major refactoring

This commit is contained in:
WildAi
2025-09-10 12:06:26 +03:00
parent 00e3476f4d
commit 4c9785da8b
10 changed files with 699 additions and 398 deletions

View File

@@ -1,6 +1,8 @@
import os
import sys
import logging
import folder_paths
import json
try:
import sageattention
@@ -12,34 +14,95 @@ current_dir = os.path.dirname(os.path.abspath(__file__))
if current_dir not in sys.path:
sys.path.append(current_dir)
import folder_paths
from .modules.model_info import AVAILABLE_VIBEVOICE_MODELS, MODEL_CONFIGS
from .vibevoice_nodes import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
# Configure a logger for the entire custom node package
# Configure a logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.propagate = False
if not logger.hasHandlers():
handler = logging.StreamHandler()
formatter = logging.Formatter(f"[ComfyUI-VibeVoice] %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
# This is just the *name* of the subdirectory, not the full path.
VIBEVOICE_SUBDIR_NAME = "VibeVoice"
VIBEVOICE_MODEL_SUBDIR = os.path.join("tts", "VibeVoice")
# This is the *primary* path where official models will be downloaded.
primary_vibevoice_models_path = os.path.join(folder_paths.models_dir, "tts", VIBEVOICE_SUBDIR_NAME)
os.makedirs(primary_vibevoice_models_path, exist_ok=True)
vibevoice_models_full_path = os.path.join(folder_paths.models_dir, VIBEVOICE_MODEL_SUBDIR)
os.makedirs(vibevoice_models_full_path, exist_ok=True)
# Register the tts/VibeVoice path with ComfyUI
# Register the tts path type with ComfyUI so get_folder_paths works
tts_path = os.path.join(folder_paths.models_dir, "tts")
if "tts" not in folder_paths.folder_names_and_paths:
supported_exts = folder_paths.supported_pt_extensions.union({".safetensors", ".json"})
folder_paths.folder_names_and_paths["tts"] = ([tts_path], supported_exts)
else:
# Ensure the default path is in the list if it's not already
if tts_path not in folder_paths.folder_names_and_paths["tts"][0]:
folder_paths.folder_names_and_paths["tts"][0].append(tts_path)
# The logic for dynamic model discovery
# ToDo: optimize finding
# official models that can be auto-downloaded
for model_name, config in MODEL_CONFIGS.items():
AVAILABLE_VIBEVOICE_MODELS[model_name] = {
"type": "official",
"repo_id": config["repo_id"],
"tokenizer_repo": "Qwen/Qwen2.5-7B" if "Large" in model_name else "Qwen/Qwen2.5-1.5B"
}
# just workaround, default + custom
vibevoice_search_paths = []
# Use ComfyUI's API to get all registered 'tts' folders
for tts_folder in folder_paths.get_folder_paths("tts"):
potential_path = os.path.join(tts_folder, VIBEVOICE_SUBDIR_NAME)
if os.path.isdir(potential_path) and potential_path not in vibevoice_search_paths:
vibevoice_search_paths.append(potential_path)
# Add the primary path just in case it wasn't registered for some reason
if primary_vibevoice_models_path not in vibevoice_search_paths:
vibevoice_search_paths.insert(0, primary_vibevoice_models_path)
# Messy... Discover all local models in the search paths
for search_path in vibevoice_search_paths:
logger.info(f"Scanning for VibeVoice models in: {search_path}")
if not os.path.exists(search_path): continue
for item in os.listdir(search_path):
item_path = os.path.join(search_path, item)
# Case 1: we have a standard HF directory
if os.path.isdir(item_path):
model_name = item
if model_name in AVAILABLE_VIBEVOICE_MODELS: continue
config_exists = os.path.exists(os.path.join(item_path, "config.json"))
weights_exist = os.path.exists(os.path.join(item_path, "model.safetensors.index.json")) or any(f.endswith(('.safetensors', '.bin')) for f in os.listdir(item_path))
if config_exists and weights_exist:
tokenizer_repo = "Qwen/Qwen2.5-7B" if "large" in model_name.lower() else "Qwen/Qwen2.5-1.5B"
AVAILABLE_VIBEVOICE_MODELS[model_name] = {
"type": "local_dir",
"path": item_path,
"tokenizer_repo": tokenizer_repo
}
# Case 2: Item is a standalone file
elif os.path.isfile(item_path) and any(item.endswith(ext) for ext in folder_paths.supported_pt_extensions):
model_name = os.path.splitext(item)[0]
if model_name in AVAILABLE_VIBEVOICE_MODELS: continue
tokenizer_repo = "Qwen/Qwen2.5-7B" if "large" in model_name.lower() else "Qwen/Qwen2.5-1.5B"
AVAILABLE_VIBEVOICE_MODELS[model_name] = {
"type": "standalone",
"path": item_path,
"tokenizer_repo": tokenizer_repo
}
logger.info(f"Discovered VibeVoice models: {sorted(list(AVAILABLE_VIBEVOICE_MODELS.keys()))}")
from .vibevoice_nodes import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
__all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS']

