feat: Add basic text generation support with native models, initially supporting Gemma3 (#12392)

This commit is contained in:
Jukka Seppänen
2026-02-19 03:49:43 +02:00
committed by GitHub
parent f262444dd4
commit 6d11cc7354
9 changed files with 502 additions and 33 deletions

View File

@@ -423,6 +423,19 @@ class CLIP:
def get_key_patches(self):
return self.patcher.get_key_patches()
def generate(self, tokens, do_sample=True, max_length=256, temperature=1.0, top_k=50, top_p=0.95, min_p=0.0, repetition_penalty=1.0, seed=None):
self.cond_stage_model.reset_clip_options()
if self.layer_idx is not None:
self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
self.load_model()
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
return self.cond_stage_model.generate(tokens, do_sample=do_sample, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p, min_p=min_p, repetition_penalty=repetition_penalty, seed=seed)
def decode(self, token_ids, skip_special_tokens=True):
return self.tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
class VAE:
def __init__(self, sd=None, device=None, config=None, dtype=None, metadata=None):
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
@@ -1182,6 +1195,7 @@ class TEModel(Enum):
JINA_CLIP_2 = 19
QWEN3_8B = 20
QWEN3_06B = 21
GEMMA_3_4B_VISION = 22
def detect_te_model(sd):
@@ -1210,7 +1224,10 @@ def detect_te_model(sd):
if 'model.layers.47.self_attn.q_norm.weight' in sd:
return TEModel.GEMMA_3_12B
if 'model.layers.0.self_attn.q_norm.weight' in sd:
return TEModel.GEMMA_3_4B
if 'vision_model.embeddings.patch_embedding.weight' in sd:
return TEModel.GEMMA_3_4B_VISION
else:
return TEModel.GEMMA_3_4B
return TEModel.GEMMA_2_2B
if 'model.layers.0.self_attn.k_proj.bias' in sd:
weight = sd['model.layers.0.self_attn.k_proj.bias']
@@ -1270,6 +1287,8 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
else:
if "text_projection" in clip_data[i]:
clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) #old models saved with the CLIPSave node
if "lm_head.weight" in clip_data[i]:
clip_data[i]["model.lm_head.weight"] = clip_data[i].pop("lm_head.weight") # prefix missing in some models
tokenizer_data = {}
clip_target = EmptyClass()
@@ -1335,6 +1354,14 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data), model_type="gemma3_4b")
clip_target.tokenizer = comfy.text_encoders.lumina2.NTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.GEMMA_3_4B_VISION:
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data), model_type="gemma3_4b_vision")
clip_target.tokenizer = comfy.text_encoders.lumina2.NTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.GEMMA_3_12B:
clip_target.clip = comfy.text_encoders.lt.gemma3_te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lt.Gemma3_12BTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.LLAMA3_8:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None)

View File

@@ -308,6 +308,15 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
def load_sd(self, sd):
return self.transformer.load_state_dict(sd, strict=False, assign=getattr(self, "can_assign_sd", False))
def generate(self, tokens, do_sample, max_length, temperature, top_k, top_p, min_p, repetition_penalty, seed, stop_tokens=[]):
if isinstance(tokens, dict):
tokens_only = next(iter(tokens.values())) # todo: get this better?
else:
tokens_only = tokens
tokens_only = [[t[0] for t in b] for b in tokens_only]
embeds = self.process_tokens(tokens_only, device=self.execution_device)[0]
return self.transformer.generate(embeds, do_sample, max_length, temperature, top_k, top_p, min_p, repetition_penalty, seed, stop_tokens)
def parse_parentheses(string):
result = []
current_item = ""
@@ -663,6 +672,9 @@ class SDTokenizer:
def state_dict(self):
return {}
def decode(self, token_ids, skip_special_tokens=True):
return self.tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
class SD1Tokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}, clip_name="l", tokenizer=SDTokenizer, name=None):
if name is not None:
@@ -686,6 +698,9 @@ class SD1Tokenizer:
def state_dict(self):
return getattr(self, self.clip).state_dict()
def decode(self, token_ids, skip_special_tokens=True):
return getattr(self, self.clip).decode(token_ids, skip_special_tokens=skip_special_tokens)
class SD1CheckpointClipModel(SDClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, return_projected_pooled=False, dtype=dtype, model_options=model_options)
@@ -722,3 +737,6 @@ class SD1ClipModel(torch.nn.Module):
def load_sd(self, sd):
return getattr(self, self.clip).load_sd(sd)
def generate(self, tokens, do_sample=True, max_length=256, temperature=1.0, top_k=50, top_p=0.95, min_p=0.0, repetition_penalty=1.0, seed=None):
return getattr(self, self.clip).generate(tokens, do_sample=do_sample, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p, min_p=min_p, repetition_penalty=repetition_penalty, seed=seed)

