Use torch RMSNorm for flux models and refactor hunyuan video code.

This commit is contained in:
comfyanonymous
2026-02-12 17:57:19 -05:00
parent 4a93a62371
commit c61f69acf5
7 changed files with 50 additions and 61 deletions

View File

@@ -3,7 +3,6 @@ from torch import Tensor, nn
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
ModulationOut,
)
@@ -29,7 +28,7 @@ class Approximator(nn.Module):
super().__init__()
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.norms = nn.ModuleList([operations.RMSNorm(hidden_dim, dtype=dtype, device=device) for x in range( n_layers)])
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
@property

View File

@@ -4,8 +4,6 @@ from functools import lru_cache
import torch
from torch import nn
from comfy.ldm.flux.layers import RMSNorm
class NerfEmbedder(nn.Module):
"""
@@ -145,7 +143,7 @@ class NerfGLUBlock(nn.Module):
# We now need to generate parameters for 3 matrices.
total_params = 3 * hidden_size_x**2 * mlp_ratio
self.param_generator = operations.Linear(hidden_size_s, total_params, dtype=dtype, device=device)
self.norm = RMSNorm(hidden_size_x, dtype=dtype, device=device, operations=operations)
self.norm = operations.RMSNorm(hidden_size_x, dtype=dtype, device=device)
self.mlp_ratio = mlp_ratio
@@ -178,7 +176,7 @@ class NerfGLUBlock(nn.Module):
class NerfFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.norm = operations.RMSNorm(hidden_size, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, out_channels, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
@@ -190,7 +188,7 @@ class NerfFinalLayer(nn.Module):
class NerfFinalLayerConv(nn.Module):
def __init__(self, hidden_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.norm = operations.RMSNorm(hidden_size, dtype=dtype, device=device)
self.conv = operations.Conv2d(
in_channels=hidden_size,
out_channels=out_channels,

View File

@@ -87,20 +87,12 @@ def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dt
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, dtype=None, device=None, operations=None):
super().__init__()
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
def forward(self, x: Tensor):
return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6)
class QKNorm(torch.nn.Module):
def __init__(self, dim: int, dtype=None, device=None, operations=None):
super().__init__()
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
self.query_norm = operations.RMSNorm(dim, dtype=dtype, device=device)
self.key_norm = operations.RMSNorm(dim, dtype=dtype, device=device)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple:
q = self.query_norm(q)
@@ -169,7 +161,7 @@ class SiLUActivation(nn.Module):
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
@@ -197,8 +189,6 @@ class DoubleStreamBlock(nn.Module):
self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
if self.modulation:
img_mod1, img_mod2 = self.img_mod(vec)
@@ -224,32 +214,17 @@ class DoubleStreamBlock(nn.Module):
del txt_qkv
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
if self.flipped_img_txt:
q = torch.cat((img_q, txt_q), dim=2)
del img_q, txt_q
k = torch.cat((img_k, txt_k), dim=2)
del img_k, txt_k
v = torch.cat((img_v, txt_v), dim=2)
del img_v, txt_v
# run actual attention
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
# run actual attention
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
else:
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
# run actual attention
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
# calculate the img bloks
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)

View File

@@ -16,7 +16,6 @@ from .layers import (
SingleStreamBlock,
timestep_embedding,
Modulation,
RMSNorm
)
@dataclass
@@ -81,7 +80,7 @@ class Flux(nn.Module):
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
if params.txt_norm:
self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations)
self.txt_norm = operations.RMSNorm(params.context_in_dim, dtype=dtype, device=device)
else:
self.txt_norm = None

