mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-13 03:30:01 +00:00
Compare commits
8 Commits
ben/releas
...
comfyanony
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1af4462060 | ||
|
|
ff1aaa242d | ||
|
|
e5ae670a40 | ||
|
|
3fe61cedda | ||
|
|
2a4328d639 | ||
|
|
d297a749a2 | ||
|
|
2b7cc7e3b6 | ||
|
|
4993411fd9 |
@@ -1,12 +1,11 @@
|
||||
import math
|
||||
import time
|
||||
from functools import partial
|
||||
|
||||
from scipy import integrate
|
||||
import torch
|
||||
from torch import nn
|
||||
import torchsde
|
||||
from tqdm.auto import trange as trange_, tqdm
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from . import utils
|
||||
from . import deis
|
||||
@@ -15,34 +14,7 @@ import comfy.model_patcher
|
||||
import comfy.model_sampling
|
||||
|
||||
import comfy.memory_management
|
||||
|
||||
|
||||
def trange(*args, **kwargs):
|
||||
if comfy.memory_management.aimdo_allocator is None:
|
||||
return trange_(*args, **kwargs)
|
||||
|
||||
pbar = trange_(*args, **kwargs, smoothing=1.0)
|
||||
pbar._i = 0
|
||||
pbar.set_postfix_str(" Model Initializing ... ")
|
||||
|
||||
_update = pbar.update
|
||||
|
||||
def warmup_update(n=1):
|
||||
pbar._i += 1
|
||||
if pbar._i == 1:
|
||||
pbar.i1_time = time.time()
|
||||
pbar.set_postfix_str(" Model Initialization complete! ")
|
||||
elif pbar._i == 2:
|
||||
#bring forward the effective start time based the the diff between first and second iteration
|
||||
#to attempt to remove load overhead from the final step rate estimate.
|
||||
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
|
||||
pbar.set_postfix_str("")
|
||||
|
||||
_update(n)
|
||||
|
||||
pbar.update = warmup_update
|
||||
return pbar
|
||||
|
||||
from comfy.utils import model_trange as trange
|
||||
|
||||
def append_zero(x):
|
||||
return torch.cat([x, x.new_zeros([1])])
|
||||
|
||||
@@ -1213,8 +1213,12 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str
|
||||
|
||||
signature = comfy_aimdo.model_vbar.vbar_fault(weight._v)
|
||||
if signature is not None:
|
||||
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, weight._v_tensor)[0]
|
||||
if not comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
|
||||
if comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
|
||||
v_tensor = weight._v_tensor
|
||||
else:
|
||||
raw_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device)
|
||||
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, raw_tensor)[0]
|
||||
weight._v_tensor = v_tensor
|
||||
weight._v_signature = signature
|
||||
#Send it over
|
||||
v_tensor.copy_(weight, non_blocking=non_blocking)
|
||||
|
||||
@@ -1525,7 +1525,7 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
setattr(m, param_key + "_function", weight_function)
|
||||
geometry = weight
|
||||
if not isinstance(weight, QuantizedTensor):
|
||||
model_dtype = getattr(m, param_key + "_comfy_model_dtype", weight.dtype)
|
||||
model_dtype = getattr(m, param_key + "_comfy_model_dtype", None) or weight.dtype
|
||||
weight._model_dtype = model_dtype
|
||||
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
|
||||
return comfy.memory_management.vram_aligned_size(geometry)
|
||||
@@ -1542,7 +1542,6 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
|
||||
if vbar is not None and not hasattr(m, "_v"):
|
||||
m._v = vbar.alloc(v_weight_size)
|
||||
m._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(m._v, device_to)
|
||||
allocated_size += v_weight_size
|
||||
|
||||
else:
|
||||
@@ -1552,12 +1551,11 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
weight.seed_key = key
|
||||
set_dirty(weight, dirty)
|
||||
geometry = weight
|
||||
model_dtype = getattr(m, param + "_comfy_model_dtype", weight.dtype)
|
||||
model_dtype = getattr(m, param + "_comfy_model_dtype", None) or weight.dtype
|
||||
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
|
||||
weight_size = geometry.numel() * geometry.element_size()
|
||||
if vbar is not None and not hasattr(weight, "_v"):
|
||||
weight._v = vbar.alloc(weight_size)
|
||||
weight._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device_to)
|
||||
weight._model_dtype = model_dtype
|
||||
allocated_size += weight_size
|
||||
vbar.set_watermark_limit(allocated_size)
|
||||
|
||||
21
comfy/ops.py
21
comfy/ops.py
@@ -83,14 +83,18 @@ def cast_to_input(weight, input, non_blocking=False, copy=True):