View File

@@ -3,6 +3,8 @@ import torch.nn as nn
from dataclasses import dataclass
from typing import Optional, Any, Tuple
import math
from tqdm import tqdm
import comfy.utils
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.model_management
@@ -313,6 +315,13 @@ class Gemma3_4B_Config:
final_norm: bool = True
lm_head: bool = False
GEMMA3_VISION_CONFIG = {"num_channels": 3, "hidden_act": "gelu_pytorch_tanh", "hidden_size": 1152, "image_size": 896, "intermediate_size": 4304, "model_type": "siglip_vision_model", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14}
@dataclass
class Gemma3_4B_Vision_Config(Gemma3_4B_Config):
vision_config = GEMMA3_VISION_CONFIG
mm_tokens_per_image = 256
@dataclass
class Gemma3_12B_Config:
vocab_size: int = 262208
@@ -336,7 +345,7 @@ class Gemma3_12B_Config:
rope_scale = [8.0, 1.0]
final_norm: bool = True
lm_head: bool = False
vision_config = {"num_channels": 3, "hidden_act": "gelu_pytorch_tanh", "hidden_size": 1152, "image_size": 896, "intermediate_size": 4304, "model_type": "siglip_vision_model", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14}
vision_config = GEMMA3_VISION_CONFIG
mm_tokens_per_image = 256
class RMSNorm(nn.Module):
@@ -441,8 +450,10 @@ class Attention(nn.Module):
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
sliding_window: Optional[int] = None,
):
batch_size, seq_length, _ = hidden_states.shape
xq = self.q_proj(hidden_states)
xk = self.k_proj(hidden_states)
xv = self.v_proj(hidden_states)
@@ -477,6 +488,11 @@ class Attention(nn.Module):
else:
present_key_value = (xk, xv, index + num_tokens)
if sliding_window is not None and xk.shape[2] > sliding_window:
xk = xk[:, :, -sliding_window:]
xv = xv[:, :, -sliding_window:]
attention_mask = attention_mask[..., -sliding_window:] if attention_mask is not None else None
xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
xv = xv.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
@@ -559,10 +575,12 @@ class TransformerBlockGemma2(nn.Module):
optimized_attention=None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
sliding_window = None
if self.transformer_type == 'gemma3':
if self.sliding_attention:
sliding_window = self.sliding_attention
if x.shape[1] > self.sliding_attention:
sliding_mask = torch.full((x.shape[1], x.shape[1]), float("-inf"), device=x.device, dtype=x.dtype)
sliding_mask = torch.full((x.shape[1], x.shape[1]), torch.finfo(x.dtype).min, device=x.device, dtype=x.dtype)
sliding_mask.tril_(diagonal=-self.sliding_attention)
if attention_mask is not None:
attention_mask = attention_mask + sliding_mask
@@ -581,6 +599,7 @@ class TransformerBlockGemma2(nn.Module):
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
past_key_value=past_key_value,
sliding_window=sliding_window,
)
x = self.post_attention_layernorm(x)
@@ -765,6 +784,104 @@ class BaseLlama:
def forward(self, input_ids, *args, **kwargs):
return self.model(input_ids, *args, **kwargs)
class BaseGenerate:
def logits(self, x):
input = x[:, -1:]
if hasattr(self.model, "lm_head"):
module = self.model.lm_head
else:
module = self.model.embed_tokens
offload_stream = None
if module.comfy_cast_weights:
weight, _, offload_stream = comfy.ops.cast_bias_weight(module, input, offloadable=True)
else:
weight = self.model.embed_tokens.weight.to(x)
x = torch.nn.functional.linear(input, weight, None)
comfy.ops.uncast_bias_weight(module, weight, None, offload_stream)
return x
def generate(self, embeds=None, do_sample=True, max_length=256, temperature=1.0, top_k=50, top_p=0.9, min_p=0.0, repetition_penalty=1.0, seed=42, stop_tokens=[], initial_tokens=[], execution_dtype=None, min_tokens=0):
device = embeds.device
model_config = self.model.config
if execution_dtype is None:
if comfy.model_management.should_use_bf16(device):
execution_dtype = torch.bfloat16
else:
execution_dtype = torch.float32
embeds = embeds.to(execution_dtype)
if embeds.ndim == 2:
embeds = embeds.unsqueeze(0)
past_key_values = [] #kv_cache init
max_cache_len = embeds.shape[1] + max_length
for x in range(model_config.num_hidden_layers):
past_key_values.append((torch.empty([embeds.shape[0], model_config.num_key_value_heads, max_cache_len, model_config.head_dim], device=device, dtype=execution_dtype),
