mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-14 04:00:03 +00:00
Compare commits
379 Commits
js/drafts/
...
v0.3.62
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
bab8ba20bf | ||
|
|
b682a73c55 | ||
|
|
631b9ae861 | ||
|
|
f48d7230de | ||
|
|
6e079abc3a | ||
|
|
977a4ed8c5 | ||
|
|
414a178fb6 | ||
|
|
447884b657 | ||
|
|
bed4b49d08 | ||
|
|
342cf644ce | ||
|
|
3758848423 | ||
|
|
0db6aabed3 | ||
|
|
1673ace19b | ||
|
|
7f38e4c538 | ||
|
|
8accf50908 | ||
|
|
ed0f4a609b | ||
|
|
041b8824f5 | ||
|
|
b1111c2062 | ||
|
|
05a258efd8 | ||
|
|
c8276f8c6b | ||
|
|
6ec1cfe101 | ||
|
|
b60dc31627 | ||
|
|
555f902fc1 | ||
|
|
1364548c72 | ||
|
|
2dadb34860 | ||
|
|
1cf86f5ae5 | ||
|
|
a1127b232d | ||
|
|
896f2e653c | ||
|
|
40ae495ddc | ||
|
|
653ceab414 | ||
|
|
160698eb41 | ||
|
|
7eca95657c | ||
|
|
ad5aef2d0c | ||
|
|
bcfd80dd79 | ||
|
|
6b4b671ce7 | ||
|
|
a9cf1cd249 | ||
|
|
255572188f | ||
|
|
0572029fee | ||
|
|
196954ab8c | ||
|
|
1e098d6132 | ||
|
|
cd66d72b46 | ||
|
|
2103e39335 | ||
|
|
d20576e6a3 | ||
|
|
a061b06321 | ||
|
|
80718908a9 | ||
|
|
7ea173c187 | ||
|
|
76eb1d72c3 | ||
|
|
c4a46e943c | ||
|
|
2b7f9a8196 | ||
|
|
ce4cb2389c | ||
|
|
c8d2117f02 | ||
|
|
fccab99ec0 | ||
|
|
fd79d32f38 | ||
|
|
341b4adefd | ||
|
|
b8730510db | ||
|
|
e808790799 | ||
|
|
145b0e4f79 | ||
|
|
707b2638ec | ||
|
|
8a5ac527e6 | ||
|
|
e3206351b0 | ||
|
|
1fee8827cb | ||
|
|
27bc181c49 | ||
|
|
d1d9eb94b1 | ||
|
|
7be2b49b6b | ||
|
|
9ed3c5cc09 | ||
|
|
66241cef31 | ||
|
|
e8df53b764 | ||
|
|
852704c81a | ||
|
|
9fdf8c25ab | ||
|
|
dc95b6acc0 | ||
|
|
711bcf33ee | ||
|
|
24b0fce099 | ||
|
|
1ea8c54064 | ||
|
|
8d6653fca6 | ||
|
|
dd611a7700 | ||
|
|
9288c78fc5 | ||
|
|
e42682b24e | ||
|
|
a39ac59c3e | ||
|
|
1a85483da1 | ||
|
|
47a9cde5d3 | ||
|
|
4f1f26ac6c | ||
|
|
f228367c5e | ||
|
|
80b7c9455b | ||
|
|
c1297f4eb3 | ||
|
|
e5e70636e7 | ||
|
|
29bf807b0e | ||
|
|
2559dee492 | ||
|
|
a3b04de700 | ||
|
|
d7f40442f9 | ||
|
|
b149e2e1e3 | ||
|
|
581bae2af3 | ||
|
|
af99928f22 | ||
|
|
53c9c7d39a | ||
|
|
ba68e83f1c | ||
|
|
dcb8834983 | ||
|
|
f9d2e4b742 | ||
|
|
45bc1f5c00 | ||
|
|
0aa074a420 | ||
|
|
7757d5a657 | ||
|
|
e600520f8a | ||
|
|
fd2b820ec2 | ||
|
|
d6b977b2e6 | ||
|
|
15ec9ea958 | ||
|
|
33bd9ed9cb | ||
|
|
18de0b2830 | ||
|
|
df6850fae8 | ||
|
|
e01e99d075 | ||
|
|
72212fef66 | ||
|
|
df34f1549a | ||
|
|
9b0553809c | ||
|
|
8d7c930246 | ||
|
|
de44b95db6 | ||
|
|
543888d3d8 | ||
|
|
70fc0425b3 | ||
|
|
85e34643f8 | ||
|
|
5c33872e2f | ||
|
|
206595f854 | ||
|
|
b288fb0db8 | ||
|
|
f73b176abd | ||
|
|
103a12cb66 | ||
|
|
97652d26b8 | ||
|
|
bd1d9bcd5f | ||
|
|
fb763d4333 | ||
|
|
bcbd7884e3 | ||
|
|
27a0fcccc3 | ||
|
|
ea6cdd2631 | ||
|
|
2ee7879a0b | ||
|
|
3493b9cb1f | ||
|
|
c9ebe70072 | ||
|
|
261421e218 | ||
|
|
a9f1bb10a5 | ||
|
|
b0338e930b | ||
|
|
b71f9bcb71 | ||
|
|
72855db715 | ||
|
|
