alpha will be trained along with the rest of your model.
|
||||
'''
|
||||
super(Snake, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale: # log scale alphas initialized to zeros
|
||||
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
||||
else: # linear scale alphas initialized to ones
|
||||
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
||||
|
||||
self.alpha.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
Snake ∶= x + 1/a * sin^2 (xa)
|
||||
'''
|
||||
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SnakeBeta(nn.Module):
|
||||
'''
|
||||
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
||||
Shape:
|
||||
- Input: (B, C, T)
|
||||
- Output: (B, C, T), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter that controls frequency
|
||||
- beta - trainable parameter that controls magnitude
|
||||
References:
|
||||
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||
https://arxiv.org/abs/2006.08195
|
||||
Examples:
|
||||
>>> a1 = snakebeta(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||||
'''
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- alpha - trainable parameter that controls frequency
|
||||
- beta - trainable parameter that controls magnitude
|
||||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||
beta is initialized to 1 by default, higher values = higher-magnitude.
|
||||
alpha will be trained along with the rest of your model.
|
||||
'''
|
||||
super(SnakeBeta, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale: # log scale alphas initialized to zeros
|
||||
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
||||
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
||||
else: # linear scale alphas initialized to ones
|
||||
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
||||
self.beta = Parameter(torch.ones(in_features) * alpha)
|
||||
|
||||
self.alpha.requires_grad = alpha_trainable
|
||||
self.beta.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
||||
'''
|
||||
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||||
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
beta = torch.exp(beta)
|
||||
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||
|
||||
return x
|
||||
@@ -0,0 +1,77 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ..torch.resample import UpSample1d, DownSample1d
|
||||
|
||||
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
|
||||
from ..cuda import load
|
||||
|
||||
anti_alias_activation_cuda = load.load()
|
||||
|
||||
|
||||
class FusedAntiAliasActivation(torch.autograd.Function):
|
||||
"""
|
||||
Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
|
||||
The hyperparameters are hard-coded in the kernel to maximize speed.
|
||||
NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
|
||||
activation_results = anti_alias_activation_cuda.forward(
|
||||
inputs, up_ftr, down_ftr, alpha, beta
|
||||
)
|
||||
|
||||
return activation_results
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, output_grads):
|
||||
raise NotImplementedError
|
||||
return output_grads, None, None
|
||||
|
||||
|
||||
class Activation1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
activation,
|
||||
up_ratio: int = 2,
|
||||
down_ratio: int = 2,
|
||||
up_kernel_size: int = 12,
|
||||
down_kernel_size: int = 12,
|
||||
fused: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.up_ratio = up_ratio
|
||||
self.down_ratio = down_ratio
|
||||
self.act = activation
|
||||
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||||
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||||
|
||||
self.fused = fused # Whether to use fused CUDA kernel or not
|
||||
|
||||
def forward(self, x):
|
||||
if not self.fused:
|
||||
x = self.upsample(x)
|
||||
x = self.act(x)
|
||||
x = self.downsample(x)
|
||||
return x
|
||||
else:
|
||||
if self.act.__class__.__name__ == "Snake":
|
||||
beta = self.act.alpha.data # Snake uses same params for alpha and beta
|
||||
else:
|
||||
beta = (
|
||||
self.act.beta.data
|
||||
) # Snakebeta uses different params for alpha and beta
|
||||
alpha = self.act.alpha.data
|
||||
if (
|
||||
not self.act.alpha_logscale
|
||||
): # Exp baked into cuda kernel, cancel it out with a log
|
||||
alpha = torch.log(alpha)
|
||||
beta = torch.log(beta)
|
||||
|
||||
x = FusedAntiAliasActivation.apply(
|
||||
x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta
|
||||
)
|
||||
return x
|
||||
@@ -0,0 +1,23 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <torch/extension.h>
|
||||
|
||||
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta);
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &fwd_cuda, "Anti-Alias Activation forward (CUDA)");
|
||||
}
|
||||
@@ -0,0 +1,246 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_profiler_api.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <torch/extension.h>
|
||||
#include "type_shim.h"
|
||||
#include <assert.h>
|
||||
#include <cfloat>
|
||||
#include <limits>
|
||||
#include <stdint.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
|
||||
namespace
|
||||
{
|
||||
// Hard-coded hyperparameters
|
||||
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
|
||||
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
|
||||
constexpr int BUFFER_SIZE = 32;
|
||||
constexpr int FILTER_SIZE = 12;
|
||||
constexpr int HALF_FILTER_SIZE = 6;
|
||||
constexpr int UPSAMPLE_REPLICATION_PAD = 5; // 5 on each side, matching torch impl
|
||||
constexpr int DOWNSAMPLE_REPLICATION_PAD_LEFT = 5; // matching torch impl
|
||||
constexpr int DOWNSAMPLE_REPLICATION_PAD_RIGHT = 6; // matching torch impl
|
||||
|
||||
template <typename input_t, typename output_t, typename acc_t>
|
||||
__global__ void anti_alias_activation_forward(
|
||||
output_t *dst,
|
||||
const input_t *src,
|
||||
const input_t *up_ftr,
|
||||
const input_t *down_ftr,
|
||||
const input_t *alpha,
|
||||
const input_t *beta,
|
||||
int batch_size,
|
||||
int channels,
|
||||
int seq_len)
|
||||
{
|
||||
// Up and downsample filters
|
||||
input_t up_filter[FILTER_SIZE];
|
||||
input_t down_filter[FILTER_SIZE];
|
||||
|
||||
// Load data from global memory including extra indices reserved for replication paddings
|
||||
input_t elements[2 * FILTER_SIZE + 2 * BUFFER_SIZE + 2 * UPSAMPLE_REPLICATION_PAD] = {0};
|
||||
input_t intermediates[2 * FILTER_SIZE + 2 * BUFFER_SIZE + DOWNSAMPLE_REPLICATION_PAD_LEFT + DOWNSAMPLE_REPLICATION_PAD_RIGHT] = {0};
|
||||
|
||||
// Output stores downsampled output before writing to dst
|
||||
output_t output[BUFFER_SIZE];
|
||||
|
||||
// blockDim/threadIdx = (128, 1, 1)
|
||||
// gridDim/blockIdx = (seq_blocks, channels, batches)
|
||||
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
||||
int local_offset = threadIdx.x * BUFFER_SIZE;
|
||||
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
|
||||
|
||||
// intermediate have double the seq_len
|
||||
int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
|
||||
int intermediate_seq_offset = blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_local_offset;
|
||||
|
||||
// Get values needed for replication padding before moving pointer
|
||||
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
||||
input_t seq_left_most_value = right_most_pntr[0];
|
||||
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
|
||||
|
||||
// Move src and dst pointers
|
||||
src += block_offset + local_offset;
|
||||
dst += block_offset + local_offset;
|
||||
|
||||
// Alpha and beta values for snake activatons. Applies exp by default
|
||||
alpha = alpha + blockIdx.y;
|
||||
input_t alpha_val = expf(alpha[0]);
|
||||
beta = beta + blockIdx.y;
|
||||
input_t beta_val = expf(beta[0]);
|
||||
|
||||
#pragma unroll
|
||||
for (int it = 0; it < FILTER_SIZE; it += 1)
|
||||
{
|
||||
up_filter[it] = up_ftr[it];
|
||||
down_filter[it] = down_ftr[it];
|
||||
}
|
||||
|
||||
// Apply replication padding for upsampling, matching torch impl
|
||||
#pragma unroll
|
||||
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE; it += 1)
|
||||
{
|
||||
int element_index = seq_offset + it; // index for element
|
||||
if ((element_index < 0) && (element_index >= -UPSAMPLE_REPLICATION_PAD))
|
||||
{
|
||||
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_left_most_value;
|
||||
}
|
||||
if ((element_index >= seq_len) && (element_index < seq_len + UPSAMPLE_REPLICATION_PAD))
|
||||
{
|
||||
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_right_most_value;
|
||||
}
|
||||
if ((element_index >= 0) && (element_index < seq_len))
|
||||
{
|
||||
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * src[it];
|
||||
}
|
||||
}
|
||||
|
||||
// Apply upsampling strided convolution and write to intermediates. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT for replication padding of the downsampilng conv later
|
||||
#pragma unroll
|
||||
for (int it = 0; it < (2 * BUFFER_SIZE + 2 * FILTER_SIZE); it += 1)
|
||||
{
|
||||
input_t acc = 0.0;
|
||||
int element_index = intermediate_seq_offset + it; // index for intermediate
|
||||
#pragma unroll
|
||||
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
||||
{
|
||||
if ((element_index + f_idx) >= 0)
|
||||
{
|
||||
acc += up_filter[f_idx] * elements[it + f_idx];
|
||||
}
|
||||
}
|
||||
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] = acc;
|
||||
}
|
||||
|
||||
// Apply activation function. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT and DOWNSAMPLE_REPLICATION_PAD_RIGHT for replication padding of the downsampilng conv later
|
||||
double no_div_by_zero = 0.000000001;
|
||||
#pragma unroll
|
||||
for (int it = 0; it < 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it += 1)
|
||||
{
|
||||
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] += (1.0 / (beta_val + no_div_by_zero)) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val);
|
||||
}
|
||||
|
||||
// Apply replication padding before downsampling conv from intermediates
|
||||
#pragma unroll
|
||||
for (int it = 0; it < DOWNSAMPLE_REPLICATION_PAD_LEFT; it += 1)
|
||||
{
|
||||
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int it = DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it < DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE + DOWNSAMPLE_REPLICATION_PAD_RIGHT; it += 1)
|
||||
{
|
||||
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE - 1];
|
||||
}
|
||||
|
||||
// Apply downsample strided convolution (assuming stride=2) from intermediates
|
||||
#pragma unroll
|
||||
for (int it = 0; it < BUFFER_SIZE; it += 1)
|
||||
{
|
||||
input_t acc = 0.0;
|
||||
#pragma unroll
|
||||
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
||||
{
|
||||
// Add constant DOWNSAMPLE_REPLICATION_PAD_RIGHT to match torch implementation
|
||||
acc += down_filter[f_idx] * intermediates[it * 2 + f_idx + DOWNSAMPLE_REPLICATION_PAD_RIGHT];
|
||||
}
|
||||
output[it] = acc;
|
||||
}
|
||||
|
||||
// Write output to dst
|
||||
#pragma unroll
|
||||
for (int it = 0; it < BUFFER_SIZE; it += ELEMENTS_PER_LDG_STG)
|
||||
{
|
||||
int element_index = seq_offset + it;
|
||||
if (element_index < seq_len)
|
||||
{
|
||||
dst[it] = output[it];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <typename input_t, typename output_t, typename acc_t>
|
||||
void dispatch_anti_alias_activation_forward(
|
||||
output_t *dst,
|
||||
const input_t *src,
|
||||
const input_t *up_ftr,
|
||||
const input_t *down_ftr,
|
||||
const input_t *alpha,
|
||||
const input_t *beta,
|
||||
int batch_size,
|
||||
int channels,
|
||||
int seq_len)
|
||||
{
|
||||
if (seq_len == 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Use 128 threads per block to maximimize gpu utilization
|
||||
constexpr int threads_per_block = 128;
|
||||
constexpr int seq_len_per_block = 4096;
|
||||
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
|
||||
dim3 blocks(blocks_per_seq_len, channels, batch_size);
|
||||
dim3 threads(threads_per_block, 1, 1);
|
||||
|
||||
anti_alias_activation_forward<input_t, output_t, acc_t>
|
||||
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, up_ftr, down_ftr, alpha, beta, batch_size, channels, seq_len);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta)
|
||||
{
|
||||
// Input is a 3d tensor with dimensions [batches, channels, seq_len]
|
||||
const int batches = input.size(0);
|
||||
const int channels = input.size(1);
|
||||
const int seq_len = input.size(2);
|
||||
|
||||
// Output
|
||||
auto act_options = input.options().requires_grad(false);
|
||||
|
||||
torch::Tensor anti_alias_activation_results =
|
||||
torch::empty({batches, channels, seq_len}, act_options);
|
||||
|
||||
void *input_ptr = static_cast<void *>(input.data_ptr());
|
||||
void *up_filter_ptr = static_cast<void *>(up_filter.data_ptr());
|
||||
void *down_filter_ptr = static_cast<void *>(down_filter.data_ptr());
|
||||
void *alpha_ptr = static_cast<void *>(alpha.data_ptr());
|
||||
void *beta_ptr = static_cast<void *>(beta.data_ptr());
|
||||
void *anti_alias_activation_results_ptr = static_cast<void *>(anti_alias_activation_results.data_ptr());
|
||||
|
||||
DISPATCH_FLOAT_HALF_AND_BFLOAT(
|
||||
input.scalar_type(),
|
||||
"dispatch anti alias activation_forward",
|
||||
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
|
||||
reinterpret_cast<scalar_t *>(anti_alias_activation_results_ptr),
|
||||
reinterpret_cast<const scalar_t *>(input_ptr),
|
||||
reinterpret_cast<const scalar_t *>(up_filter_ptr),
|
||||
reinterpret_cast<const scalar_t *>(down_filter_ptr),
|
||||
reinterpret_cast<const scalar_t *>(alpha_ptr),
|
||||
reinterpret_cast<const scalar_t *>(beta_ptr),
|
||||
batches,
|
||||
channels,
|
||||
seq_len););
|
||||
return anti_alias_activation_results;
|
||||
}
|
||||
@@ -0,0 +1,29 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/*This code is copied fron NVIDIA apex:
|
||||
* https://github.com/NVIDIA/apex
|
||||
* with minor changes. */
|
||||
|
||||
#ifndef TORCH_CHECK
|
||||
#define TORCH_CHECK AT_CHECK
|
||||
#endif
|
||||
|
||||
#ifdef VERSION_GE_1_3
|
||||
#define DATA_PTR data_ptr
|
||||
#else
|
||||
#define DATA_PTR data
|
||||
#endif
|
||||
@@ -0,0 +1,86 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import os
|
||||
import pathlib
|
||||
import subprocess
|
||||
|
||||
from torch.utils import cpp_extension
|
||||
|
||||
"""
|
||||
Setting this param to a list has a problem of generating different compilation commands (with diferent order of architectures) and leading to recompilation of fused kernels.
|
||||
Set it to empty stringo avoid recompilation and assign arch flags explicity in extra_cuda_cflags below
|
||||
"""
|
||||
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
|
||||
|
||||
|
||||
def load():
|
||||
# Check if cuda 11 is installed for compute capability 8.0
|
||||
cc_flag = []
|
||||
_, bare_metal_major, _ = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
|
||||
if int(bare_metal_major) >= 11:
|
||||
cc_flag.append("-gencode")
|
||||
cc_flag.append("arch=compute_80,code=sm_80")
|
||||
|
||||
# Build path
|
||||
srcpath = pathlib.Path(__file__).parent.absolute()
|
||||
buildpath = srcpath / "build"
|
||||
_create_build_dir(buildpath)
|
||||
|
||||
# Helper function to build the kernels.
|
||||
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
|
||||
return cpp_extension.load(
|
||||
name=name,
|
||||
sources=sources,
|
||||
build_directory=buildpath,
|
||||
extra_cflags=[
|
||||
"-O3",
|
||||
],
|
||||
extra_cuda_cflags=[
|
||||
"-O3",
|
||||
"-gencode",
|
||||
"arch=compute_70,code=sm_70",
|
||||
"--use_fast_math",
|
||||
]
|
||||
+ extra_cuda_flags
|
||||
+ cc_flag,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
extra_cuda_flags = [
|
||||
"-U__CUDA_NO_HALF_OPERATORS__",
|
||||
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
||||
"--expt-relaxed-constexpr",
|
||||
"--expt-extended-lambda",
|
||||
]
|
||||
|
||||
sources = [
|
||||
srcpath / "anti_alias_activation.cpp",
|
||||
srcpath / "anti_alias_activation_cuda.cu",
|
||||
]
|
||||
anti_alias_activation_cuda = _cpp_extention_load_helper(
|
||||
"anti_alias_activation_cuda", sources, extra_cuda_flags
|
||||
)
|
||||
|
||||
return anti_alias_activation_cuda
|
||||
|
||||
|
||||
def _get_cuda_bare_metal_version(cuda_dir):
|
||||
raw_output = subprocess.check_output(
|
||||
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
|
||||
)
|
||||
output = raw_output.split()
|
||||
release_idx = output.index("release") + 1
|
||||
release = output[release_idx].split(".")