0
modules/__init__.py Normal file
View File

212
modules/loader.py Normal file
View File

@@ -0,0 +1,212 @@
import os
import torch
import gc
import json
import logging
from huggingface_hub import hf_hub_download, snapshot_download
import comfy.utils
import folder_paths
import comfy.model_management as model_management
import transformers
from packaging import version
_transformers_version = version.parse(transformers.__version__)
_DTYPE_ARG_SUPPORTED = _transformers_version >= version.parse("4.56.0")
from transformers import BitsAndBytesConfig
from ..vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
from ..vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from ..vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from ..vibevoice.processor.vibevoice_tokenizer_processor import VibeVoiceTokenizerProcessor
from ..vibevoice.modular.modular_vibevoice_text_tokenizer import VibeVoiceTextTokenizerFast
from .model_info import AVAILABLE_VIBEVOICE_MODELS, MODEL_CONFIGS
from .. import SAGE_ATTENTION_AVAILABLE
if SAGE_ATTENTION_AVAILABLE:
from ..vibevoice.modular.sage_attention_patch import set_sage_attention
logger = logging.getLogger(__name__)
LOADED_MODELS = {}
VIBEVOICE_PATCHER_CACHE = {}
ATTENTION_MODES = ["eager", "sdpa", "flash_attention_2"]
if SAGE_ATTENTION_AVAILABLE:
ATTENTION_MODES.append("sage")
def cleanup_old_models(keep_cache_key=None):
global LOADED_MODELS, VIBEVOICE_PATCHER_CACHE
keys_to_remove = []
for key in list(LOADED_MODELS.keys()):
if key != keep_cache_key:
keys_to_remove.append(key)
del LOADED_MODELS[key]
for key in list(VIBEVOICE_PATCHER_CACHE.keys()):
if key != keep_cache_key:
try:
patcher = VIBEVOICE_PATCHER_CACHE[key]
if hasattr(patcher, 'model') and patcher.model:
patcher.model.model = None
patcher.model.processor = None
del VIBEVOICE_PATCHER_CACHE[key]
except Exception as e:
logger.warning(f"Error cleaning up patcher {key}: {e}")
if keys_to_remove:
logger.info(f"Cleaned up cached models: {keys_to_remove}")
gc.collect()
model_management.soft_empty_cache()
class VibeVoiceModelHandler(torch.nn.Module):
def __init__(self, model_pack_name, attention_mode="eager", use_llm_4bit=False):
super().__init__()
self.model_pack_name = model_pack_name
self.attention_mode = attention_mode
self.use_llm_4bit = use_llm_4bit
self.cache_key = f"{self.model_pack_name}_attn_{attention_mode}_q4_{int(use_llm_4bit)}"
self.model = None
self.processor = None
info = AVAILABLE_VIBEVOICE_MODELS.get(model_pack_name, {})
size_gb = MODEL_CONFIGS.get(model_pack_name, {}).get("size_gb", 4.0)
self.size = int(size_gb * (1024**3))
def load_model(self, device, attention_mode="eager"):
self.model, self.processor = VibeVoiceLoader.load_model(self.model_pack_name, device, attention_mode, use_llm_4bit=self.use_llm_4bit)
if self.model.device != device:
self.model.to(device)
class VibeVoiceLoader:
@staticmethod
def _check_gpu_for_sage_attention():
if not SAGE_ATTENTION_AVAILABLE: return False
if not torch.cuda.is_available(): return False
major, _ = torch.cuda.get_device_capability()
if major < 8:
logger.warning(f"Your GPU (compute capability {major}.x) does not support SageAttention, which requires CC 8.0+. Sage option will be disabled.")
return False
return True
@staticmethod
def load_model(model_name: str, device, attention_mode: str = "eager", use_llm_4bit: bool = False):
if model_name not in AVAILABLE_VIBEVOICE_MODELS:
raise ValueError(f"Unknown VibeVoice model: {model_name}. Available models: {list(AVAILABLE_VIBEVOICE_MODELS.keys())}")
if use_llm_4bit and attention_mode in ["eager", "flash_attention_2"]:
logger.warning(f"Attention mode '{attention_mode}' is not recommended with 4-bit quantization. Falling back to 'sdpa' for stability and performance.")
attention_mode = "sdpa"
if attention_mode not in ATTENTION_MODES:
logger.warning(f"Unknown attention mode '{attention_mode}', falling back to eager")
attention_mode = "eager"
cache_key = f"{model_name}_attn_{attention_mode}_q4_{int(use_llm_4bit)}"
if cache_key in LOADED_MODELS:
logger.info(f"Using cached model with {attention_mode} attention and q4={use_llm_4bit}")
return LOADED_MODELS[cache_key]
model_info = AVAILABLE_VIBEVOICE_MODELS[model_name]
model_type = model_info["type"]
vibevoice_base_path = os.path.join(folder_paths.get_folder_paths("tts")[0], "VibeVoice")
model_path_or_none = None
config_path = None
preprocessor_config_path = None
tokenizer_dir = None
if model_type == "official":
model_path_or_none = os.path.join(vibevoice_base_path, model_name)
if not os.path.exists(os.path.join(model_path_or_none, "model.safetensors.index.json")):
logger.info(f"Downloading official VibeVoice model: {model_name}...")
snapshot_download(repo_id=model_info["repo_id"], local_dir=model_path_or_none, local_dir_use_symlinks=False)
config_path = os.path.join(model_path_or_none, "config.json")
preprocessor_config_path = os.path.join(model_path_or_none, "preprocessor_config.json")
tokenizer_dir = model_path_or_none
elif model_type == "local_dir":
model_path_or_none = model_info["path"]
config_path = os.path.join(model_path_or_none, "config.json")
preprocessor_config_path = os.path.join(model_path_or_none, "preprocessor_config.json")
tokenizer_dir = model_path_or_none
elif model_type == "standalone":
model_path_or_none = None # IMPORTANT: This must be None when loading from state_dict
config_path = os.path.splitext(model_info["path"])[0] + ".config.json"
preprocessor_config_path = os.path.splitext(model_info["path"])[0] + ".preprocessor.json"
tokenizer_dir = os.path.dirname(model_info["path"])
if os.path.exists(config_path):
config = VibeVoiceConfig.from_pretrained(config_path)
else:
fallback_name = "default_VibeVoice-Large_config.json" if "large" in model_name.lower() else "default_VibeVoice-1.5B_config.json"
fallback_path = os.path.join(os.path.dirname(__file__), "..", "vibevoice", "configs", fallback_name)
logger.warning(f"Config not found for '{model_name}'. Using fallback: {fallback_name}")
config = VibeVoiceConfig.from_pretrained(fallback_path)
# Processor & Tokenizer setup
tokenizer_repo = model_info["tokenizer_repo"]
tokenizer_file_path = os.path.join(tokenizer_dir, "tokenizer.json")
if not os.path.exists(tokenizer_file_path):
logger.info(f"tokenizer.json not found. Downloading from '{tokenizer_repo}'...")
hf_hub_download(repo_id=tokenizer_repo, filename="tokenizer.json", local_dir=tokenizer_dir, local_dir_use_symlinks=False)
vibevoice_tokenizer = VibeVoiceTextTokenizerFast(tokenizer_file=tokenizer_file_path)
processor_config_data = {}
if os.path.exists(preprocessor_config_path):
with open(preprocessor_config_path, 'r', encoding='utf-8') as f: processor_config_data = json.load(f)
audio_processor = VibeVoiceTokenizerProcessor()
processor = VibeVoiceProcessor(tokenizer=vibevoice_tokenizer, audio_processor=audio_processor, speech_tok_compress_ratio=processor_config_data.get("speech_tok_compress_ratio", 3200), db_normalize=processor_config_data.get("db_normalize", True))
# Model Loading Prep
if torch.cuda.is_available() and torch.cuda.is_bf16_supported(): model_dtype = torch.bfloat16
else: model_dtype = torch.float16
quant_config = None
final_load_dtype = model_dtype
if use_llm_4bit:
bnb_compute_dtype = model_dtype
if attention_mode == 'sage': bnb_compute_dtype, final_load_dtype = torch.float32, torch.float32
quant_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=bnb_compute_dtype)
attn_implementation_for_load = "sdpa" if attention_mode == "sage" else attention_mode
try:
logger.info(f"Loading model '{model_name}' with dtype: {final_load_dtype} and attention: '{attn_implementation_for_load}'")
# UNIFIED MODEL LOADING LOGIC
from_pretrained_kwargs = {
"config": config,
"attn_implementation": attn_implementation_for_load,
"device_map": "auto" if quant_config else device,
"quantization_config": quant_config,
}
if _DTYPE_ARG_SUPPORTED:
from_pretrained_kwargs['dtype'] = final_load_dtype
else:
from_pretrained_kwargs['torch_dtype'] = final_load_dtype
if model_type == "standalone":
logger.info(f"Loading standalone model state_dict directly to device: {device}")
# loading the state dict directly to the target device
state_dict = comfy.utils.load_torch_file(model_info["path"], device=device)
from_pretrained_kwargs["state_dict"] = state_dict
model = VibeVoiceForConditionalGenerationInference.from_pretrained(model_path_or_none, **from_pretrained_kwargs)
if attention_mode == "sage":
if VibeVoiceLoader._check_gpu_for_sage_attention():
set_sage_attention(model)
else:
raise RuntimeError("Incompatible hardware/setup for SageAttention.")
model.eval()
setattr(model, "_llm_4bit", bool(quant_config))
LOADED_MODELS[cache_key] = (model, processor)
logger.info(f"Successfully configured model '{model_name}' with {attention_mode} attention")
return model, processor
except Exception as e:
# It's not ideal to automatically reload the model. Let the user decide what to do in case of an error.
logger.error(f"Failed to load model '{model_name}' with {attention_mode} attention: {e}")
# if attention_mode in ["sage", "flash_attention_2"]: return VibeVoiceLoader.load_model(model_name, device, "sdpa", use_llm_4bit)
# elif attention_mode == "sdpa": return VibeVoiceLoader.load_model(model_name, device, "eager", use_llm_4bit)
# else:
raise RuntimeError(f"Failed to load model even with eager attention: {e}")