|
||||
def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype):
|
||||
offload_stream = None
|
||||
xfer_dest = None
|
||||
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
|
||||
|
||||
signature = comfy_aimdo.model_vbar.vbar_fault(s._v)
|
||||
if signature is not None:
|
||||
xfer_dest = s._v_tensor
|
||||
resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature)
|
||||
if signature is not None:
|
||||
if resident:
|
||||
weight = s._v_weight
|
||||
bias = s._v_bias
|
||||
else:
|
||||
xfer_dest = comfy_aimdo.torch.aimdo_to_tensor(s._v, device)
|
||||
|
||||
if not resident:
|
||||
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
|
||||
cast_dest = None
|
||||
|
||||
xfer_source = [ s.weight, s.bias ]
|
||||
@@ -140,9 +144,13 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
|
||||
post_cast.copy_(pre_cast)
|
||||
xfer_dest = cast_dest
|
||||
|
||||
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
|
||||
weight = params[0]
|
||||
bias = params[1]
|
||||
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
|
||||
weight = params[0]
|
||||
bias = params[1]
|
||||
if signature is not None:
|
||||
s._v_weight = weight
|
||||
s._v_bias = bias
|
||||
s._v_signature=signature
|
||||
|
||||
def post_cast(s, param_key, x, dtype, resident, update_weight):
|
||||
lowvram_fn = getattr(s, param_key + "_lowvram_function", None)
|
||||
@@ -182,7 +190,6 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
|
||||
weight = post_cast(s, "weight", weight, dtype, resident, update_weight)
|
||||
if s.bias is not None:
|
||||
bias = post_cast(s, "bias", bias, bias_dtype, resident, update_weight)
|
||||
s._v_signature=signature
|
||||
|
||||
#FIXME: weird offload return protocol
|
||||
return weight, bias, (offload_stream, device if signature is not None else None, None)
|
||||
|
||||
@@ -3,7 +3,6 @@ import comfy.text_encoders.llama
|
||||
from comfy import sd1_clip
|
||||
import torch
|
||||
import math
|
||||
from tqdm.auto import trange
|
||||
import yaml
|
||||
import comfy.utils
|
||||
|
||||
@@ -17,6 +16,7 @@ def sample_manual_loop_no_classes(
|
||||
temperature: float = 0.85,
|
||||
top_p: float = 0.9,
|
||||
top_k: int = None,
|
||||
min_p: float = 0.000,
|
||||
seed: int = 1,
|
||||
min_tokens: int = 1,
|
||||
max_new_tokens: int = 2048,
|
||||
@@ -52,7 +52,7 @@ def sample_manual_loop_no_classes(
|
||||
|
||||
progress_bar = comfy.utils.ProgressBar(max_new_tokens)
|
||||
|
||||
for step in trange(max_new_tokens, desc="LM sampling"):
|
||||
for step in comfy.utils.model_trange(max_new_tokens, desc="LM sampling"):
|
||||
outputs = model.transformer(None, attention_mask, embeds=embeds.to(execution_dtype), num_tokens=num_tokens, intermediate_output=None, dtype=execution_dtype, embeds_info=embeds_info, past_key_values=past_key_values)
|
||||
next_token_logits = model.transformer.logits(outputs[0])[:, -1]
|
||||
past_key_values = outputs[2]
|
||||
@@ -81,6 +81,12 @@ def sample_manual_loop_no_classes(
|
||||
min_val = top_k_vals[..., -1, None]
|
||||
cfg_logits[cfg_logits < min_val] = remove_logit_value
|
||||
|
||||
if min_p is not None and min_p > 0:
|
||||
probs = torch.softmax(cfg_logits, dim=-1)
|
||||
p_max = probs.max(dim=-1, keepdim=True).values
|
||||
indices_to_remove = probs < (min_p * p_max)
|
||||
cfg_logits[indices_to_remove] = remove_logit_value
|
||||
|
||||
if top_p is not None and top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(cfg_logits, descending=True)
|
||||
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
@@ -111,7 +117,7 @@ def sample_manual_loop_no_classes(
|
||||
return output_audio_codes
|
||||
|
||||
|
||||
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0):
|
||||
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0, min_p=0.000):
|
||||
positive = [[token for token, _ in inner_list] for inner_list in positive]
|
||||
positive = positive[0]
|
||||
|
||||
@@ -135,7 +141,7 @@ def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=102
|
||||
paddings = []
|
||||
ids = [positive]
|
||||
|
||||
return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
|
||||
return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
|
||||
|
||||
|
||||
class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
@@ -193,6 +199,7 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
