Fix lora Extraction in offload conditions (+ dynamic_vram mode) (#12479)

* lora_extract: Add a trange

If you bite off more than your GPU can chew, this kinda just hangs.
Give a rough indication of progress counting the weights in a trange.

* lora_extract: Support on-the-fly patching

Use the on-the-fly approach from the regular model saving logic for
lora extraction too. Switch off force_cast_weights accordingly.

This gets extraction working in dynamic vram while also supporting
extraction on GPU offloaded.
This commit is contained in:
rattus
2026-02-15 17:28:51 -08:00
committed by GitHub
parent 2c1d06a4e3
commit ecd2a19661

View File

@@ -7,6 +7,7 @@ import logging
from enum import Enum
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
from tqdm.auto import trange
CLAMP_QUANTILE = 0.99
@@ -49,12 +50,22 @@ LORA_TYPES = {"standard": LORAType.STANDARD,
"full_diff": LORAType.FULL_DIFF}
def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, bias_diff=False):
comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True)
comfy.model_management.load_models_gpu([model_diff])
sd = model_diff.model_state_dict(filter_prefix=prefix_model)
for k in sd:
if k.endswith(".weight"):
sd_keys = list(sd.keys())
for index in trange(len(sd_keys), unit="weight"):
k = sd_keys[index]
op_keys = sd_keys[index].rsplit('.', 1)
if len(op_keys) < 2 or op_keys[1] not in ["weight", "bias"] or (op_keys[1] == "bias" and not bias_diff):
continue
op = comfy.utils.get_attr(model_diff.model, op_keys[0])
if hasattr(op, "comfy_cast_weights") and not getattr(op, "comfy_patched_weights", False):
weight_diff = model_diff.patch_weight_to_device(k, model_diff.load_device, return_weight=True)
else:
weight_diff = sd[k]
if op_keys[1] == "weight":
if lora_type == LORAType.STANDARD:
if weight_diff.ndim < 2:
if bias_diff:
@@ -69,8 +80,8 @@ def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora
elif lora_type == LORAType.FULL_DIFF:
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu()
elif bias_diff and k.endswith(".bias"):
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().half().cpu()
elif bias_diff and op_keys[1] == "bias":
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = weight_diff.contiguous().half().cpu()
return output_sd
class LoraSave(io.ComfyNode):