feat: mediapipe predict

This commit is contained in:
Bingsu
2023-04-26 15:38:43 +09:00
parent 50e2a88b5b
commit 3079400d2f
3 changed files with 52 additions and 2 deletions

View File

@@ -3,7 +3,6 @@ from __future__ import annotations
from collections import OrderedDict
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
from huggingface_hub import hf_hub_download
from PIL import Image, ImageDraw

48
adetailer/mediapipe.py Normal file
View File

@@ -0,0 +1,48 @@
from __future__ import annotations
import numpy as np
import mediapipe as mp
from PIL import Image
from adetailer import PredictOutput
from adetailer.common import create_mask_from_bbox
def mediapipe_predict(
model_type: int, image: Image.Image, confidence: float = 0.25
) -> PredictOutput:
img_width, img_height = image.size
mp_face_detection = mp.solutions.face_detection
draw_util = mp.solutions.drawing_utils
img_array = np.array(image)
with mp_face_detection.FaceDetection(
model_selection=model_type, min_detection_confidence=confidence
) as face_detector:
pred = face_detector.process(img_array)
if pred.detections is None:
return PredictOutput()
example_array = img_array.copy()
bboxes = []
for detection in pred.detections:
draw_util.draw_detection(example_array, detection)
bbox = detection.location_data.relative_bounding_box
x1 = bbox.xmin * img_width
y1 = bbox.ymin * img_height
w = bbox.width * img_width
h = bbox.height * img_height
x2 = x1 + w
y2 = y1 + h
bboxes.append([x1, y1, x2, y2])
masks = create_mask_from_bbox(image, bboxes)
example = Image.fromarray(example_array)
return PredictOutput(bboxes=bboxes, masks=masks, example=example)

View File

@@ -18,7 +18,10 @@ def ultralytics_predict(
model = YOLO(model_path)
pred = model(image, conf=confidence, hide_labels=True)
bboxes = pred[0].xyxy.cpu().numpy()
bboxes = pred[0].xyxy.cpu().numpy().tolist()
if len(bboxes) == 0:
return PredictOutput()
masks = create_mask_from_bbox(image, bboxes)
example = pred[0].plot()
example = cv2.cvtColor(example, cv2.COLOR_BGR2RGB)