Merge branch 'dev' into main

This commit is contained in:
Bingsu
2023-05-08 11:02:06 +09:00
8 changed files with 322 additions and 207 deletions

View File

@@ -1,5 +1,11 @@
# Changelog
### 2023-05-08
- v23.5.9
- 2가지 이상의 모델을 사용할 수 있음. 기본값: 2, 최대: 5
- segment 모델을 사용할 수 있게 함. `person_yolov8n-seg.pt` 추가
### 2023-05-07
- v23.5.8

View File

@@ -16,31 +16,9 @@
You **DON'T** need to download any model from huggingface.
## Model
## Usage
| Model | Target | mAP 50 | mAP 50-95 |
| -------------------- | ------------------- | ------ | --------- |
| face_yolov8n.pt | 2D / realistic face | 0.660 | 0.366 |
| face_yolov8s.pt | 2D / realistic face | 0.713 | 0.404 |
| mediapipe_face_full | realistic | - | - |
| mediapipe_face_short | realistic | - | - |
The yolo models can be found on huggingface [Bingsu/adetailer](https://huggingface.co/Bingsu/adetailer).
### Dataset
Datasets used for training the yolo face detection models are:
- [roboflow AN](https://universe.roboflow.com/sed-b8vkf/an-lfg5i)
- [roboflow Anime Face CreateML](https://universe.roboflow.com/my-workspace-mph8o/anime-face-createml)
- [roboflow xml2txt](https://universe.roboflow.com/0oooooo0/xml2txt-njqx1)
- [wider face](http://shuoyang1213.me/WIDERFACE/index.html)
### User Model
Put your [ultralytics](https://github.com/ultralytics/ultralytics) model in `webui/models/adetailer`. The model name should end with `.pt` or `.pth`.
It must be a bbox detection model and use only label 0.
TO DO
## ControlNet Inpainting
@@ -48,6 +26,47 @@ You can use the ControlNet inpaint extension if you have ControlNet installed an
On the ControlNet tab, select a ControlNet inpaint model and set the model weights.
## Model
| Model | Target | mAP 50 | mAP 50-95 |
| --------------------- | --------------------- | ----------------------------- | ----------------------------- |
| face_yolov8n.pt | 2D / realistic face | 0.660 | 0.366 |
| face_yolov8s.pt | 2D / realistic face | 0.713 | 0.404 |
| mediapipe_face_full | realistic face | - | - |
| mediapipe_face_short | realistic face | - | - |
| hand_yolov8n.pt | 2D / realistic hand | 0.767 | 0.505 |
| person_yolov8n-seg.pt | 2D / realistic person | 0.782 (bbox)<br/>0.761 (mask) | 0.555 (bbox)<br/>0.460 (mask) |
The yolo models can be found on huggingface [Bingsu/adetailer](https://huggingface.co/Bingsu/adetailer).
### User Model
Put your [ultralytics](https://github.com/ultralytics/ultralytics) model in `webui/models/adetailer`. The model name should end with `.pt` or `.pth`.
It must be a bbox detection or segment model and use all label.
### Dataset
Datasets used for training the yolo models are:
#### Face
- [Anime Face CreateML](https://universe.roboflow.com/my-workspace-mph8o/anime-face-createml)
- [xml2txt](https://universe.roboflow.com/0oooooo0/xml2txt-njqx1)
- [AN](https://universe.roboflow.com/sed-b8vkf/an-lfg5i)
- [wider face](http://shuoyang1213.me/WIDERFACE/index.html)
#### Hand
- [AnHDet](https://universe.roboflow.com/1-yshhi/anhdet)
- [hand-detection-fuao9](https://universe.roboflow.com/catwithawand/hand-detection-fuao9)
#### Person
- [coco2017](https://cocodataset.org/#home) (only person)
- [AniSeg](https://github.com/jerryli27/AniSeg)
- [skytnt/anime-segmentation](https://huggingface.co/datasets/skytnt/anime-segmentation)
## Example
![image](https://i.imgur.com/i74ukgi.png)

