Delete sd-forge-flux1tools directory

This commit is contained in:
Academia SD
2025-04-05 06:10:45 +02:00
committed by GitHub
parent a8b8bfc763
commit e968680e94
3 changed files with 0 additions and 578 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 386 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 177 KiB

View File

@@ -1,578 +0,0 @@
#v023
from backend import memory_management
from backend.diffusion_engine.flux import Flux
import gradio
from gradio_rangeslider import RangeSlider
import torch, numpy as np
from modules import scripts, shared
from modules.ui_components import InputAccordion
from modules.script_callbacks import on_cfg_denoiser, remove_current_script_callbacks
from modules.sd_samplers_common import images_tensor_to_samples, approximation_indexes
from modules_forge.forge_canvas.canvas import ForgeCanvas
from PIL import Image, ImageDraw
from controlnet_aux import CannyDetector
from controlnet_aux.processor import Processor
import gc
from modules_forge import main_entry
class flux1tools(scripts.Script):
sorting_priority = 0
glc_backup_flux = None
clearConds = False
text_encoder_device_backup = None
sigmasBackup = None # Se conserva por si se requiere en ajustes futuros
flux_use_T5 = True
flux_use_CL = True
def __init__(self):
if flux1tools.glc_backup_flux is None:
flux1tools.glc_backup_flux = Flux.get_learned_conditioning
if flux1tools.text_encoder_device_backup is None:
flux1tools.text_encoder_device_backup = memory_management.text_encoder_device
# Función auxiliar para separar el prompt en 2 partes usando "SPLIT"
def splitPrompt(prompt, countTextEncoders):
promptTE1 = []
promptTE2 = []
for p in prompt:
parts = p.split('SPLIT')
if len(parts) >= 2:
promptTE1.append(parts[0].strip())
promptTE2.append(parts[1].strip())
else:
promptTE1.append(p)
promptTE2.append(p)
return promptTE1, promptTE2
# Funciones para seleccionar el dispositivo de los text encoders
def patched_text_encoder_gpu2():
if torch.cuda.device_count() > 1:
return torch.device("cuda:1")
else:
return torch.cuda.current_device()
def patched_text_encoder_gpu():
return torch.cuda.current_device()
def patched_text_encoder_cpu():
return memory_management.cpu
@torch.inference_mode()
def patched_glc_flux(self, prompt: list[str]):
memory_management.load_model_gpu(self.forge_objects.clip.patcher)
nprompt = len(prompt)
CLIPprompt, T5prompt = flux1tools.splitPrompt(prompt, 2)
if flux1tools.flux_use_CL:
cond_l, pooled_l = self.text_processing_engine_l(CLIPprompt)
else:
pooled_l = torch.zeros([nprompt, 768])
if flux1tools.flux_use_T5:
cond_t5 = self.text_processing_engine_t5(prompt)
else:
cond_t5 = torch.zeros([nprompt, 256, 4096])
cond = dict(crossattn=cond_t5, vector=pooled_l)
if getattr(self, "use_distilled_cfg_scale", False):
distilled_cfg_scale = getattr(prompt, 'distilled_cfg_scale', 3.5) or 3.5
cond['guidance'] = torch.FloatTensor([distilled_cfg_scale] * len(prompt))
print(f'Distilled CFG Scale: {distilled_cfg_scale}')
else:
print('Distilled CFG Scale will be ignored for Schnell')
return cond
def title(self):
return "Flux1Tools-V2"
def show(self, is_img2img):
return scripts.AlwaysVisible
# --- Funciones de preprocesamiento ---
def run_canny_preprocessor(self, image, low_threshold, high_threshold, detect_resolution, image_resolution):
try:
if image is None:
return None
if not hasattr(image, "size"):