View File

@@ -241,7 +241,6 @@ class HunyuanVideo(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
flipped_img_txt=True,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -378,14 +377,14 @@ class HunyuanVideo(nn.Module):
extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1)
ids = torch.cat((img_ids, txt_ids), dim=1)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
img_len = img.shape[1]
if txt_mask is not None:
attn_mask_len = img_len + txt.shape[1]
attn_mask = torch.zeros((1, 1, attn_mask_len), dtype=img.dtype, device=img.device)
attn_mask[:, 0, img_len:] = txt_mask
attn_mask[:, 0, :txt.shape[1]] = txt_mask
else:
attn_mask = None
@@ -413,7 +412,7 @@ class HunyuanVideo(nn.Module):
if add is not None:
img += add
img = torch.cat((img, txt), 1)
img = torch.cat((txt, img), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
@@ -435,9 +434,9 @@ class HunyuanVideo(nn.Module):
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, : img_len] += add
img[:, txt.shape[1]: img_len + txt.shape[1]] += add
img = img[:, : img_len]
img = img[:, txt.shape[1]: img_len + txt.shape[1]]
if ref_latent is not None:
img = img[:, ref_latent.shape[1]:]

View File

@@ -710,6 +710,15 @@ class Flux(supported_models_base.BASE):
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def process_unet_state_dict(self, state_dict):
out_sd = {}
for k in list(state_dict.keys()):
key_out = k
if key_out.endswith("_norm.scale"):
key_out = "{}.weight".format(key_out[:-len(".scale")])
out_sd[key_out] = state_dict[k]
return out_sd
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
@@ -898,11 +907,13 @@ class HunyuanVideo(supported_models_base.BASE):
key_out = key_out.replace("txt_in.c_embedder.linear_1.", "txt_in.c_embedder.in_layer.").replace("txt_in.c_embedder.linear_2.", "txt_in.c_embedder.out_layer.")
key_out = key_out.replace("_mod.linear.", "_mod.lin.").replace("_attn_qkv.", "_attn.qkv.")
key_out = key_out.replace("mlp.fc1.", "mlp.0.").replace("mlp.fc2.", "mlp.2.")
key_out = key_out.replace("_attn_q_norm.weight", "_attn.norm.query_norm.scale").replace("_attn_k_norm.weight", "_attn.norm.key_norm.scale")
key_out = key_out.replace(".q_norm.weight", ".norm.query_norm.scale").replace(".k_norm.weight", ".norm.key_norm.scale")
key_out = key_out.replace("_attn_q_norm.weight", "_attn.norm.query_norm.weight").replace("_attn_k_norm.weight", "_attn.norm.key_norm.weight")
key_out = key_out.replace(".q_norm.weight", ".norm.query_norm.weight").replace(".k_norm.weight", ".norm.key_norm.weight")
key_out = key_out.replace("_attn_proj.", "_attn.proj.")
key_out = key_out.replace(".modulation.linear.", ".modulation.lin.")
key_out = key_out.replace("_in.mlp.2.", "_in.out_layer.").replace("_in.mlp.0.", "_in.in_layer.")
if key_out.endswith(".scale"):
key_out = "{}.weight".format(key_out[:-len(".scale")])
out_sd[key_out] = state_dict[k]
return out_sd
@@ -1341,6 +1352,14 @@ class Chroma(supported_models_base.BASE):
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def process_unet_state_dict(self, state_dict):
out_sd = {}
for k in list(state_dict.keys()):
key_out = k
if key_out.endswith(".scale"):
key_out = "{}.weight".format(key_out[:-len(".scale")])
out_sd[key_out] = state_dict[k]
return out_sd
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Chroma(self, device=device)

View File

@@ -675,10 +675,10 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
"ff_context.linear_in.bias": "txt_mlp.0.bias",
"ff_context.linear_out.weight": "txt_mlp.2.weight",
"ff_context.linear_out.bias": "txt_mlp.2.bias",
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
"attn.norm_q.weight": "img_attn.norm.query_norm.weight",
"attn.norm_k.weight": "img_attn.norm.key_norm.weight",
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.weight",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.weight",
}
for k in block_map:
@@ -701,8 +701,8 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
"norm.linear.bias": "modulation.lin.bias",
"proj_out.weight": "linear2.weight",
"proj_out.bias": "linear2.bias",
"attn.norm_q.weight": "norm.query_norm.scale",
"attn.norm_k.weight": "norm.key_norm.scale",
"attn.norm_q.weight": "norm.query_norm.weight",
"attn.norm_k.weight": "norm.key_norm.weight",
"attn.to_qkv_mlp_proj.weight": "linear1.weight", # Flux 2
"attn.to_out.weight": "linear2.weight", # Flux 2
}