|
||||
bare_metal_major = release[0]
|
||||
bare_metal_minor = release[1][0]
|
||||
|
||||
return raw_output, bare_metal_major, bare_metal_minor
|
||||
|
||||
|
||||
def _create_build_dir(buildpath):
|
||||
try:
|
||||
os.mkdir(buildpath)
|
||||
except OSError:
|
||||
if not os.path.isdir(buildpath):
|
||||
print(f"Creation of the build directory {buildpath} failed")
|
||||
@@ -0,0 +1,92 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include "compat.h"
|
||||
|
||||
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
|
||||
switch (TYPE) \
|
||||
{ \
|
||||
case at::ScalarType::Float: \
|
||||
{ \
|
||||
using scalar_t = float; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::Half: \
|
||||
{ \
|
||||
using scalar_t = at::Half; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::BFloat16: \
|
||||
{ \
|
||||
using scalar_t = at::BFloat16; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
||||
}
|
||||
|
||||
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
|
||||
switch (TYPEIN) \
|
||||
{ \
|
||||
case at::ScalarType::Float: \
|
||||
{ \
|
||||
using scalar_t_in = float; \
|
||||
switch (TYPEOUT) \
|
||||
{ \
|
||||
case at::ScalarType::Float: \
|
||||
{ \
|
||||
using scalar_t_out = float; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::Half: \
|
||||
{ \
|
||||
using scalar_t_out = at::Half; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::BFloat16: \
|
||||
{ \
|
||||
using scalar_t_out = at::BFloat16; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
|
||||
} \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::Half: \
|
||||
{ \
|
||||
using scalar_t_in = at::Half; \
|
||||
using scalar_t_out = at::Half; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::BFloat16: \
|
||||
{ \
|
||||
using scalar_t_in = at::BFloat16; \
|
||||
using scalar_t_out = at::BFloat16; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
|
||||
}
|
||||
@@ -0,0 +1,6 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
from .filter import *
|
||||
from .resample import *
|
||||
from .act import *
|
||||
@@ -0,0 +1,30 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch.nn as nn
|
||||
from .resample import UpSample1d, DownSample1d
|
||||
|
||||
|
||||
class Activation1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
activation,
|
||||
up_ratio: int = 2,
|
||||
down_ratio: int = 2,
|
||||
up_kernel_size: int = 12,
|
||||
down_kernel_size: int = 12,
|
||||
):
|
||||
super().__init__()
|
||||
self.up_ratio = up_ratio
|
||||
self.down_ratio = down_ratio
|
||||
self.act = activation
|
||||
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||||
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||||
|
||||
# x: [B,C,T]
|
||||
def forward(self, x):
|
||||
x = self.upsample(x)
|
||||
x = self.act(x)
|
||||
x = self.downsample(x)
|
||||
|
||||
return x
|
||||
@@ -0,0 +1,101 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
if "sinc" in dir(torch):
|
||||
sinc = torch.sinc
|
||||
else:
|
||||
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/core.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def sinc(x: torch.Tensor):
|
||||
"""
|
||||
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
||||
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
||||
"""
|
||||
return torch.where(
|
||||
x == 0,
|
||||
torch.tensor(1.0, device=x.device, dtype=x.dtype),
|
||||
torch.sin(math.pi * x) / math.pi / x,
|
||||
)
|
||||
|
||||
|
||||
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/lowpass.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def kaiser_sinc_filter1d(
|
||||
cutoff, half_width, kernel_size
|
||||
): # return filter [1,1,kernel_size]
|
||||
even = kernel_size % 2 == 0
|
||||
half_size = kernel_size // 2
|
||||
|
||||
# For kaiser window
|
||||
delta_f = 4 * half_width
|
||||
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
||||
if A > 50.0:
|
||||
beta = 0.1102 * (A - 8.7)
|
||||
elif A >= 21.0:
|
||||
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
|
||||
else:
|
||||
beta = 0.0
|
||||
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
||||
|
||||
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
||||
if even:
|
||||
time = torch.arange(-half_size, half_size) + 0.5
|
||||
else:
|
||||
time = torch.arange(kernel_size) - half_size
|
||||
if cutoff == 0:
|
||||
filter_ = torch.zeros_like(time)
|
||||
else:
|
||||
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
||||
"""
|
||||
Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal.
|
||||
"""
|
||||
filter_ /= filter_.sum()
|
||||
filter = filter_.view(1, 1, kernel_size)
|
||||
|
||||
return filter
|
||||
|
||||
|
||||
class LowPassFilter1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
cutoff=0.5,
|
||||
half_width=0.6,
|
||||
stride: int = 1,
|
||||
padding: bool = True,
|
||||
padding_mode: str = "replicate",
|
||||
kernel_size: int = 12,
|
||||
):
|
||||
"""
|
||||
kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible.
|
||||
"""
|
||||
super().__init__()
|
||||
if cutoff < -0.0:
|
||||
raise ValueError("Minimum cutoff must be larger than zero.")
|
||||
if cutoff > 0.5:
|
||||
raise ValueError("A cutoff above 0.5 does not make sense.")
|
||||
self.kernel_size = kernel_size
|
||||
self.even = kernel_size % 2 == 0
|
||||
self.pad_left = kernel_size // 2 - int(self.even)
|
||||
self.pad_right = kernel_size // 2
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.padding_mode = padding_mode
|
||||
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
# Input [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
if self.padding:
|
||||
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
|
||||
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
||||
|
||||
return out
|
||||
@@ -0,0 +1,58 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from .filter import LowPassFilter1d
|
||||
from .filter import kaiser_sinc_filter1d
|
||||
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = (
|
||||
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
)
|
||||
self.stride = ratio
|
||||
self.pad = self.kernel_size // ratio - 1
|
||||
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
||||
self.pad_right = (
|
||||
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
||||
)
|
||||
filter = kaiser_sinc_filter1d(
|
||||
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
|
||||
)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
# x: [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
x = F.pad(x, (self.pad, self.pad), mode="replicate")
|
||||
x = self.ratio * F.conv_transpose1d(
|
||||
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
|
||||
)
|
||||
x = x[..., self.pad_left : -self.pad_right]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DownSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = (
|
||||
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
)
|
||||
self.lowpass = LowPassFilter1d(
|
||||
cutoff=0.5 / ratio,
|
||||
half_width=0.6 / ratio,
|
||||
stride=ratio,
|
||||
kernel_size=self.kernel_size,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
xx = self.lowpass(x)
|
||||
|
||||
return xx
|
||||
492
indextts/s2mel/modules/bigvgan/bigvgan.py
Normal file
492
indextts/s2mel/modules/bigvgan/bigvgan.py
Normal file
@@ -0,0 +1,492 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import os
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union, Dict
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import Conv1d, ConvTranspose1d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||
|
||||
from . import activations
|
||||
from .utils import init_weights, get_padding
|
||||
from .alias_free_activation.torch.act import Activation1d as TorchActivation1d
|
||||
from .env import AttrDict
|
||||
|
||||
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
||||
|
||||
|
||||
def load_hparams_from_json(path) -> AttrDict:
|
||||
with open(path) as f:
|
||||
data = f.read()
|
||||
return AttrDict(json.loads(data))
|
||||
|
||||
|
||||
class AMPBlock1(torch.nn.Module):
|
||||
"""
|
||||
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
|
||||
AMPBlock1 has additional self.convs2 that contains additional Conv1d layers with a fixed dilation=1 followed by each layer in self.convs1
|
||||
|
||||
Args:
|
||||
h (AttrDict): Hyperparameters.
|
||||
channels (int): Number of convolution channels.
|
||||
kernel_size (int): Size of the convolution kernel. Default is 3.
|
||||
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
|
||||
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
h: AttrDict,
|
||||
channels: int,
|
||||
kernel_size: int = 3,
|
||||
dilation: tuple = (1, 3, 5),
|
||||
activation: str = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.h = h
|
||||
|
||||
self.convs1 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
dilation=d,
|
||||
padding=get_padding(kernel_size, d),
|
||||
)
|
||||
)
|
||||
for d in dilation
|
||||
]
|
||||
)
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
)
|
||||
for _ in range(len(dilation))
|
||||
]
|
||||
)
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
self.num_layers = len(self.convs1) + len(
|
||||
self.convs2
|
||||
) # Total number of conv layers
|
||||
|
||||
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
||||
if self.h.get("use_cuda_kernel", False):
|
||||
from .alias_free_activation.cuda.activation1d import (
|
||||
Activation1d as CudaActivation1d,
|
||||
)
|
||||
|
||||
Activation1d = CudaActivation1d
|
||||
else:
|
||||
Activation1d = TorchActivation1d
|
||||
|
||||
# Activation functions
|
||||
if activation == "snake":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.Snake(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
elif activation == "snakebeta":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
||||
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
||||
xt = a1(x)
|
||||
xt = c1(xt)
|
||||
xt = a2(xt)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class AMPBlock2(torch.nn.Module):
|
||||
"""
|
||||
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
|
||||
Unlike AMPBlock1, AMPBlock2 does not contain extra Conv1d layers with fixed dilation=1
|
||||
|
||||
Args:
|
||||
h (AttrDict): Hyperparameters.
|
||||
channels (int): Number of convolution channels.
|
||||
kernel_size (int): Size of the convolution kernel. Default is 3.
|
||||
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
|
||||
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
h: AttrDict,
|
||||
channels: int,
|
||||
kernel_size: int = 3,
|
||||
dilation: tuple = (1, 3, 5),
|
||||
activation: str = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.h = h
|
||||
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
dilation=d,
|
||||
padding=get_padding(kernel_size, d),
|
||||
)
|
||||
)
|
||||
for d in dilation
|
||||
]
|
||||
)
|
||||
self.convs.apply(init_weights)
|
||||
|
||||
self.num_layers = len(self.convs) # Total number of conv layers
|
||||
|
||||
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
||||
if self.h.get("use_cuda_kernel", False):
|
||||
from .alias_free_activation.cuda.activation1d import (
|
||||
Activation1d as CudaActivation1d,
|
||||
)
|
||||
|
||||
Activation1d = CudaActivation1d
|
||||
else:
|
||||
Activation1d = TorchActivation1d
|
||||
|
||||
# Activation functions
|
||||
if activation == "snake":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.Snake(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
elif activation == "snakebeta":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
for c, a in zip(self.convs, self.activations):
|
||||
xt = a(x)
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class BigVGAN(
|
||||
torch.nn.Module,
|
||||
PyTorchModelHubMixin,
|
||||
library_name="bigvgan",
|
||||
repo_url="https://github.com/NVIDIA/BigVGAN",
|
||||
docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
|
||||
pipeline_tag="audio-to-audio",
|
||||
license="mit",
|
||||
tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"],
|
||||
):
|
||||
"""
|
||||
BigVGAN is a neural vocoder model that applies anti-aliased periodic activation for residual blocks (resblocks).
|
||||
New in BigVGAN-v2: it can optionally use optimized CUDA kernels for AMP (anti-aliased multi-periodicity) blocks.
|
||||
|
||||
Args:
|
||||
h (AttrDict): Hyperparameters.
|
||||
use_cuda_kernel (bool): If set to True, loads optimized CUDA kernels for AMP. This should be used for inference only, as training is not supported with CUDA kernels.
|
||||
|
||||
Note:
|
||||
- The `use_cuda_kernel` parameter should be used for inference only, as training with CUDA kernels is not supported.
|
||||
- Ensure that the activation function is correctly specified in the hyperparameters (h.activation).
|
||||
"""
|
||||
|
||||
def __init__(self, h: AttrDict, use_cuda_kernel: bool = False):
|
||||
super().__init__()
|
||||
self.h = h
|
||||
self.h["use_cuda_kernel"] = use_cuda_kernel
|
||||
|
||||
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
||||
if self.h.get("use_cuda_kernel", False):
|
||||
from .alias_free_activation.cuda.activation1d import (
|
||||
Activation1d as CudaActivation1d,
|
||||
)
|
||||
|
||||
Activation1d = CudaActivation1d
|
||||
else:
|
||||
Activation1d = TorchActivation1d
|
||||
|
||||
self.num_kernels = len(h.resblock_kernel_sizes)
|
||||
self.num_upsamples = len(h.upsample_rates)
|
||||
|
||||
# Pre-conv
|
||||
self.conv_pre = weight_norm(
|
||||
Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
|
||||
)
|
||||
|
||||
# Define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
||||
if h.resblock == "1":
|
||||
resblock_class = AMPBlock1
|
||||
elif h.resblock == "2":
|
||||
resblock_class = AMPBlock2
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Incorrect resblock class specified in hyperparameters. Got {h.resblock}"
|
||||
)
|
||||
|
||||
# Transposed conv-based upsamplers. does not apply anti-aliasing
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
||||
self.ups.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
ConvTranspose1d(
|
||||
h.upsample_initial_channel // (2 ** i),
|
||||
h.upsample_initial_channel // (2 ** (i + 1)),
|
||||
k,
|
||||
u,
|
||||
padding=(k - u) // 2,
|
||||
)
|
||||
)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
# Residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
||||
for j, (k, d) in enumerate(
|
||||
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
|
||||
):
|
||||
self.resblocks.append(
|
||||
resblock_class(h, ch, k, d, activation=h.activation)
|
||||
)
|
||||
|
||||
# Post-conv
|
||||
activation_post = (
|
||||
activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
||||
if h.activation == "snake"
|
||||
else (
|
||||
activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
||||
if h.activation == "snakebeta"
|
||||
else None
|
||||
)
|
||||
)
|
||||
if activation_post is None:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
self.activation_post = Activation1d(activation=activation_post)
|
||||
|
||||
# Whether to use bias for the final conv_post. Default to True for backward compatibility
|
||||
self.use_bias_at_final = h.get("use_bias_at_final", True)
|
||||
self.conv_post = weight_norm(
|
||||
Conv1d(ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final)
|
||||
)
|
||||
|
||||
# Weight initialization
|
||||
for i in range(len(self.ups)):
|
||||
self.ups[i].apply(init_weights)
|
||||
self.conv_post.apply(init_weights)
|
||||
|
||||
# Final tanh activation. Defaults to True for backward compatibility
|
||||
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
|
||||
|
||||
def forward(self, x):
|
||||
# Pre-conv
|
||||
x = self.conv_pre(x)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
# Upsampling
|
||||
for i_up in range(len(self.ups[i])):
|
||||
x = self.ups[i][i_up](x)
|
||||
# AMP blocks
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
x = xs / self.num_kernels
|
||||
|
||||
# Post-conv
|
||||
x = self.activation_post(x)
|
||||
x = self.conv_post(x)
|
||||
# Final tanh activation
|
||||
if self.use_tanh_at_final:
|
||||
x = torch.tanh(x)
|
||||
else:
|
||||
x = torch.clamp(x, min=-1.0, max=1.0) # Bound the output to [-1, 1]
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
try:
|
||||
print("Removing weight norm...")
|
||||
for l in self.ups:
|
||||
for l_i in l:
|
||||
remove_weight_norm(l_i)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
except ValueError:
|
||||
print("[INFO] Model already removed weight norm. Skipping!")
|
||||
pass
|
||||
|
||||
# Additional methods for huggingface_hub support
|
||||
def _save_pretrained(self, save_directory: Path) -> None:
|
||||
"""Save weights and config.json from a Pytorch model to a local directory."""
|
||||
|
||||
model_path = save_directory / "bigvgan_generator.pt"
|
||||
torch.save({"generator": self.state_dict()}, model_path)
|
||||
|
||||
config_path = save_directory / "config.json"
|
||||
with open(config_path, "w") as config_file:
|
||||
json.dump(self.h, config_file, indent=4)
|
||||
|
||||
@classmethod
|
||||
def _from_pretrained(
|
||||
cls,
|
||||
*,
|
||||
model_id: str,
|
||||
revision: str,
|
||||
cache_dir: str,
|
||||
force_download: bool,
|
||||
proxies: Optional[Dict],
|
||||
resume_download: bool,
|
||||
local_files_only: bool,
|
||||
token: Union[str, bool, None],
|
||||
map_location: str = "cpu", # Additional argument
|
||||
strict: bool = False, # Additional argument
|
||||
use_cuda_kernel: bool = False,
|
||||
**model_kwargs,
|
||||
):
|
||||
"""Load Pytorch pretrained weights and return the loaded model."""
|
||||
|
||||
# Download and load hyperparameters (h) used by BigVGAN
|
||||
if os.path.isdir(model_id):
|
||||
print("Loading config.json from local directory")
|
||||
config_file = os.path.join(model_id, "config.json")
|
||||
else:
|
||||
config_file = hf_hub_download(
|
||||
repo_id=model_id,
|
||||
filename="config.json",
|
||||
revision=revision,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
token=token,
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
h = load_hparams_from_json(config_file)
|
||||
|
||||
# instantiate BigVGAN using h
|
||||
if use_cuda_kernel:
|
||||
print(
|
||||
f"[WARNING] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!"
|
||||
)
|
||||
print(
|
||||
f"[WARNING] You need nvcc and ninja installed in your system that matches your PyTorch build is using to build the kernel. If not, the model will fail to initialize or generate incorrect waveform!"
|
||||
)
|
||||
print(
|
||||
f"[WARNING] For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis"
|
||||
)
|
||||
model = cls(h, use_cuda_kernel=use_cuda_kernel)
|
||||
|
||||
# Download and load pretrained generator weight
|
||||
if os.path.isdir(model_id):
|
||||
print("Loading weights from local directory")
|
||||
model_file = os.path.join(model_id, "bigvgan_generator.pt")
|
||||
else:
|
||||
print(f"Loading weights from {model_id}")
|
||||
model_file = hf_hub_download(
|
||||
repo_id=model_id,
|
||||
filename="bigvgan_generator.pt",
|
||||
revision=revision,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
token=token,
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
|
||||
checkpoint_dict = torch.load(model_file, map_location=map_location)
|
||||
|
||||
try:
|
||||
model.load_state_dict(checkpoint_dict["generator"])
|
||||
except RuntimeError:
|
||||
print(
|
||||
f"[INFO] the pretrained checkpoint does not contain weight norm. Loading the checkpoint after removing weight norm!"