f48d05a2d1 | ||
|
|
4368d8f87f | ||
|
|
22da0a83e9 | ||
|
|
50333f1715 | ||
|
|
26d5b86da8 | ||
|
|
4f5812b937 | ||
|
|
1bcb469089 | ||
|
|
464ba1d614 | ||
|
|
e3018c2a5a | ||
|
|
3412d53b1d | ||
|
|
e2d1e5dad9 | ||
|
|
27e067ce50 | ||
|
|
9b15155972 | ||
|
|
32a627bf1f | ||
|
|
fe442fac2e | ||
|
|
d2c502e629 | ||
|
|
fea9ea8268 | ||
|
|
f949094b3c | ||
|
|
4449e14769 | ||
|
|
885015eecf | ||
|
|
a86aaa4301 | ||
|
|
2efb2cbc38 | ||
|
|
15aa9222c4 | ||
|
|
c7bb3e2bce | ||
|
|
e80a14ad50 | ||
|
|
d28b39d93d | ||
|
|
1c184c29eb | ||
|
|
edde0b5043 | ||
|
|
0063610177 | ||
|
|
ce0052c087 | ||
|
|
0eb821a7b6 | ||
|
|
4aa79dbf2c | ||
|
|
38f697d953 | ||
|
|
3aad339b63 | ||
|
|
491755325c | ||
|
|
496888fd68 | ||
|
|
b5ac6ed7ce | ||
|
|
b20ba1f27c | ||
|
|
31a37686d0 | ||
|
|
88aee596a3 | ||
|
|
6a193ac557 | ||
|
|
47f4db3e84 | ||
|
|
5352abc6d3 | ||
|
|
39aa06bd5d | ||
|
|
914c2a2973 | ||
|
|
e633a47ad1 | ||
|
|
f6b93d41a0 | ||
|
|
95ac7794b7 | ||
|
|
71ed4a399e | ||
|
|
3e316c6338 | ||
|
|
8be0d22ab7 | ||
|
|
59eddda900 | ||
|
|
41048c69b4 | ||
|
|
fc247150fe | ||
|
|
fe31ad0276 | ||
|
|
ca4e96a8ae | ||
|
|
050c67323c | ||
|
|
497d41fb50 | ||
|
|
ff57793659 | ||
|
|
f7bd5e58dd | ||
|
|
7ed73d12d1 | ||
|
|
eb39019daa | ||
|
|
bab08f40d1 | ||
|
|
bc49106837 | ||
|
|
1b2de2642d | ||
|
|
9fa1036f60 | ||
|
|
0737b7e0d2 | ||
|
|
0963493a9c | ||
|
|
e73a9dbe30 | ||
|
|
fe01885acf | ||
|
|
7139d6d93f | ||
|
|
2f52e8f05f | ||
|
|
8d38ea3bbf | ||
|
|
5a8f502db5 | ||
|
|
7cd2c4bd6a | ||
|
|
dfa791eb4b | ||
|
|
bddd69618b | ||
|
|
54d8fdbed0 | ||
|
|
d844d8b13b | ||
|
|
07a927517c | ||
|
|
f16a70ba67 | ||
|
|
36b5127fd3 | ||
|
|
4977f203fa | ||
|
|
bd2ab73976 | ||
|
|
da2efeaec6 | ||
|
|
7f3b9b16c6 | ||
|
|
d4e353a94e | ||
|
|
ed43784b0d | ||
|
|
0f2b8525bc | ||
|
|
20a84166d0 | ||
|
|
ed2e33c69a | ||
|
|
1702e6df16 | ||
|
|
c308a8840a | ||
|
|
027c63f63a | ||
|
|
e08ecfbd8a | ||
|
|
4e5c230f6a | ||
|
|
f0d5d0111f | ||
|
|
ad19a069f6 | ||
|
|
5d65d6753b | ||
|
|
deebee4ff6 | ||
|
|
fa570cbf59 | ||
|
|
644b23ac0b | ||
|
|
72fd4d22b6 | ||
|
|
e4f7ea105f | ||
|
|
c991a5da65 | ||
|
|
9df8792d4b | ||
|
|
3da5a07510 | ||
|
|
afa0a45206 | ||
|
|
615eb52049 | ||
|
|
d5c1954d5c | ||
|
|
e400f26c8f | ||
|
|
5ca8e2fac3 | ||
|
|
3294782d19 | ||
|
|
898d88e10e | ||
|
|
560d38f34c | ||
|
|
e1d4f36d8d | ||
|
|
1e3ae1eed8 | ||
|
|
f4231a80b1 | ||
|
|
2208aa616d | ||
|
|
629b173837 | ||
|
|
fa340add55 | ||
|
|
966f3a5206 | ||
|
|
0552de7c7d | ||
|
|
5828607ccf | ||
|
|
735bb4bdb1 | ||
|
|
bf2a1b5b1e | ||
|
|
42974a448c | ||
|
|
05df2df489 | ||
|
|
37d620a6b8 | ||
|
|
32691b16f4 | ||
|
|
4c3e57b0ae | ||
|
|
9126c0cfe4 | ||
|
|
d8c51ba15a | ||
|
|
32a95bba8a | ||
|
|
da1ad9b516 | ||
|
|
d044a24398 | ||
|
|
5be6fd09ff | ||
|
|
f69609bbd6 | ||
|
|
c012400240 | ||
|
|
03895dea7c | ||
|
|
84f9759424 | ||
|
|
7991341e89 | ||
|
|
140ffc7fdc | ||
|
|