13
modules/model_info.py Normal file
View File

@@ -0,0 +1,13 @@
# This dictionary contains the configurations for official, downloadable models.
MODEL_CONFIGS = {
"VibeVoice-1.5B": {
"repo_id": "microsoft/VibeVoice-1.5B",
"size_gb": 3.0,
},
"VibeVoice-Large": {
"repo_id": "microsoft/VibeVoice-Large",
"size_gb": 17.4,
}
}
AVAILABLE_VIBEVOICE_MODELS = {}

49
modules/patcher.py Normal file
View File

@@ -0,0 +1,49 @@
import torch
import gc
import logging
import comfy.model_patcher
import comfy.model_management as model_management
from .loader import LOADED_MODELS, logger
class VibeVoicePatcher(comfy.model_patcher.ModelPatcher):
"""Custom ModelPatcher for managing VibeVoice models in ComfyUI."""
def __init__(self, model, attention_mode="eager", *args, **kwargs):
super().__init__(model, *args, **kwargs)
self.attention_mode = attention_mode
self.cache_key = model.cache_key
@property
def is_loaded(self):
"""Check if the model is currently loaded in memory."""
return hasattr(self, 'model') and self.model is not None and hasattr(self.model, 'model') and self.model.model is not None
def patch_model(self, device_to=None, *args, **kwargs):
target_device = self.load_device
if self.model.model is None:
logger.info(f"Loading VibeVoice models for '{self.model.model_pack_name}' to {target_device}...")
mode_names = {
"eager": "Eager (Most Compatible)",
"sdpa": "SDPA (Balanced Speed/Compatibility)",
"flash_attention_2": "Flash Attention 2 (Fastest)",
"sage": "SageAttention (Quantized High-Performance)",
}
logger.info(f"Attention Mode: {mode_names.get(self.attention_mode, self.attention_mode)}")
self.model.load_model(target_device, self.attention_mode)
self.model.model.to(target_device)
return super().patch_model(device_to=target_device, *args, **kwargs)
def unpatch_model(self, device_to=None, unpatch_weights=True, *args, **kwargs):
if unpatch_weights:
logger.info(f"Offloading VibeVoice models for '{self.model.model_pack_name}' ({self.attention_mode}) to {device_to}...")
self.model.model = None
self.model.processor = None
if self.cache_key in LOADED_MODELS:
del LOADED_MODELS[self.cache_key]
logger.info(f"Cleared LOADED_MODELS cache for: {self.cache_key}")
gc.collect()
model_management.soft_empty_cache()
return super().unpatch_model(device_to, unpatch_weights, *args, **kwargs)