image = Image.fromarray(np.array(image))
if image.mode != "RGB":
image = image.convert("RGB")
processor = CannyDetector()
processed = processor(
image,
low_threshold=int(low_threshold),
high_threshold=int(high_threshold),
detect_resolution=int(detect_resolution),
image_resolution=int(image_resolution)
)
return processed
except Exception as e:
print("Error in run_canny_preprocessor:", e)
return None
def run_depth_preprocessor(self, image, processor_id):
try:
if image is None:
return None
if not hasattr(image, "size"):
image = Image.fromarray(np.array(image))
if image.mode != "RGB":
image = image.convert("RGB")
proc = Processor(processor_id)
processed = proc(image)
processed = processed.resize((512, 512), Image.BICUBIC)
return processed
except Exception as e:
print("Error in run_depth_preprocessor:", e)
return None
# --- Nueva función para expandir lienzo (outpaint) ---
def expand_canvas(self, image, mask, expand_up, expand_down, expand_left, expand_right):
try:
if image is None:
return None, None
# Convertir a PIL Image si es necesario
if not hasattr(image, "size"):
image = Image.fromarray(np.array(image))
if not hasattr(mask, "size"):
mask = Image.fromarray(np.array(mask))
# Obtener dimensiones originales
orig_width, orig_height = image.size
# Calcular nuevas dimensiones
new_width = orig_width + expand_left + expand_right
new_height = orig_height + expand_up + expand_down
# Crear nueva imagen y máscara expandidas
new_image = Image.new("RGBA", (new_width, new_height), (0, 0, 0, 0))
new_mask = Image.new("RGBA", (new_width, new_height), (0, 0, 0, 0))
# Colocar imagen original en la nueva imagen
new_image.paste(image, (expand_left, expand_up))
# Crear máscara para areas expandidas (áreas a generar)
draw = ImageDraw.Draw(new_mask)
# Rellenar áreas expandidas en la máscara (blanco = áreas a generar)
if expand_up > 0:
draw.rectangle([(0, 0), (new_width, expand_up)], fill=(255, 255, 255, 255))
if expand_down > 0:
draw.rectangle([(0, new_height - expand_down), (new_width, new_height)], fill=(255, 255, 255, 255))
if expand_left > 0:
draw.rectangle([(0, expand_up), (expand_left, new_height - expand_down)], fill=(255, 255, 255, 255))
if expand_right > 0:
draw.rectangle([(new_width - expand_right, expand_up), (new_width, new_height - expand_down)], fill=(255, 255, 255, 255))
return new_image, new_mask
except Exception as e:
print("Error in expand_canvas:", e)
return image, mask
# --- Interfaz de usuario ---
def ui(self, *args, **kwargs):
def update_ref_info(image):
if image is None:
return "Reference image aspect ratio: *no image*"
else:
return f"Reference image aspect ratio: {round(image.size[0]/image.size[1],3)} ({image.size[0]} × {image.size[1]})"
def update_depth_info(image):
if image is None:
return "Depth image aspect ratio: *no image*"
else:
return f"Depth image aspect ratio: {round(image.size[0]/image.size[1],3)} ({image.size[0]} × {image.size[1]})"
# Función que actualiza info y previsualización en Canny
def update_canny_all(image, low, high, detect, imgres):
info = update_ref_info(image)
proc = self.run_canny_preprocessor(image, low, high, detect, imgres)
return info, proc
with InputAccordion(False, label=self.title()) as enabled:
# Pestaña Canny
with gradio.Tab("Canny", id="F2E_FT_Canny"):
gradio.Markdown("Use an appropriately Flux Canny checkpoint.")