View File

@@ -1,5 +1,5 @@
from .__version__ import __version__
from .args import ALL_ARGS, ADetailerArgs, EnableChecker, get_args
from .args import ALL_ARGS, ADetailerArgs, EnableChecker, get_one_args
from .common import PredictOutput, get_models
from .mediapipe import mediapipe_predict
from .ultralytics import ultralytics_predict
@@ -10,7 +10,7 @@ __all__ = [
"ALL_ARGS",
"EnableChecker",
"PredictOutput",
"get_args",
"get_one_args",
"get_models",
"mediapipe_predict",
"ultralytics_predict",

View File

@@ -1 +1 @@
__version__ = "23.5.8"
__version__ = "23.5.9"

View File

@@ -75,7 +75,10 @@ class ADetailerArgs(BaseModel, extra=Extra.forbid):
v /= 100.0
return v
def extra_params(self):
def extra_params(self, suffix: str = ""):
if self.ad_model == "None":
return {}
params = {name: getattr(self, attr) for attr, name in ALL_ARGS[1:]}
params["ADetailer conf"] = int(params["ADetailer conf"] * 100)
@@ -95,6 +98,9 @@ class ADetailerArgs(BaseModel, extra=Extra.forbid):
params.pop("ADetailer ControlNet model")
params.pop("ADetailer ControlNet weight")
if suffix:
params = {k + suffix: v for k, v in params.items()}
return params
@@ -106,6 +112,6 @@ class EnableChecker(BaseModel):
return self.ad_enable and self.ad_model != "None"
def get_args(*args: Any) -> ADetailerArgs:
def get_one_args(*args: Any) -> ADetailerArgs:
arg_dict = {attr: arg for arg, (attr, *_) in zip(args, ALL_ARGS)}
return ADetailerArgs(**arg_dict)

View File

@@ -38,6 +38,7 @@ def get_models(model_dir: Union[str, Path]) -> OrderedDict[str, Optional[str]]:
"mediapipe_face_full": None,
"mediapipe_face_short": None,
"hand_yolov8n.pt": hf_hub_download(repo_id, "hand_yolov8n.pt"),
"person_yolov8n-seg.pt": hf_hub_download(repo_id, "person_yolov8n-seg.pt"),
}
)

View File

@@ -32,7 +32,10 @@ def ultralytics_predict(
return PredictOutput()
bboxes = bboxes.tolist()
masks = create_mask_from_bbox(image, bboxes)
if pred[0].masks is None:
masks = create_mask_from_bbox(image, bboxes)
else:
masks = mask_to_pil(pred[0].masks.data, image.size)
preview = pred[0].plot()
preview = cv2.cvtColor(preview, cv2.COLOR_BGR2RGB)
preview = Image.fromarray(preview)
@@ -51,3 +54,19 @@ def ultralytics_check():
if p == "C:\\":
message = "[-] ADetailer: if you get stuck here, try moving the stable-diffusion-webui to a different directory, or try running as administrator."
print(message)
def mask_to_pil(masks, orig_shape: tuple[int, int]) -> list[Image.Image]:
"""
Parameters
----------
masks: torch.Tensor, dtype=torch.float32, shape=(N, H, W).
The device can be CUDA, but `to_pil_image` takes care of that.
orig_shape: tuple[int, int]
(width, height) of the original image
"""
from torchvision.transforms.functional import to_pil_image
n = masks.shape[0]
return [to_pil_image(masks[i], mode="L").resize(orig_shape) for i in range(n)]