105
modules/utils.py Normal file
View File

@@ -0,0 +1,105 @@
import re
import torch
import numpy as np
import random
import logging
from comfy.utils import ProgressBar
from comfy.model_management import throw_exception_if_processing_interrupted
try:
import librosa
except ImportError:
print("VibeVoice Node: `librosa` is not installed. Resampling of reference audio will not be available.")
librosa = None
logger = logging.getLogger(__name__)
def set_vibevoice_seed(seed: int):
"""Sets the seed for torch, numpy, and random, handling large seeds for numpy."""
if seed == 0:
seed = random.randint(1, 0xffffffffffffffff)
MAX_NUMPY_SEED = 2**32 - 1
numpy_seed = seed % MAX_NUMPY_SEED
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(numpy_seed)
random.seed(seed)
def parse_script_1_based(script: str) -> tuple[list[tuple[int, str]], list[int]]:
"""
Parses a 1-based speaker script into a list of (speaker_id, text) tuples
and a list of unique speaker IDs in the order of their first appearance.
Internally, it converts speaker IDs to 0-based for the model.
"""
parsed_lines = []
speaker_ids_in_script = [] # This will store the 1-based IDs from the script
for line in script.strip().split("\n"):
if not (line := line.strip()): continue
match = re.match(r'^Speaker\s+(\d+)\s*:\s*(.*)$', line, re.IGNORECASE)
if match:
speaker_id = int(match.group(1))
if speaker_id < 1:
logger.warning(f"Speaker ID must be 1 or greater. Skipping line: '{line}'")
continue
text = ' ' + match.group(2).strip()
# Internally, the model expects 0-based indexing for speakers
internal_speaker_id = speaker_id - 1
parsed_lines.append((internal_speaker_id, text))
if speaker_id not in speaker_ids_in_script:
speaker_ids_in_script.append(speaker_id)
else:
logger.warning(f"Could not parse line, skipping: '{line}'")
return parsed_lines, sorted(list(set(speaker_ids_in_script)))
def preprocess_comfy_audio(audio_dict: dict, target_sr: int = 24000) -> np.ndarray:
"""
Converts a ComfyUI AUDIO dict to a mono NumPy array, resampling if necessary.
"""
if not audio_dict: return None
waveform_tensor = audio_dict.get('waveform')
if waveform_tensor is None or waveform_tensor.numel() == 0: return None
waveform = waveform_tensor[0].cpu().numpy()
original_sr = audio_dict['sample_rate']
if waveform.ndim > 1:
waveform = np.mean(waveform, axis=0)
# Check for invalid values
if np.any(np.isnan(waveform)) or np.any(np.isinf(waveform)):
logger.error("Audio contains NaN or Inf values, replacing with zeros")
waveform = np.nan_to_num(waveform, nan=0.0, posinf=0.0, neginf=0.0)
# Ensure audio is not completely silent or has extreme values
if np.all(waveform == 0):
logger.warning("Audio waveform is completely silent")
# Normalize extreme values
max_val = np.abs(waveform).max()
if max_val > 10.0:
logger.warning(f"Audio values are very large (max: {max_val}), normalizing")
waveform = waveform / max_val
if original_sr != target_sr:
if librosa is None:
raise ImportError("`librosa` package is required for audio resampling. Please install it with `pip install librosa`.")
logger.warning(f"Resampling reference audio from {original_sr}Hz to {target_sr}Hz.")
waveform = librosa.resample(y=waveform, orig_sr=original_sr, target_sr=target_sr)
# Final check after resampling
if np.any(np.isnan(waveform)) or np.any(np.isinf(waveform)):
logger.error("Audio contains NaN or Inf after resampling, replacing with zeros")
waveform = np.nan_to_num(waveform, nan=0.0, posinf=0.0, neginf=0.0)
return waveform.astype(np.float32)
def check_for_interrupt():
try:
throw_exception_if_processing_interrupted()
return False
except:
return True