182f90b5ec | ||
|
|
aebac22193 | ||
|
|
13aaa66ec2 | ||
|
|
5f582a9757 | ||
|
|
fbcc23945d | ||
|
|
3dfefc88d0 | ||
|
|
bff60b5cfc | ||
|
|
1e638a140b | ||
|
|
4696d74305 | ||
|
|
5ee381c058 | ||
|
|
4887743a2a | ||
|
|
97b8a2c26a | ||
|
|
97eb256a35 | ||
|
|
61b08d4ba6 | ||
|
|
da9dab7edd | ||
|
|
d2aaef029c | ||
|
|
0a3d062e06 | ||
|
|
2f74e17975 | ||
|
|
dca6bdd4fa | ||
|
|
7d593baf91 | ||
|
|
c60dc4177c | ||
|
|
5d4cc3ba1b | ||
|
|
9f1388c0a3 | ||
|
|
a88788dce6 | ||
|
|
d0210fe2e5 | ||
|
|
e6d9f62744 | ||
|
|
78672d0ee6 | ||
|
|
1ef70fcde4 | ||
|
|
0621d73a9c | ||
|
|
b850d9a8bb | ||
|
|
c60467a148 | ||
|
|
c0207b473f | ||
|
|
93bc2f8e4d | ||
|
|
e6e5d33b35 | ||
|
|
4293e4da21 | ||
|
|
69cb57b342 | ||
|
|
d03ae077b4 | ||
|
|
0ccc88b03f | ||
|
|
eb2f78b4e0 | ||
|
|
e729a5cc11 | ||
|
|
e78d230496 | ||
|
|
d3504e1778 | ||
|
|
a86a58c308 | ||
|
|
39dda1d40d | ||
|
|
5ad33787de | ||
|
|
255f139863 | ||
|
|
5ac9ec214b | ||
|
|
0aa1c58b04 | ||
|
|
5249e45a1c | ||
|
|
54a45b9967 | ||
|
|
9a470e073e | ||
|
|
7d627f764c | ||
|
|
a0c0785635 | ||
|
|
100c2478ea | ||
|
|
1da5639e86 | ||
|
|
1b96fae1d4 | ||
|
|
7f492522b6 | ||
|
|
650838fd6f | ||
|
|
491fafbd64 | ||
|
|
9bc2798f72 | ||
|
|
50afba747c | ||
|
|
6b8062f414 | ||
|
|
b1ae4126c3 | ||
|
|
9dabda19f0 | ||
|
|
543c24108c | ||
|
|
260a5ca5d9 | ||
|
|
861c3bbb3d | ||
|
|
9ca581c941 | ||
|
|
4831e9c2c4 | ||
|
|
480375f349 | ||
|
|
b40143984c | ||
|
|
b43916a134 | ||
|
|
7bc7dd2aa2 | ||
|
|
938d3e8216 | ||
|
|
8f05fb48ea | ||
|
|
b7ff5bd14d | ||
|
|
2b653e8c18 | ||
|
|
1fd306824d | ||
|
|
1205afc708 | ||
|
|
5612670ee4 | ||
|
|
181a9bf26d | ||
|
|
aac10ad23a | ||
|
|
974254218a | ||
|
|
c5de4955bb | ||
|
|
9fd0cd7cf7 | ||
|
|
b5e97db9ac | ||
|
|
1359c969e4 | ||
|
|
059cd38aa2 | ||
|
|
e740dfd806 | ||
|
|
7eab7d2944 | ||
|
|
75d327abd5 | ||
|
|
ee615ac269 | ||
|
|
27870ec3c3 | ||
|
|
f41f323c52 | ||
|
|
f74fc4d927 | ||
|
|
ae26cd99b5 | ||
|
|
e9af97ba1a | ||
|
|
d9277301d2 | ||
|
|
34c8eeec06 | ||
|
|
9f1069290c | ||
|
|
111f583e00 | ||
|
|
79ed752748 |
24
.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt
Executable file
24
.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt
Executable file
@@ -0,0 +1,24 @@
|
||||
As of the time of writing this you need this preview driver for best results:
|
||||
https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-PREVIEW.html
|
||||
|
||||
HOW TO RUN:
|
||||
|
||||
if you have a AMD gpu:
|
||||
|
||||
run_amd_gpu.bat
|
||||
|
||||
|
||||
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
|
||||
|
||||
You can download the stable diffusion XL one from: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors
|
||||
|
||||
|
||||
RECOMMENDED WAY TO UPDATE:
|
||||
To update the ComfyUI code: update\update_comfyui.bat
|
||||
|
||||
|
||||
TO SHARE MODELS BETWEEN COMFYUI AND ANOTHER UI:
|
||||