with gradio.Row():
with gradio.Column():
canny_image = gradio.Image(label="Reference Image", type="pil", height=500, sources=["upload", "clipboard"])
canny_ref_info = gradio.Markdown("Reference image aspect ratio: *no image*")
with gradio.Column():
canny_preproc_preview = gradio.Image(label="Preprocessor Preview", type="pil", height=500)
# Primera fila: Low Threshold, High Threshold y Run preprocessor en la misma línea
with gradio.Row():
canny_low_threshold = gradio.Slider(label="Low Threshold", minimum=0, maximum=255, step=1, value=100)
canny_high_threshold = gradio.Slider(label="High Threshold", minimum=0, maximum=255, step=1, value=200)
run_canny_button = gradio.Button("Run preprocessor", visible=False)
# Segunda fila: Detect Resolution e Image Resolution
with gradio.Row():
canny_detect_resolution = gradio.Slider(label="Detect Resolution", minimum=128, maximum=1024, step=1, value=512)
canny_image_resolution = gradio.Slider(label="Image Resolution", minimum=128, maximum=1024, step=1, value=512)
# Tercera fila: Strength y Start/End
with gradio.Row():
canny_strength = gradio.Slider(label="Strength", minimum=0.0, maximum=2.0, step=0.01, value=1.0)
canny_time = RangeSlider(label="Start / End", minimum=0.0, maximum=1.0, step=0.01, value=(0.0, 0.8))
# Actualización automática solo al soltar los controles (on release)
canny_low_threshold.release(fn=update_canny_all, inputs=[canny_image, canny_low_threshold, canny_high_threshold, canny_detect_resolution, canny_image_resolution], outputs=[canny_ref_info, canny_preproc_preview])
canny_high_threshold.release(fn=update_canny_all, inputs=[canny_image, canny_low_threshold, canny_high_threshold, canny_detect_resolution, canny_image_resolution], outputs=[canny_ref_info, canny_preproc_preview])
canny_detect_resolution.release(fn=update_canny_all, inputs=[canny_image, canny_low_threshold, canny_high_threshold, canny_detect_resolution, canny_image_resolution], outputs=[canny_ref_info, canny_preproc_preview])
canny_image_resolution.release(fn=update_canny_all, inputs=[canny_image, canny_low_threshold, canny_high_threshold, canny_detect_resolution, canny_image_resolution], outputs=[canny_ref_info, canny_preproc_preview])
canny_image.change(fn=update_canny_all, inputs=[canny_image, canny_low_threshold, canny_high_threshold, canny_detect_resolution, canny_image_resolution], outputs=[canny_ref_info, canny_preproc_preview])
# También se deja el botón por si se desea una acción manual
run_canny_button.click(fn=self.run_canny_preprocessor, inputs=[canny_image, canny_low_threshold, canny_high_threshold, canny_detect_resolution, canny_image_resolution], outputs=canny_preproc_preview)
# Pestaña Depth
with gradio.Tab("Depth", id="F2E_FT_Depth"):
gradio.Markdown("Use an appropriately Flux Depth checkpoint..")
with gradio.Row():
with gradio.Column():
depth_image = gradio.Image(label="Reference Image", type="pil", height=500, sources=["upload", "clipboard"])
depth_ref_info = gradio.Markdown("Reference image aspect ratio: *no image*")
with gradio.Column():
depth_preproc_preview = gradio.Image(label="Preprocessor Preview", type="pil", height=500)
# Se utiliza un Dropdown para seleccionar el procesador y se oculta el botón manual
with gradio.Row():
depth_processor_selector = gradio.Dropdown(label="Processor", choices=["depth_zoe", "depth_midas", "depth_leres", "depth_leres++"], value="depth_zoe")
run_depth_button = gradio.Button("Run preprocessor", visible=False)
with gradio.Row():
depth_strength = gradio.Slider(label="Strength", minimum=0.0, maximum=2.0, step=0.01, value=1.0)
depth_time = RangeSlider(label="Start / End", minimum=0.0, maximum=1.0, step=0.01, value=(0.0, 0.8))
# Función que actualiza la información y previsualización en Depth
def update_depth_all(image, processor):
info = update_ref_info(image)
proc = self.run_depth_preprocessor(image, processor)
return info, proc
# Ejecutar automáticamente al cambiar la imagen o el procesador
depth_image.change(fn=update_depth_all, inputs=[depth_image, depth_processor_selector], outputs=[depth_ref_info, depth_preproc_preview])
depth_processor_selector.change(fn=update_depth_all, inputs=[depth_image, depth_processor_selector], outputs=[depth_ref_info, depth_preproc_preview])
# Pestaña Fill (modificada para incluir outpainting)
with gradio.Tab("Fill", id="F2E_FT_f"):
gradio.Markdown("Use an appropriately Flux Fill checkpoint.")
with gradio.Row():
fill_image = ForgeCanvas(
height=500,
contrast_scribbles=shared.opts.img2img_inpaint_mask_high_contrast,
scribble_color=shared.opts.img2img_inpaint_mask_brush_color,
scribble_color_fixed=True,
scribble_alpha=75,
scribble_alpha_fixed=True,
scribble_softness_fixed=True
)
# Añadimos nueva sección para outpainting
with gradio.Accordion("Outpaint Options", open=False):
# Sliders para controlar la expansión en cada dirección
with gradio.Row():
fill_expand_up = gradio.Slider(label="Expand Up:", minimum=0, maximum=512, step=64, value=0)
fill_expand_down = gradio.Slider(label="Expand Down:", minimum=0, maximum=512, step=64, value=0)
with gradio.Row():
fill_expand_left = gradio.Slider(label="Expand Left:", minimum=0, maximum=512, step=64, value=0)
fill_expand_right = gradio.Slider(label="Expand Right:", minimum=0, maximum=512, step=64, value=0)
# Botón para aplicar expansión
with gradio.Row():
apply_outpaint_button = gradio.Button("Apply Outpaint")
# Información sobre dimensiones actuales y nuevas
fill_dimensions_info = gradio.Markdown("Current dimensions: N/A")
# Función para actualizar la información de dimensiones
def update_dimensions_info(image, up, down, left, right):
if image is None:
return "Current dimensions: N/A"
width, height = image.size
new_width = width + left + right
new_height = height + up + down
return f"Current dimensions: {width}×{height} → New dimensions: {new_width}×{new_height}"
# Actualizar info al cambiar valores
fill_image.background.change(
fn=update_dimensions_info,
inputs=[fill_image.background, fill_expand_up, fill_expand_down, fill_expand_left, fill_expand_right],
outputs=fill_dimensions_info
)
for slider in [fill_expand_up, fill_expand_down, fill_expand_left, fill_expand_right]:
slider.release(
fn=update_dimensions_info,
inputs=[fill_image.background, fill_expand_up, fill_expand_down, fill_expand_left, fill_expand_right],
outputs=fill_dimensions_info
)
# Función para aplicar outpaint
def apply_outpaint(background, foreground, up, down, left, right):
if background is None:
return background, foreground
new_bg, new_fg = self.expand_canvas(background, foreground, up, down, left, right)
return new_bg, new_fg
# Conectar botón a función
apply_outpaint_button.click(
fn=apply_outpaint,
inputs=[fill_image.background, fill_image.foreground,
fill_expand_up, fill_expand_down, fill_expand_left, fill_expand_right],
outputs=[fill_image.background, fill_image.foreground]
)
with gradio.Row():
fill_strength = gradio.Slider(label="Strength", minimum=0.0, maximum=2.0, step=0.01, value=1.0, visible=False)
fill_time = RangeSlider(label=" Start / End", minimum=0.0, maximum=1.0, step=0.01, value=(0.0, 1.0), visible=False)
# Pestaña Redux (se mantiene igual)
with gradio.Tab("Redux", id="F2E_FT_r1"):
gradio.Markdown("Use an appropriately Flux checkpoint.")
with gradio.Row():
with gradio.Column():
redux_image1 = gradio.Image(show_label=False, type="pil", height=500, sources=["upload", "clipboard"])
with gradio.Column():
redux_str1 = gradio.Slider(label="Strength", minimum=0.0, maximum=2.0, step=0.01, value=1.0)
redux_time1 = RangeSlider(label="Start / End", minimum=0.0, maximum=1.0, step=0.01, value=(0.0, 0.8))
swap12 = gradio.Button("swap redux 1 and 2")
swap13 = gradio.Button("swap redux 1 and 3")
swap14 = gradio.Button("swap redux 1 and 4")
with gradio.Tab("Redux-2", id="F2E_FT_r2"):
gradio.Markdown("Use an appropriately Flux checkpoint.")