torch.empty([embeds.shape[0], model_config.num_key_value_heads, max_cache_len, model_config.head_dim], device=device, dtype=execution_dtype), 0))
generator = torch.Generator(device=device).manual_seed(seed) if do_sample else None
generated_token_ids = []
pbar = comfy.utils.ProgressBar(max_length)
# Generation loop
for step in tqdm(range(max_length), desc="Generating tokens"):
x, _, past_key_values = self.model.forward(None, embeds=embeds, attention_mask=None, past_key_values=past_key_values)
logits = self.logits(x)[:, -1]
next_token = self.sample_token(logits, temperature, top_k, top_p, min_p, repetition_penalty, initial_tokens + generated_token_ids, generator, do_sample=do_sample)
token_id = next_token[0].item()
generated_token_ids.append(token_id)
embeds = self.model.embed_tokens(next_token).to(execution_dtype)
pbar.update(1)
if token_id in stop_tokens:
break
return generated_token_ids
def sample_token(self, logits, temperature, top_k, top_p, min_p, repetition_penalty, token_history, generator, do_sample=True):
if not do_sample or temperature == 0.0:
return torch.argmax(logits, dim=-1, keepdim=True)
# Sampling mode
if repetition_penalty != 1.0:
for i in range(logits.shape[0]):
for token_id in set(token_history):
logits[i, token_id] *= repetition_penalty if logits[i, token_id] < 0 else 1/repetition_penalty
if temperature != 1.0:
logits = logits / temperature
if top_k > 0:
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = torch.finfo(logits.dtype).min
if min_p > 0.0:
probs_before_filter = torch.nn.functional.softmax(logits, dim=-1)
top_probs, _ = probs_before_filter.max(dim=-1, keepdim=True)
min_threshold = min_p * top_probs
indices_to_remove = probs_before_filter < min_threshold
logits[indices_to_remove] = torch.finfo(logits.dtype).min
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 0] = False
indices_to_remove = torch.zeros_like(logits, dtype=torch.bool)
indices_to_remove.scatter_(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = torch.finfo(logits.dtype).min
probs = torch.nn.functional.softmax(logits, dim=-1)
return torch.multinomial(probs, num_samples=1, generator=generator)
class BaseQwen3:
def logits(self, x):
input = x[:, -1:]
@@ -871,7 +988,7 @@ class Ovis25_2B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen25_7BVLI(BaseLlama, torch.nn.Module):
class Qwen25_7BVLI(BaseLlama, BaseGenerate, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen25_7BVLI_Config(**config_dict)
@@ -881,6 +998,9 @@ class Qwen25_7BVLI(BaseLlama, torch.nn.Module):
self.visual = qwen_vl.Qwen2VLVisionTransformer(hidden_size=1280, output_hidden_size=config.hidden_size, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
# todo: should this be tied or not?
#self.lm_head = operations.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def preprocess_embed(self, embed, device):
if embed["type"] == "image":
image, grid = qwen_vl.process_qwen2vl_images(embed["data"])
@@ -923,7 +1043,7 @@ class Gemma2_2B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Gemma3_4B(BaseLlama, torch.nn.Module):
class Gemma3_4B(BaseLlama, BaseGenerate, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Gemma3_4B_Config(**config_dict)
@@ -932,7 +1052,25 @@ class Gemma3_4B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Gemma3_12B(BaseLlama, torch.nn.Module):
class Gemma3_4B_Vision(BaseLlama, BaseGenerate, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Gemma3_4B_Vision_Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
self.multi_modal_projector = Gemma3MultiModalProjector(config, dtype, device, operations)
self.vision_model = comfy.clip_model.CLIPVision(config.vision_config, dtype, device, operations)
self.image_size = config.vision_config["image_size"]
def preprocess_embed(self, embed, device):
if embed["type"] == "image":
image = comfy.clip_model.clip_preprocess(embed["data"], size=self.image_size, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], crop=True)
return self.multi_modal_projector(self.vision_model(image.to(device, dtype=torch.float32))[0]), None
return None, None
class Gemma3_12B(BaseLlama, BaseGenerate, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Gemma3_12B_Config(**config_dict)

View File

@@ -6,6 +6,7 @@ import comfy.text_encoders.genmo
from comfy.ldm.lightricks.embeddings_connector import Embeddings1DConnector
import torch
import comfy.utils
import math
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
@@ -22,40 +23,79 @@ def ltxv_te(*args, **kwargs):
return comfy.text_encoders.genmo.mochi_te(*args, **kwargs)
class Gemma3_12BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_left=True, disable_weights=True, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
class Gemma3_Tokenizer():
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
def tokenize_with_weights(self, text, return_word_ids=False, image=None, llama_template=None, skip_template=True, **kwargs):
self.llama_template = "<start_of_turn>system\nYou are a helpful assistant.<end_of_turn>\n<start_of_turn>user\n{}<end_of_turn>\n<start_of_turn>model\n"
self.llama_template_images = "<start_of_turn>system\nYou are a helpful assistant.<end_of_turn>\n<start_of_turn>user\n\n<image_soft_token>{}<end_of_turn>\n\n<start_of_turn>model\n"
if image is None:
images = []
else:
samples = image.movedim(-1, 1)
total = int(896 * 896)
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = comfy.utils.common_upscale(samples, width, height, "area", "disabled").movedim(1, -1)
images = [s[:, :, :, :3]]
if text.startswith('<start_of_turn>'):
skip_template = True
if skip_template:
llama_text = text
else:
if llama_template is None:
if len(images) > 0:
llama_text = self.llama_template_images.format(text)
else:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
text_tokens = super().tokenize_with_weights(llama_text, return_word_ids)
if len(images) > 0:
embed_count = 0
for r in text_tokens:
for i, token in enumerate(r):
if token[0] == 262144 and embed_count < len(images):
r[i] = ({"type": "image", "data": images[embed_count]},) + token[1:]
embed_count += 1
return text_tokens
class Gemma3_12BTokenizer(Gemma3_Tokenizer, sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
special_tokens = {"<image_soft_token>": 262144, "<end_of_turn>": 106}
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_left=True, disable_weights=True, tokenizer_args={"add_bos": True, "add_eos": False, "special_tokens": special_tokens}, tokenizer_data=tokenizer_data)
class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma3_12b", tokenizer=Gemma3_12BTokenizer)
class Gemma3_12BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
self.dtypes = set()
self.dtypes.add(dtype)
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
def tokenize_with_weights(self, text, return_word_ids=False, llama_template="{}", image_embeds=None, **kwargs):
text = llama_template.format(text)
text_tokens = super().tokenize_with_weights(text, return_word_ids)
embed_count = 0
for k in text_tokens:
tt = text_tokens[k]
for r in tt:
for i in range(len(r)):
if r[i][0] == 262144:
if image_embeds is not None and embed_count < image_embeds.shape[0]:
r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image"},) + r[i][1:]
embed_count += 1
return text_tokens
def generate(self, tokens, do_sample, max_length, temperature, top_k, top_p, min_p, repetition_penalty, seed):
tokens_only = [[t[0] for t in b] for b in tokens]
embeds, _, _, embeds_info = self.process_tokens(tokens_only, self.execution_device)
comfy.utils.normalize_image_embeddings(embeds, embeds_info, self.transformer.model.config.hidden_size ** 0.5)
return self.transformer.generate(embeds, do_sample, max_length, temperature, top_k, top_p, min_p, repetition_penalty, seed, stop_tokens=[106]) # 106 is <end_of_turn>
class LTXAVTEModel(torch.nn.Module):
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
@@ -112,6 +152,9 @@ class LTXAVTEModel(torch.nn.Module):
return out.to(out_device), pooled
def generate(self, tokens, do_sample, max_length, temperature, top_k, top_p, min_p, repetition_penalty, seed):
return self.gemma3_12b.generate(tokens["gemma3_12b"], do_sample, max_length, temperature, top_k, top_p, min_p, repetition_penalty, seed)
def load_sd(self, sd):
if "model.layers.47.self_attn.q_norm.weight" in sd:
return self.gemma3_12b.load_sd(sd)
@@ -152,3 +195,14 @@ def ltxav_te(dtype_llama=None, llama_quantization_metadata=None):
dtype = dtype_llama
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
return LTXAVTEModel_
def gemma3_te(dtype_llama=None, llama_quantization_metadata=None):
class Gemma3_12BModel_(Gemma3_12BModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["llama_quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)
return Gemma3_12BModel_