temperature = kwargs.get("temperature", 0.85)
|
||||
top_p = kwargs.get("top_p", 0.9)
|
||||
top_k = kwargs.get("top_k", 0.0)
|
||||
min_p = kwargs.get("min_p", 0.000)
|
||||
|
||||
duration = math.ceil(duration)
|
||||
kwargs["duration"] = duration
|
||||
@@ -240,6 +247,7 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
"top_k": top_k,
|
||||
"min_p": min_p,
|
||||
}
|
||||
return out
|
||||
|
||||
@@ -300,7 +308,7 @@ class ACE15TEModel(torch.nn.Module):
|
||||
|
||||
lm_metadata = token_weight_pairs["lm_metadata"]
|
||||
if lm_metadata["generate_audio_codes"]:
|
||||
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["max_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"])
|
||||
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"], min_p=lm_metadata["min_p"])
|
||||
out["audio_codes"] = [audio_codes]
|
||||
|
||||
return base_out, None, out
|
||||
|
||||
@@ -27,6 +27,7 @@ from PIL import Image
|
||||
import logging
|
||||
import itertools
|
||||
from torch.nn.functional import interpolate
|
||||
from tqdm.auto import trange
|
||||
from einops import rearrange
|
||||
from comfy.cli_args import args, enables_dynamic_vram
|
||||
import json
|
||||
@@ -1155,6 +1156,32 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
|
||||
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
|
||||
return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=output_device, pbar=pbar)
|
||||
|
||||
def model_trange(*args, **kwargs):
|
||||
if comfy.memory_management.aimdo_allocator is None:
|
||||
return trange(*args, **kwargs)
|
||||
|
||||
pbar = trange(*args, **kwargs, smoothing=1.0)
|
||||
pbar._i = 0
|
||||
pbar.set_postfix_str(" Model Initializing ... ")
|
||||
|
||||
_update = pbar.update
|
||||
|
||||
def warmup_update(n=1):
|
||||
pbar._i += 1
|
||||
if pbar._i == 1:
|
||||
pbar.i1_time = time.time()
|
||||
pbar.set_postfix_str(" Model Initialization complete! ")
|
||||
elif pbar._i == 2:
|
||||
#bring forward the effective start time based the the diff between first and second iteration
|
||||
#to attempt to remove load overhead from the final step rate estimate.
|
||||
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
|
||||
pbar.set_postfix_str("")
|
||||
|
||||
_update(n)
|
||||
|
||||
pbar.update = warmup_update
|
||||
return pbar
|
||||
|
||||
PROGRESS_BAR_ENABLED = True
|
||||
def set_progress_bar_enabled(enabled):
|
||||
global PROGRESS_BAR_ENABLED
|
||||
|
||||
@@ -30,6 +30,30 @@ from comfy_api_nodes.util import (
|
||||
validate_image_dimensions,
|
||||
)
|
||||
|
||||
_EUR_TO_USD = 1.19
|
||||
|
||||
|
||||
def _tier_price_eur(megapixels: float) -> float:
|
||||
"""Price in EUR for a single Magnific upscaling step based on input megapixels."""
|
||||
if megapixels <= 1.3:
|
||||
return 0.143
|
||||
if megapixels <= 3.0:
|
||||
return 0.286
|
||||
if megapixels <= 6.4:
|
||||
return 0.429
|
||||
return 1.716
|
||||
|
||||
|
||||
def _calculate_magnific_upscale_price_usd(width: int, height: int, scale: int) -> float:
|
||||
"""Calculate total Magnific upscale price in USD for given input dimensions and scale factor."""
|
||||
num_steps = int(math.log2(scale))
|
||||
total_eur = 0.0
|
||||
pixels = width * height
|
||||
for _ in range(num_steps):
|
||||
total_eur += _tier_price_eur(pixels / 1_000_000)
|
||||
pixels *= 4
|
||||
return round(total_eur * _EUR_TO_USD, 2)
|
||||
|
||||
|
||||
class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
@@ -103,11 +127,20 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor", "auto_downscale"]),
|
||||
expr="""
|
||||
(
|
||||
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
|
||||
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
|
||||
$ad := widgets.auto_downscale;
|
||||
$mins := $ad
|
||||
? {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.515}
|
||||
: {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844};
|
||||
$maxs := {"2x": 0.515, "4x": 0.844, "8x": 1.015, "16x": 1.187};
|
||||
{
|
||||
"type": "range_usd",
|
||||
"min_usd": $lookup($mins, widgets.scale_factor),
|
||||
"max_usd": $lookup($maxs, widgets.scale_factor),
|
||||
"format": { "approximate": true }
|
||||
}
|
||||
)
|
||||
""",
|
||||
),
|
||||
@@ -168,6 +201,10 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
|
||||
f"Use a smaller input image or lower scale factor."