|
||||
)
|
||||
model.remove_weight_norm()
|
||||
model.load_state_dict(checkpoint_dict["generator"])
|
||||
|
||||
return model
|
||||
63
indextts/s2mel/modules/bigvgan/config.json
Normal file
63
indextts/s2mel/modules/bigvgan/config.json
Normal file
@@ -0,0 +1,63 @@
|
||||
{
|
||||
"resblock": "1",
|
||||
"num_gpus": 0,
|
||||
"batch_size": 32,
|
||||
"learning_rate": 0.0001,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.9999996,
|
||||
"seed": 1234,
|
||||
|
||||
"upsample_rates": [4,4,2,2,2,2],
|
||||
"upsample_kernel_sizes": [8,8,4,4,4,4],
|
||||
"upsample_initial_channel": 1536,
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||
|
||||
"use_tanh_at_final": false,
|
||||
"use_bias_at_final": false,
|
||||
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": true,
|
||||
|
||||
"use_cqtd_instead_of_mrd": true,
|
||||
"cqtd_filters": 128,
|
||||
"cqtd_max_filters": 1024,
|
||||
"cqtd_filters_scale": 1,
|
||||
"cqtd_dilations": [1, 2, 4],
|
||||
"cqtd_hop_lengths": [512, 256, 256],
|
||||
"cqtd_n_octaves": [9, 9, 9],
|
||||
"cqtd_bins_per_octaves": [24, 36, 48],
|
||||
|
||||
"mpd_reshapes": [2, 3, 5, 7, 11],
|
||||
"use_spectral_norm": false,
|
||||
"discriminator_channel_mult": 1,
|
||||
|
||||
"use_multiscale_melloss": true,
|
||||
"lambda_melloss": 15,
|
||||
|
||||
"clip_grad_norm": 500,
|
||||
|
||||
"segment_size": 65536,
|
||||
"num_mels": 80,
|
||||
"num_freq": 1025,
|
||||
"n_fft": 1024,
|
||||
"hop_size": 256,
|
||||
"win_size": 1024,
|
||||
|
||||
"sampling_rate": 22050,
|
||||
|
||||
"fmin": 0,
|
||||
"fmax": null,
|
||||
"fmax_for_loss": null,
|
||||
|
||||
"normalize_volume": true,
|
||||
|
||||
"num_workers": 4,
|
||||
|
||||
"dist_config": {
|
||||
"dist_backend": "nccl",
|
||||
"dist_url": "tcp://localhost:54321",
|
||||
"world_size": 1
|
||||
}
|
||||
}
|
||||
18
indextts/s2mel/modules/bigvgan/env.py
Normal file
18
indextts/s2mel/modules/bigvgan/env.py
Normal file
@@ -0,0 +1,18 @@
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
||||
class AttrDict(dict):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(AttrDict, self).__init__(*args, **kwargs)
|
||||
self.__dict__ = self
|
||||
|
||||
|
||||
def build_env(config, config_name, path):
|
||||
t_path = os.path.join(path, config_name)
|
||||
if config != t_path:
|
||||
os.makedirs(path, exist_ok=True)
|
||||
shutil.copyfile(config, os.path.join(path, config_name))
|
||||
354
indextts/s2mel/modules/bigvgan/meldataset.py
Normal file
354
indextts/s2mel/modules/bigvgan/meldataset.py
Normal file
@@ -0,0 +1,354 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import torch
|
||||
import torch.utils.data
|
||||
import numpy as np
|
||||
from librosa.util import normalize
|
||||
from scipy.io.wavfile import read
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
import pathlib
|
||||
from tqdm import tqdm
|
||||
|
||||
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)
|
||||
|
||||
|
||||
def load_wav(full_path, sr_target):
|
||||
sampling_rate, data = read(full_path)
|
||||
if sampling_rate != sr_target:
|
||||
raise RuntimeError(
|
||||
f"Sampling rate of the file {full_path} is {sampling_rate} Hz, but the model requires {sr_target} Hz"
|
||||
)
|
||||
return data, sampling_rate
|
||||
|
||||
|
||||
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
||||
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression(x, C=1):
|
||||
return np.exp(x) / C
|
||||
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
return torch.exp(x) / C
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes):
|
||||
return dynamic_range_compression_torch(magnitudes)
|
||||
|
||||
|
||||
def spectral_de_normalize_torch(magnitudes):
|
||||
return dynamic_range_decompression_torch(magnitudes)
|
||||
|
||||
|
||||
mel_basis_cache = {}
|
||||
hann_window_cache = {}
|
||||
|
||||
|
||||
def mel_spectrogram(
|
||||
y: torch.Tensor,
|
||||
n_fft: int,
|
||||
num_mels: int,
|
||||
sampling_rate: int,
|
||||
hop_size: int,
|
||||
win_size: int,
|
||||
fmin: int,
|
||||
fmax: int = None,
|
||||
center: bool = False,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Calculate the mel spectrogram of an input signal.
|
||||
This function uses slaney norm for the librosa mel filterbank (using librosa.filters.mel) and uses Hann window for STFT (using torch.stft).
|
||||
|
||||
Args:
|
||||
y (torch.Tensor): Input signal.
|
||||
n_fft (int): FFT size.
|
||||
num_mels (int): Number of mel bins.
|
||||
sampling_rate (int): Sampling rate of the input signal.
|
||||
hop_size (int): Hop size for STFT.
|
||||
win_size (int): Window size for STFT.
|
||||
fmin (int): Minimum frequency for mel filterbank.
|
||||
fmax (int): Maximum frequency for mel filterbank. If None, defaults to half the sampling rate (fmax = sr / 2.0) inside librosa_mel_fn
|
||||
center (bool): Whether to pad the input to center the frames. Default is False.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Mel spectrogram.
|
||||
"""
|
||||
if torch.min(y) < -1.0:
|
||||
print(f"[WARNING] Min value of input waveform signal is {torch.min(y)}")
|
||||
if torch.max(y) > 1.0:
|
||||
print(f"[WARNING] Max value of input waveform signal is {torch.max(y)}")
|
||||
|
||||
device = y.device
|
||||
key = f"{n_fft}_{num_mels}_{sampling_rate}_{hop_size}_{win_size}_{fmin}_{fmax}_{device}"
|
||||
|
||||
if key not in mel_basis_cache:
|
||||
mel = librosa_mel_fn(
|
||||
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
||||
)
|
||||
mel_basis_cache[key] = torch.from_numpy(mel).float().to(device)
|
||||
hann_window_cache[key] = torch.hann_window(win_size).to(device)
|
||||
|
||||
mel_basis = mel_basis_cache[key]
|
||||
hann_window = hann_window_cache[key]
|
||||
|
||||
padding = (n_fft - hop_size) // 2
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1), (padding, padding), mode="reflect"
|
||||
).squeeze(1)
|
||||
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window,
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=True,
|
||||
)
|
||||
spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)
|
||||
|
||||
mel_spec = torch.matmul(mel_basis, spec)
|
||||
mel_spec = spectral_normalize_torch(mel_spec)
|
||||
|
||||
return mel_spec
|
||||
|
||||
|
||||
def get_mel_spectrogram(wav, h):
|
||||
"""
|
||||
Generate mel spectrogram from a waveform using given hyperparameters.
|
||||
|
||||
Args:
|
||||
wav (torch.Tensor): Input waveform.
|
||||
h: Hyperparameters object with attributes n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Mel spectrogram.
|
||||
"""
|
||||
return mel_spectrogram(
|
||||
wav,
|
||||
h.n_fft,
|
||||
h.num_mels,
|
||||
h.sampling_rate,
|
||||
h.hop_size,
|
||||
h.win_size,
|
||||
h.fmin,
|
||||
h.fmax,
|
||||
)
|
||||
|
||||
|
||||
def get_dataset_filelist(a):
|
||||
training_files = []
|
||||
validation_files = []
|
||||
list_unseen_validation_files = []
|
||||
|
||||
with open(a.input_training_file, "r", encoding="utf-8") as fi:
|
||||
training_files = [
|
||||
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
|
||||
for x in fi.read().split("\n")
|
||||
if len(x) > 0
|
||||
]
|
||||
print(f"first training file: {training_files[0]}")
|
||||
|
||||
with open(a.input_validation_file, "r", encoding="utf-8") as fi:
|
||||
validation_files = [
|
||||
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
|
||||
for x in fi.read().split("\n")
|
||||
if len(x) > 0
|
||||
]
|
||||
print(f"first validation file: {validation_files[0]}")
|
||||
|
||||
for i in range(len(a.list_input_unseen_validation_file)):
|
||||
with open(a.list_input_unseen_validation_file[i], "r", encoding="utf-8") as fi:
|
||||
unseen_validation_files = [
|
||||
os.path.join(a.list_input_unseen_wavs_dir[i], x.split("|")[0] + ".wav")
|
||||
for x in fi.read().split("\n")
|
||||
if len(x) > 0
|
||||
]
|
||||
print(
|
||||
f"first unseen {i}th validation fileset: {unseen_validation_files[0]}"
|
||||
)
|
||||
list_unseen_validation_files.append(unseen_validation_files)
|
||||
|
||||
return training_files, validation_files, list_unseen_validation_files
|
||||
|
||||
|
||||
class MelDataset(torch.utils.data.Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
training_files,
|
||||
hparams,
|
||||
segment_size,
|
||||
n_fft,
|
||||
num_mels,
|
||||
hop_size,
|
||||
win_size,
|
||||
sampling_rate,
|
||||
fmin,
|
||||
fmax,
|
||||
split=True,
|
||||
shuffle=True,
|
||||
n_cache_reuse=1,
|
||||
device=None,
|
||||
fmax_loss=None,
|
||||
fine_tuning=False,
|
||||
base_mels_path=None,
|
||||
is_seen=True,
|
||||
):
|
||||
self.audio_files = training_files
|
||||
random.seed(1234)
|
||||
if shuffle:
|
||||
random.shuffle(self.audio_files)
|
||||
self.hparams = hparams
|
||||
self.is_seen = is_seen
|
||||
if self.is_seen:
|
||||
self.name = pathlib.Path(self.audio_files[0]).parts[0]
|
||||
else:
|
||||
self.name = "-".join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/")
|
||||
|
||||
self.segment_size = segment_size
|
||||
self.sampling_rate = sampling_rate
|
||||
self.split = split
|
||||
self.n_fft = n_fft
|
||||
self.num_mels = num_mels
|
||||
self.hop_size = hop_size
|
||||
self.win_size = win_size
|
||||
self.fmin = fmin
|
||||
self.fmax = fmax
|
||||
self.fmax_loss = fmax_loss
|
||||
self.cached_wav = None
|
||||
self.n_cache_reuse = n_cache_reuse
|
||||
self._cache_ref_count = 0
|
||||
self.device = device
|
||||
self.fine_tuning = fine_tuning
|
||||
self.base_mels_path = base_mels_path
|
||||
|
||||
print("[INFO] checking dataset integrity...")
|
||||
for i in tqdm(range(len(self.audio_files))):
|
||||
assert os.path.exists(
|
||||
self.audio_files[i]
|
||||
), f"{self.audio_files[i]} not found"
|
||||
|
||||
def __getitem__(self, index):
|
||||
filename = self.audio_files[index]
|
||||
if self._cache_ref_count == 0:
|
||||
audio, sampling_rate = load_wav(filename, self.sampling_rate)
|
||||
audio = audio / MAX_WAV_VALUE
|
||||
if not self.fine_tuning:
|
||||
audio = normalize(audio) * 0.95
|
||||
self.cached_wav = audio
|
||||
if sampling_rate != self.sampling_rate:
|
||||
raise ValueError(
|
||||
f"{sampling_rate} SR doesn't match target {self.sampling_rate} SR"
|
||||
)
|
||||
self._cache_ref_count = self.n_cache_reuse
|
||||
else:
|
||||
audio = self.cached_wav
|
||||
self._cache_ref_count -= 1
|
||||
|
||||
audio = torch.FloatTensor(audio)
|
||||
audio = audio.unsqueeze(0)
|
||||
|
||||
if not self.fine_tuning:
|
||||
if self.split:
|
||||
if audio.size(1) >= self.segment_size:
|
||||
max_audio_start = audio.size(1) - self.segment_size
|
||||
audio_start = random.randint(0, max_audio_start)
|
||||
audio = audio[:, audio_start : audio_start + self.segment_size]
|
||||
else:
|
||||
audio = torch.nn.functional.pad(
|
||||
audio, (0, self.segment_size - audio.size(1)), "constant"
|
||||
)
|
||||
|
||||
mel = mel_spectrogram(
|
||||
audio,
|
||||
self.n_fft,
|
||||
self.num_mels,
|
||||
self.sampling_rate,
|
||||
self.hop_size,
|
||||
self.win_size,
|
||||
self.fmin,
|
||||
self.fmax,
|
||||
center=False,
|
||||
)
|
||||
else: # Validation step
|
||||
# Match audio length to self.hop_size * n for evaluation
|
||||
if (audio.size(1) % self.hop_size) != 0:
|
||||
audio = audio[:, : -(audio.size(1) % self.hop_size)]
|
||||
mel = mel_spectrogram(
|
||||
audio,
|
||||
self.n_fft,
|
||||
self.num_mels,
|
||||
self.sampling_rate,
|
||||
self.hop_size,
|
||||
self.win_size,
|
||||
self.fmin,
|
||||
self.fmax,
|
||||
center=False,
|
||||
)
|
||||
assert (
|
||||
audio.shape[1] == mel.shape[2] * self.hop_size
|
||||
), f"audio shape {audio.shape} mel shape {mel.shape}"
|
||||
|
||||
else:
|
||||
mel = np.load(
|
||||
os.path.join(
|
||||
self.base_mels_path,
|
||||
os.path.splitext(os.path.split(filename)[-1])[0] + ".npy",
|
||||
)
|
||||
)
|
||||
mel = torch.from_numpy(mel)
|
||||
|
||||
if len(mel.shape) < 3:
|
||||
mel = mel.unsqueeze(0)
|
||||
|
||||
if self.split:
|
||||
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
|
||||
|
||||
if audio.size(1) >= self.segment_size:
|
||||
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
|
||||
mel = mel[:, :, mel_start : mel_start + frames_per_seg]
|
||||
audio = audio[
|
||||
:,
|
||||
mel_start
|
||||
* self.hop_size : (mel_start + frames_per_seg)
|
||||
* self.hop_size,
|
||||
]
|
||||
else:
|
||||
mel = torch.nn.functional.pad(
|
||||
mel, (0, frames_per_seg - mel.size(2)), "constant"
|
||||
)
|
||||
audio = torch.nn.functional.pad(
|
||||
audio, (0, self.segment_size - audio.size(1)), "constant"
|
||||
)
|
||||
|
||||
mel_loss = mel_spectrogram(
|
||||
audio,
|
||||
self.n_fft,
|
||||
self.num_mels,
|
||||
self.sampling_rate,
|
||||
self.hop_size,
|
||||
self.win_size,
|
||||
self.fmin,
|
||||
self.fmax_loss,
|
||||
center=False,
|
||||
)
|
||||
|
||||
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audio_files)
|
||||
99
indextts/s2mel/modules/bigvgan/utils.py
Normal file
99
indextts/s2mel/modules/bigvgan/utils.py
Normal file
@@ -0,0 +1,99 @@
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import glob
|
||||
import os
|
||||
import matplotlib
|
||||
import torch
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pylab as plt
|
||||
from .meldataset import MAX_WAV_VALUE
|
||||
from scipy.io.wavfile import write
|
||||
|
||||
|
||||
def plot_spectrogram(spectrogram):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
|
||||
fig.canvas.draw()
|
||||
plt.close()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def plot_spectrogram_clipped(spectrogram, clip_max=2.0):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(
|
||||
spectrogram,
|
||||
aspect="auto",
|
||||
origin="lower",
|
||||
interpolation="none",
|
||||
vmin=1e-6,
|
||||
vmax=clip_max,
|
||||
)
|
||||
plt.colorbar(im, ax=ax)
|
||||
|
||||
fig.canvas.draw()
|
||||
plt.close()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def apply_weight_norm(m):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
weight_norm(m)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def load_checkpoint(filepath, device):
|
||||
assert os.path.isfile(filepath)
|
||||
print(f"Loading '{filepath}'")
|
||||
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||
print("Complete.")
|
||||
return checkpoint_dict
|
||||
|
||||
|
||||
def save_checkpoint(filepath, obj):
|
||||
print(f"Saving checkpoint to {filepath}")
|
||||
torch.save(obj, filepath)
|
||||
print("Complete.")
|
||||
|
||||
|
||||
def scan_checkpoint(cp_dir, prefix, renamed_file=None):
|
||||
# Fallback to original scanning logic first
|
||||
pattern = os.path.join(cp_dir, prefix + "????????")