View File

@@ -0,0 +1,115 @@
{
"acoustic_vae_dim": 64,
"acoustic_tokenizer_config": {
"causal": true,
"channels": 1,
"conv_bias": true,
"conv_norm": "none",
"corpus_normalize": 0.0,
"decoder_depths": null,
"decoder_n_filters": 32,
"decoder_ratios": [
8,
5,
5,
4,
2,
2
],
"disable_last_norm": true,
"encoder_depths": "3-3-3-3-3-3-8",
"encoder_n_filters": 32,
"encoder_ratios": [
8,
5,
5,
4,
2,
2
],
"fix_std": 0.5,
"layer_scale_init_value": 1e-06,
"layernorm": "RMSNorm",
"layernorm_elementwise_affine": true,
"layernorm_eps": 1e-05,
"mixer_layer": "depthwise_conv",
"model_type": "vibevoice_acoustic_tokenizer",
"pad_mode": "constant",
"std_dist_type": "gaussian",
"vae_dim": 64,
"weight_init_value": 0.01
},
"architectures": [
"VibeVoiceForConditionalGeneration"
],
"decoder_config": {
"attention_dropout": 0.0,
"hidden_act": "silu",
"hidden_size": 1536,
"initializer_range": 0.02,
"intermediate_size": 8960,
"max_position_embeddings": 65536,
"max_window_layers": 28,
"model_type": "qwen2",
"num_attention_heads": 12,
"num_hidden_layers": 28,
"num_key_value_heads": 2,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 1000000.0,
"sliding_window": null,
"tie_word_embeddings": true,
"torch_dtype": "bfloat16",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151936
},
"diffusion_head_config": {
"ddpm_batch_mul": 4,
"ddpm_beta_schedule": "cosine",
"ddpm_num_inference_steps": 20,
"ddpm_num_steps": 1000,
"diffusion_type": "ddpm",
"head_ffn_ratio": 3.0,
"head_layers": 4,
"hidden_size": 1536,
"latent_size": 64,
"model_type": "vibevoice_diffusion_head",
"prediction_type": "v_prediction",
"rms_norm_eps": 1e-05,
"speech_vae_dim": 64
},
"model_type": "vibevoice",
"semantic_tokenizer_config": {
"causal": true,
"channels": 1,
"conv_bias": true,
"conv_norm": "none",
"corpus_normalize": 0.0,
"disable_last_norm": true,
"encoder_depths": "3-3-3-3-3-3-8",
"encoder_n_filters": 32,
"encoder_ratios": [
8,
5,
5,
4,
2,
2
],
"fix_std": 0,
"layer_scale_init_value": 1e-06,
"layernorm": "RMSNorm",
"layernorm_elementwise_affine": true,
"layernorm_eps": 1e-05,
"mixer_layer": "depthwise_conv",
"model_type": "vibevoice_semantic_tokenizer",
"pad_mode": "constant",
"std_dist_type": "none",
"vae_dim": 128,
"weight_init_value": 0.01
},
"semantic_vae_dim": 128,
"torch_dtype": "bfloat16",
"transformers_version": "4.51.3"
}

View File

@@ -0,0 +1,116 @@
{
"acostic_vae_dim": 64,
"acoustic_tokenizer_config": {
"causal": true,
"channels": 1,
"conv_bias": true,
"conv_norm": "none",
"corpus_normalize": 0.0,
"decoder_depths": null,
"decoder_n_filters": 32,
"decoder_ratios": [
8,
5,
5,
4,
2,
2
],
"disable_last_norm": true,
"encoder_depths": "3-3-3-3-3-3-8",
"encoder_n_filters": 32,
"encoder_ratios": [
8,
5,
5,
4,
2,
2
],
"fix_std": 0.5,
"layer_scale_init_value": 1e-06,
"layernorm": "RMSNorm",
"layernorm_elementwise_affine": true,
"layernorm_eps": 1e-05,
"mixer_layer": "depthwise_conv",
"model_type": "vibevoice_acoustic_tokenizer",
"pad_mode": "constant",
"std_dist_type": "gaussian",
"vae_dim": 64,
"weight_init_value": 0.01
},
"architectures": [
"VibeVoiceForConditionalGeneration"
],
"decoder_config": {
"attention_dropout": 0.0,
"hidden_act": "silu",
"hidden_size": 3584,
"initializer_range": 0.02,
"intermediate_size": 18944,
"max_position_embeddings": 32768,
"max_window_layers": 28,
"model_type": "qwen2",
"num_attention_heads": 28,
"num_hidden_layers": 28,
"num_key_value_heads": 4,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 1000000.0,
"sliding_window": null,
"torch_dtype": "bfloat16",
"use_cache": true,
"use_mrope": false,
"use_sliding_window": false,
"vocab_size": 152064
},
"diffusion_head_config": {
"ddpm_batch_mul": 4,
"ddpm_beta_schedule": "cosine",
"ddpm_num_inference_steps": 20,
"ddpm_num_steps": 1000,
"diffusion_type": "ddpm",
"head_ffn_ratio": 3.0,
"head_layers": 4,
"hidden_size": 3584,
"latent_size": 64,
"model_type": "vibevoice_diffusion_head",
"prediction_type": "v_prediction",
"rms_norm_eps": 1e-05,
"speech_vae_dim": 64
},
"model_type": "vibevoice",
"semantic_tokenizer_config": {
"causal": true,
"channels": 1,
"conv_bias": true,
"conv_norm": "none",
"corpus_normalize": 0.0,
"disable_last_norm": true,
"encoder_depths": "3-3-3-3-3-3-8",
"encoder_n_filters": 32,
"encoder_ratios": [
8,
5,
5,
4,
2,
2
],
"fix_std": 0,
"layer_scale_init_value": 1e-06,
"layernorm": "RMSNorm",
"layernorm_elementwise_affine": true,
"layernorm_eps": 1e-05,
"mixer_layer": "depthwise_conv",
"model_type": "vibevoice_semantic_tokenizer",
"pad_mode": "constant",
"std_dist_type": "none",
"vae_dim": 128,
"weight_init_value": 0.01
},
"semantic_vae_dim": 128,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.51.3"
}

View File

@@ -1,5 +1,6 @@
# Author: Wildminder
# Desc: SageAttention and patcher
# License: Apache 2.0
import torch
from typing import Optional, Tuple