|
||||
)
|
||||
|
||||
final_height, final_width = get_image_dimensions(image)
|
||||
actual_scale = int(scale_factor.rstrip("x"))
|
||||
price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, actual_scale)
|
||||
|
||||
initial_res = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler", method="POST"),
|
||||
@@ -189,6 +226,7 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
|
||||
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler/{initial_res.task_id}"),
|
||||
response_model=TaskResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
price_extractor=lambda _: price_usd,
|
||||
poll_interval=10.0,
|
||||
max_poll_attempts=480,
|
||||
)
|
||||
@@ -257,8 +295,14 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
|
||||
expr="""
|
||||
(
|
||||
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
|
||||
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
|
||||
$mins := {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844};
|
||||
$maxs := {"2x": 2.045, "4x": 2.545, "8x": 2.889, "16x": 3.06};
|
||||
{
|
||||
"type": "range_usd",
|
||||
"min_usd": $lookup($mins, widgets.scale_factor),
|
||||
"max_usd": $lookup($maxs, widgets.scale_factor),
|
||||
"format": { "approximate": true }
|
||||
}
|
||||
)
|
||||
""",
|
||||
),
|
||||
@@ -321,6 +365,9 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
|
||||
f"Use a smaller input image or lower scale factor."
|
||||
)
|
||||
|
||||
final_height, final_width = get_image_dimensions(image)
|
||||
price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, requested_scale)
|
||||
|
||||
initial_res = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler-precision-v2", method="POST"),
|
||||
@@ -339,6 +386,7 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
|
||||
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler-precision-v2/{initial_res.task_id}"),
|
||||
response_model=TaskResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
price_extractor=lambda _: price_usd,
|
||||
poll_interval=10.0,
|
||||
max_poll_attempts=480,
|
||||
)
|
||||
@@ -877,8 +925,8 @@ class MagnificExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
# MagnificImageUpscalerCreativeNode,
|
||||
# MagnificImageUpscalerPreciseV2Node,
|
||||
MagnificImageUpscalerCreativeNode,
|
||||
MagnificImageUpscalerPreciseV2Node,
|
||||
MagnificImageStyleTransferNode,
|
||||
MagnificImageRelightNode,
|
||||
MagnificImageSkinEnhancerNode,
|
||||
|
||||
@@ -49,13 +49,14 @@ class TextEncodeAceStepAudio15(io.ComfyNode):
|
||||
io.Float.Input("temperature", default=0.85, min=0.0, max=2.0, step=0.01, advanced=True),
|
||||
io.Float.Input("top_p", default=0.9, min=0.0, max=2000.0, step=0.01, advanced=True),
|
||||
io.Int.Input("top_k", default=0, min=0, max=100, advanced=True),
|
||||
io.Float.Input("min_p", default=0.000, min=0.0, max=1.0, step=0.001, advanced=True),
|
||||
],
|
||||
outputs=[io.Conditioning.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale, generate_audio_codes, cfg_scale, temperature, top_p, top_k) -> io.NodeOutput:
|
||||
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed, generate_audio_codes=generate_audio_codes, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k)
|
||||
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale, generate_audio_codes, cfg_scale, temperature, top_p, top_k, min_p) -> io.NodeOutput:
|
||||
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed, generate_audio_codes=generate_audio_codes, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p)
|
||||
conditioning = clip.encode_from_tokens_scheduled(tokens)
|
||||
return io.NodeOutput(conditioning)
|
||||
|
||||
|
||||
@@ -623,6 +623,8 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
|
||||
logging.info("Memory summary: {}".format(comfy.model_management.debug_memory_summary()))
|
||||
logging.error("Got an OOM, unloading all loaded models.")
|
||||
comfy.model_management.unload_all_models()
|
||||
elif isinstance(ex, RuntimeError) and ("mat1 and mat2 shapes" in str(ex)) and "Sampler" in class_type:
|
||||
tips = "\n\nTIPS: If you have any \"Load CLIP\" or \"*CLIP Loader\" nodes in your workflow connected to this sampler node make sure the correct file(s) and type is selected."
|
||||
|
||||
error_details = {
|
||||
"node_id": real_node_id,
|
||||
|
||||
Reference in New Issue
Block a user