This function has a dtype argument that allows the caller to set the
dtype in the cast. TIL Some models override this on weight casts, which
means its the highest priority.
Priority scheme is: argument > model dtype > state dict dtype
pinned memory was converted back to pinning the CPU side weight without
any changes. Fix the pinner to use the CPU weight and not the model defined
geometry. This will either save RAM or stop buffer overruns when the types
mismatch.
Fix the model defined weight caster to use the [ s.weight, s.bias ]
interpretation, as xfer_dest might be the flattened pin now. Fix the detection
of needing to cast to not be conditional on !pin.
- Change error type from 'invalid_prompt' to 'missing_node_type' for frontend detection
- Add extra_info with node_id, class_type, and node_title (from _meta.title)
- Improve user-facing message: 'Node X not found. The custom node may not be installed.'
Move count increment before isinstance(item, dict) check so that
non-dict output items (like text strings from PreviewAny node)
are included in outputs_count.
This aligns OSS Python with Cloud's Go implementation which uses
len(itemsArray) to count ALL items regardless of type.
Amp-Thread-ID: https://ampcode.com/threads/T-019c0bb5-14e0-744f-8808-1e57653f3ae3
Co-authored-by: Amp <amp@ampcode.com>
When a node is declared as dev-only, it doesn't show in the default UI
unless the dev mode is enabled in the settings. The intention is to
allow nodes related to unit testing to be included in ComfyUI
distributions without confusing the average user.
The code throughout is None safe to just skip the feature cache saving
step if none. Set it none in single frame use so qwen doesn't burn VRAM
on the unused cache.
* ops: introduce autopad for conv3d
This works around pytorch missing ability to causal pad as part of the
kernel and avoids massive weight duplications for padding.
* wan-vae: rework causal padding
This currently uses F.pad which takes a full deep copy and is liable to
be the VRAM peak. Instead, kick spatial padding back to the op and
consolidate the temporal padding with the cat for the cache.
* wan-vae: implement zero pad fast path
The WAN VAE is also QWEN where it is used single-image. These
convolutions are however zero padded 3d convolutions, which means the
VAE is actually just 2D down the last element of the conv weight in
the temporal dimension. Fast path this, to avoid adding zeros that
then just evaporate in convoluton math but cost computation.
* Disable timestep embed compression when inpainting
Spatial inpainting not compatible with the compression
* Reduce crossattn peak VRAM
* LTX2: Refactor forward function for better VRAM efficiency
- Add search_aliases for discoverability: resize, scale, dimensions, etc.
- Add node description for hover tooltip
- Add tooltips to all inputs explaining their behavior
- Reorder options: most common (scale dimensions) first, most technical (scale to multiple) last
Addresses user feedback that 'resize' search returned nothing useful and
options like 'match size' and 'scale to multiple' were not self-explanatory.
- Add search_aliases for discoverability: resize, scale, dimensions, etc.
- Add node description for hover tooltip
- Add tooltips to all inputs explaining their behavior
- Reorder options: most common (scale dimensions) first, most technical (scale to multiple) last
Addresses user feedback that 'resize' search returned nothing useful and
options like 'match size' and 'scale to multiple' were not self-explanatory.