View File

@@ -1,23 +1,23 @@
from comfy import sd1_clip
from .spiece_tokenizer import SPieceTokenizer
import comfy.text_encoders.llama
from comfy.text_encoders.lt import Gemma3_Tokenizer
import comfy.utils
class Gemma2BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
special_tokens = {"<end_of_turn>": 107}
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False, "special_tokens": special_tokens}, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
class Gemma3_4BTokenizer(sd1_clip.SDTokenizer):
class Gemma3_4BTokenizer(Gemma3_Tokenizer, sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2560, embedding_key='gemma3_4b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, disable_weights=True, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
special_tokens = {"<image_soft_token>": 262144, "<end_of_turn>": 106}
super().__init__(tokenizer, pad_with_end=False, embedding_size=2560, embedding_key='gemma3_4b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False, "special_tokens": special_tokens}, disable_weights=True, tokenizer_data=tokenizer_data)
class LuminaTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
@@ -31,6 +31,9 @@ class Gemma2_2BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma2_2B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
def generate(self, embeds, do_sample, max_length, temperature, top_k, top_p, min_p, repetition_penalty, seed):
return super().generate(embeds, do_sample, max_length, temperature, top_k, top_p, min_p, repetition_penalty, seed, stop_tokens=[107])
class Gemma3_4BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
@@ -40,6 +43,23 @@ class Gemma3_4BModel(sd1_clip.SDClipModel):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
def generate(self, embeds, do_sample, max_length, temperature, top_k, top_p, min_p, repetition_penalty, seed):
return super().generate(embeds, do_sample, max_length, temperature, top_k, top_p, min_p, repetition_penalty, seed, stop_tokens=[106])
class Gemma3_4B_Vision_Model(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_4B_Vision, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
def process_tokens(self, tokens, device):
embeds, _, _, embeds_info = super().process_tokens(tokens, device)
comfy.utils.normalize_image_embeddings(embeds, embeds_info, self.transformer.model.config.hidden_size ** 0.5)
return embeds
class LuminaModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, name="gemma2_2b", clip_model=Gemma2_2BModel):
super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options)
@@ -50,6 +70,8 @@ def te(dtype_llama=None, llama_quantization_metadata=None, model_type="gemma2_2b
model = Gemma2_2BModel
elif model_type == "gemma3_4b":
model = Gemma3_4BModel
elif model_type == "gemma3_4b_vision":
model = Gemma3_4B_Vision_Model
class LuminaTEModel_(LuminaModel):
def __init__(self, device="cpu", dtype=None, model_options={}):

