Made multigpu deepclone load model from disk to avoid needing to deepclone actual model object, fixed issues with merge, turn off cuda backend as it causes device mismatch issue with rope (and potentially other ops), will investigate

This commit is contained in:
Jedrzej Kosinski
2026-02-17 04:55:00 -08:00
parent df2fd4c869
commit f4b99bc623
4 changed files with 15 additions and 4 deletions

View File

@@ -23,6 +23,7 @@ import inspect
import logging
import math
import uuid
import copy
from typing import Callable, Optional
import torch
@@ -274,6 +275,7 @@ class ModelPatcher:
self.is_clip = False
self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed
self.cached_patcher_init: tuple[Callable, tuple] | tuple[Callable, tuple, int] | None = None
self.is_multigpu_base_clone = False
self.clone_base_uuid = uuid.uuid4()
@@ -368,6 +370,7 @@ class ModelPatcher:
n.is_clip = self.is_clip
n.hook_mode = self.hook_mode
n.cached_patcher_init = self.cached_patcher_init
n.is_multigpu_base_clone = self.is_multigpu_base_clone
n.clone_base_uuid = self.clone_base_uuid
@@ -382,12 +385,18 @@ class ModelPatcher:
# set load device, if present
if new_load_device is not None:
n.load_device = new_load_device
if self.cached_patcher_init is not None:
temp_model_patcher: ModelPatcher | list[ModelPatcher] = self.cached_patcher_init[0](*self.cached_patcher_init[1])
if len(self.cached_patcher_init) > 2:
temp_model_patcher = temp_model_patcher[self.cached_patcher_init[2]]
n.model = temp_model_patcher.model
else:
n.model = copy.deepcopy(n.model)
# unlike for normal clone, backup dicts that shared same ref should not;
# otherwise, patchers that have deep copies of base models will erroneously influence each other.
n.backup = copy.deepcopy(n.backup)
n.object_patches_backup = copy.deepcopy(n.object_patches_backup)
n.hook_backup = copy.deepcopy(n.hook_backup)
n.model = copy.deepcopy(n.model)
# multigpu clone should not have multigpu additional_models entry
n.remove_additional_models("multigpu")
# multigpu_clone all stored additional_models; make sure circular references are properly handled

View File

@@ -20,7 +20,7 @@ try:
if cuda_version < (13,):
ck.registry.disable("cuda")
logging.warning("WARNING: You need pytorch with cu130 or higher to use optimized CUDA operations.")
ck.registry.disable("cuda") # multigpu will not work rn with comfy-kitchen on cuda backend
ck.registry.disable("triton")
for k, v in ck.list_backends().items():
logging.info(f"Found comfy_kitchen backend {k}: {v}")

View File

@@ -418,7 +418,7 @@ def _calc_cond_batch_multigpu(model: BaseModel, conds: list[list[dict]], x_in: t
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
free_memory = model_management.get_free_memory(current_device)
free_memory = comfy.model_management.get_free_memory(current_device)
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
@@ -487,7 +487,7 @@ def _calc_cond_batch_multigpu(model: BaseModel, conds: list[list[dict]], x_in: t
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["uuids"] = uuids[:]
transformer_options["sigmas"] = timestep
transformer_options["sigmas"] = timestep.to(device)
transformer_options["sample_sigmas"] = transformer_options["sample_sigmas"].to(device)
transformer_options["multigpu_thread_device"] = device

View File

@@ -1510,6 +1510,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options, metadata=metadata)
if out is None:
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(ckpt_path, model_detection_error_hint(ckpt_path, sd)))
out[0].cached_patcher_init = (load_checkpoint_guess_config, (ckpt_path, False, False, False, embedding_directory, output_model, model_options, te_model_options), 0)
return out
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None):
@@ -1711,6 +1712,7 @@ def load_diffusion_model(unet_path, model_options={}):
if model is None:
logging.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(unet_path, model_detection_error_hint(unet_path, sd)))
model.cached_patcher_init = (load_diffusion_model, (unet_path, model_options))
return model
def load_unet(unet_path, dtype=None):