ops: limit return of requants (#12506)

This check was far too broad and the dtype is not a reliable indicator
of wanting the requant (as QT returns the compute dtype as the dtype).
So explictly plumb whether fp8mm wants the requant or not.
This commit is contained in:
rattus
2026-02-17 12:32:27 -08:00
committed by GitHub
parent 19236edfa4
commit 58dcc97dcf

View File

@@ -79,7 +79,7 @@ def cast_to_input(weight, input, non_blocking=False, copy=True):
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype):
def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype, want_requant):
offload_stream = None
xfer_dest = None
@@ -170,10 +170,10 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
#FIXME: this is not accurate, we need to be sensitive to the compute dtype
x = lowvram_fn(x)
if (isinstance(orig, QuantizedTensor) and
(orig.dtype == dtype and len(fns) == 0 or update_weight)):
(want_requant and len(fns) == 0 or update_weight)):
seed = comfy.utils.string_to_seed(s.seed_key)
y = QuantizedTensor.from_float(x, s.layout_type, scale="recalculate", stochastic_rounding=seed)
if orig.dtype == dtype and len(fns) == 0:
if want_requant and len(fns) == 0:
#The layer actually wants our freshly saved QT
x = y
elif update_weight:
@@ -194,7 +194,7 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
return weight, bias, (offload_stream, device if signature is not None else None, None)
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False, compute_dtype=None):
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False, compute_dtype=None, want_requant=False):
# NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass
# offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This
# will add async-offload support to your cast and improve performance.
@@ -212,7 +212,7 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if hasattr(s, "_v"):
return cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype)
return cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype, want_requant)
if offloadable and (device != s.weight.device or
(s.bias is not None and device != s.bias.device)):
@@ -850,8 +850,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
def forward_comfy_cast_weights(self, input, compute_dtype=None):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True, compute_dtype=compute_dtype)
def forward_comfy_cast_weights(self, input, compute_dtype=None, want_requant=False):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True, compute_dtype=compute_dtype, want_requant=want_requant)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
@@ -881,8 +881,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
scale = comfy.model_management.cast_to_device(scale, input.device, None)
input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale)
output = self.forward_comfy_cast_weights(input, compute_dtype)
output = self.forward_comfy_cast_weights(input, compute_dtype, want_requant=isinstance(input, QuantizedTensor))
# Reshape output back to 3D if input was 3D
if reshaped_3d: