add some colorspace conversion utils (ITU-R Rec. 709 a.k.a. "HDTV")

This commit is contained in:
Juha Jeronen
2024-01-20 02:45:02 +02:00
parent d51e4667a1
commit 16c341f334

View File

@@ -5,7 +5,8 @@ __all__ = ["posedict_keys", "posedict_key_to_index",
"posedict_to_pose", "pose_to_posedict",
"maybe_install_models",
"torch_image_to_numpy", "to_talkinghead_image",
"RunningAverage"]
"RunningAverage",
"rgb_to_yuv", "yuv_to_rgb", "luminance"]
import logging
import json
@@ -199,6 +200,102 @@ def to_talkinghead_image(image: PIL.Image, new_size: Tuple[int] = (512, 512)) ->
(new_size[1] - image.size[1]) // 2))
return new_image
# --------------------------------------------------------------------------------
# Colorspace conversion
#
# Some postprocessor filters need a colorspace that separates the brightness information from the colors.
# For simplicity, and considering that the filters are meant to simulate TV technology, we use YUV.
# (Also, it's familiar to those who have worked on the technical side of digital video.)
#
# RGB<->YCbCr conversion based on:
# https://github.com/TheZino/pytorch-color-conversions/
# https://gist.github.com/yohhoy/dafa5a47dade85d8b40625261af3776a
# https://www.itu.int/rec/R-REC-BT.601 (SDTV)
# https://www.itu.int/rec/R-REC-BT.709 (HDTV)
# https://www.itu.int/rec/R-REC-BT.2020 (UHDTV)
# https://en.wikipedia.org/wiki/Relative_luminance
# https://en.wikipedia.org/wiki/Luma_(video)
# https://en.wikipedia.org/wiki/Chrominance
# https://en.wikipedia.org/wiki/YUV
# # Original approach of https://github.com/TheZino/pytorch-color-conversions/
# _RGB_TO_YCBCR = torch.tensor([[0.257, 0.504, 0.098],
# [-0.148, -0.291, 0.439],
# [0.439, -0.368, -0.071]]) # BT.601 (SDTV)
# _YCBCR_TO_RGB = torch.inverse(_RGB_TO_YCBCR)
# _YCBCR_OFF = torch.tensor([0.063, 0.502, 0.502]) # zero point: limited range black Y = 16/255, zero chroma U = V = 128/255
# def _colorspace_convert_mul(coeffs: torch.tensor, image: torch.tensor) -> torch.tensor:
# return torch.einsum("rc,cij->rij", (coeffs.to(image.dtype).to(image.device), image))
#
# def _rgb_to_yuv(image: torch.tensor) -> torch.tensor:
# YUV_zero = _YCBCR_OFF.to(image.dtype).to(image.device)
# image_yuv = _colorspace_convert_mul(_RGB_TO_YCBCR, image) + YUV_zero
# return torch.clamp(image_yuv, 0.0, 1.0)
#
# def _yuv_to_rgb(image: torch.tensor) -> torch.tensor:
# YUV_zero = _YCBCR_OFF.to(image.dtype).to(image.device)
# image_rgb = _colorspace_convert_mul(_YCBCR_TO_RGB, image - YUV_zero)
# return torch.clamp(image_rgb, 0.0, 1.0)
# Note that since we are working in *linear* (i.e. before gamma) RGB space,
# Y is the true relative luminance (it is NOT the luma Y').
#
# Y = a * R + b * G + c * B
# Cb = (B - Y) / d
# Cr = (R - Y) / e
#
# Here the chroma coordinates Cb and Cr are in [-0.5, 0.5].
# The inverse conversion is:
#
# R = Y + e * Cr
# G = Y - (a * e / b) * Cr - (c * d / b) * Cb
# B = Y + d * Cb
#
# where
#
# BT.601 BT.709 BT.2020
# a 0.299 0.2126 0.2627
# b 0.587 0.7152 0.6780
# c 0.114 0.0722 0.0593
# d 1.772 1.8556 1.8814
# e 1.402 1.5748 1.4746
#
# Let's fully solve the first system for YCbCr in terms of RGB:
#
# Y = a * R + b * G + c * B
# Cb = (B - (a * R + b * G + c * B)) / d
# Cr = (R - (a * R + b * G + c * B)) / e
#
# Y = a * R + b * G + c * B
# Cb = (- a * R - b * G + (1 - c) * B) / d
# Cr = ((1 - a) * R - b * G - c * B) / e
#
# so YCbCr = M * RGB, where the matrix M is:
#
a, b, c, d, e = [0.2126, 0.7152, 0.0722, 1.8556, 1.5748] # ITU-R Rec. 709 (HDTV)
_RGB_TO_YCBCR = torch.tensor([[a, b, c],
[-a / d, -b / d, (1.0 - c) / d],
[(1.0 - a) / e, -b / e, -c / e]])
_YCBCR_TO_RGB = torch.inverse(_RGB_TO_YCBCR)
def _colorspace_convert_mul(coeffs: torch.tensor, image: torch.tensor) -> torch.tensor:
return torch.einsum("rc,cij->rij", (coeffs.to(image.dtype).to(image.device), image))
def rgb_to_yuv(image: torch.tensor) -> torch.tensor:
"""RGB (linear) 0...1 -> YUV, where Y = 0...1, U, V = -0.5 ... +0.5"""
return _colorspace_convert_mul(_RGB_TO_YCBCR, image)
def yuv_to_rgb(image: torch.tensor, clamp: bool = True) -> torch.tensor:
"""Inverse of `rgb_to_yuv`, which see, optionally clamping the resulting RGB image to [0, 1]."""
image_rgb = _colorspace_convert_mul(_YCBCR_TO_RGB, image)
if clamp:
image_rgb = torch.clamp(image_rgb, 0.0, 1.0)
return image_rgb
_RGB_TO_Y = _RGB_TO_YCBCR[0, :]
def luminance(image: torch.tensor) -> torch.tensor:
"""RGB (linear 0...1) -> Y (true relative luminance)"""
return torch.einsum("c,cij->ij", (_RGB_TO_Y.to(image.dtype).to(image.device), image))
# --------------------------------------------------------------------------------
class RunningAverage: