Remove code to support RMSNorm on old pytorch. (#12499)

This commit is contained in:
comfyanonymous
2026-02-16 17:09:24 -08:00
committed by GitHub
parent 1978f59ffd
commit 4454fab7f0
2 changed files with 6 additions and 55 deletions

View File

@@ -21,7 +21,6 @@ import logging
import comfy.model_management
from comfy.cli_args import args, PerformanceFeature, enables_dynamic_vram
import comfy.float
import comfy.rmsnorm
import json
import comfy.memory_management
import comfy.pinned_memory
@@ -463,7 +462,7 @@ class disable_weight_init:
else:
return super().forward(*args, **kwargs)
class RMSNorm(comfy.rmsnorm.RMSNorm, CastWeightBiasOp):
class RMSNorm(torch.nn.RMSNorm, CastWeightBiasOp):
def reset_parameters(self):
self.bias = None
return None
@@ -475,8 +474,7 @@ class disable_weight_init:
weight = None
bias = None
offload_stream = None
x = comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
# x = torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
x = torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
uncast_bias_weight(self, weight, bias, offload_stream)
return x

View File

@@ -1,57 +1,10 @@
import torch
import comfy.model_management
import numbers
import logging
RMSNorm = None
try:
rms_norm_torch = torch.nn.functional.rms_norm
RMSNorm = torch.nn.RMSNorm
except:
rms_norm_torch = None
logging.warning("Please update pytorch to use native RMSNorm")
RMSNorm = torch.nn.RMSNorm
def rms_norm(x, weight=None, eps=1e-6):
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
if weight is None:
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
else:
return rms_norm_torch(x, weight.shape, weight=comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
if weight is None:
return torch.nn.functional.rms_norm(x, (x.shape[-1],), eps=eps)
else:
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
if weight is None:
return r
else:
return r * comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device)
if RMSNorm is None:
class RMSNorm(torch.nn.Module):
def __init__(
self,
normalized_shape,
eps=1e-6,
elementwise_affine=True,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = torch.nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
else:
self.register_parameter("weight", None)
self.bias = None
def forward(self, x):
return rms_norm(x, self.weight, self.eps)
return torch.nn.functional.rms_norm(x, weight.shape, weight=comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)