View File

@@ -17,8 +17,8 @@ from adetailer import (
ADetailerArgs,
EnableChecker,
__version__,
get_args,
get_models,
get_one_args,
mediapipe_predict,
ultralytics_predict,
)
@@ -52,7 +52,7 @@ print(
class Widgets:
def tolist(self):
return [getattr(self, attr) for attr, *_ in ALL_ARGS]
return [getattr(self, attr) for attr, *_ in ALL_ARGS[1:]]
class ChangeTorchLoad:
@@ -68,6 +68,15 @@ def gr_show(visible=True):
return {"visible": visible, "__type__": "update"}
def ordinal(n: int) -> str:
d = {1: "st", 2: "nd", 3: "rd"}
return str(n) + ("th" if 11 <= n % 100 <= 13 else d.get(n % 10, "th"))
def suffix(n: int, c: str = " ") -> str:
return "" if n == 0 else c + ordinal(n + 1)
class AfterDetailerScript(scripts.Script):
def __init__(self):
super().__init__()
@@ -83,183 +92,205 @@ class AfterDetailerScript(scripts.Script):
def ui(self, is_img2img):
model_list = list(model_mapping.keys())
w = Widgets()
num_models = opts.data.get("ad_max_models", 2)
w = [Widgets() for _ in range(num_models)]
with gr.Accordion(AFTER_DETAILER, open=False, elem_id="AD_main_acc"):
with gr.Row():
w.ad_enable = gr.Checkbox(
ad_enable = gr.Checkbox(
label="Enable ADetailer",
value=False,
visible=True,
)
with gr.Group():
with gr.Row():
w.ad_model = gr.Dropdown(
label="ADetailer model",
choices=model_list,
value=model_list[0],
visible=True,
type="value",
)
with gr.Group(), gr.Tabs():
for n in range(num_models):
with gr.Tab(ordinal(n + 1)):
with gr.Row():
model_choices = (
model_list if n == 0 else ["None"] + model_list
)
with gr.Row(elem_id="AD_toprow_prompt"):
w.ad_prompt = gr.Textbox(
label="ad_prompt",
show_label=False,
lines=3,
placeholder="ADetailer prompt",
elem_id="AD_prompt",
)
w[n].ad_model = gr.Dropdown(
label="ADetailer model" + suffix(n),
choices=model_choices,
value=model_choices[0],
visible=True,
type="value",
)
with gr.Row(elem_id="AD_toprow_negative_prompt"):
w.ad_negative_prompt = gr.Textbox(
label="ad_negative_prompt",
show_label=False,
lines=2,
placeholder="ADetailer negative prompt",
elem_id="AD_negative_prompt",
)
with gr.Row(elem_id="AD_toprow_prompt" + suffix(n, "_")):
w[n].ad_prompt = gr.Textbox(
label="ad_prompt" + suffix(n),
show_label=False,
lines=3,
placeholder="ADetailer prompt" + suffix(n),
elem_id="AD_prompt" + suffix(n, "_"),
)
with gr.Group():
with gr.Row():
w.ad_conf = gr.Slider(
label="Detection model confidence threshold %",
minimum=0,
maximum=100,
step=1,
value=30,
visible=True,
)
w.ad_dilate_erode = gr.Slider(
label="Mask erosion (-) / dilation (+)",
minimum=-128,
maximum=128,
step=4,
value=32,
visible=True,
)
with gr.Row(
elem_id="AD_toprow_negative_prompt" + suffix(n, "_")
):
w[n].ad_negative_prompt = gr.Textbox(
label="ad_negative_prompt" + suffix(n),
show_label=False,
lines=2,
placeholder="ADetailer negative prompt" + suffix(n),
elem_id="AD_negative_prompt" + suffix(n, "_"),
)
with gr.Row():
w.ad_x_offset = gr.Slider(
label="Mask x(→) offset",
minimum=-200,
maximum=200,
step=1,
value=0,
visible=True,
)
w.ad_y_offset = gr.Slider(
label="Mask y(↑) offset",
minimum=-200,
maximum=200,
step=1,
value=0,
visible=True,
)
with gr.Group():
with gr.Row():
w[n].ad_conf = gr.Slider(
label="Detection model confidence threshold %"
+ suffix(n),
minimum=0,
maximum=100,
step=1,
value=30,
visible=True,
)
w[n].ad_dilate_erode = gr.Slider(
label="Mask erosion (-) / dilation (+)" + suffix(n),
minimum=-128,
maximum=128,
step=4,
value=32,
visible=True,
)
with gr.Row():
w.ad_mask_blur = gr.Slider(
label="Inpaint mask blur",
minimum=0,
maximum=64,
step=1,
value=4,
visible=True,
)
with gr.Row():
w[n].ad_x_offset = gr.Slider(
label="Mask x(→) offset" + suffix(n),
minimum=-200,
maximum=200,
step=1,
value=0,