View File

@@ -6,9 +6,10 @@ class SPieceTokenizer:
def from_pretrained(path, **kwargs):
return SPieceTokenizer(path, **kwargs)
def __init__(self, tokenizer_path, add_bos=False, add_eos=True):
def __init__(self, tokenizer_path, add_bos=False, add_eos=True, special_tokens=None):
self.add_bos = add_bos
self.add_eos = add_eos
self.special_tokens = special_tokens
import sentencepiece
if torch.is_tensor(tokenizer_path):
tokenizer_path = tokenizer_path.numpy().tobytes()
@@ -27,8 +28,32 @@ class SPieceTokenizer:
return out
def __call__(self, string):
if self.special_tokens is not None:
import re
special_tokens_pattern = '|'.join(re.escape(token) for token in self.special_tokens.keys())
if special_tokens_pattern and re.search(special_tokens_pattern, string):
parts = re.split(f'({special_tokens_pattern})', string)
result = []
for part in parts:
if not part:
continue
if part in self.special_tokens:
result.append(self.special_tokens[part])
else:
encoded = self.tokenizer.encode(part, add_bos=False, add_eos=False)
result.extend(encoded)
return {"input_ids": result}
out = self.tokenizer.encode(string)
return {"input_ids": out}
def decode(self, token_ids, skip_special_tokens=False):
if skip_special_tokens and self.special_tokens:
special_token_ids = set(self.special_tokens.values())
token_ids = [tid for tid in token_ids if tid not in special_token_ids]
return self.tokenizer.decode(token_ids)
def serialize_model(self):
return torch.ByteTensor(list(self.tokenizer.serialized_model_proto()))

View File

@@ -1418,3 +1418,11 @@ def deepcopy_list_dict(obj, memo=None):
memo[obj_id] = res
return res
def normalize_image_embeddings(embeds, embeds_info, scale_factor):
"""Normalize image embeddings to match text embedding scale"""
for info in embeds_info:
if info.get("type") == "image":
start_idx = info["index"]
end_idx = start_idx + info["size"]
embeds[:, start_idx:end_idx, :] /= scale_factor