with gradio.Row():
with gradio.Column():
redux_image2 = gradio.Image(show_label=False, type="pil", height=500, sources=["upload", "clipboard"])
with gradio.Column():
redux_str2 = gradio.Slider(label="Strength", minimum=0.0, maximum=2.0, step=0.01, value=1.0)
redux_time2 = RangeSlider(label="Start / End", minimum=0.0, maximum=1.0, step=0.01, value=(0.0, 0.8))
swap21 = gradio.Button("swap redux 2 and 1")
swap23 = gradio.Button("swap redux 2 and 3")
swap24 = gradio.Button("swap redux 2 and 4")
with gradio.Tab("Redux-3", id="F2E_FT_r3"):
gradio.Markdown("Use an appropriately Flux checkpoint.")
with gradio.Row():
with gradio.Column():
redux_image3 = gradio.Image(show_label=False, type="pil", height=500, sources=["upload", "clipboard"])
with gradio.Column():
redux_str3 = gradio.Slider(label="Strength", minimum=0.0, maximum=2.0, step=0.01, value=1.0)
redux_time3 = RangeSlider(label="Start / End", minimum=0.0, maximum=1.0, step=0.01, value=(0.0, 0.8))
swap31 = gradio.Button("swap redux 3 and 1")
swap32 = gradio.Button("swap redux 3 and 2")
swap34 = gradio.Button("swap redux 3 and 4")
with gradio.Tab("Redux-4", id="F2E_FT_r4"):
gradio.Markdown("Use an appropriately Flux checkpoint.")
with gradio.Row():
with gradio.Column():
redux_image4 = gradio.Image(show_label=False, type="pil", height=500, sources=["upload", "clipboard"])
with gradio.Column():
redux_str4 = gradio.Slider(label="Strength", minimum=0.0, maximum=2.0, step=0.01, value=1.0)
redux_time4 = RangeSlider(label="Start / End", minimum=0.0, maximum=1.0, step=0.01, value=(0.0, 0.8))
swap41 = gradio.Button("swap redux 4 and 1")
swap42 = gradio.Button("swap redux 4 and 2")
swap43 = gradio.Button("swap redux 4 and 3")
def redux_swap(image1, image2, str1, str2, time1, time2):
return image2, image1, str2, str1, time2, time1
swap12.click(redux_swap, inputs=[redux_image1, redux_image2, redux_str1, redux_str2, redux_time1, redux_time2],
outputs=[redux_image1, redux_image2, redux_str1, redux_str2, redux_time1, redux_time2])
swap13.click(redux_swap, inputs=[redux_image1, redux_image3, redux_str1, redux_str3, redux_time1, redux_time3],
outputs=[redux_image1, redux_image3, redux_str1, redux_str3, redux_time1, redux_time3])
swap14.click(redux_swap, inputs=[redux_image1, redux_image4, redux_str1, redux_str4, redux_time1, redux_time4],
outputs=[redux_image1, redux_image4, redux_str1, redux_str4, redux_time1, redux_time4])
swap21.click(redux_swap, inputs=[redux_image2, redux_image1, redux_str2, redux_str1, redux_time2, redux_time1],
outputs=[redux_image2, redux_image1, redux_str2, redux_str1, redux_time2, redux_time1])
swap23.click(redux_swap, inputs=[redux_image2, redux_image3, redux_str2, redux_str3, redux_time2, redux_time3],
outputs=[redux_image2, redux_image3, redux_str2, redux_str3, redux_time2, redux_time3])
swap24.click(redux_swap, inputs=[redux_image2, redux_image4, redux_str2, redux_str4, redux_time2, redux_time4],
outputs=[redux_image2, redux_image4, redux_str2, redux_str4, redux_time2, redux_time4])
swap31.click(redux_swap, inputs=[redux_image3, redux_image1, redux_str3, redux_str1, redux_time3, redux_time1],
outputs=[redux_image3, redux_image1, redux_str3, redux_str1, redux_time3, redux_time1])
swap32.click(redux_swap, inputs=[redux_image3, redux_image2, redux_str3, redux_str2, redux_time3, redux_time2],
outputs=[redux_image3, redux_image2, redux_str3, redux_str2, redux_time3, redux_time2])
swap34.click(redux_swap, inputs=[redux_image3, redux_image4, redux_str3, redux_str4, redux_time3, redux_time4],
outputs=[redux_image3, redux_image4, redux_str3, redux_str4, redux_time3, redux_time4])
swap41.click(redux_swap, inputs=[redux_image4, redux_image1, redux_str4, redux_str1, redux_time4, redux_time1],
outputs=[redux_image4, redux_image1, redux_str4, redux_str1, redux_time4, redux_time1])
swap42.click(redux_swap, inputs=[redux_image4, redux_image2, redux_str4, redux_str2, redux_time4, redux_time2],
outputs=[redux_image4, redux_image2, redux_str4, redux_str2, redux_time4, redux_time2])
swap43.click(redux_swap, inputs=[redux_image4, redux_image3, redux_str4, redux_str3, redux_time4, redux_time3],
outputs=[redux_image4, redux_image3, redux_str4, redux_str3, redux_time4, redux_time3])
with gradio.Accordion('Text encoders control', open=False, visible=False):
te_device = gradio.Radio(label="Device for text encoders", choices=["default", "cpu", "gpu", "gpu-2"], value="default")
with gradio.Row():
flux_use_T5 = gradio.Checkbox(value=flux1tools.flux_use_T5, label="Flux: Use T5")
flux_use_CL = gradio.Checkbox(value=flux1tools.flux_use_CL, label="Flux: Use CLIP (pooled)")
self.infotext_fields = [
(enabled, lambda d: d.get("fmp_enabled", False)),
(te_device, "fmp_te_device"),
(flux_use_T5, "fmp_fluxT5"),
(flux_use_CL, "fmp_fluxCL"),
]
def clearCondCache():
flux1tools.clearConds = True
enabled.change(fn=clearCondCache, inputs=None, outputs=None)
flux_use_T5.change(fn=clearCondCache, inputs=None, outputs=None)
flux_use_CL.change(fn=clearCondCache, inputs=None, outputs=None)
# Añadir nuevos componentes de outpainting a la lista de retorno
return enabled, te_device, flux_use_T5, flux_use_CL, \
canny_image, canny_ref_info, canny_preproc_preview, canny_low_threshold, canny_high_threshold, canny_detect_resolution, canny_image_resolution, canny_strength, canny_time, \
depth_image, depth_ref_info, depth_preproc_preview, depth_processor_selector, depth_strength, depth_time, \
redux_image1, redux_image2, redux_image3, redux_image4, \
redux_str1, redux_str2, redux_str3, redux_str4, \
redux_time1, redux_time2, redux_time3, redux_time4, \
fill_image.background, fill_image.foreground, fill_strength, fill_time, \
fill_expand_up, fill_expand_down, fill_expand_left, fill_expand_right, fill_dimensions_info
def after_extra_networks_activate(self, p, *script_args, **kwargs):
enabled = script_args[0]
if enabled:
te_device = script_args[1]
match te_device:
case "gpu-2":
memory_management.text_encoder_device = flux1tools.patched_text_encoder_gpu2
case "gpu":
memory_management.text_encoder_device = flux1tools.patched_text_encoder_gpu
case "cpu":
memory_management.text_encoder_device = flux1tools.patched_text_encoder_cpu
case _:
pass
def process(self, params, *script_args, **kwargs):
# Desempaquetamos los argumentos incluyendo los nuevos componentes de outpainting
(enabled, te_device, flux_use_T5, flux_use_CL,
canny_image, canny_ref_info, canny_preproc_preview, canny_low_threshold, canny_high_threshold, canny_detect_resolution, canny_image_resolution, canny_strength, canny_time,
