mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-11 02:30:04 +00:00
Iimprovements to ACE-Steps 1.5 text encoding (part 2) (#12350)
This commit is contained in:
@@ -3,6 +3,7 @@ import comfy.text_encoders.llama
|
||||
from comfy import sd1_clip
|
||||
import torch
|
||||
import math
|
||||
from tqdm.auto import trange
|
||||
import yaml
|
||||
import comfy.utils
|
||||
|
||||
@@ -23,6 +24,8 @@ def sample_manual_loop_no_classes(
|
||||
audio_end_id: int = 215669,
|
||||
eos_token_id: int = 151645,
|
||||
):
|
||||
if ids is None:
|
||||
return []
|
||||
device = model.execution_device
|
||||
|
||||
if execution_dtype is None:
|
||||
@@ -32,6 +35,7 @@ def sample_manual_loop_no_classes(
|
||||
execution_dtype = torch.float32
|
||||
|
||||
embeds, attention_mask, num_tokens, embeds_info = model.process_tokens(ids, device)
|
||||
embeds_batch = embeds.shape[0]
|
||||
for i, t in enumerate(paddings):
|
||||
attention_mask[i, :t] = 0
|
||||
attention_mask[i, t:] = 1
|
||||
@@ -41,22 +45,27 @@ def sample_manual_loop_no_classes(
|
||||
generator = torch.Generator(device=device)
|
||||
generator.manual_seed(seed)
|
||||
model_config = model.transformer.model.config
|
||||
past_kv_shape = [embeds_batch, model_config.num_key_value_heads, embeds.shape[1] + min_tokens, model_config.head_dim]
|
||||
|
||||
for x in range(model_config.num_hidden_layers):
|
||||
past_key_values.append((torch.empty([embeds.shape[0], model_config.num_key_value_heads, embeds.shape[1] + min_tokens, model_config.head_dim], device=device, dtype=execution_dtype), torch.empty([embeds.shape[0], model_config.num_key_value_heads, embeds.shape[1] + min_tokens, model_config.head_dim], device=device, dtype=execution_dtype), 0))
|
||||
past_key_values.append((torch.empty(past_kv_shape, device=device, dtype=execution_dtype), torch.empty(past_kv_shape, device=device, dtype=execution_dtype), 0))
|
||||
|
||||
progress_bar = comfy.utils.ProgressBar(max_new_tokens)
|
||||
|
||||
for step in range(max_new_tokens):
|
||||
for step in trange(max_new_tokens, desc="LM sampling"):
|
||||
outputs = model.transformer(None, attention_mask, embeds=embeds.to(execution_dtype), num_tokens=num_tokens, intermediate_output=None, dtype=execution_dtype, embeds_info=embeds_info, past_key_values=past_key_values)
|
||||
next_token_logits = model.transformer.logits(outputs[0])[:, -1]
|
||||
past_key_values = outputs[2]
|
||||
|
||||
cond_logits = next_token_logits[0:1]
|
||||
uncond_logits = next_token_logits[1:2]
|
||||
cfg_logits = uncond_logits + cfg_scale * (cond_logits - uncond_logits)
|
||||
if cfg_scale != 1.0:
|
||||
cond_logits = next_token_logits[0:1]
|
||||
uncond_logits = next_token_logits[1:2]
|
||||
cfg_logits = uncond_logits + cfg_scale * (cond_logits - uncond_logits)
|
||||
else:
|
||||
cfg_logits = next_token_logits[0:1]
|
||||
|
||||
if eos_token_id is not None and eos_token_id < audio_start_id and min_tokens < step:
|
||||
use_eos_score = eos_token_id is not None and eos_token_id < audio_start_id and min_tokens < step
|
||||
if use_eos_score:
|
||||
eos_score = cfg_logits[:, eos_token_id].clone()
|
||||
|
||||
remove_logit_value = torch.finfo(cfg_logits.dtype).min
|
||||
@@ -64,7 +73,7 @@ def sample_manual_loop_no_classes(
|
||||
cfg_logits[:, :audio_start_id] = remove_logit_value
|
||||
cfg_logits[:, audio_end_id:] = remove_logit_value
|
||||
|
||||
if eos_token_id is not None and eos_token_id < audio_start_id and min_tokens < step:
|
||||
if use_eos_score:
|
||||
cfg_logits[:, eos_token_id] = eos_score
|
||||
|
||||
if top_k is not None and top_k > 0:
|
||||
@@ -93,8 +102,8 @@ def sample_manual_loop_no_classes(
|
||||
break
|
||||
|
||||
embed, _, _, _ = model.process_tokens([[token]], device)
|
||||
embeds = embed.repeat(2, 1, 1)
|
||||
attention_mask = torch.cat([attention_mask, torch.ones((2, 1), device=device, dtype=attention_mask.dtype)], dim=1)
|
||||
embeds = embed.repeat(embeds_batch, 1, 1)
|
||||
attention_mask = torch.cat([attention_mask, torch.ones((embeds_batch, 1), device=device, dtype=attention_mask.dtype)], dim=1)
|
||||
|
||||
output_audio_codes.append(token - audio_start_id)
|
||||
progress_bar.update_absolute(step)
|
||||
@@ -104,22 +113,29 @@ def sample_manual_loop_no_classes(
|
||||
|
||||
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0):
|
||||
positive = [[token for token, _ in inner_list] for inner_list in positive]
|
||||
negative = [[token for token, _ in inner_list] for inner_list in negative]
|
||||
positive = positive[0]
|
||||
negative = negative[0]
|
||||
|
||||
neg_pad = 0
|
||||
if len(negative) < len(positive):
|
||||
neg_pad = (len(positive) - len(negative))
|
||||
negative = [model.special_tokens["pad"]] * neg_pad + negative
|
||||
if cfg_scale != 1.0:
|
||||
negative = [[token for token, _ in inner_list] for inner_list in negative]
|
||||
negative = negative[0]
|
||||
|
||||
pos_pad = 0
|
||||
if len(negative) > len(positive):
|
||||
pos_pad = (len(negative) - len(positive))
|
||||
positive = [model.special_tokens["pad"]] * pos_pad + positive
|
||||
neg_pad = 0
|
||||
if len(negative) < len(positive):
|
||||
neg_pad = (len(positive) - len(negative))
|
||||
negative = [model.special_tokens["pad"]] * neg_pad + negative
|
||||
|
||||
paddings = [pos_pad, neg_pad]
|
||||
return sample_manual_loop_no_classes(model, [positive, negative], paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
|
||||
pos_pad = 0
|
||||
if len(negative) > len(positive):
|
||||
pos_pad = (len(negative) - len(positive))
|
||||
positive = [model.special_tokens["pad"]] * pos_pad + positive
|
||||
|
||||
paddings = [pos_pad, neg_pad]
|
||||
ids = [positive, negative]
|
||||
else:
|
||||
paddings = []
|
||||
ids = [positive]
|
||||
|
||||
return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
|
||||
|
||||
|
||||
class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
@@ -129,12 +145,12 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def _metas_to_cot(self, *, return_yaml: bool = False, **kwargs) -> str:
|
||||
user_metas = {
|
||||
k: kwargs.pop(k)
|
||||
for k in ("bpm", "duration", "keyscale", "timesignature", "language", "caption")
|
||||
for k in ("bpm", "duration", "keyscale", "timesignature", "language")
|
||||
if k in kwargs
|
||||
}
|
||||
timesignature = user_metas.get("timesignature")
|
||||
if isinstance(timesignature, str) and timesignature.endswith("/4"):
|
||||
user_metas["timesignature"] = timesignature.rsplit("/", 1)[0]
|
||||
user_metas["timesignature"] = timesignature[:-2]
|
||||
user_metas = {
|
||||
k: v if not isinstance(v, str) or not v.isdigit() else int(v)
|
||||
for k, v in user_metas.items()
|
||||
@@ -147,8 +163,11 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
return f"<think>\n{meta_yaml}\n</think>" if not return_yaml else meta_yaml
|
||||
|
||||
def _metas_to_cap(self, **kwargs) -> str:
|
||||
use_keys = ("bpm", "duration", "keyscale", "timesignature")
|
||||
use_keys = ("bpm", "timesignature", "keyscale", "duration")
|
||||
user_metas = { k: kwargs.pop(k, "N/A") for k in use_keys }
|
||||
timesignature = user_metas.get("timesignature")
|
||||
if isinstance(timesignature, str) and timesignature.endswith("/4"):
|
||||
user_metas["timesignature"] = timesignature[:-2]
|
||||
duration = user_metas["duration"]
|
||||
if duration == "N/A":
|
||||
user_metas["duration"] = "30 seconds"
|
||||
@@ -159,9 +178,13 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
return "\n".join(f"- {k}: {user_metas[k]}" for k in use_keys)
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
text = text.strip()
|
||||
text_negative = kwargs.get("caption_negative", text).strip()
|
||||
lyrics = kwargs.get("lyrics", "")
|
||||
lyrics_negative = kwargs.get("lyrics_negative", lyrics)
|
||||
duration = kwargs.get("duration", 120)
|
||||