|
||||
cp_list = glob.glob(pattern)
|
||||
|
||||
if len(cp_list) > 0:
|
||||
last_checkpoint_path = sorted(cp_list)[-1]
|
||||
print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'")
|
||||
return last_checkpoint_path
|
||||
|
||||
# If no pattern-based checkpoints are found, check for renamed file
|
||||
if renamed_file:
|
||||
renamed_path = os.path.join(cp_dir, renamed_file)
|
||||
if os.path.isfile(renamed_path):
|
||||
print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'")
|
||||
return renamed_path
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def save_audio(audio, path, sr):
|
||||
# wav: torch with 1d shape
|
||||
audio = audio * MAX_WAV_VALUE
|
||||
audio = audio.cpu().numpy().astype("int16")
|
||||
write(path, sr, audio)
|
||||
115
indextts/s2mel/modules/campplus/DTDNN.py
Normal file
115
indextts/s2mel/modules/campplus/DTDNN.py
Normal file
@@ -0,0 +1,115 @@
|
||||
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from indextts.s2mel.modules.campplus.layers import DenseLayer, StatsPool, TDNNLayer, CAMDenseTDNNBlock, TransitLayer, BasicResBlock, get_nonlinear
|
||||
|
||||
|
||||
class FCM(nn.Module):
|
||||
def __init__(self,
|
||||
block=BasicResBlock,
|
||||
num_blocks=[2, 2],
|
||||
m_channels=32,
|
||||
feat_dim=80):
|
||||
super(FCM, self).__init__()
|
||||
self.in_planes = m_channels
|
||||
self.conv1 = nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(m_channels)
|
||||
|
||||
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=2)
|
||||
self.layer2 = self._make_layer(block, m_channels, num_blocks[1], stride=2)
|
||||
|
||||
self.conv2 = nn.Conv2d(m_channels, m_channels, kernel_size=3, stride=(2, 1), padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(m_channels)
|
||||
self.out_channels = m_channels * (feat_dim // 8)
|
||||
|
||||
def _make_layer(self, block, planes, num_blocks, stride):
|
||||
strides = [stride] + [1] * (num_blocks - 1)
|
||||
layers = []
|
||||
for stride in strides:
|
||||
layers.append(block(self.in_planes, planes, stride))
|
||||
self.in_planes = planes * block.expansion
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.unsqueeze(1)
|
||||
out = F.relu(self.bn1(self.conv1(x)))
|
||||
out = self.layer1(out)
|
||||
out = self.layer2(out)
|
||||
out = F.relu(self.bn2(self.conv2(out)))
|
||||
|
||||
shape = out.shape
|
||||
out = out.reshape(shape[0], shape[1]*shape[2], shape[3])
|
||||
return out
|
||||
|
||||
class CAMPPlus(nn.Module):
|
||||
def __init__(self,
|
||||
feat_dim=80,
|
||||
embedding_size=512,
|
||||
growth_rate=32,
|
||||
bn_size=4,
|
||||
init_channels=128,
|
||||
config_str='batchnorm-relu',
|
||||
memory_efficient=True):
|
||||
super(CAMPPlus, self).__init__()
|
||||
|
||||
self.head = FCM(feat_dim=feat_dim)
|
||||
channels = self.head.out_channels
|
||||
|
||||
self.xvector = nn.Sequential(
|
||||
OrderedDict([
|
||||
|
||||
('tdnn',
|
||||
TDNNLayer(channels,
|
||||
init_channels,
|
||||
5,
|
||||
stride=2,
|
||||
dilation=1,
|
||||
padding=-1,
|
||||
config_str=config_str)),
|
||||
]))
|
||||
channels = init_channels
|
||||
for i, (num_layers, kernel_size,
|
||||
dilation) in enumerate(zip((12, 24, 16), (3, 3, 3), (1, 2, 2))):
|
||||
block = CAMDenseTDNNBlock(num_layers=num_layers,
|
||||
in_channels=channels,
|
||||
out_channels=growth_rate,
|
||||
bn_channels=bn_size * growth_rate,
|
||||
kernel_size=kernel_size,
|
||||
dilation=dilation,
|
||||
config_str=config_str,
|
||||
memory_efficient=memory_efficient)
|
||||
self.xvector.add_module('block%d' % (i + 1), block)
|
||||
channels = channels + num_layers * growth_rate
|
||||
self.xvector.add_module(
|
||||
'transit%d' % (i + 1),
|
||||
TransitLayer(channels,
|
||||
channels // 2,
|
||||
bias=False,
|
||||
config_str=config_str))
|
||||
channels //= 2
|
||||
|
||||
self.xvector.add_module(
|
||||
'out_nonlinear', get_nonlinear(config_str, channels))
|
||||
|
||||
self.xvector.add_module('stats', StatsPool())
|
||||
self.xvector.add_module(
|
||||
'dense',
|
||||
DenseLayer(channels * 2, embedding_size, config_str='batchnorm_'))
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
||||
nn.init.kaiming_normal_(m.weight.data)
|
||||
if m.bias is not None:
|
||||
nn.init.zeros_(m.bias)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
|
||||
x = self.head(x)
|
||||
x = self.xvector(x)
|
||||
return x
|
||||
70
indextts/s2mel/modules/campplus/classifier.py
Normal file
70
indextts/s2mel/modules/campplus/classifier.py
Normal file
@@ -0,0 +1,70 @@
|
||||
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from modules.campplus.layers import DenseLayer
|
||||
|
||||
|
||||
class CosineClassifier(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim,
|
||||
num_blocks=0,
|
||||
inter_dim=512,
|
||||
out_neurons=1000,
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.blocks = nn.ModuleList()
|
||||
|
||||
for index in range(num_blocks):
|
||||
self.blocks.append(
|
||||
DenseLayer(input_dim, inter_dim, config_str='batchnorm')
|
||||
)
|
||||
input_dim = inter_dim
|
||||
|
||||
self.weight = nn.Parameter(
|
||||
torch.FloatTensor(out_neurons, input_dim)
|
||||
)
|
||||
nn.init.xavier_uniform_(self.weight)
|
||||
|
||||
def forward(self, x):
|
||||
# x: [B, dim]
|
||||
for layer in self.blocks:
|
||||
x = layer(x)
|
||||
|
||||
# normalized
|
||||
x = F.linear(F.normalize(x), F.normalize(self.weight))
|
||||
return x
|
||||
|
||||
class LinearClassifier(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim,
|
||||
num_blocks=0,
|
||||
inter_dim=512,
|
||||
out_neurons=1000,
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.blocks = nn.ModuleList()
|
||||
|
||||
self.nonlinear = nn.ReLU(inplace=True)
|
||||
for index in range(num_blocks):
|
||||
self.blocks.append(
|
||||
DenseLayer(input_dim, inter_dim, bias=True)
|
||||
)
|
||||
input_dim = inter_dim
|
||||
|
||||
self.linear = nn.Linear(input_dim, out_neurons, bias=True)
|
||||
|
||||
def forward(self, x):
|
||||
# x: [B, dim]
|
||||
x = self.nonlinear(x)
|
||||
for layer in self.blocks:
|
||||
x = layer(x)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
253
indextts/s2mel/modules/campplus/layers.py
Normal file
253
indextts/s2mel/modules/campplus/layers.py
Normal file
@@ -0,0 +1,253 @@
|
||||
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint as cp
|
||||
from torch import nn
|
||||
|
||||
|
||||
def get_nonlinear(config_str, channels):
|
||||
nonlinear = nn.Sequential()
|
||||
for name in config_str.split('-'):
|
||||
if name == 'relu':
|
||||
nonlinear.add_module('relu', nn.ReLU(inplace=True))
|
||||
elif name == 'prelu':
|
||||
nonlinear.add_module('prelu', nn.PReLU(channels))
|
||||
elif name == 'batchnorm':
|
||||
nonlinear.add_module('batchnorm', nn.BatchNorm1d(channels))
|
||||
elif name == 'batchnorm_':
|
||||
nonlinear.add_module('batchnorm',
|
||||
nn.BatchNorm1d(channels, affine=False))
|
||||
else:
|
||||
raise ValueError('Unexpected module ({}).'.format(name))
|
||||
return nonlinear
|
||||
|
||||
def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2):
|
||||
mean = x.mean(dim=dim)
|
||||
std = x.std(dim=dim, unbiased=unbiased)
|
||||
stats = torch.cat([mean, std], dim=-1)
|
||||
if keepdim:
|
||||
stats = stats.unsqueeze(dim=dim)
|
||||
return stats
|
||||
|
||||
|
||||
class StatsPool(nn.Module):
|
||||
def forward(self, x):
|
||||
return statistics_pooling(x)
|
||||
|
||||
|
||||
class TDNNLayer(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
bias=False,
|
||||
config_str='batchnorm-relu'):
|
||||
super(TDNNLayer, self).__init__()
|
||||
if padding < 0:
|
||||
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
|
||||
kernel_size)
|
||||
padding = (kernel_size - 1) // 2 * dilation
|
||||
self.linear = nn.Conv1d(in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
bias=bias)
|
||||
self.nonlinear = get_nonlinear(config_str, out_channels)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear(x)
|
||||
x = self.nonlinear(x)
|
||||
return x
|
||||
|
||||
|
||||
class CAMLayer(nn.Module):
|
||||
def __init__(self,
|
||||
bn_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
bias,
|
||||
reduction=2):
|
||||
super(CAMLayer, self).__init__()
|
||||
self.linear_local = nn.Conv1d(bn_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
bias=bias)
|
||||
self.linear1 = nn.Conv1d(bn_channels, bn_channels // reduction, 1)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.linear2 = nn.Conv1d(bn_channels // reduction, out_channels, 1)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
y = self.linear_local(x)
|
||||
context = x.mean(-1, keepdim=True)+self.seg_pooling(x)
|
||||
context = self.relu(self.linear1(context))
|
||||
m = self.sigmoid(self.linear2(context))
|
||||
return y*m
|
||||
|
||||
def seg_pooling(self, x, seg_len=100, stype='avg'):
|
||||
if stype == 'avg':
|
||||
seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
|
||||
elif stype == 'max':
|
||||
seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
|
||||
else:
|
||||
raise ValueError('Wrong segment pooling type.')
|
||||
shape = seg.shape
|
||||
seg = seg.unsqueeze(-1).expand(*shape, seg_len).reshape(*shape[:-1], -1)
|
||||
seg = seg[..., :x.shape[-1]]
|
||||
return seg
|
||||
|
||||
|
||||
class CAMDenseTDNNLayer(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
bn_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
bias=False,
|
||||
config_str='batchnorm-relu',
|
||||
memory_efficient=False):
|
||||
super(CAMDenseTDNNLayer, self).__init__()
|
||||
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
|
||||
kernel_size)
|
||||
padding = (kernel_size - 1) // 2 * dilation
|
||||
self.memory_efficient = memory_efficient
|
||||
self.nonlinear1 = get_nonlinear(config_str, in_channels)
|
||||
self.linear1 = nn.Conv1d(in_channels, bn_channels, 1, bias=False)
|
||||
self.nonlinear2 = get_nonlinear(config_str, bn_channels)
|
||||
self.cam_layer = CAMLayer(bn_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
bias=bias)
|
||||
|
||||
def bn_function(self, x):
|
||||
return self.linear1(self.nonlinear1(x))
|
||||
|
||||
def forward(self, x):
|
||||
if self.training and self.memory_efficient:
|
||||
x = cp.checkpoint(self.bn_function, x)
|
||||
else:
|
||||
x = self.bn_function(x)
|
||||
x = self.cam_layer(self.nonlinear2(x))
|
||||
return x
|
||||
|
||||
|
||||
class CAMDenseTDNNBlock(nn.ModuleList):
|
||||
def __init__(self,
|
||||
num_layers,
|
||||
in_channels,
|
||||
out_channels,
|
||||
bn_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
bias=False,
|
||||
config_str='batchnorm-relu',
|
||||
memory_efficient=False):
|
||||
super(CAMDenseTDNNBlock, self).__init__()
|
||||
for i in range(num_layers):
|
||||
layer = CAMDenseTDNNLayer(in_channels=in_channels + i * out_channels,
|
||||
out_channels=out_channels,
|
||||
bn_channels=bn_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
dilation=dilation,
|
||||
bias=bias,
|
||||
config_str=config_str,
|
||||
memory_efficient=memory_efficient)
|
||||
self.add_module('tdnnd%d' % (i + 1), layer)
|
||||
|
||||
def forward(self, x):
|
||||
for layer in self:
|
||||
x = torch.cat([x, layer(x)], dim=1)
|
||||
return x
|
||||
|
||||
|
||||
class TransitLayer(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
bias=True,
|
||||
config_str='batchnorm-relu'):
|
||||
super(TransitLayer, self).__init__()
|
||||
self.nonlinear = get_nonlinear(config_str, in_channels)
|
||||
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.nonlinear(x)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
|
||||
class DenseLayer(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
bias=False,
|
||||
config_str='batchnorm-relu'):
|
||||
super(DenseLayer, self).__init__()
|
||||
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
|
||||
self.nonlinear = get_nonlinear(config_str, out_channels)
|
||||
|
||||
def forward(self, x):
|
||||
if len(x.shape) == 2:
|
||||
x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1)
|
||||
else:
|
||||
x = self.linear(x)
|
||||
x = self.nonlinear(x)
|
||||
return x
|
||||
|
||||
|
||||
class BasicResBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, in_planes, planes, stride=1):
|
||||
super(BasicResBlock, self).__init__()
|
||||
self.conv1 = nn.Conv2d(in_planes,
|
||||
planes,
|
||||
kernel_size=3,
|
||||
stride=(stride, 1),
|
||||
padding=1,
|
||||
bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.conv2 = nn.Conv2d(planes,
|
||||
planes,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
|
||||
self.shortcut = nn.Sequential()
|
||||
if stride != 1 or in_planes != self.expansion * planes:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.Conv2d(in_planes,
|
||||
self.expansion * planes,
|
||||
kernel_size=1,
|
||||
stride=(stride, 1),
|
||||
bias=False),
|
||||
nn.BatchNorm2d(self.expansion * planes))
|
||||
|
||||
def forward(self, x):
|
||||
out = F.relu(self.bn1(self.conv1(x)))
|
||||
out = self.bn2(self.conv2(out))
|
||||
out += self.shortcut(x)
|
||||
out = F.relu(out)
|
||||
return out
|
||||
632
indextts/s2mel/modules/commons.py
Normal file
632
indextts/s2mel/modules/commons.py
Normal file
@@ -0,0 +1,632 @@
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from munch import Munch
|
||||
import json
|
||||
import argparse
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
def str2bool(v):
|
||||
if isinstance(v, bool):
|
||||
return v
|
||||
if v.lower() in ("yes", "true", "t", "y", "1"):
|
||||
return True
|
||||
elif v.lower() in ("no", "false", "f", "n", "0"):
|
||||
return False
|
||||
else:
|
||||
raise argparse.ArgumentTypeError("Boolean value expected.")
|
||||
|
||||
class AttrDict(dict):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(AttrDict, self).__init__(*args, **kwargs)
|
||||
self.__dict__ = self
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def intersperse(lst, item):
|
||||
result = [item] * (len(lst) * 2 + 1)
|
||||
result[1::2] = lst
|
||||
return result
|
||||
|
||||
|
||||
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
||||
"""KL(P||Q)"""
|
||||
kl = (logs_q - logs_p) - 0.5
|
||||
kl += (
|
||||
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
||||
)
|
||||
return kl
|
||||
|
||||
|
||||
def rand_gumbel(shape):
|
||||
"""Sample from the Gumbel distribution, protect from overflows."""