View File

@@ -1,395 +1,29 @@
import os
import re
import torch
import numpy as np
import random
from huggingface_hub import hf_hub_download, snapshot_download
import gc
import logging
import gc
import folder_paths
import comfy.model_management as model_management
import comfy.model_patcher
from comfy.utils import ProgressBar
from comfy.model_management import throw_exception_if_processing_interrupted
# Import transformers and packaging to handle different library versions.
import transformers
from packaging import version
_transformers_version = version.parse(transformers.__version__)
_DTYPE_ARG_SUPPORTED = _transformers_version >= version.parse("4.56.0")
from transformers import set_seed, AutoTokenizer, BitsAndBytesConfig
from .vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from .vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from .vibevoice.processor.vibevoice_tokenizer_processor import VibeVoiceTokenizerProcessor
from .vibevoice.modular.modular_vibevoice_text_tokenizer import VibeVoiceTextTokenizerFast
from . import SAGE_ATTENTION_AVAILABLE
if SAGE_ATTENTION_AVAILABLE:
from .vibevoice.modular.sage_attention_patch import set_sage_attention
try:
import librosa
except ImportError:
print("VibeVoice Node: `librosa` is not installed. Resampling of reference audio will not be available.")
librosa = None
# Import from the dedicated model_info module
from .modules.model_info import AVAILABLE_VIBEVOICE_MODELS
from .modules.loader import VibeVoiceModelHandler, ATTENTION_MODES, VIBEVOICE_PATCHER_CACHE, cleanup_old_models
from .modules.patcher import VibeVoicePatcher
from .modules.utils import parse_script_1_based, preprocess_comfy_audio, set_vibevoice_seed, check_for_interrupt
logger = logging.getLogger(__name__)
LOADED_MODELS = {}
VIBEVOICE_PATCHER_CACHE = {}
MODEL_CONFIGS = {
"VibeVoice-1.5B": {
"repo_id": "microsoft/VibeVoice-1.5B",
"size_gb": 3.0,
"tokenizer_repo": "Qwen/Qwen2.5-1.5B"
},
"VibeVoice-Large": {
"repo_id": "aoi-ot/VibeVoice-Large",
"size_gb": 17.4,
"tokenizer_repo": "Qwen/Qwen2.5-7B"
}
}
ATTENTION_MODES = ["eager", "sdpa", "flash_attention_2"]
if SAGE_ATTENTION_AVAILABLE:
ATTENTION_MODES.append("sage")
def cleanup_old_models(keep_cache_key=None):
"""Clean up old models, optionally keeping one specific model loaded"""
global LOADED_MODELS, VIBEVOICE_PATCHER_CACHE
keys_to_remove = []
# Clear LOADED_MODELS
for key in list(LOADED_MODELS.keys()):
if key != keep_cache_key:
keys_to_remove.append(key)
del LOADED_MODELS[key]
# Clear VIBEVOICE_PATCHER_CACHE - but more carefully
for key in list(VIBEVOICE_PATCHER_CACHE.keys()):
if key != keep_cache_key:
try:
patcher = VIBEVOICE_PATCHER_CACHE[key]
if hasattr(patcher, 'model') and patcher.model:
patcher.model.model = None
patcher.model.processor = None
del VIBEVOICE_PATCHER_CACHE[key]
except Exception as e:
logger.warning(f"Error cleaning up patcher {key}: {e}")
if keys_to_remove:
logger.info(f"Cleaned up cached models: {keys_to_remove}")
gc.collect()
model_management.soft_empty_cache()
class VibeVoiceModelHandler(torch.nn.Module):
"""A torch.nn.Module wrapper to hold the VibeVoice model and processor."""
def __init__(self, model_pack_name, attention_mode="eager", use_llm_4bit=False):
super().__init__()
self.model_pack_name = model_pack_name
self.attention_mode = attention_mode
self.use_llm_4bit = use_llm_4bit
self.cache_key = f"{model_pack_name}_attn_{attention_mode}_q4_{int(use_llm_4bit)}"
self.model = None
self.processor = None
self.size = int(MODEL_CONFIGS[model_pack_name].get("size_gb", 4.0) * (1024**3))
def load_model(self, device, attention_mode="eager"):
self.model, self.processor = VibeVoiceLoader.load_model(self.model_pack_name, device, attention_mode, use_llm_4bit=self.use_llm_4bit)
self.model.to(device)
class VibeVoicePatcher(comfy.model_patcher.ModelPatcher):
"""Custom ModelPatcher for managing VibeVoice models in ComfyUI."""
def __init__(self, model, attention_mode="eager", *args, **kwargs):
super().__init__(model, *args, **kwargs)
self.attention_mode = attention_mode
self.cache_key = model.cache_key
@property
def is_loaded(self):
"""Check if the model is currently loaded in memory."""
return hasattr(self, 'model') and self.model is not None and hasattr(self.model, 'model') and self.model.model is not None
def patch_model(self, device_to=None, *args, **kwargs):
target_device = self.load_device
if self.model.model is None:
logger.info(f"Loading VibeVoice models for '{self.model.model_pack_name}' to {target_device}...")
mode_names = {
"eager": "Eager (Most Compatible)",
"sdpa": "SDPA (Balanced Speed/Compatibility)",
"flash_attention_2": "Flash Attention 2 (Fastest)",
"sage": "SageAttention (Quantized High-Performance)",
}
logger.info(f"Attention Mode: {mode_names.get(self.attention_mode, self.attention_mode)}")
self.model.load_model(target_device, self.attention_mode)
self.model.model.to(target_device)
return super().patch_model(device_to=target_device, *args, **kwargs)
def unpatch_model(self, device_to=None, unpatch_weights=True, *args, **kwargs):
if unpatch_weights:
logger.info(f"Offloading VibeVoice models for '{self.model.model_pack_name}' ({self.attention_mode}) to {device_to}...")
self.model.model = None
self.model.processor = None
if self.cache_key in LOADED_MODELS:
del LOADED_MODELS[self.cache_key]
logger.info(f"Cleared LOADED_MODELS cache for: {self.cache_key}")
gc.collect()
model_management.soft_empty_cache()