View File

@@ -0,0 +1,176 @@
from comfy_api.latest import ComfyExtension, io
from typing_extensions import override
class TextGenerate(io.ComfyNode):
@classmethod
def define_schema(cls):
# Define dynamic combo options for sampling mode
sampling_options = [
io.DynamicCombo.Option(
key="on",
inputs=[
io.Float.Input("temperature", default=0.7, min=0.01, max=2.0, step=0.000001),
io.Int.Input("top_k", default=64, min=0, max=1000),
io.Float.Input("top_p", default=0.95, min=0.0, max=1.0, step=0.01),
io.Float.Input("min_p", default=0.05, min=0.0, max=1.0, step=0.01),
io.Float.Input("repetition_penalty", default=1.05, min=0.0, max=5.0, step=0.01),
io.Int.Input("seed", default=0, min=0, max=0xffffffffffffffff),
]
),
io.DynamicCombo.Option(
key="off",
inputs=[]
),
]
return io.Schema(
node_id="TextGenerate",
category="textgen/",
search_aliases=["LLM", "gemma"],
inputs=[
io.Clip.Input("clip"),
io.String.Input("prompt", multiline=True, dynamic_prompts=True, default=""),
io.Image.Input("image", optional=True),
io.Int.Input("max_length", default=256, min=1, max=2048),
io.DynamicCombo.Input("sampling_mode", options=sampling_options, display_name="Sampling Mode"),
],
outputs=[
io.String.Output(display_name="generated_text"),
],
)
@classmethod
def execute(cls, clip, prompt, max_length, sampling_mode, image=None) -> io.NodeOutput:
tokens = clip.tokenize(prompt, image=image, skip_template=False)
# Get sampling parameters from dynamic combo
do_sample = sampling_mode.get("sampling_mode") == "on"
temperature = sampling_mode.get("temperature", 1.0)
top_k = sampling_mode.get("top_k", 50)
top_p = sampling_mode.get("top_p", 1.0)
min_p = sampling_mode.get("min_p", 0.0)
seed = sampling_mode.get("seed", None)
repetition_penalty = sampling_mode.get("repetition_penalty", 1.0)
generated_ids = clip.generate(
tokens,
do_sample=do_sample,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
min_p=min_p,
repetition_penalty=repetition_penalty,
seed=seed
)
generated_text = clip.decode(generated_ids, skip_special_tokens=True)
return io.NodeOutput(generated_text)
LTX2_T2V_SYSTEM_PROMPT = """You are a Creative Assistant. Given a user's raw input prompt describing a scene or concept, expand it into a detailed video generation prompt with specific visuals and integrated audio to guide a text-to-video model.
#### Guidelines
- Strictly follow all aspects of the user's raw input: include every element requested (style, visuals, motions, actions, camera movement, audio).
- If the input is vague, invent concrete details: lighting, textures, materials, scene settings, etc.
- For characters: describe gender, clothing, hair, expressions. DO NOT invent unrequested characters.
- Use active language: present-progressive verbs ("is walking," "speaking"). If no action specified, describe natural movements.
- Maintain chronological flow: use temporal connectors ("as," "then," "while").
- Audio layer: Describe complete soundscape (background audio, ambient sounds, SFX, speech/music when requested). Integrate sounds chronologically alongside actions. Be specific (e.g., "soft footsteps on tile"), not vague (e.g., "ambient sound is present").
- Speech (only when requested):
- For ANY speech-related input (talking, conversation, singing, etc.), ALWAYS include exact words in quotes with voice characteristics (e.g., "The man says in an excited voice: 'You won't believe what I just saw!'").
- Specify language if not English and accent if relevant.
- Style: Include visual style at the beginning: "Style: <style>, <rest of prompt>." Default to cinematic-realistic if unspecified. Omit if unclear.
- Visual and audio only: NO non-visual/auditory senses (smell, taste, touch).
- Restrained language: Avoid dramatic/exaggerated terms. Use mild, natural phrasing.
- Colors: Use plain terms ("red dress"), not intensified ("vibrant blue," "bright red").
- Lighting: Use neutral descriptions ("soft overhead light"), not harsh ("blinding light").
- Facial features: Use delicate modifiers for subtle features (i.e., "subtle freckles").
#### Important notes:
- Analyze the user's raw input carefully. In cases of FPV or POV, exclude the description of the subject whose POV is requested.
- Camera motion: DO NOT invent camera motion unless requested by the user.
- Speech: DO NOT modify user-provided character dialogue unless it's a typo.
- No timestamps or cuts: DO NOT use timestamps or describe scene cuts unless explicitly requested.
- Format: DO NOT use phrases like "The scene opens with...". Start directly with Style (optional) and chronological scene description.
- Format: DO NOT start your response with special characters.
- DO NOT invent dialogue unless the user mentions speech/talking/singing/conversation.
- If the user's raw input prompt is highly detailed, chronological and in the requested format: DO NOT make major edits or introduce new elements. Add/enhance audio descriptions if missing.
#### Output Format (Strict):
- Single continuous paragraph in natural language (English).
- NO titles, headings, prefaces, code fences, or Markdown.
- If unsafe/invalid, return original user prompt. Never ask questions or clarifications.
Your output quality is CRITICAL. Generate visually rich, dynamic prompts with integrated audio for high-quality video generation.
#### Example
Input: "A woman at a coffee shop talking on the phone"
Output:
Style: realistic with cinematic lighting. In a medium close-up, a woman in her early 30s with shoulder-length brown hair sits at a small wooden table by the window. She wears a cream-colored turtleneck sweater, holding a white ceramic coffee cup in one hand and a smartphone to her ear with the other. Ambient cafe sounds fill the space—espresso machine hiss, quiet conversations, gentle clinking of cups. The woman listens intently, nodding slightly, then takes a sip of her coffee and sets it down with a soft clink. Her face brightens into a warm smile as she speaks in a clear, friendly voice, 'That sounds perfect! I'd love to meet up this weekend. How about Saturday afternoon?' She laughs softly—a genuine chuckle—and shifts in her chair. Behind her, other patrons move subtly in and out of focus. 'Great, I'll see you then,' she concludes cheerfully, lowering the phone.