depth_image, depth_ref_info, depth_preproc_preview, depth_processor_selector, depth_strength, depth_time,
redux_image1, redux_image2, redux_image3, redux_image4,
redux_str1, redux_str2, redux_str3, redux_str4,
redux_time1, redux_time2, redux_time3, redux_time4,
fill_image, fill_mask, fill_strength, fill_time,
fill_expand_up, fill_expand_down, fill_expand_left, fill_expand_right, fill_dimensions_info) = script_args
def process_before_every_sampling(self, params, *script_args, **kwargs):
(enabled, te_device, flux_use_T5, flux_use_CL,
canny_image, canny_ref_info, canny_preproc_preview, canny_low_threshold, canny_high_threshold, canny_detect_resolution, canny_image_resolution, canny_strength, canny_time,
depth_image, depth_ref_info, depth_preproc_preview, depth_processor_selector, depth_strength, depth_time,
redux_image1, redux_image2, redux_image3, redux_image4,
redux_str1, redux_str2, redux_str3, redux_str4,
redux_time1, redux_time2, redux_time3, redux_time4,
fill_image, fill_mask, fill_strength, fill_time,
fill_expand_up, fill_expand_down, fill_expand_left, fill_expand_right, fill_dimensions_info) = script_args
if enabled:
if not params.sd_model.is_webui_legacy_model():
x = kwargs['x']
n, c, h, w = x.size()
# Prioridad: Fill > Canny > Depth
if fill_image is not None and fill_mask is not None:
mask_A = fill_mask.getchannel('A').convert('L')
mask_A_I = mask_A.point(lambda v: 0 if v > 128 else 255)
mask_A = mask_A.point(lambda v: 255 if v > 128 else 0)
mask = Image.merge('RGBA', (mask_A_I, mask_A_I, mask_A_I, mask_A))
image = Image.alpha_composite(fill_image, mask).convert('RGB')
image = image.resize((w * 8, h * 8))
image_np = np.array(image) / 255.0
image_np = np.transpose(image_np, (2, 0, 1))
image_tensor = torch.tensor(image_np).unsqueeze(0)
latent = images_tensor_to_samples(image_tensor, approximation_indexes.get(shared.opts.sd_vae_encode_method), params.sd_model)
mask_resized = mask_A.resize((w * 8, h * 8))
mask_np = np.array(mask_resized) / 255.0
mask_tensor = torch.tensor(mask_np).unsqueeze(0).unsqueeze(0)
mask_tensor = mask_tensor[:, 0, :, :]
mask_tensor = mask_tensor.view(1, h, 8, w, 8)
mask_tensor = mask_tensor.permute(0, 2, 4, 1, 3)
mask_tensor = mask_tensor.reshape(1, 64, h, w)
flux1tools.latent = torch.cat([latent, mask_tensor.to(latent.device)], dim=1)
flux1tools.unmasked_latent = None
del image_tensor, mask_tensor
flux1tools.start = 0.0
flux1tools.end = 1.0
flux1tools.strength = 1.0
elif canny_preproc_preview is not None and canny_strength > 0:
image = canny_preproc_preview.resize((w * 8, h * 8))
image = np.array(image) / 255.0
image = np.transpose(image, (2, 0, 1))
image = torch.tensor(image).unsqueeze(0)
latent = images_tensor_to_samples(image, approximation_indexes.get(shared.opts.sd_vae_encode_method), params.sd_model)
flux1tools.latent = latent
flux1tools.unmasked_latent = None
del image
flux1tools.start = canny_time[0]
flux1tools.end = canny_time[1]
flux1tools.strength = canny_strength
elif depth_preproc_preview is not None and depth_strength > 0:
image = depth_preproc_preview.resize((w * 8, h * 8))
image = np.array(image) / 255.0
image = np.transpose(image, (2, 0, 1))
image = torch.tensor(image).unsqueeze(0)
latent = images_tensor_to_samples(image, approximation_indexes.get(shared.opts.sd_vae_encode_method), params.sd_model)
flux1tools.latent = latent
flux1tools.unmasked_latent = None
del image
flux1tools.start = depth_time[0]
flux1tools.end = depth_time[1]
flux1tools.strength = depth_strength
else:
flux1tools.latent = None
redux_images = [redux_image1, redux_image2, redux_image3, redux_image4]
redux_strengths = [redux_str1, redux_str2, redux_str3, redux_str4]
redux_times = [redux_time1, redux_time2, redux_time3, redux_time4]
if redux_images != [None, None, None, None] and redux_strengths != [0, 0, 0, 0]:
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers.pipelines.flux.modeling_flux import ReduxImageEncoder
embeds = []
for i in range(len(redux_images)):
if redux_images[i] is None or redux_strengths[i] == 0:
continue
feature = SiglipImageProcessor.from_pretrained("Runware/FLUX.1-Redux-dev", subfolder="feature_extractor")
image = feature.preprocess(images=redux_images[i], do_resize=True, return_tensors="pt", do_convert_rgb=True)
del feature
encoder = SiglipVisionModel.from_pretrained("Runware/FLUX.1-Redux-dev", subfolder="image_encoder")
image_enc_hidden_states = encoder(**image).last_hidden_state
del encoder
embedder = ReduxImageEncoder.from_pretrained("Runware/FLUX.1-Redux-dev", subfolder="image_embedder")
embeds.append((redux_strengths[i] * embedder(image_enc_hidden_states).image_embeds, redux_times[i][0], redux_times[i][1]))
del embedder, image_enc_hidden_states
flux1tools.image_embeds = embeds
else:
flux1tools.image_embeds = None
def apply_control(self):
lastStep = self.total_sampling_steps - 1
thisStep = self.sampling_step
if flux1tools.image_embeds is not None:
embeds = flux1tools.image_embeds
cond = self.text_cond["crossattn"]
for e in embeds:
if thisStep >= e[1] * lastStep and thisStep <= e[2] * lastStep:
image_embeds = e[0].repeat_interleave(len(self.text_cond["crossattn"]), dim=0)
image_embeds *= (256 / 729)
cond = torch.cat([cond, image_embeds.to(cond.device)], dim=1)
del image_embeds
cond = torch.sum(cond, dim=0, keepdim=True)
self.text_cond["crossattn"] = cond
if flux1tools.latent is not None:
if thisStep >= flux1tools.start * lastStep and thisStep <= flux1tools.end * lastStep:
latent_strength = flux1tools.latent * flux1tools.strength
shared.sd_model.forge_objects.unet.extra_concat_condition = latent_strength
else:
if flux1tools.unmasked_latent is not None:
shared.sd_model.forge_objects.unet.extra_concat_condition = flux1tools.unmasked_latent
else:
shared.sd_model.forge_objects.unet.extra_concat_condition = flux1tools.latent * 0.0
on_cfg_denoiser(apply_control)
return
def postprocess(self, params, processed, *args):
enabled = args[0]
if enabled:
Flux.get_learned_conditioning = flux1tools.glc_backup_flux
memory_management.text_encoder_device = flux1tools.text_encoder_device_backup
if flux1tools.sigmasBackup is not None:
shared.sd_model.forge_objects.unet.model.predictor.sigmas = flux1tools.sigmasBackup
flux1tools.sigmasBackup = None
shared.sd_model.forge_objects.unet.extra_concat_condition = None
flux1tools.image_embeds = None
flux1tools.latent = None
flux1tools.unmasked_latent = None
remove_current_script_callbacks()
return