return super().unpatch_model(device_to, unpatch_weights, *args, **kwargs)
class VibeVoiceLoader:
@staticmethod
def get_model_path(model_name: str):
if model_name not in MODEL_CONFIGS:
raise ValueError(f"Unknown VibeVoice model: {model_name}")
vibevoice_path = os.path.join(folder_paths.get_folder_paths("tts")[0], "VibeVoice")
model_path = os.path.join(vibevoice_path, model_name)
index_file = os.path.join(model_path, "model.safetensors.index.json")
if not os.path.exists(index_file):
print(f"Downloading VibeVoice model: {model_name}...")
repo_id = MODEL_CONFIGS[model_name]["repo_id"]
snapshot_download(repo_id=repo_id, local_dir=model_path)
return model_path
@staticmethod
def _check_gpu_for_sage_attention():
"""Check if the current GPU is compatible with SageAttention."""
if not SAGE_ATTENTION_AVAILABLE:
return False
if not torch.cuda.is_available():
return False
major, _ = torch.cuda.get_device_capability()
if major < 8:
logger.warning(f"Your GPU (compute capability {major}.x) does not support SageAttention, which requires CC 8.0+. Sage option will be disabled.")
return False
return True
@staticmethod
def load_model(model_name: str, device, attention_mode: str = "eager", use_llm_4bit: bool = False):
if use_llm_4bit and attention_mode in ["eager", "flash_attention_2"]:
logger.warning(f"Attention mode '{attention_mode}' is not recommended with 4-bit quantization. Falling back to 'sdpa' for stability and performance.")
attention_mode = "sdpa"
if attention_mode not in ATTENTION_MODES:
logger.warning(f"Unknown attention mode '{attention_mode}', falling back to eager")
attention_mode = "eager"
cache_key = f"{model_name}_attn_{attention_mode}_q4_{int(use_llm_4bit)}"
if cache_key in LOADED_MODELS:
logger.info(f"Using cached model with {attention_mode} attention and q4={use_llm_4bit}")
return LOADED_MODELS[cache_key]
model_path = VibeVoiceLoader.get_model_path(model_name)
logger.info(f"Loading VibeVoice model components from: {model_path}")
tokenizer_repo = MODEL_CONFIGS[model_name].get("tokenizer_repo")
tokenizer_file_path = os.path.join(model_path, "tokenizer.json")
# Check if tokenizer.json exists locally. If not, download it directly to the model folder.
if not os.path.exists(tokenizer_file_path):
logger.info(f"tokenizer.json not found in {model_path}. Downloading from '{tokenizer_repo}'...")
try:
hf_hub_download(
repo_id=tokenizer_repo,
filename="tokenizer.json",
local_dir=model_path,
)
except Exception as e:
logger.error(f"Failed to download tokenizer.json: {e}")
raise
vibevoice_tokenizer = VibeVoiceTextTokenizerFast(tokenizer_file=tokenizer_file_path)
audio_processor = VibeVoiceTokenizerProcessor()
processor = VibeVoiceProcessor(tokenizer=vibevoice_tokenizer, audio_processor=audio_processor)
# Base dtype for full precision and memory-optimized 4-bit
if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
model_dtype = torch.bfloat16
else:
model_dtype = torch.float16
quant_config = None
final_load_dtype = model_dtype
if use_llm_4bit:
# Default to bfloat16/float16 for memory savings
bnb_compute_dtype = model_dtype
# SageAttention is numerically sensitive and requires fp32 compute dtype for stability
# SDPA is more robust and can use bf16.
if attention_mode == 'sage':
logger.info("Using SageAttention with 4-bit quant. Forcing fp32 compute dtype for maximum stability.")
bnb_compute_dtype = torch.float32
final_load_dtype = torch.float32
else:
logger.info(f"Using {attention_mode} with 4-bit quant. Using {model_dtype} compute dtype for memory efficiency.")
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bnb_compute_dtype,
)
attn_implementation_for_load = "sdpa" if attention_mode == "sage" else attention_mode
try:
logger.info(f"Loading model with dtype: {final_load_dtype} and attention: '{attn_implementation_for_load}'")
# Build a dictionary of keyword arguments for from_pretrained.
from_pretrained_kwargs = {
"attn_implementation": attn_implementation_for_load,
"device_map": "auto" if quant_config else device,
"quantization_config": quant_config,
}
# Use the correct dtype argument based on the transformers version.
if _DTYPE_ARG_SUPPORTED:
from_pretrained_kwargs['dtype'] = final_load_dtype
else:
from_pretrained_kwargs['torch_dtype'] = final_load_dtype
model = VibeVoiceForConditionalGenerationInference.from_pretrained(
model_path,
**from_pretrained_kwargs
)
if attention_mode == "sage":
if VibeVoiceLoader._check_gpu_for_sage_attention():
logger.info("Applying SageAttention patch to the model...")
set_sage_attention(model)
else:
logger.error("Cannot apply SageAttention due to incompatible GPU. Falling back.")
raise RuntimeError("Incompatible hardware/setup for SageAttention.")
model.eval()
setattr(model, "_llm_4bit", bool(quant_config))
LOADED_MODELS[cache_key] = (model, processor)
logger.info(f"Successfully configured model with {attention_mode} attention")
return model, processor
except Exception as e:
logger.error(f"Failed to load model with {attention_mode} attention: {e}")
# Fallback logic
if attention_mode in ["sage", "flash_attention_2"]:
logger.info("Attempting fallback to SDPA...")
return VibeVoiceLoader.load_model(model_name, device, "sdpa", use_llm_4bit)
elif attention_mode == "sdpa":
logger.info("Attempting fallback to eager...")
return VibeVoiceLoader.load_model(model_name, device, "eager", use_llm_4bit)
else:
raise RuntimeError(f"Failed to load model even with eager attention: {e}")
def set_vibevoice_seed(seed: int):