|
||||
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
||||
return -torch.log(-torch.log(uniform_samples))
|
||||
|
||||
|
||||
def rand_gumbel_like(x):
|
||||
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
||||
return g
|
||||
|
||||
|
||||
def slice_segments(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, :, idx_str:idx_end]
|
||||
return ret
|
||||
|
||||
|
||||
def slice_segments_audio(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, idx_str:idx_end]
|
||||
return ret
|
||||
|
||||
|
||||
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
||||
b, d, t = x.size()
|
||||
if x_lengths is None:
|
||||
x_lengths = t
|
||||
ids_str_max = x_lengths - segment_size + 1
|
||||
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(
|
||||
dtype=torch.long
|
||||
)
|
||||
ret = slice_segments(x, ids_str, segment_size)
|
||||
return ret, ids_str
|
||||
|
||||
|
||||
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
||||
position = torch.arange(length, dtype=torch.float)
|
||||
num_timescales = channels // 2
|
||||
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
||||
num_timescales - 1
|
||||
)
|
||||
inv_timescales = min_timescale * torch.exp(
|
||||
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
||||
)
|
||||
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
||||
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
||||
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
||||
signal = signal.view(1, channels, length)
|
||||
return signal
|
||||
|
||||
|
||||
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return x + signal.to(dtype=x.dtype, device=x.device)
|
||||
|
||||
|
||||
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
||||
|
||||
|
||||
def subsequent_mask(length):
|
||||
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
||||
return mask
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def shift_1d(x):
|
||||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
||||
return x
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def avg_with_mask(x, mask):
|
||||
assert mask.dtype == torch.float, "Mask should be float"
|
||||
|
||||
if mask.ndim == 2:
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
if mask.shape[1] == 1:
|
||||
mask = mask.expand_as(x)
|
||||
|
||||
return (x * mask).sum() / mask.sum()
|
||||
|
||||
|
||||
def generate_path(duration, mask):
|
||||
"""
|
||||
duration: [b, 1, t_x]
|
||||
mask: [b, 1, t_y, t_x]
|
||||
"""
|
||||
device = duration.device
|
||||
|
||||
b, _, t_y, t_x = mask.shape
|
||||
cum_duration = torch.cumsum(duration, -1)
|
||||
|
||||
cum_duration_flat = cum_duration.view(b * t_x)
|
||||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||
path = path.view(b, t_x, t_y)
|
||||
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||||
path = path.unsqueeze(1).transpose(2, 3) * mask
|
||||
return path
|
||||
|
||||
|
||||
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
||||
if isinstance(parameters, torch.Tensor):
|
||||
parameters = [parameters]
|
||||
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
||||
norm_type = float(norm_type)
|
||||
if clip_value is not None:
|
||||
clip_value = float(clip_value)
|
||||
|
||||
total_norm = 0
|
||||
for p in parameters:
|
||||
param_norm = p.grad.data.norm(norm_type)
|
||||
total_norm += param_norm.item() ** norm_type
|
||||
if clip_value is not None:
|
||||
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
||||
total_norm = total_norm ** (1.0 / norm_type)
|
||||
return total_norm
|
||||
|
||||
|
||||
def log_norm(x, mean=-4, std=4, dim=2):
|
||||
"""
|
||||
normalized log mel -> mel -> norm -> log(norm)
|
||||
"""
|
||||
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
|
||||
return x
|
||||
|
||||
|
||||
def load_F0_models(path):
|
||||
# load F0 model
|
||||
from .JDC.model import JDCNet
|
||||
|
||||
F0_model = JDCNet(num_class=1, seq_len=192)
|
||||
params = torch.load(path, map_location="cpu")["net"]
|
||||
F0_model.load_state_dict(params)
|
||||
_ = F0_model.train()
|
||||
|
||||
return F0_model
|
||||
|
||||
|
||||
def modify_w2v_forward(self, output_layer=15):
|
||||
"""
|
||||
change forward method of w2v encoder to get its intermediate layer output
|
||||
:param self:
|
||||
:param layer:
|
||||
:return:
|
||||
"""
|
||||
from transformers.modeling_outputs import BaseModelOutput
|
||||
|
||||
def forward(
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
return_dict=True,
|
||||
):
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
|
||||
conv_attention_mask = attention_mask
|
||||
if attention_mask is not None:
|
||||
# make sure padded tokens output 0
|
||||
hidden_states = hidden_states.masked_fill(
|
||||
~attention_mask.bool().unsqueeze(-1), 0.0
|
||||
)
|
||||
|
||||
# extend attention_mask
|
||||
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
|
||||
dtype=hidden_states.dtype
|
||||
)
|
||||
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
||||
attention_mask = attention_mask.expand(
|
||||
attention_mask.shape[0],
|
||||
1,
|
||||
attention_mask.shape[-1],
|
||||
attention_mask.shape[-1],
|
||||
)
|
||||
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
|
||||
if self.embed_positions is not None:
|
||||
relative_position_embeddings = self.embed_positions(hidden_states)
|
||||
else:
|
||||
relative_position_embeddings = None
|
||||
|
||||
deepspeed_zero3_is_enabled = False
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||||
dropout_probability = torch.rand([])
|
||||
|
||||
skip_the_layer = (
|
||||
True
|
||||
if self.training and (dropout_probability < self.config.layerdrop)
|
||||
else False
|
||||
)
|
||||
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
||||
# under deepspeed zero3 all gpus must run in sync
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
relative_position_embeddings,
|
||||
output_attentions,
|
||||
conv_attention_mask,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
relative_position_embeddings=relative_position_embeddings,
|
||||
output_attentions=output_attentions,
|
||||
conv_attention_mask=conv_attention_mask,
|
||||
)
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if skip_the_layer:
|
||||
layer_outputs = (None, None)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||||
|
||||
if i == output_layer - 1:
|
||||
break
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [hidden_states, all_hidden_states, all_self_attentions]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutput(
|
||||
last_hidden_state=hidden_states,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
||||
|
||||
return forward
|
||||
|
||||
|
||||
MATPLOTLIB_FLAG = False
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
import logging
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def normalize_f0(f0_sequence):
|
||||
# Remove unvoiced frames (replace with -1)
|
||||
voiced_indices = np.where(f0_sequence > 0)[0]
|
||||
f0_voiced = f0_sequence[voiced_indices]
|
||||
|
||||
# Convert to log scale
|
||||
log_f0 = np.log2(f0_voiced)
|
||||
|
||||
# Calculate mean and standard deviation
|
||||
mean_f0 = np.mean(log_f0)
|
||||
std_f0 = np.std(log_f0)
|
||||
|
||||
# Normalize the F0 sequence
|
||||
normalized_f0 = (log_f0 - mean_f0) / std_f0
|
||||
|
||||
# Create the normalized F0 sequence with unvoiced frames
|
||||
normalized_sequence = np.zeros_like(f0_sequence)
|
||||
normalized_sequence[voiced_indices] = normalized_f0
|
||||
normalized_sequence[f0_sequence <= 0] = -1 # Assign -1 to unvoiced frames
|
||||
|
||||
return normalized_sequence
|
||||
|
||||
|
||||
class MyModel(nn.Module):
|
||||
def __init__(self,args, use_emovec=False, use_gpt_latent=False):
|
||||
super(MyModel, self).__init__()
|
||||
from indextts.s2mel.modules.flow_matching import CFM
|
||||
from indextts.s2mel.modules.length_regulator import InterpolateRegulator
|
||||
|
||||
length_regulator = InterpolateRegulator(
|
||||
channels=args.length_regulator.channels,
|
||||
sampling_ratios=args.length_regulator.sampling_ratios,
|
||||
is_discrete=args.length_regulator.is_discrete,
|
||||
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
|
||||
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
|
||||
codebook_size=args.length_regulator.content_codebook_size,
|
||||
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
|
||||
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
|
||||
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
|
||||
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
|
||||
)
|
||||
|
||||
if use_gpt_latent:
|
||||
self.models = nn.ModuleDict({
|
||||
'cfm': CFM(args),
|
||||
'length_regulator': length_regulator,
|
||||
'gpt_layer': torch.nn.Sequential(torch.nn.Linear(1280, 256), torch.nn.Linear(256, 128), torch.nn.Linear(128, 1024))
|
||||
})
|
||||
|
||||
else:
|
||||
self.models = nn.ModuleDict({
|
||||
'cfm': CFM(args),
|
||||
'length_regulator': length_regulator
|
||||
})
|
||||
|
||||
def forward(self, x, target_lengths, prompt_len, cond, y):
|
||||
x = self.models['cfm'](x, target_lengths, prompt_len, cond, y)
|
||||
return x
|
||||
|
||||
def forward2(self, S_ori,target_lengths,F0_ori):
|
||||
x = self.models['length_regulator'](S_ori, ylens=target_lengths, f0=F0_ori)
|
||||
return x
|
||||
|
||||
def forward_emovec(self, x):
|
||||
x = self.models['emo_layer'](x)
|
||||
return x
|
||||
|
||||
def forward_emo_encoder(self, x):
|
||||
x = self.models['emo_encoder'](x)
|
||||
return x
|
||||
|
||||
def forward_gpt(self,x):
|
||||
x = self.models['gpt_layer'](x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
def build_model(args, stage="DiT"):
|
||||
if stage == "DiT":
|
||||
from modules.flow_matching import CFM
|
||||
from modules.length_regulator import InterpolateRegulator
|
||||
|
||||
length_regulator = InterpolateRegulator(
|
||||
channels=args.length_regulator.channels,
|
||||
sampling_ratios=args.length_regulator.sampling_ratios,
|
||||
is_discrete=args.length_regulator.is_discrete,
|
||||
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
|
||||
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
|
||||
codebook_size=args.length_regulator.content_codebook_size,
|
||||
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
|
||||
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
|
||||
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
|
||||
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
|
||||
)
|
||||
cfm = CFM(args)
|
||||
nets = Munch(
|
||||
cfm=cfm,
|
||||
length_regulator=length_regulator,
|
||||
)
|
||||
|
||||
elif stage == 'codec':
|
||||
from dac.model.dac import Encoder
|
||||
from modules.quantize import (
|
||||
FAquantizer,
|
||||
)
|
||||
|
||||
encoder = Encoder(
|
||||
d_model=args.DAC.encoder_dim,
|
||||
strides=args.DAC.encoder_rates,
|
||||
d_latent=1024,
|
||||
causal=args.causal,
|
||||
lstm=args.lstm,
|
||||
)
|
||||
|
||||
quantizer = FAquantizer(
|
||||
in_dim=1024,
|
||||
n_p_codebooks=1,
|
||||
n_c_codebooks=args.n_c_codebooks,
|
||||
n_t_codebooks=2,
|
||||
n_r_codebooks=3,
|
||||
codebook_size=1024,
|
||||
codebook_dim=8,
|
||||
quantizer_dropout=0.5,
|
||||
causal=args.causal,
|
||||
separate_prosody_encoder=args.separate_prosody_encoder,
|
||||
timbre_norm=args.timbre_norm,
|
||||
)
|
||||
|
||||
nets = Munch(
|
||||
encoder=encoder,
|
||||
quantizer=quantizer,
|
||||
)
|
||||
|
||||
elif stage == "mel_vocos":
|
||||
from modules.vocos import Vocos
|
||||
decoder = Vocos(args)
|
||||
nets = Munch(
|
||||
decoder=decoder,
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown stage: {stage}")
|
||||
|
||||
return nets
|
||||
|
||||
|
||||
def load_checkpoint(
|
||||
model,
|
||||
optimizer,
|
||||
path,
|
||||
load_only_params=True,
|
||||
ignore_modules=[],
|
||||
is_distributed=False,
|
||||
load_ema=False,
|
||||
):
|
||||
state = torch.load(path, map_location="cpu")
|
||||
params = state["net"]
|
||||
if load_ema and "ema" in state:
|
||||
print("Loading EMA")
|
||||
for key in model:
|
||||
i = 0
|
||||
for param_name in params[key]:
|
||||
if "input_pos" in param_name:
|
||||
continue
|
||||
assert params[key][param_name].shape == state["ema"][key][0][i].shape
|
||||
params[key][param_name] = state["ema"][key][0][i].clone()
|
||||
i += 1
|
||||
for key in model:
|
||||
if key in params and key not in ignore_modules:
|
||||
if not is_distributed:
|
||||
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
|
||||
for k in list(params[key].keys()):
|
||||
if k.startswith("module."):
|
||||
params[key][k[len("module.") :]] = params[key][k]
|
||||
del params[key][k]
|
||||
model_state_dict = model[key].state_dict()
|
||||
# 过滤出形状匹配的键值对
|
||||
filtered_state_dict = {
|
||||
k: v
|
||||
for k, v in params[key].items()
|
||||
if k in model_state_dict and v.shape == model_state_dict[k].shape
|
||||
}
|
||||
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
|
||||
if skipped_keys:
|
||||
print(
|
||||
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
|
||||
)
|
||||
print("%s loaded" % key)
|
||||
model[key].load_state_dict(filtered_state_dict, strict=False)
|
||||
_ = [model[key].eval() for key in model]
|
||||
|
||||
if not load_only_params:
|
||||
epoch = state["epoch"] + 1
|
||||
iters = state["iters"]
|
||||
optimizer.load_state_dict(state["optimizer"])
|
||||
optimizer.load_scheduler_state_dict(state["scheduler"])
|
||||
|
||||
else:
|
||||
epoch = 0
|
||||
iters = 0
|
||||
|
||||
return model, optimizer, epoch, iters
|
||||
|
||||
def load_checkpoint2(
|
||||
model,
|
||||
optimizer,
|
||||
path,
|
||||
load_only_params=True,
|
||||
ignore_modules=[],
|
||||
is_distributed=False,
|
||||
load_ema=False,
|
||||
):
|
||||
state = torch.load(path, map_location="cpu")
|
||||
params = state["net"]
|
||||
if load_ema and "ema" in state:
|
||||
print("Loading EMA")
|
||||
for key in model.models:
|
||||
i = 0
|
||||
for param_name in params[key]:
|
||||
if "input_pos" in param_name:
|
||||
continue
|
||||
assert params[key][param_name].shape == state["ema"][key][0][i].shape
|
||||
params[key][param_name] = state["ema"][key][0][i].clone()
|
||||
i += 1
|
||||
for key in model.models:
|
||||
if key in params and key not in ignore_modules:
|
||||
if not is_distributed:
|
||||
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
|
||||
for k in list(params[key].keys()):
|
||||
if k.startswith("module."):
|
||||
params[key][k[len("module.") :]] = params[key][k]
|
||||
del params[key][k]
|
||||
model_state_dict = model.models[key].state_dict()
|
||||
# 过滤出形状匹配的键值对
|
||||
filtered_state_dict = {
|
||||
k: v
|
||||
for k, v in params[key].items()
|
||||
if k in model_state_dict and v.shape == model_state_dict[k].shape
|
||||
}
|
||||
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
|
||||
if skipped_keys:
|
||||
print(
|
||||
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
|
||||
)
|
||||
print("%s loaded" % key)
|
||||
model.models[key].load_state_dict(filtered_state_dict, strict=False)
|
||||
model.eval()
|
||||
# _ = [model[key].eval() for key in model]
|
||||
|
||||
if not load_only_params:
|
||||
epoch = state["epoch"] + 1
|
||||
iters = state["iters"]
|
||||
optimizer.load_state_dict(state["optimizer"])
|
||||
optimizer.load_scheduler_state_dict(state["scheduler"])
|
||||
|
||||
else:
|
||||
epoch = 0
|
||||
iters = 0
|
||||
|
||||
return model, optimizer, epoch, iters
|
||||
|
||||
def recursive_munch(d):
|
||||
if isinstance(d, dict):
|
||||
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
||||
elif isinstance(d, list):
|
||||
return [recursive_munch(v) for v in d]
|
||||
else:
|
||||
return d
|
||||
257
indextts/s2mel/modules/diffusion_transformer.py
Normal file
257
indextts/s2mel/modules/diffusion_transformer.py
Normal file
@@ -0,0 +1,257 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import math
|
||||
|
||||
from indextts.s2mel.modules.gpt_fast.model import ModelArgs, Transformer
|
||||
from indextts.s2mel.modules.wavenet import WN
|
||||
from indextts.s2mel.modules.commons import sequence_mask
|
||||
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
def modulate(x, shift, scale):
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
|
||||
|
||||
#################################################################################
|
||||
# Embedding Layers for Timesteps and Class Labels #
|
||||
#################################################################################
|
||||
|
||||
class TimestepEmbedder(nn.Module):
|
||||
"""
|
||||
Embeds scalar timesteps into vector representations.
|
||||
"""
|
||||
def __init__(self, hidden_size, frequency_embedding_size=256):
|
||||
super().__init__()
|
||||
self.mlp = nn.Sequential(
|
||||
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
||||
nn.SiLU(),
|
||||
nn.Linear(hidden_size, hidden_size, bias=True),
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
self.max_period = 10000
|
||||
self.scale = 1000
|
||||
|
||||
half = frequency_embedding_size // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(self.max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||||
)
|
||||
self.register_buffer("freqs", freqs)
|
||||
|
||||
def timestep_embedding(self, t):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param t: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an (N, D) Tensor of positional embeddings.
|
||||
"""
|
||||
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
||||
|
||||
args = self.scale * t[:, None].float() * self.freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if self.frequency_embedding_size % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
return embedding
|
||||
|
||||
def forward(self, t):
|
||||
t_freq = self.timestep_embedding(t)
|
||||
t_emb = self.mlp(t_freq)
|
||||
return t_emb
|
||||
|
||||
|
||||
class StyleEmbedder(nn.Module):
|
||||
"""
|
||||
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
||||
"""
|
||||
def __init__(self, input_size, hidden_size, dropout_prob):
|
||||
super().__init__()
|
||||
use_cfg_embedding = dropout_prob > 0
|
||||
self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size)
|
||||
self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True))
|
||||
self.input_size = input_size
|
||||
self.dropout_prob = dropout_prob
|
||||
|
||||
def forward(self, labels, train, force_drop_ids=None):
|
||||
use_dropout = self.dropout_prob > 0
|
||||
if (train and use_dropout) or (force_drop_ids is not None):
|
||||
labels = self.token_drop(labels, force_drop_ids)
|
||||
else:
|
||||
labels = self.style_in(labels)
|
||||
embeddings = labels
|
||||
return embeddings
|
||||
|
||||
class FinalLayer(nn.Module):
|
||||
"""
|
||||
The final layer of DiT.