"""
LTX2_I2V_SYSTEM_PROMPT = """You are a Creative Assistant. Given a user's raw input prompt describing a scene or concept, expand it into a detailed video generation prompt with specific visuals and integrated audio to guide a text-to-video model.
You are a Creative Assistant writing concise, action-focused image-to-video prompts. Given an image (first frame) and user Raw Input Prompt, generate a prompt to guide video generation from that image.
#### Guidelines:
- Analyze the Image: Identify Subject, Setting, Elements, Style and Mood.
- Follow user Raw Input Prompt: Include all requested motion, actions, camera movements, audio, and details. If in conflict with the image, prioritize user request while maintaining visual consistency (describe transition from image to user's scene).
- Describe only changes from the image: Don't reiterate established visual details. Inaccurate descriptions may cause scene cuts.
- Active language: Use present-progressive verbs ("is walking," "speaking"). If no action specified, describe natural movements.
- Chronological flow: Use temporal connectors ("as," "then," "while").
- Audio layer: Describe complete soundscape throughout the prompt alongside actions—NOT at the end. Align audio intensity with action tempo. Include natural background audio, ambient sounds, effects, speech or music (when requested). Be specific (e.g., "soft footsteps on tile") not vague (e.g., "ambient sound").
- Speech (only when requested): Provide exact words in quotes with character's visual/voice characteristics (e.g., "The tall man speaks in a low, gravelly voice"), language if not English and accent if relevant. If general conversation mentioned without text, generate contextual quoted dialogue. (i.e., "The man is talking" input -> the output should include exact spoken words, like: "The man is talking in an excited voice saying: 'You won't believe what I just saw!' His hands gesture expressively as he speaks, eyebrows raised with enthusiasm. The ambient sound of a quiet room underscores his animated speech.")
- Style: Include visual style at beginning: "Style: <style>, <rest of prompt>." If unclear, omit to avoid conflicts.
- Visual and audio only: Describe only what is seen and heard. NO smell, taste, or tactile sensations.
- Restrained language: Avoid dramatic terms. Use mild, natural, understated phrasing.
#### Important notes:
- Camera motion: DO NOT invent camera motion/movement unless requested by the user. Make sure to include camera motion only if specified in the input.
- Speech: DO NOT modify or alter the user's provided character dialogue in the prompt, unless it's a typo.
- No timestamps or cuts: DO NOT use timestamps or describe scene cuts unless explicitly requested.
- Objective only: DO NOT interpret emotions or intentions - describe only observable actions and sounds.
- Format: DO NOT use phrases like "The scene opens with..." / "The video starts...". Start directly with Style (optional) and chronological scene description.
- Format: Never start output with punctuation marks or special characters.
- DO NOT invent dialogue unless the user mentions speech/talking/singing/conversation.
- Your performance is CRITICAL. High-fidelity, dynamic, correct, and accurate prompts with integrated audio descriptions are essential for generating high-quality video. Your goal is flawless execution of these rules.
#### Output Format (Strict):
- Single concise paragraph in natural English. NO titles, headings, prefaces, sections, code fences, or Markdown.
- If unsafe/invalid, return original user prompt. Never ask questions or clarifications.
#### Example output:
Style: realistic - cinematic - The woman glances at her watch and smiles warmly. She speaks in a cheerful, friendly voice, "I think we're right on time!" In the background, a café barista prepares drinks at the counter. The barista calls out in a clear, upbeat tone, "Two cappuccinos ready!" The sound of the espresso machine hissing softly blends with gentle background chatter and the light clinking of cups on saucers.
"""
class TextGenerateLTX2Prompt(TextGenerate):
@classmethod
def define_schema(cls):
parent_schema = super().define_schema()
return io.Schema(
node_id="TextGenerateLTX2Prompt",
category=parent_schema.category,
inputs=parent_schema.inputs,
outputs=parent_schema.outputs,
search_aliases=["prompt enhance", "LLM", "gemma"],
)
@classmethod
def execute(cls, clip, prompt, max_length, sampling_mode, image=None) -> io.NodeOutput:
if image is None:
formatted_prompt = f"<start_of_turn>system\n{LTX2_T2V_SYSTEM_PROMPT.strip()}<end_of_turn>\n<start_of_turn>user\nUser Raw Input Prompt: {prompt}.<end_of_turn>\n<start_of_turn>model\n"
else:
formatted_prompt = f"<start_of_turn>system\n{LTX2_I2V_SYSTEM_PROMPT.strip()}<end_of_turn>\n<start_of_turn>user\n\n<image_soft_token>\n\nUser Raw Input Prompt: {prompt}.<end_of_turn>\n<start_of_turn>model\n"
return super().execute(clip, formatted_prompt, max_length, sampling_mode, image)
class TextgenExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
TextGenerate,
TextGenerateLTX2Prompt,
]
async def comfy_entrypoint() -> TextgenExtension:
return TextgenExtension()

View File

@@ -2434,6 +2434,7 @@ async def init_builtin_extra_nodes():
"nodes_image_compare.py",
"nodes_zimage.py",
"nodes_lora_debug.py",
"nodes_textgen.py",
"nodes_color.py",
"nodes_toolkit.py",
"nodes_replacements.py",