"""Sets the seed for torch, numpy, and random, handling large seeds for numpy."""
if seed == 0:
seed = random.randint(1, 0xffffffffffffffff)
MAX_NUMPY_SEED = 2**32 - 1
numpy_seed = seed % MAX_NUMPY_SEED
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(numpy_seed)
random.seed(seed)
def parse_script_1_based(script: str) -> tuple[list[tuple[int, str]], list[int]]:
"""
Parses a 1-based speaker script into a list of (speaker_id, text) tuples
and a list of unique speaker IDs in the order of their first appearance.
Internally, it converts speaker IDs to 0-based for the model.
"""
parsed_lines = []
speaker_ids_in_script = [] # This will store the 1-based IDs from the script
for line in script.strip().split("\n"):
if not (line := line.strip()): continue
match = re.match(r'^Speaker\s+(\d+)\s*:\s*(.*)$', line, re.IGNORECASE)
if match:
speaker_id = int(match.group(1))
if speaker_id < 1:
logger.warning(f"Speaker ID must be 1 or greater. Skipping line: '{line}'")
continue
text = ' ' + match.group(2).strip()
# Internally, the model expects 0-based indexing for speakers
internal_speaker_id = speaker_id - 1
parsed_lines.append((internal_speaker_id, text))
if speaker_id not in speaker_ids_in_script:
speaker_ids_in_script.append(speaker_id)
else:
logger.warning(f"Could not parse line, skipping: '{line}'")
return parsed_lines, sorted(list(set(speaker_ids_in_script)))
def preprocess_comfy_audio(audio_dict: dict, target_sr: int = 24000) -> np.ndarray:
"""
Converts a ComfyUI AUDIO dict to a mono NumPy array, resampling if necessary.
"""
if not audio_dict: return None
waveform_tensor = audio_dict.get('waveform')
if waveform_tensor is None or waveform_tensor.numel() == 0: return None
waveform = waveform_tensor[0].cpu().numpy()
original_sr = audio_dict['sample_rate']
if waveform.ndim > 1:
waveform = np.mean(waveform, axis=0)
# Check for invalid values
if np.any(np.isnan(waveform)) or np.any(np.isinf(waveform)):
logger.error("Audio contains NaN or Inf values, replacing with zeros")
waveform = np.nan_to_num(waveform, nan=0.0, posinf=0.0, neginf=0.0)
# Ensure audio is not completely silent or has extreme values
if np.all(waveform == 0):
logger.warning("Audio waveform is completely silent")
# Normalize extreme values
max_val = np.abs(waveform).max()
if max_val > 10.0:
logger.warning(f"Audio values are very large (max: {max_val}), normalizing")
waveform = waveform / max_val
if original_sr != target_sr:
if librosa is None:
raise ImportError("`librosa` package is required for audio resampling. Please install it with `pip install librosa`.")
logger.warning(f"Resampling reference audio from {original_sr}Hz to {target_sr}Hz.")
waveform = librosa.resample(y=waveform, orig_sr=original_sr, target_sr=target_sr)
# Final check after resampling
if np.any(np.isnan(waveform)) or np.any(np.isinf(waveform)):
logger.error("Audio contains NaN or Inf after resampling, replacing with zeros")
waveform = np.nan_to_num(waveform, nan=0.0, posinf=0.0, neginf=0.0)
return waveform.astype(np.float32)
def check_for_interrupt():
try:
throw_exception_if_processing_interrupted()
return False
except:
return True
class VibeVoiceTTSNode:
@classmethod
def INPUT_TYPES(cls):
model_names = list(AVAILABLE_VIBEVOICE_MODELS.keys())
if not model_names:
model_names.append("No models found in models/tts/VibeVoice")
return {
"required": {
"model_name": (list(MODEL_CONFIGS.keys()), {
"tooltip": "Select the VibeVoice model to use. Models will be downloaded automatically if not present."
"model_name": (model_names, {
"tooltip": "Select the VibeVoice model to use. Official models will be downloaded automatically."
}),
"text": ("STRING", {
"multiline": True,
@@ -405,7 +39,7 @@ class VibeVoiceTTSNode:
"tooltip": "Attention implementation: Eager (safest), SDPA (balanced), Flash Attention 2 (fastest), Sage (quantized)"
}),
"cfg_scale": ("FLOAT", {
"default": 1.3, "min": 1.0, "max": 3.0, "step": 0.05,
"default": 1.3, "min": 1.0, "max": 10.0, "step": 0.05,
"tooltip": "Classifier-Free Guidance scale. Higher values increase adherence to the voice prompt but may reduce naturalness. Recommended: 1.3"
}),
"inference_steps": ("INT", {
@@ -450,16 +84,13 @@ class VibeVoiceTTSNode:
CATEGORY = "audio/tts"
def generate_audio(self, model_name, text, attention_mode, cfg_scale, inference_steps, seed, do_sample, temperature, top_p, top_k, quantize_llm_4bit, force_offload, **kwargs):
actual_attention_mode = attention_mode
if quantize_llm_4bit and attention_mode in ["eager", "flash_attention_2"]:
actual_attention_mode = "sdpa"
cache_key = f"{model_name}_attn_{actual_attention_mode}_q4_{int(quantize_llm_4bit)}"
# Clean up old models when switching to a different model
if cache_key not in VIBEVOICE_PATCHER_CACHE:
# Only keep models that are currently being requested
cleanup_old_models(keep_cache_key=cache_key)
model_handler = VibeVoiceModelHandler(model_name, attention_mode, use_llm_4bit=quantize_llm_4bit)
@@ -501,7 +132,6 @@ class VibeVoiceTTSNode:
return_tensors="pt", return_attention_mask=True
)
# Validate inputs before moving to GPU
for key, value in inputs.items():
if isinstance(value, torch.Tensor):
if torch.any(torch.isnan(value)) or torch.any(torch.isinf(value)):
@@ -519,9 +149,6 @@ class VibeVoiceTTSNode:
if top_k > 0:
generation_config['top_k'] = top_k
# cause float() error for q4+eager
# model = model.float() IS REMOVED
with torch.no_grad():
pbar = ProgressBar(inference_steps)