|
||||
"""
|
||||
def __init__(self, hidden_size, patch_size, out_channels):
|
||||
super().__init__()
|
||||
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True))
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
||||
)
|
||||
|
||||
def forward(self, x, c):
|
||||
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
||||
x = modulate(self.norm_final(x), shift, scale)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
class DiT(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
args
|
||||
):
|
||||
super(DiT, self).__init__()
|
||||
self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False
|
||||
self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False
|
||||
self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False
|
||||
model_args = ModelArgs(
|
||||
block_size=16384,#args.DiT.block_size,
|
||||
n_layer=args.DiT.depth,
|
||||
n_head=args.DiT.num_heads,
|
||||
dim=args.DiT.hidden_dim,
|
||||
head_dim=args.DiT.hidden_dim // args.DiT.num_heads,
|
||||
vocab_size=1024,
|
||||
uvit_skip_connection=self.uvit_skip_connection,
|
||||
time_as_token=self.time_as_token,
|
||||
)
|
||||
self.transformer = Transformer(model_args)
|
||||
self.in_channels = args.DiT.in_channels
|
||||
self.out_channels = args.DiT.in_channels
|
||||
self.num_heads = args.DiT.num_heads
|
||||
|
||||
self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True))
|
||||
|
||||
self.content_type = args.DiT.content_type # 'discrete' or 'continuous'
|
||||
self.content_codebook_size = args.DiT.content_codebook_size # for discrete content
|
||||
self.content_dim = args.DiT.content_dim # for continuous content
|
||||
self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim) # discrete content
|
||||
self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True) # continuous content
|
||||
|
||||
self.is_causal = args.DiT.is_causal
|
||||
|
||||
self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim)
|
||||
|
||||
# self.style_embedder1 = weight_norm(nn.Linear(1024, args.DiT.hidden_dim, bias=True))
|
||||
# self.style_embedder2 = weight_norm(nn.Linear(1024, args.style_encoder.dim, bias=True))
|
||||
|
||||
input_pos = torch.arange(16384)
|
||||
self.register_buffer("input_pos", input_pos)
|
||||
|
||||
self.final_layer_type = args.DiT.final_layer_type # mlp or wavenet
|
||||
if self.final_layer_type == 'wavenet':
|
||||
self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim)
|
||||
self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim)
|
||||
self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1)
|
||||
self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim,
|
||||
kernel_size=args.wavenet.kernel_size,
|
||||
dilation_rate=args.wavenet.dilation_rate,
|
||||
n_layers=args.wavenet.num_layers,
|
||||
gin_channels=args.wavenet.hidden_dim,
|
||||
p_dropout=args.wavenet.p_dropout,
|
||||
causal=False)
|
||||
self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim)
|
||||
self.res_projection = nn.Linear(args.DiT.hidden_dim,
|
||||
args.wavenet.hidden_dim) # residual connection from tranformer output to final output
|
||||
self.wavenet_style_condition = args.wavenet.style_condition
|
||||
assert args.DiT.style_condition == args.wavenet.style_condition
|
||||
else:
|
||||
self.final_mlp = nn.Sequential(
|
||||
nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim),
|
||||
nn.SiLU(),
|
||||
nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels),
|
||||
)
|
||||
self.transformer_style_condition = args.DiT.style_condition
|
||||
|
||||
|
||||
self.class_dropout_prob = args.DiT.class_dropout_prob
|
||||
self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim)
|
||||
|
||||
self.long_skip_connection = args.DiT.long_skip_connection
|
||||
self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim)
|
||||
|
||||
self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 +
|
||||
args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token),
|
||||
args.DiT.hidden_dim)
|
||||
if self.style_as_token:
|
||||
self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim)
|
||||
|
||||
def setup_caches(self, max_batch_size, max_seq_length):
|
||||
self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False)
|
||||
|
||||
def forward(self, x, prompt_x, x_lens, t, style, cond, mask_content=False):
|
||||
"""
|
||||
x (torch.Tensor): random noise
|
||||
prompt_x (torch.Tensor): reference mel + zero mel
|
||||
shape: (batch_size, 80, 795+1068)
|
||||
x_lens (torch.Tensor): mel frames output
|
||||
shape: (batch_size, mel_timesteps)
|
||||
t (torch.Tensor): radshape:
|
||||
shape: (batch_size)
|
||||
style (torch.Tensor): reference global style
|
||||
shape: (batch_size, 192)
|
||||
cond (torch.Tensor): semantic info of reference audio and altered audio
|
||||
shape: (batch_size, mel_timesteps(795+1069), 512)
|
||||
|
||||
"""
|
||||
class_dropout = False
|
||||
if self.training and torch.rand(1) < self.class_dropout_prob:
|
||||
class_dropout = True
|
||||
if not self.training and mask_content:
|
||||
class_dropout = True
|
||||
# cond_in_module = self.cond_embedder if self.content_type == 'discrete' else self.cond_projection
|
||||
cond_in_module = self.cond_projection
|
||||
|
||||
B, _, T = x.size()
|
||||
|
||||
|
||||
t1 = self.t_embedder(t) # (N, D) # t1 [2, 512]
|
||||
cond = cond_in_module(cond) # cond [2,1863,512]->[2,1863,512]
|
||||
|
||||
x = x.transpose(1, 2) # [2,1863,80]
|
||||
prompt_x = prompt_x.transpose(1, 2) # [2,1863,80]
|
||||
|
||||
x_in = torch.cat([x, prompt_x, cond], dim=-1) # 80+80+512=672 [2, 1863, 672]
|
||||
|
||||
if self.transformer_style_condition and not self.style_as_token: # True and True
|
||||
x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1) #[2, 1863, 864]
|
||||
|
||||
if class_dropout: #False
|
||||
x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0 # 80维后全置为0
|
||||
|
||||
x_in = self.cond_x_merge_linear(x_in) # (N, T, D) [2, 1863, 512]
|
||||
|
||||
if self.style_as_token: # False
|
||||
style = self.style_in(style)
|
||||
style = torch.zeros_like(style) if class_dropout else style
|
||||
x_in = torch.cat([style.unsqueeze(1), x_in], dim=1)
|
||||
|
||||
if self.time_as_token: # False
|
||||
x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1)
|
||||
|
||||
x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1) #torch.Size([1, 1, 1863])True
|
||||
input_pos = self.input_pos[:x_in.size(1)] # (T,) range(0,1863)
|
||||
x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None # torch.Size([1, 1, 1863, 1863]
|
||||
x_res = self.transformer(x_in, t1.unsqueeze(1), input_pos, x_mask_expanded) # [2, 1863, 512]
|
||||
x_res = x_res[:, 1:] if self.time_as_token else x_res
|
||||
x_res = x_res[:, 1:] if self.style_as_token else x_res
|
||||
|
||||
if self.long_skip_connection: #True
|
||||
x_res = self.skip_linear(torch.cat([x_res, x], dim=-1))
|
||||
if self.final_layer_type == 'wavenet':
|
||||
x = self.conv1(x_res)
|
||||
x = x.transpose(1, 2)
|
||||
t2 = self.t_embedder2(t)
|
||||
x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection(
|
||||
x_res) # long residual connection
|
||||
x = self.final_layer(x, t1).transpose(1, 2)
|
||||
x = self.conv2(x)
|
||||
else:
|
||||
x = self.final_mlp(x_res)
|
||||
x = x.transpose(1, 2)
|
||||
# x [2,80,1863]
|
||||
return x
|
||||
292
indextts/s2mel/modules/encodec.py
Normal file
292
indextts/s2mel/modules/encodec.py
Normal file
@@ -0,0 +1,292 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Convolutional layers wrappers and utilities."""
|
||||
|
||||
import math
|
||||
import typing as tp
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import spectral_norm, weight_norm
|
||||
|
||||
import typing as tp
|
||||
|
||||
import einops
|
||||
|
||||
|
||||
class ConvLayerNorm(nn.LayerNorm):
|
||||
"""
|
||||
Convolution-friendly LayerNorm that moves channels to last dimensions
|
||||
before running the normalization and moves them back to original position right after.
|
||||
"""
|
||||
def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
|
||||
super().__init__(normalized_shape, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
x = einops.rearrange(x, 'b ... t -> b t ...')
|
||||
x = super().forward(x)
|
||||
x = einops.rearrange(x, 'b t ... -> b ... t')
|
||||
return
|
||||
|
||||
|
||||
CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
|
||||
'time_layer_norm', 'layer_norm', 'time_group_norm'])
|
||||
|
||||
|
||||
def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
|
||||
assert norm in CONV_NORMALIZATIONS
|
||||
if norm == 'weight_norm':
|
||||
return weight_norm(module)
|
||||
elif norm == 'spectral_norm':
|
||||
return spectral_norm(module)
|
||||
else:
|
||||
# We already check was in CONV_NORMALIZATION, so any other choice
|
||||
# doesn't need reparametrization.
|
||||
return module
|
||||
|
||||
|
||||
def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
|
||||
"""Return the proper normalization module. If causal is True, this will ensure the returned
|
||||
module is causal, or return an error if the normalization doesn't support causal evaluation.
|
||||
"""
|
||||
assert norm in CONV_NORMALIZATIONS
|
||||
if norm == 'layer_norm':
|
||||
assert isinstance(module, nn.modules.conv._ConvNd)
|
||||
return ConvLayerNorm(module.out_channels, **norm_kwargs)
|
||||
elif norm == 'time_group_norm':
|
||||
if causal:
|
||||
raise ValueError("GroupNorm doesn't support causal evaluation.")
|
||||
assert isinstance(module, nn.modules.conv._ConvNd)
|
||||
return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
|
||||
else:
|
||||
return nn.Identity()
|
||||
|
||||
|
||||
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
|
||||
padding_total: int = 0) -> int:
|
||||
"""See `pad_for_conv1d`.
|
||||
"""
|
||||
length = x.shape[-1]
|
||||
n_frames = (length - kernel_size + padding_total) / stride + 1
|
||||
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
|
||||
return ideal_length - length
|
||||
|
||||
|
||||
def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
|
||||
"""Pad for a convolution to make sure that the last window is full.
|
||||
Extra padding is added at the end. This is required to ensure that we can rebuild
|
||||
an output of the same length, as otherwise, even with padding, some time steps
|
||||
might get removed.
|
||||
For instance, with total padding = 4, kernel size = 4, stride = 2:
|
||||
0 0 1 2 3 4 5 0 0 # (0s are padding)
|
||||
1 2 3 # (output frames of a convolution, last 0 is never used)
|
||||
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding)
|
||||
1 2 3 4 # once you removed padding, we are missing one time step !
|
||||
"""
|
||||
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
||||
return F.pad(x, (0, extra_padding))
|
||||
|
||||
|
||||
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
|
||||
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
|
||||
If this is the case, we insert extra 0 padding to the right before the reflection happen.
|
||||
"""
|
||||
length = x.shape[-1]
|
||||
padding_left, padding_right = paddings
|
||||
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
||||
if mode == 'reflect':
|
||||
max_pad = max(padding_left, padding_right)
|
||||
extra_pad = 0
|
||||
if length <= max_pad:
|
||||
extra_pad = max_pad - length + 1
|
||||
x = F.pad(x, (0, extra_pad))
|
||||
padded = F.pad(x, paddings, mode, value)
|
||||
end = padded.shape[-1] - extra_pad
|
||||
return padded[..., :end]
|
||||
else:
|
||||
return F.pad(x, paddings, mode, value)
|
||||
|
||||
|
||||
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
|
||||
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
|
||||
padding_left, padding_right = paddings
|
||||
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
||||
assert (padding_left + padding_right) <= x.shape[-1]
|
||||
end = x.shape[-1] - padding_right
|
||||
return x[..., padding_left: end]
|
||||
|
||||
|
||||
class NormConv1d(nn.Module):
|
||||
"""Wrapper around Conv1d and normalization applied to this conv
|
||||
to provide a uniform interface across normalization approaches.
|
||||
"""
|
||||
def __init__(self, *args, causal: bool = False, norm: str = 'none',
|
||||
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
||||
super().__init__()
|
||||
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
|
||||
self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
|
||||
self.norm_type = norm
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class NormConv2d(nn.Module):
|
||||
"""Wrapper around Conv2d and normalization applied to this conv
|
||||
to provide a uniform interface across normalization approaches.
|
||||
"""
|
||||
def __init__(self, *args, norm: str = 'none',
|
||||
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
||||
super().__init__()
|
||||
self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm)
|
||||
self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs)
|
||||
self.norm_type = norm
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class NormConvTranspose1d(nn.Module):
|
||||
"""Wrapper around ConvTranspose1d and normalization applied to this conv
|
||||
to provide a uniform interface across normalization approaches.
|
||||
"""
|
||||
def __init__(self, *args, causal: bool = False, norm: str = 'none',
|
||||
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
||||
super().__init__()
|
||||
self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
|
||||
self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
|
||||
self.norm_type = norm
|
||||
|
||||
def forward(self, x):
|
||||
x = self.convtr(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class NormConvTranspose2d(nn.Module):
|
||||
"""Wrapper around ConvTranspose2d and normalization applied to this conv
|
||||
to provide a uniform interface across normalization approaches.
|
||||
"""
|
||||
def __init__(self, *args, norm: str = 'none',
|
||||
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
||||
super().__init__()
|
||||
self.convtr = apply_parametrization_norm(nn.ConvTranspose2d(*args, **kwargs), norm)
|
||||
self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.convtr(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class SConv1d(nn.Module):
|
||||
"""Conv1d with some builtin handling of asymmetric or causal padding
|
||||
and normalization.
|
||||
"""
|
||||
def __init__(self, in_channels: int, out_channels: int,
|
||||
kernel_size: int, stride: int = 1, dilation: int = 1,
|
||||
groups: int = 1, bias: bool = True, causal: bool = False,
|
||||
norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
|
||||
pad_mode: str = 'reflect', **kwargs):
|
||||
super().__init__()
|
||||
# warn user on unusual setup between dilation and stride
|
||||
if stride > 1 and dilation > 1:
|
||||
warnings.warn('SConv1d has been initialized with stride > 1 and dilation > 1'
|
||||
f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).')
|
||||
self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
|
||||
dilation=dilation, groups=groups, bias=bias, causal=causal,
|
||||
norm=norm, norm_kwargs=norm_kwargs)
|
||||
self.causal = causal
|
||||
self.pad_mode = pad_mode
|
||||
|
||||
def forward(self, x):
|
||||
B, C, T = x.shape
|
||||
kernel_size = self.conv.conv.kernel_size[0]
|
||||
stride = self.conv.conv.stride[0]
|
||||
dilation = self.conv.conv.dilation[0]
|
||||
kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations
|
||||
padding_total = kernel_size - stride
|
||||
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
||||
if self.causal:
|
||||
# Left padding for causal
|
||||
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
|
||||
else:
|
||||
# Asymmetric padding required for odd strides
|
||||
padding_right = padding_total // 2
|
||||
padding_left = padding_total - padding_right
|
||||
x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class SConvTranspose1d(nn.Module):
|
||||
"""ConvTranspose1d with some builtin handling of asymmetric or causal padding
|
||||
and normalization.
|
||||
"""
|
||||
def __init__(self, in_channels: int, out_channels: int,
|
||||
kernel_size: int, stride: int = 1, causal: bool = False,
|
||||
norm: str = 'none', trim_right_ratio: float = 1.,
|
||||
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
||||
super().__init__()
|
||||
self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
|
||||
causal=causal, norm=norm, norm_kwargs=norm_kwargs)
|
||||
self.causal = causal
|
||||
self.trim_right_ratio = trim_right_ratio
|
||||
assert self.causal or self.trim_right_ratio == 1., \
|
||||
"`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
|
||||
assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
|
||||
|
||||
def forward(self, x):
|
||||
kernel_size = self.convtr.convtr.kernel_size[0]
|
||||
stride = self.convtr.convtr.stride[0]
|
||||
padding_total = kernel_size - stride
|
||||
|
||||
y = self.convtr(x)
|
||||
|
||||
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
|
||||
# removed at the very end, when keeping only the right length for the output,
|
||||
# as removing it here would require also passing the length at the matching layer
|
||||
# in the encoder.
|
||||
if self.causal:
|
||||
# Trim the padding on the right according to the specified ratio
|
||||
# if trim_right_ratio = 1.0, trim everything from right
|
||||
padding_right = math.ceil(padding_total * self.trim_right_ratio)
|
||||
padding_left = padding_total - padding_right
|
||||
y = unpad1d(y, (padding_left, padding_right))
|
||||
else:
|
||||
# Asymmetric padding required for odd strides
|
||||
padding_right = padding_total // 2
|
||||
padding_left = padding_total - padding_right
|
||||
y = unpad1d(y, (padding_left, padding_right))
|
||||
return y
|
||||
|
||||
class SLSTM(nn.Module):
|
||||
"""
|
||||
LSTM without worrying about the hidden state, nor the layout of the data.
|
||||
Expects input as convolutional layout.
|
||||
"""
|
||||
def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True):
|
||||
super().__init__()
|
||||
self.skip = skip
|
||||
self.lstm = nn.LSTM(dimension, dimension, num_layers)
|
||||
self.hidden = None
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(2, 0, 1)
|
||||
if self.training:
|
||||
y, _ = self.lstm(x)
|
||||
else:
|
||||
y, self.hidden = self.lstm(x, self.hidden)
|
||||
if self.skip:
|
||||
y = y + x
|
||||
y = y.permute(1, 2, 0)
|
||||
return y
|
||||
171
indextts/s2mel/modules/flow_matching.py
Normal file
171
indextts/s2mel/modules/flow_matching.py
Normal file
@@ -0,0 +1,171 @@
|
||||
from abc import ABC
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from indextts.s2mel.modules.diffusion_transformer import DiT
|
||||
from indextts.s2mel.modules.commons import sequence_mask
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
class BASECFM(torch.nn.Module, ABC):
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
super().__init__()
|
||||
self.sigma_min = 1e-6
|
||||
|
||||
self.estimator = None
|
||||
|
||||
self.in_channels = args.DiT.in_channels
|
||||
|
||||
self.criterion = torch.nn.MSELoss() if args.reg_loss_type == "l2" else torch.nn.L1Loss()
|
||||
|
||||
if hasattr(args.DiT, 'zero_prompt_speech_token'):
|
||||
self.zero_prompt_speech_token = args.DiT.zero_prompt_speech_token
|
||||
else:
|
||||
self.zero_prompt_speech_token = False
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self, mu, x_lens, prompt, style, f0, n_timesteps, temperature=1.0, inference_cfg_rate=0.5):
|
||||
"""Forward diffusion
|
||||
|
||||
Args:
|
||||
mu (torch.Tensor): semantic info of reference audio and altered audio
|
||||
shape: (batch_size, mel_timesteps(795+1069), 512)
|
||||
x_lens (torch.Tensor): mel frames output
|
||||
shape: (batch_size, mel_timesteps)
|
||||
prompt (torch.Tensor): reference mel
|
||||
shape: (batch_size, 80, 795)
|
||||
style (torch.Tensor): reference global style
|
||||
shape: (batch_size, 192)
|
||||
f0: None
|
||||
n_timesteps (int): number of diffusion steps
|
||||
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
||||
|
||||
Returns:
|
||||
sample: generated mel-spectrogram
|
||||
shape: (batch_size, 80, mel_timesteps)
|
||||
"""
|
||||
B, T = mu.size(0), mu.size(1)
|
||||
z = torch.randn([B, self.in_channels, T], device=mu.device) * temperature
|
||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
||||
# t_span = t_span + (-1) * (torch.cos(torch.pi / 2 * t_span) - 1 + t_span)
|
||||
return self.solve_euler(z, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate)
|
||||
|
||||
def solve_euler(self, x, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate=0.5):
|
||||
"""
|
||||
Fixed euler solver for ODEs.
|
||||
Args:
|
||||
x (torch.Tensor): random noise
|
||||
t_span (torch.Tensor): n_timesteps interpolated
|
||||
shape: (n_timesteps + 1,)
|
||||
mu (torch.Tensor): semantic info of reference audio and altered audio
|
||||
shape: (batch_size, mel_timesteps(795+1069), 512)
|
||||
x_lens (torch.Tensor): mel frames output
|
||||
shape: (batch_size, mel_timesteps)
|
||||
prompt (torch.Tensor): reference mel
|
||||
shape: (batch_size, 80, 795)
|
||||
style (torch.Tensor): reference global style
|
||||
shape: (batch_size, 192)
|
||||
"""
|
||||
t, _, _ = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||
|
||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||
# Or in future might add like a return_all_steps flag
|
||||
sol = []
|
||||
# apply prompt
|
||||
prompt_len = prompt.size(-1)
|
||||
prompt_x = torch.zeros_like(x)
|
||||
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
|
||||
x[..., :prompt_len] = 0
|
||||
if self.zero_prompt_speech_token:
|
||||
mu[..., :prompt_len] = 0
|
||||
for step in tqdm(range(1, len(t_span))):
|
||||
dt = t_span[step] - t_span[step - 1]
|
||||
if inference_cfg_rate > 0:
|
||||
# Stack original and CFG (null) inputs for batched processing
|
||||
stacked_prompt_x = torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0)
|
||||
stacked_style = torch.cat([style, torch.zeros_like(style)], dim=0)
|
||||
stacked_mu = torch.cat([mu, torch.zeros_like(mu)], dim=0)
|
||||
stacked_x = torch.cat([x, x], dim=0)
|
||||
stacked_t = torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0)
|
||||
|
||||
# Perform a single forward pass for both original and CFG inputs
|
||||
stacked_dphi_dt = self.estimator(
|
||||
stacked_x, stacked_prompt_x, x_lens, stacked_t, stacked_style, stacked_mu,
|
||||
)
|
||||
|
||||
# Split the output back into the original and CFG components
|
||||
dphi_dt, cfg_dphi_dt = stacked_dphi_dt.chunk(2, dim=0)
|
||||
|
||||
# Apply CFG formula
|
||||
dphi_dt = (1.0 + inference_cfg_rate) * dphi_dt - inference_cfg_rate * cfg_dphi_dt
|
||||
else:
|
||||
dphi_dt = self.estimator(x, prompt_x, x_lens, t.unsqueeze(0), style, mu)
|
||||
|
||||
x = x + dt * dphi_dt
|
||||
t = t + dt
|
||||
sol.append(x)
|
||||
if step < len(t_span) - 1:
|
||||
dt = t_span[step + 1] - t
|
||||
x[:, :, :prompt_len] = 0
|
||||
|
||||
return sol[-1]
|
||||
def forward(self, x1, x_lens, prompt_lens, mu, style):
|
||||
"""Computes diffusion loss
|
||||
|
||||
Args:
|
||||
mu (torch.Tensor): semantic info of reference audio and altered audio
|
||||
shape: (batch_size, mel_timesteps(795+1069), 512)
|
||||
x1: mel
|
||||
x_lens (torch.Tensor): mel frames output
|
||||
shape: (batch_size, mel_timesteps)
|
||||
prompt (torch.Tensor): reference mel
|
||||
shape: (batch_size, 80, 795)
|
||||
style (torch.Tensor): reference global style
|
||||
shape: (batch_size, 192)
|
||||
|
||||
Returns:
|
||||
loss: conditional flow matching loss
|
||||
y: conditional flow
|
||||
shape: (batch_size, n_feats, mel_timesteps)
|
||||
"""
|
||||
b, _, t = x1.shape
|
||||
|
||||
# random timestep
|
||||
t = torch.rand([b, 1, 1], device=mu.device, dtype=x1.dtype)
|
||||
# sample noise p(x_0)
|
||||
z = torch.randn_like(x1)
|
||||
|
||||
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
||||
u = x1 - (1 - self.sigma_min) * z
|
||||
|
||||
prompt = torch.zeros_like(x1)
|
||||
for bib in range(b):
|
||||
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
|
||||
# range covered by prompt are set to 0
|
||||
y[bib, :, :prompt_lens[bib]] = 0
|
||||
if self.zero_prompt_speech_token:
|
||||
mu[bib, :, :prompt_lens[bib]] = 0
|
||||
|
||||
estimator_out = self.estimator(y, prompt, x_lens, t.squeeze(1).squeeze(1), style, mu, prompt_lens)
|
||||
loss = 0
|
||||
for bib in range(b):
|
||||
loss += self.criterion(estimator_out[bib, :, prompt_lens[bib]:x_lens[bib]], u[bib, :, prompt_lens[bib]:x_lens[bib]])
|
||||
loss /= b
|
||||
|
||||
return loss, estimator_out + (1 - self.sigma_min) * z
|
||||
|
||||
|
||||
|
||||
class CFM(BASECFM):
|
||||
def __init__(self, args):
|
||||
super().__init__(
|
||||
args
|
||||
)
|
||||
if args.dit_type == "DiT":
|
||||
self.estimator = DiT(args)
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown diffusion type {args.dit_type}")
|
||||
@@ -0,0 +1,360 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def find_multiple(n: int, k: int) -> int:
|
||||
if n % k == 0:
|
||||
return n
|
||||
return n + k - (n % k)
|
||||
|
||||
class AdaptiveLayerNorm(nn.Module):
|
||||
r"""Adaptive Layer Normalization"""
|
||||
|
||||
def __init__(self, d_model, norm) -> None:
|
||||
super(AdaptiveLayerNorm, self).__init__()
|
||||
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
||||
self.norm = norm
|
||||
self.d_model = d_model
|
||||
self.eps = self.norm.eps
|
||||
|
||||
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
||||
if embedding is None:
|
||||
return self.norm(input)
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1,
|
||||
)
|
||||
return weight * self.norm(input) + bias
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs:
|
||||
block_size: int = 2048
|
||||
vocab_size: int = 32000
|
||||
n_layer: int = 32
|
||||
n_head: int = 32
|
||||
dim: int = 4096
|
||||
intermediate_size: int = None
|
||||
n_local_heads: int = -1
|
||||
head_dim: int = 64
|
||||
rope_base: float = 10000
|
||||
norm_eps: float = 1e-5
|
||||
has_cross_attention: bool = False
|
||||
context_dim: int = 0
|
||||
uvit_skip_connection: bool = False
|
||||
time_as_token: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.n_local_heads == -1:
|
||||
self.n_local_heads = self.n_head
|
||||
if self.intermediate_size is None:
|
||||
hidden_dim = 4 * self.dim
|
||||
n_hidden = int(2 * hidden_dim / 3)
|
||||
self.intermediate_size = find_multiple(n_hidden, 256)
|
||||
# self.head_dim = self.dim // self.n_head
|
||||
|
||||
@classmethod
|
||||
def from_name(cls, name: str):
|
||||
if name in transformer_configs:
|
||||
return cls(**transformer_configs[name])
|
||||
# fuzzy search
|
||||
config = [config for config in transformer_configs if config.lower() in str(name).lower()]
|
||||
|
||||
# We may have two or more configs matched (e.g. "7B" and "Mistral-7B"). Find the best config match,
|
||||
# take longer name (as it have more symbols matched)
|
||||
if len(config) > 1:
|
||||
config.sort(key=len, reverse=True)
|
||||
assert len(config[0]) != len(config[1]), name # make sure only one 'best' match
|
||||
|
||||
return cls(**transformer_configs[config[0]])
|
||||
|
||||
|
||||
transformer_configs = {
|
||||
"CodeLlama-7b-Python-hf": dict(block_size=16384, vocab_size=32000, n_layer=32, dim=4096, rope_base=1000000),
|
||||
"7B": dict(n_layer=32, n_head=32, dim=4096),
|
||||
"13B": dict(n_layer=40, n_head=40, dim=5120),
|
||||
"30B": dict(n_layer=60, n_head=52, dim=6656),
|
||||
"34B": dict(n_layer=48, n_head=64, dim=8192, vocab_size=32000, n_local_heads=8, intermediate_size=22016,
|
||||
rope_base=1000000), # CodeLlama-34B-Python-hf
|
||||
"70B": dict(n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672),
|
||||
"Mistral-7B": dict(n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=32000),
|
||||
"stories15M": dict(n_layer=6, n_head=6, dim=288),
|
||||
"stories110M": dict(n_layer=12, n_head=12, dim=768),
|
||||
|
||||
"llama-3-8b": dict(block_size=8192, n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336,
|
||||
vocab_size=128256, rope_base=500000),
|
||||
"llama-3-70b": dict(block_size=8192, n_layer=80, n_head=64, n_local_heads=8, dim=8192, intermediate_size=28672,
|
||||
vocab_size=128256, rope_base=500000),
|
||||
}
|
||||
|
||||
|
||||
class KVCache(nn.Module):
|
||||
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16):
|
||||
super().__init__()
|
||||
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
|
||||
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
|
||||
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
|
||||
|
||||
def update(self, input_pos, k_val, v_val):
|
||||
# input_pos: [S], k_val: [B, H, S, D]
|
||||
assert input_pos.shape[0] == k_val.shape[2]
|
||||
|
||||
k_out = self.k_cache
|
||||
v_out = self.v_cache
|
||||
k_out[:, :, input_pos] = k_val
|
||||
v_out[:, :, input_pos] = v_val
|
||||
|
||||
return k_out, v_out
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, config: ModelArgs) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
|
||||
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer))
|
||||
self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
||||
|
||||
self.freqs_cis: Optional[Tensor] = None
|
||||
self.mask_cache: Optional[Tensor] = None
|
||||
self.max_batch_size = -1
|
||||
self.max_seq_length = -1
|
||||
|
||||
def setup_caches(self, max_batch_size, max_seq_length, use_kv_cache=True):
|
||||
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
|
||||
return
|
||||
head_dim = self.config.dim // self.config.n_head
|
||||
max_seq_length = find_multiple(max_seq_length, 8)
|
||||
self.max_seq_length = max_seq_length
|
||||
self.max_batch_size = max_batch_size
|
||||
dtype = self.norm.project_layer.weight.dtype
|
||||
device = self.norm.project_layer.weight.device
|
||||
|
||||
if not self.training and use_kv_cache:
|
||||
for b in self.layers:
|
||||
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype).to(device)
|
||||
|
||||
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim,
|
||||
self.config.rope_base, dtype).to(device)
|
||||
self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).to(device)
|
||||
self.use_kv_cache = use_kv_cache
|
||||
self.uvit_skip_connection = self.config.uvit_skip_connection
|
||||
if self.uvit_skip_connection:
|
||||
self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2]
|
||||
self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2]
|
||||
else:
|
||||
self.layers_emit_skip = []
|
||||
self.layers_receive_skip = []
|
||||
|
||||
def forward(self,
|
||||
x: Tensor,
|
||||
c: Tensor,
|
||||
input_pos: Optional[Tensor] = None,
|
||||
mask: Optional[Tensor] = None,
|
||||
context: Optional[Tensor] = None,
|
||||
context_input_pos: Optional[Tensor] = None,
|
||||
cross_attention_mask: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
assert self.freqs_cis is not None, "Caches must be initialized first"
|
||||
if mask is None: # in case of non-causal model
|
||||
if not self.training and self.use_kv_cache:
|
||||
mask = self.causal_mask[None, None, input_pos]
|
||||
else:
|
||||
mask = self.causal_mask[None, None, input_pos]
|
||||
mask = mask[..., input_pos]
|
||||
freqs_cis = self.freqs_cis[input_pos]
|
||||
if context is not None:
|
||||
context_freqs_cis = self.freqs_cis[context_input_pos]
|
||||
else:
|
||||
context_freqs_cis = None
|
||||
skip_in_x_list = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
if self.uvit_skip_connection and i in self.layers_receive_skip:
|
||||
skip_in_x = skip_in_x_list.pop(-1)
|
||||
else:
|
||||
skip_in_x = None
|
||||
x = layer(x, c, input_pos, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask, skip_in_x)
|
||||
if self.uvit_skip_connection and i in self.layers_emit_skip:
|
||||
skip_in_x_list.append(x)
|
||||
x = self.norm(x, c)
|
||||
return x
|
||||
|
||||
@classmethod
|
||||
def from_name(cls, name: str):
|
||||
return cls(ModelArgs.from_name(name))
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, config: ModelArgs) -> None:
|
||||
super().__init__()
|
||||
self.attention = Attention(config)
|
||||
self.feed_forward = FeedForward(config)
|
||||
self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
||||
self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
||||
|
||||
if config.has_cross_attention:
|
||||
self.has_cross_attention = True
|
||||
self.cross_attention = Attention(config, is_cross_attention=True)
|
||||
self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
||||
else:
|
||||
self.has_cross_attention = False
|
||||
|
||||
if config.uvit_skip_connection:
|
||||
self.skip_in_linear = nn.Linear(config.dim * 2, config.dim)
|
||||
self.uvit_skip_connection = True
|
||||
else:
|
||||
self.uvit_skip_connection = False
|
||||
|
||||
self.time_as_token = config.time_as_token
|
||||
|
||||
def forward(self,
|
||||
x: Tensor,
|
||||
c: Tensor,
|
||||
input_pos: Tensor,
|
||||
freqs_cis: Tensor,
|
||||
mask: Tensor,
|
||||
context: Optional[Tensor] = None,
|
||||
context_freqs_cis: Optional[Tensor] = None,
|
||||
cross_attention_mask: Optional[Tensor] = None,
|
||||
skip_in_x: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
c = None if self.time_as_token else c
|
||||
if self.uvit_skip_connection and skip_in_x is not None:
|
||||
x = self.skip_in_linear(torch.cat([x, skip_in_x], dim=-1))
|
||||
h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask, input_pos)
|
||||
if self.has_cross_attention:
|
||||
h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, input_pos, context, context_freqs_cis)
|
||||
out = h + self.feed_forward(self.ffn_norm(h, c))
|
||||
return out
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, config: ModelArgs, is_cross_attention: bool = False):
|
||||
super().__init__()
|
||||
assert config.dim % config.n_head == 0
|
||||
|
||||
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
|
||||
# key, query, value projections for all heads, but in a batch
|
||||
if is_cross_attention:
|
||||
self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False)
|
||||
self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False)
|
||||
else:
|
||||
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
|
||||
self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False)
|
||||
self.kv_cache = None
|
||||
|
||||
self.n_head = config.n_head
|
||||
self.head_dim = config.head_dim
|
||||
self.n_local_heads = config.n_local_heads
|
||||
self.dim = config.dim
|
||||
# self._register_load_state_dict_pre_hook(self.load_hook)
|
||||
|
||||
# def load_hook(self, state_dict, prefix, *args):
|
||||
# if prefix + "wq.weight" in state_dict:
|
||||
# wq = state_dict.pop(prefix + "wq.weight")
|
||||
# wk = state_dict.pop(prefix + "wk.weight")
|
||||
# wv = state_dict.pop(prefix + "wv.weight")
|
||||
# state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
|
||||
|
||||
def forward(self,
|
||||
x: Tensor,
|
||||
freqs_cis: Tensor,
|
||||
mask: Tensor,
|
||||
input_pos: Optional[Tensor] = None,
|
||||
context: Optional[Tensor] = None,
|
||||
context_freqs_cis: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
bsz, seqlen, _ = x.shape
|
||||
|
||||
kv_size = self.n_local_heads * self.head_dim
|
||||
if context is None:
|
||||
q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1)
|
||||
context_seqlen = seqlen
|
||||
else:
|
||||
q = self.wq(x)
|
||||
k, v = self.wkv(context).split([kv_size, kv_size], dim=-1)
|
||||
context_seqlen = context.shape[1]
|
||||
|
||||
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
|
||||
k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
|
||||
v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
|
||||
|
||||
q = apply_rotary_emb(q, freqs_cis)
|
||||
k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis)
|
||||
|
||||
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
||||
|
||||
if self.kv_cache is not None:
|
||||
k, v = self.kv_cache.update(input_pos, k, v)
|
||||
|
||||
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
||||
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
||||
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)
|
||||
|
||||
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head)
|
||||
|
||||
y = self.wo(y)
|
||||
return y
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, config: ModelArgs) -> None:
|
||||
super().__init__()
|
||||
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
||||
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
||||
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dim: int, eps: float = 1e-5):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def _norm(self, x):
|
||||
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
output = self._norm(x.float()).type_as(x)
|
||||
return output * self.weight
|
||||
|
||||
|
||||
def precompute_freqs_cis(
|
||||
seq_len: int, n_elem: int, base: int = 10000,
|
||||
dtype: torch.dtype = torch.bfloat16
|
||||
) -> Tensor:
|
||||
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
|
||||
t = torch.arange(seq_len, device=freqs.device)
|
||||
freqs = torch.outer(t, freqs)
|
||||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
||||
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
|
||||
return cache.to(dtype=dtype)
|
||||
|
||||
|
||||
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
|
||||
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
|
||||
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
|
||||
x_out2 = torch.stack(
|
||||
[
|
||||
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
||||
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
||||
],
|
||||
-1,
|
||||
)
|
||||
|
||||
x_out2 = x_out2.flatten(3)
|
||||
return x_out2.type_as(x)
|
||||
436
indextts/s2mel/modules/gpt_fast/generate.py
Normal file
436
indextts/s2mel/modules/gpt_fast/generate.py
Normal file
@@ -0,0 +1,436 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