if isinstance(duration, str):
|
||||
duration = float(duration.split(None, 1)[0])
|
||||
language = kwargs.get("language")
|
||||
seed = kwargs.get("seed", 0)
|
||||
|
||||
@@ -171,21 +194,46 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
top_p = kwargs.get("top_p", 0.9)
|
||||
top_k = kwargs.get("top_k", 0.0)
|
||||
|
||||
|
||||
duration = math.ceil(duration)
|
||||
kwargs["duration"] = duration
|
||||
tokens_duration = duration * 5
|
||||
min_tokens = int(kwargs.get("min_tokens", tokens_duration))
|
||||
max_tokens = int(kwargs.get("max_tokens", tokens_duration))
|
||||
|
||||
metas_negative = {
|
||||
k.rsplit("_", 1)[0]: kwargs.pop(k)
|
||||
for k in ("bpm_negative", "duration_negative", "keyscale_negative", "timesignature_negative", "language_negative", "caption_negative")
|
||||
if k in kwargs
|
||||
}
|
||||
if not kwargs.get("use_negative_caption"):
|
||||
_ = metas_negative.pop("caption", None)
|
||||
|
||||
cot_text = self._metas_to_cot(caption = text, **kwargs)
|
||||
cot_text_negative = "<think>\n</think>" if not metas_negative else self._metas_to_cot(**metas_negative)
|
||||
meta_cap = self._metas_to_cap(**kwargs)
|
||||
|
||||
lm_template = "<|im_start|>system\n# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n<|im_end|>\n<|im_start|>user\n# Caption\n{}\n# Lyric\n{}\n<|im_end|>\n<|im_start|>assistant\n{}\n<|im_end|>\n"
|
||||
lm_template = "<|im_start|>system\n# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n<|im_end|>\n<|im_start|>user\n# Caption\n{}\n\n# Lyric\n{}\n<|im_end|>\n<|im_start|>assistant\n{}\n\n<|im_end|>\n"
|
||||
lyrics_template = "# Languages\n{}\n\n# Lyric\n{}<|endoftext|><|endoftext|>"
|
||||
qwen3_06b_template = "# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n# Caption\n{}\n\n# Metas\n{}\n<|endoftext|>\n<|endoftext|>"
|
||||
|
||||
out["lm_prompt"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, cot_text), disable_weights=True)
|
||||
out["lm_prompt_negative"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, "<think>\n</think>"), disable_weights=True)
|
||||
llm_prompts = {
|
||||
"lm_prompt": lm_template.format(text, lyrics.strip(), cot_text),
|
||||
"lm_prompt_negative": lm_template.format(text_negative, lyrics_negative.strip(), cot_text_negative),
|
||||
"lyrics": lyrics_template.format(language if language is not None else "", lyrics),
|
||||
"qwen3_06b": qwen3_06b_template.format(text, meta_cap),
|
||||
}
|
||||
|
||||
out["lyrics"] = self.qwen3_06b.tokenize_with_weights("# Languages\n{}\n\n# Lyric\n{}<|endoftext|><|endoftext|>".format(language if language is not None else "", lyrics), return_word_ids, disable_weights=True, **kwargs)
|
||||
out["qwen3_06b"] = self.qwen3_06b.tokenize_with_weights("# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n# Caption\n{}\n# Metas\n{}\n<|endoftext|>\n<|endoftext|>".format(text, meta_cap), return_word_ids, **kwargs)
|
||||
out["lm_metadata"] = {"min_tokens": duration * 5,
|
||||
out = {
|
||||
prompt_key: self.qwen3_06b.tokenize_with_weights(
|
||||
prompt,
|
||||
prompt_key == "qwen3_06b" and return_word_ids,
|
||||
disable_weights = True,
|
||||
**kwargs,
|
||||
)
|
||||
for prompt_key, prompt in llm_prompts.items()
|
||||
}
|
||||
out["lm_metadata"] = {"min_tokens": min_tokens,
|
||||
"max_tokens": max_tokens,
|
||||
"seed": seed,
|
||||
"generate_audio_codes": generate_audio_codes,
|
||||
"cfg_scale": cfg_scale,
|
||||
@@ -252,7 +300,7 @@ class ACE15TEModel(torch.nn.Module):
|
||||
|
||||
lm_metadata = token_weight_pairs["lm_metadata"]
|
||||
if lm_metadata["generate_audio_codes"]:
|
||||
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"])
|
||||
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["max_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"])
|
||||
out["audio_codes"] = [audio_codes]
|
||||
|
||||
return base_out, None, out
|
||||
|
||||
Reference in New Issue
Block a user