visible=True,
)
w[n].ad_y_offset = gr.Slider(
label="Mask y(↑) offset" + suffix(n),
minimum=-200,
maximum=200,
step=1,
value=0,
visible=True,
)
w.ad_denoising_strength = gr.Slider(
label="Inpaint denoising strength",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.4,
visible=True,
)
with gr.Row():
w[n].ad_mask_blur = gr.Slider(
label="Inpaint mask blur" + suffix(n),
minimum=0,
maximum=64,
step=1,
value=4,
visible=True,
)
with gr.Row():
w.ad_inpaint_full_res = gr.Checkbox(
label="Inpaint at full resolution ",
value=True,
visible=True,
)
w.ad_inpaint_full_res_padding = gr.Slider(
label="Inpaint at full resolution padding, pixels ",
minimum=0,
maximum=256,
step=4,
value=0,
visible=True,
)
w[n].ad_denoising_strength = gr.Slider(
label="Inpaint denoising strength" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.4,
visible=True,
)
with gr.Row():
w.ad_use_inpaint_width_height = gr.Checkbox(
label="Use separate width/height",
value=False,
visible=True,
)
with gr.Row():
w[n].ad_inpaint_full_res = gr.Checkbox(
label="Inpaint at full resolution " + suffix(n),
value=True,
visible=True,
)
w[n].ad_inpaint_full_res_padding = gr.Slider(
label="Inpaint at full resolution padding, pixels "
+ suffix(n),
minimum=0,
maximum=256,
step=4,
value=0,
visible=True,
)
w.ad_inpaint_width = gr.Slider(
label="inpaint width",
minimum=4,
maximum=1024,
step=4,
value=512,
visible=True,
)
with gr.Row():
w[n].ad_use_inpaint_width_height = gr.Checkbox(
label="Use separate width/height" + suffix(n),
value=False,
visible=True,
)
w.ad_inpaint_height = gr.Slider(
label="inpaint height",
minimum=4,
maximum=1024,
step=4,
value=512,
visible=True,
)
w[n].ad_inpaint_width = gr.Slider(
label="inpaint width" + suffix(n),
minimum=4,
maximum=1024,
step=4,
value=512,
visible=True,
)
with gr.Row():
w.ad_use_cfg_scale = gr.Checkbox(
label="Use separate CFG scale",
value=False,
visible=True,
)
w[n].ad_inpaint_height = gr.Slider(
label="inpaint height" + suffix(n),
minimum=4,
maximum=1024,
step=4,
value=512,
visible=True,
)
w.ad_cfg_scale = gr.Slider(
label="ADetailer CFG scale",
minimum=0.0,
maximum=30.0,
step=0.5,
value=7.0,
visible=True,
)
with gr.Row():
w[n].ad_use_cfg_scale = gr.Checkbox(
label="Use separate CFG scale" + suffix(n),
value=False,
visible=True,
)
cn_inpaint_models = ["None"] + get_cn_inpaint_models()
w[n].ad_cfg_scale = gr.Slider(
label="ADetailer CFG scale" + suffix(n),
minimum=0.0,
maximum=30.0,
step=0.5,
value=7.0,
visible=True,
)
with gr.Group():
with gr.Row():
w.ad_controlnet_model = gr.Dropdown(
label="ControlNet model",
choices=cn_inpaint_models,
value="None",
visible=True,
type="value",
interactive=controlnet_exists,
)
cn_inpaint_models = ["None"] + get_cn_inpaint_models()
with gr.Row():
w.ad_controlnet_weight = gr.Slider(
label="ControlNet weight",
minimum=0.0,
maximum=1.0,
step=0.05,
value=1.0,
visible=True,
interactive=controlnet_exists,
)
with gr.Group():
with gr.Row():
w[n].ad_controlnet_model = gr.Dropdown(
label="ControlNet model" + suffix(n),
choices=cn_inpaint_models,
value="None",
visible=True,
type="value",
interactive=controlnet_exists,
)
self.infotext_fields = [(getattr(w, attr), name) for attr, name, *_ in ALL_ARGS]
with gr.Row():
w[n].ad_controlnet_weight = gr.Slider(
label="ControlNet weight" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.05,
value=1.0,
visible=True,
interactive=controlnet_exists,
)
return w.tolist()
# Accordion end
self.infotext_fields = [(ad_enable, ALL_ARGS[0].name)]
self.infotext_fields += [
(getattr(w[n], attr), name + suffix(n))
for n in range(num_models)
for attr, name, *_ in ALL_ARGS[1:]
]
ret = [ad_enable]
for n in range(num_models):
ret.extend(w[n].tolist())
return ret
def init_controlnet_ext(self) -> None:
if self.controlnet_ext is not None:
@@ -299,23 +330,38 @@ class AfterDetailerScript(scripts.Script):
checker = EnableChecker(ad_enable=args_[0], ad_model=args_[1])
return checker.is_enabled()
def get_args(self, *args_) -> ADetailerArgs:
try:
args = get_args(*args_)
except ValueError as e:
message = [
f"[-] ADetailer: ValidationError when validating arguments: {e}\n"
]
for arg, (attr, *_) in zip_longest(args_, ALL_ARGS):
dtype = type(arg)
arg = "MISSING" if arg is None else repr(arg)
message.append(f" {attr}: {arg} ({dtype})")
raise ValueError("\n".join(message)) from e
def get_args(self, *args_) -> list[ADetailerArgs]:
"""
`args_` is at least 2 in length by `is_ad_enabled` immediately above
"""
enabled = args_[0]
rem = args_[1:]
length = len(ALL_ARGS) - 1
return args
all_inputs = []
iter_args = (rem[i : i + length] for i in range(0, len(rem), length))
def extra_params(self, args: ADetailerArgs) -> dict:
params = args.extra_params()
for n, args in enumerate(iter_args, 1):
try:
inp = get_one_args(enabled, *args)
except ValueError as e:
message = [
f"[-] ADetailer: ValidationError when validating {ordinal(n)} arguments: {e}\n"
]
for arg, (attr, *_) in zip_longest(args, ALL_ARGS[1:]):
dtype = type(arg)
arg = "MISSING" if arg is None else repr(arg)
message.append(f" {attr}: {arg} ({dtype})")
raise ValueError("\n".join(message)) from e
all_inputs.append(inp)
return all_inputs
def extra_params(self, arg_list: list[ADetailerArgs]) -> dict:
params = {}
for n, args in enumerate(arg_list):
params.update(args.extra_params(suffix=suffix(n)))
params["ADetailer version"] = __version__
return params
@@ -482,11 +528,11 @@ class AfterDetailerScript(scripts.Script):
return
if self.is_ad_enabled(*args_):
args = self.get_args(*args_)
extra_params = self.extra_params(args)
arg_list = self.get_args(*args_)
extra_params = self.extra_params(arg_list)
p.extra_generation_params.update(extra_params)
def _postprocess_image(self, p, pp, args: ADetailerArgs) -> bool:
def _postprocess_image(self, p, pp, args: ADetailerArgs, *, n: int = 0) -> bool:
"""
Returns
-------
@@ -494,7 +540,6 @@ class AfterDetailerScript(scripts.Script):
`True` if image was processed, `False` otherwise.
"""
p._idx = getattr(p, "_idx", -1) + 1
i = p._idx
i2i = self.get_i2i_p(p, args, pp.image)
@@ -518,12 +563,15 @@ class AfterDetailerScript(scripts.Script):
if not masks:
print(
f"[-] ADetailer: nothing detected on image {i + 1} with current settings."
f"[-] ADetailer: nothing detected on image {i + 1} with {ordinal(n + 1)} settings."
)
return False
self.save_image(
p, pred.preview, condition="ad_save_previews", suffix="-ad-preview"
p,
pred.preview,
condition="ad_save_previews",
suffix="-ad-preview" + suffix(n, "-"),
)
steps = len(masks)
@@ -556,10 +604,15 @@ class AfterDetailerScript(scripts.Script):
if not self.is_ad_enabled(*args_):
return
p._idx = getattr(p, "_idx", -1) + 1
init_image = copy(pp.image)
arg_list = self.get_args(*args_)
args = self.get_args(*args_)
is_processed = self._postprocess_image(p, pp, args)
is_processed = False
for n, args in enumerate(arg_list):
if args.ad_model == "None":
continue
is_processed |= self._postprocess_image(p, pp, args, n=n)
if is_processed:
self.save_image(
@@ -575,6 +628,17 @@ class AfterDetailerScript(scripts.Script):
def on_ui_settings():
section = ("ADetailer", AFTER_DETAILER)
shared.opts.add_option(
"ad_max_models",
shared.OptionInfo(
2,
"Max models",
gr.Slider,
{"minimum": 1, "maximum": 5, "step": 1},
section=section,
),
)
shared.opts.add_option(
"ad_save_previews",
shared.OptionInfo(False, "Save mask previews", section=section),