import itertools
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch._dynamo.config
|
||||
import torch._inductor.config
|
||||
|
||||
def device_sync(device):
|
||||
if "cuda" in device:
|
||||
torch.cuda.synchronize(device)
|
||||
elif ("cpu" in device) or ("mps" in device):
|
||||
pass
|
||||
else:
|
||||
print(f"device={device} is not yet suppported")
|
||||
|
||||
|
||||
torch._inductor.config.coordinate_descent_tuning = True
|
||||
torch._inductor.config.triton.unique_kernel_names = True
|
||||
torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future
|
||||
|
||||
default_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
|
||||
# support running without installing as a package
|
||||
wd = Path(__file__).parent.parent.resolve()
|
||||
sys.path.append(str(wd))
|
||||
|
||||
from model import Transformer
|
||||
from tokenizer import get_tokenizer
|
||||
|
||||
def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization
|
||||
q = torch.empty_like(probs_sort).exponential_(1)
|
||||
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
||||
|
||||
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
|
||||
logits = logits / max(temperature, 1e-5)
|
||||
|
||||
if top_k is not None:
|
||||
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
||||
pivot = v.select(-1, -1).unsqueeze(-1)
|
||||
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||
return probs
|
||||
|
||||
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
|
||||
probs = logits_to_probs(logits[0, -1], temperature, top_k)
|
||||
idx_next = multinomial_sample_one_no_sync(probs)
|
||||
return idx_next, probs
|
||||
|
||||
def prefill(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> torch.Tensor:
|
||||
# input_pos: [B, S]
|
||||
logits = model(x, input_pos)
|
||||
return sample(logits, **sampling_kwargs)[0]
|
||||
|
||||
def decode_one_token(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# input_pos: [B, 1]
|
||||
assert input_pos.shape[-1] == 1
|
||||
logits = model(x, input_pos)
|
||||
return sample(logits, **sampling_kwargs)
|
||||
|
||||
def decode_n_tokens(model: Transformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, callback=lambda _: _, **sampling_kwargs):
|
||||
new_tokens, new_probs = [], []
|
||||
for i in range(num_new_tokens):
|
||||
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here
|
||||
next_token, next_prob = decode_one_token(
|
||||
model, cur_token, input_pos, **sampling_kwargs
|
||||
)
|
||||
input_pos += 1
|
||||
new_tokens.append(next_token.clone())
|
||||
callback(new_tokens[-1])
|
||||
new_probs.append(next_prob.clone())
|
||||
cur_token = next_token.view(1, -1)
|
||||
|
||||
return new_tokens, new_probs
|
||||
|
||||
|
||||
def model_forward(model, x, input_pos):
|
||||
return model(x, input_pos)
|
||||
|
||||
def speculative_decode(
|
||||
model: Transformer,
|
||||
draft_model: Transformer,
|
||||
cur_token: torch.Tensor,
|
||||
input_pos: int,
|
||||
speculate_k: int,
|
||||
**sampling_kwargs
|
||||
) -> torch.Tensor:
|
||||
# draft model inference sequentially
|
||||
device = cur_token.device
|
||||
orig_input_pos = torch.tensor([input_pos], dtype=torch.int64, device=cur_token.device)
|
||||
draft_tokens, draft_probs = decode_n_tokens(draft_model, cur_token.view(1, -1), orig_input_pos.clone(), speculate_k, **sampling_kwargs)
|
||||
|
||||
draft_tokens = torch.cat(draft_tokens)
|
||||
# parallel inference on target model using draft tokens
|
||||
target_logits = model_forward(
|
||||
model,
|
||||
torch.cat([cur_token.view(1), draft_tokens]).view(1, -1),
|
||||
torch.arange(input_pos, input_pos + speculate_k + 1, device=cur_token.device)
|
||||
)
|
||||
target_probs = logits_to_probs(target_logits[0], **sampling_kwargs)
|
||||
draft_probs = torch.stack(draft_probs)
|
||||
# q: target prob, p: draft prob
|
||||
# q >= p: always accept draft token
|
||||
# q < p: q/p prob to accept draft token
|
||||
p = draft_probs[torch.arange(0, speculate_k, device=device), draft_tokens]
|
||||
q = target_probs[torch.arange(0, speculate_k, device=device), draft_tokens]
|
||||
accept_draft_prob = torch.minimum(torch.ones(()), q[:speculate_k]/ p)
|
||||
rejected_locations = (torch.rand_like(accept_draft_prob) > accept_draft_prob).nonzero()
|
||||
|
||||
if rejected_locations.shape[0] == 0: # All draft tokens have been accepted
|
||||
accept_length = speculate_k + 1
|
||||
last_token = multinomial_sample_one_no_sync(target_probs[-1])
|
||||
# fill last token into draft model
|
||||
model_forward(
|
||||
draft_model,
|
||||
draft_tokens[-1].view(1, -1),
|
||||
orig_input_pos + speculate_k,
|
||||
)
|
||||
return torch.cat([draft_tokens, last_token])
|
||||
else:
|
||||
accept_length = rejected_locations[0].item()
|
||||
p = draft_probs[accept_length]
|
||||
q = target_probs[accept_length]
|
||||
new = q - p
|
||||
new = torch.where(new > 0, new, 0.0)
|
||||
new = new / new.sum()
|
||||
next_token = multinomial_sample_one_no_sync(new)
|
||||
return torch.cat([draft_tokens[:accept_length], next_token])
|
||||
|
||||
@torch.no_grad()
|
||||
def generate(
|
||||
model: Transformer,
|
||||
prompt: torch.Tensor,
|
||||
max_new_tokens: int,
|
||||
*,
|
||||
interactive: bool,
|
||||
draft_model: Transformer,
|
||||
speculate_k: Optional[int] = 8,
|
||||
callback = lambda x: x,
|
||||
**sampling_kwargs
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
|
||||
"""
|
||||
|
||||
is_speculative = draft_model is not None
|
||||
# create an empty tensor of the expected final shape and fill in the current tokens
|
||||
T = prompt.size(0)
|
||||
T_new = T + max_new_tokens
|
||||
if interactive:
|
||||
max_seq_length = 350
|
||||
else:
|
||||
max_seq_length = min(T_new, model.config.block_size)
|
||||
|
||||
device, dtype = prompt.device, prompt.dtype
|
||||
max_seq_length = max_seq_length + speculate_k + 1 if is_speculative else max_seq_length
|
||||
with torch.device(device):
|
||||
model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length)
|
||||
if is_speculative and draft_model is not model:
|
||||
draft_model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length)
|
||||
|
||||
# create an empty tensor of the expected final shape and fill in the current tokens
|
||||
empty = torch.empty(T_new, dtype=dtype, device=device)
|
||||
empty[:T] = prompt
|
||||
seq = empty
|
||||
input_pos = torch.arange(0, T, device=device)
|
||||
|
||||
next_token = prefill(model, prompt.view(1, -1), input_pos, **sampling_kwargs).clone()
|
||||
if is_speculative:
|
||||
prefill(draft_model, prompt.view(1, -1), input_pos, **sampling_kwargs)
|
||||
seq[T] = next_token
|
||||
|
||||
input_pos = torch.tensor([T], device=device, dtype=torch.int)
|
||||
accept_counts = [0] * (speculate_k + 1)
|
||||
|
||||
if is_speculative:
|
||||
input_pos = input_pos.item() # for speculative decoding easier to keep on host
|
||||
while input_pos < T_new - 1:
|
||||
cur_token = next_token.view(())
|
||||
|
||||
next_tokens = speculative_decode(
|
||||
model, draft_model, cur_token, input_pos, speculate_k, **sampling_kwargs
|
||||
)
|
||||
|
||||
accept_counts[len(next_tokens) - 1] += 1
|
||||
num_added = min(T_new - input_pos - 1, len(next_tokens))
|
||||
seq[input_pos + 1 : input_pos + num_added + 1] = next_tokens[: num_added]
|
||||
for i in next_tokens[: num_added,]:
|
||||
callback(i)
|
||||
input_pos = input_pos + num_added
|
||||
next_token = next_tokens[-1]
|
||||
else:
|
||||
generated_tokens, _ = decode_n_tokens(model, next_token.view(1, -1), input_pos, max_new_tokens - 1, callback=callback, **sampling_kwargs)
|
||||
seq[T + 1:] = torch.cat(generated_tokens)
|
||||
|
||||
generate_stats = {
|
||||
'accept_counts': accept_counts
|
||||
}
|
||||
return seq, generate_stats
|
||||
|
||||
def encode_tokens(tokenizer, string, bos=True, device=default_device):
|
||||
tokens = tokenizer.encode(string)
|
||||
if bos:
|
||||
tokens = [tokenizer.bos_id()] + tokens
|
||||
return torch.tensor(tokens, dtype=torch.int, device=device)
|
||||
|
||||
def _load_model(checkpoint_path, device, precision, use_tp):
|
||||
use_cuda = 'cuda' in device
|
||||
with torch.device('meta'):
|
||||
model = Transformer.from_name(checkpoint_path.parent.name)
|
||||
|
||||
if "int8" in str(checkpoint_path):
|
||||
print("Using int8 weight-only quantization!")
|
||||
from quantize import WeightOnlyInt8QuantHandler
|
||||
simple_quantizer = WeightOnlyInt8QuantHandler(model)
|
||||
model = simple_quantizer.convert_for_runtime()
|
||||
|
||||
if "int4" in str(checkpoint_path):
|
||||
print("Using int4 weight-only quantization!")
|
||||
path_comps = checkpoint_path.name.split(".")
|
||||
groupsize = int(path_comps[-2][1:])
|
||||
from quantize import WeightOnlyInt4QuantHandler
|
||||
simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize)
|
||||
model = simple_quantizer.convert_for_runtime()
|
||||
|
||||
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True)
|
||||
if "model" in checkpoint and "stories" in str(checkpoint_path):
|
||||
checkpoint = checkpoint["model"]
|
||||
model.load_state_dict(checkpoint, assign=True)
|
||||
|
||||
if use_tp:
|
||||
from tp import apply_tp
|
||||
print("Applying tensor parallel to model ...")
|
||||
apply_tp(model)
|
||||
|
||||
model = model.to(device=device, dtype=precision)
|
||||
return model.eval()
|
||||
|
||||
def _get_model_size(model):
|
||||
model_size = 0
|
||||
for name, child in model.named_children():
|
||||
if not isinstance(child, torch.nn.Embedding):
|
||||
model_size += sum(
|
||||
[
|
||||
p.numel() * p.dtype.itemsize
|
||||
for p in itertools.chain(child.parameters(), child.buffers())
|
||||
]
|
||||
)
|
||||
return model_size
|
||||
|
||||
B_INST, E_INST = "[INST]", "[/INST]"
|
||||
|
||||
def main(
|
||||
prompt: str = "Hello, my name is",
|
||||
interactive: bool = False,
|
||||
num_samples: int = 5,
|
||||
max_new_tokens: int = 100,
|
||||
top_k: int = 200,
|
||||
temperature: float = 0.8,
|
||||
checkpoint_path: Path = Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"),
|
||||
compile: bool = True,
|
||||
compile_prefill: bool = False,
|
||||
profile: Optional[Path] = None,
|
||||
draft_checkpoint_path: Optional[Path] = None,
|
||||
speculate_k: int = 5,
|
||||
device=default_device,
|
||||
) -> None:
|
||||
"""Generates text samples based on a pre-trained Transformer model and tokenizer.
|
||||
"""
|
||||
assert checkpoint_path.is_file(), checkpoint_path
|
||||
|
||||
tokenizer_path = checkpoint_path.parent / "tokenizer.model"
|
||||
assert tokenizer_path.is_file(), str(tokenizer_path)
|
||||
|
||||
global print
|
||||
from tp import maybe_init_dist
|
||||
rank = maybe_init_dist()
|
||||
use_tp = rank is not None
|
||||
if use_tp:
|
||||
if rank != 0:
|
||||
# only print on rank 0
|
||||
print = lambda *args, **kwargs: None
|
||||
|
||||
print(f"Using device={device}")
|
||||
precision = torch.bfloat16
|
||||
is_speculative = draft_checkpoint_path is not None
|
||||
is_chat = "chat" in str(checkpoint_path)
|
||||
|
||||
print("Loading model ...")
|
||||
t0 = time.time()
|
||||
model = _load_model(checkpoint_path, device, precision, use_tp)
|
||||
|
||||
if is_speculative:
|
||||
draft_model = _load_model(draft_checkpoint_path, device, precision, use_tp)
|
||||
else:
|
||||
draft_model = None
|
||||
|
||||
device_sync(device=device) # MKG
|
||||
print(f"Time to load model: {time.time() - t0:.02f} seconds")
|
||||
|
||||
tokenizer = get_tokenizer(tokenizer_path, checkpoint_path)
|
||||
|
||||
encoded = encode_tokens(tokenizer, prompt, bos=True, device=device)
|
||||
prompt_length = encoded.size(0)
|
||||
|
||||
torch.manual_seed(1234)
|
||||
model_size = _get_model_size(model)
|
||||
if compile:
|
||||
if is_speculative and use_tp: # and ("cuda" in device):
|
||||
torch._inductor.config.triton.cudagraph_trees = False # Bug with cudagraph trees in this case
|
||||
|
||||
if is_speculative:
|
||||
global model_forward, logits_to_prob
|
||||
model_forward = torch.compile(model_forward, mode="reduce-overhead", fullgraph=True)
|
||||
|
||||
global decode_one_token, prefill
|
||||
decode_one_token = torch.compile(decode_one_token, mode="reduce-overhead", fullgraph=True)
|
||||
|
||||
# Uncomment to squeeze more perf out of prefill
|
||||
if compile_prefill:
|
||||
prefill = torch.compile(prefill, fullgraph=True, dynamic=True)
|
||||
|
||||
|
||||
aggregate_metrics = {
|
||||
'tokens_per_sec': [],
|
||||
'accept_counts': [],
|
||||
}
|
||||
start = -1 if compile else 0
|
||||
|
||||
for i in range(start, num_samples):
|
||||
device_sync(device=device) # MKG
|
||||
if i >= 0 and interactive:
|
||||
prompt = input("What is your prompt? ")
|
||||
if is_chat:
|
||||
prompt = f"{B_INST} {prompt.strip()} {E_INST}"
|
||||
encoded = encode_tokens(tokenizer, prompt, bos=True, device=device)
|
||||
|
||||
if interactive and i >= 0:
|
||||
buffer = []
|
||||
period_id = tokenizer.encode('.')[0]
|
||||
done_generating = False
|
||||
def callback(x):
|
||||
nonlocal done_generating
|
||||
if done_generating:
|
||||
return
|
||||
buffer.append(tokenizer.decode([period_id] + x.tolist())[1:])
|
||||
if x.item() == tokenizer.eos_id():
|
||||
done_generating = True
|
||||
if len(buffer) == 4 or done_generating:
|
||||
print(''.join(buffer), end='', flush=True)
|
||||
buffer.clear()
|
||||
# print(, end='', flush=True)
|
||||
else:
|
||||
callback = lambda x : x
|
||||
t0 = time.perf_counter()
|
||||
import contextlib
|
||||
if (i != num_samples - 1 or not profile) or (use_tp and rank != 0):
|
||||
prof = contextlib.nullcontext()
|
||||
else:
|
||||
torch.profiler._utils._init_for_cuda_graphs()
|
||||
prof = torch.profiler.profile()
|
||||
with prof:
|
||||
y, metrics = generate(
|
||||
model,
|
||||
encoded,
|
||||
max_new_tokens,
|
||||
draft_model=draft_model,
|
||||
speculate_k=speculate_k,
|
||||
interactive=interactive,
|
||||
callback=callback,
|
||||
temperature=temperature,
|
||||
top_k=top_k,
|
||||
)
|
||||
aggregate_metrics['accept_counts'].append(metrics['accept_counts'])
|
||||
if i == -1:
|
||||
print(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")
|
||||
continue
|
||||
if hasattr(prof, "export_chrome_trace"):
|
||||
if use_tp:
|
||||
prof.export_chrome_trace(f"{profile}_rank_{rank}.json")
|
||||
else:
|
||||
prof.export_chrome_trace(f"{profile}.json")
|
||||
device_sync(device=device) # MKG
|
||||
t = time.perf_counter() - t0
|
||||
|
||||
if not interactive:
|
||||
print(tokenizer.decode(y.tolist()))
|
||||
else:
|
||||
print()
|
||||
tokens_generated = y.size(0) - prompt_length
|
||||
tokens_sec = tokens_generated / t
|
||||
aggregate_metrics['tokens_per_sec'].append(tokens_sec)
|
||||
print(f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_sec:.02f} tokens/sec")
|
||||
print(f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s")
|
||||
print("==========")
|
||||
if is_speculative:
|
||||
counts_aggregated = [sum(i) for i in zip(*aggregate_metrics['accept_counts'])]
|
||||
acceptance_probs = [i/sum(counts_aggregated) for i in counts_aggregated]
|
||||
print(f"Acceptance probs: {acceptance_probs}")
|
||||
print(f"Mean Accepted: {sum([idx * i for idx, i in enumerate(counts_aggregated)])/sum(counts_aggregated)}")
|
||||
|
||||
print(f"Average tokens/sec: {torch.mean(torch.tensor(aggregate_metrics['tokens_per_sec'])).item():.2f}")
|
||||
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='Your CLI description.')
|
||||
|
||||
parser.add_argument('--prompt', type=str, default="Hello, my name is", help='Input prompt.')
|
||||
parser.add_argument('--interactive', action='store_true', help='Whether to launch in interactive mode')
|
||||
parser.add_argument('--num_samples', type=int, default=5, help='Number of samples.')
|
||||
parser.add_argument('--max_new_tokens', type=int, default=200, help='Maximum number of new tokens.')
|
||||
parser.add_argument('--top_k', type=int, default=200, help='Top-k for sampling.')
|
||||
parser.add_argument('--temperature', type=float, default=0.8, help='Temperature for sampling.')
|
||||
parser.add_argument('--checkpoint_path', type=Path, default=Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"), help='Model checkpoint path.')
|
||||
parser.add_argument('--compile', action='store_true', help='Whether to compile the model.')
|
||||
parser.add_argument('--compile_prefill', action='store_true', help='Whether to compile the prefill (improves prefill perf, but higher compile times)')
|
||||
parser.add_argument('--profile', type=Path, default=None, help='Profile path.')
|
||||
parser.add_argument('--speculate_k', type=int, default=5, help='Speculative execution depth.')
|
||||
parser.add_argument('--draft_checkpoint_path', type=Path, default=None, help='Draft checkpoint path.')
|
||||
parser.add_argument('--device', type=str, default=default_device, help='Device to use')
|
||||
|
||||
args = parser.parse_args()
|
||||
main(
|
||||
args.prompt, args.interactive, args.num_samples, args.max_new_tokens, args.top_k,
|
||||
args.temperature, args.checkpoint_path, args.compile, args.compile_prefill, args.profile, args.draft_checkpoint_path,
|
||||
args.speculate_k, args.device
|
||||
)
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user