In the ComfyUI directory you will find a file: extra_model_paths.yaml.example
|
||||
Rename this file to: extra_model_paths.yaml and edit it with your favorite text editor.
|
||||
|
||||
|
||||
@@ -4,6 +4,9 @@ if you have a NVIDIA gpu:
|
||||
|
||||
run_nvidia_gpu.bat
|
||||
|
||||
if you want to enable the fast fp16 accumulation (faster for fp16 models with slightly less quality):
|
||||
|
||||
run_nvidia_gpu_fast_fp16_accumulation.bat
|
||||
|
||||
|
||||
To run it in slow CPU mode:
|
||||
2
.ci/windows_nvidia_base_files/run_nvidia_gpu.bat
Executable file
2
.ci/windows_nvidia_base_files/run_nvidia_gpu.bat
Executable file
@@ -0,0 +1,2 @@
|
||||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build
|
||||
pause
|
||||
1
.gitattributes
vendored
1
.gitattributes
vendored
@@ -1,2 +1,3 @@
|
||||
/web/assets/** linguist-generated
|
||||
/web/** linguist-vendored
|
||||
comfy_api_nodes/apis/__init__.py linguist-generated
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
2
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -22,7 +22,7 @@ body:
|
||||
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
|
||||
options:
|
||||
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
|
||||
required: true
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Expected Behavior
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/user-support.yml
vendored
2
.github/ISSUE_TEMPLATE/user-support.yml
vendored
@@ -18,7 +18,7 @@ body:
|
||||
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
|
||||
options:
|
||||
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
|
||||
required: true
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Your question
|
||||
|
||||
40
.github/workflows/check-line-endings.yml
vendored
Normal file
40
.github/workflows/check-line-endings.yml
vendored
Normal file
@@ -0,0 +1,40 @@
|
||||
name: Check for Windows Line Endings
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches: ['*'] # Trigger on all pull requests to any branch
|
||||
|
||||
jobs:
|
||||
check-line-endings:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0 # Fetch all history to compare changes
|
||||
|
||||
- name: Check for Windows line endings (CRLF)
|
||||
run: |
|
||||
# Get the list of changed files in the PR
|
||||
CHANGED_FILES=$(git diff --name-only ${{ github.event.pull_request.base.sha }}..${{ github.event.pull_request.head.sha }})
|
||||
|
||||
# Flag to track if CRLF is found
|
||||
CRLF_FOUND=false
|
||||
|
||||
# Loop through each changed file
|
||||
for FILE in $CHANGED_FILES; do
|
||||
# Check if the file exists and is a text file
|
||||
if [ -f "$FILE" ] && file "$FILE" | grep -q "text"; then
|
||||
# Check for CRLF line endings
|
||||
if grep -UP '\r$' "$FILE"; then
|
||||
echo "Error: Windows line endings (CRLF) detected in $FILE"
|
||||
CRLF_FOUND=true
|
||||
fi
|
||||
fi
|
||||
done
|
||||
|
||||
# Exit with error if CRLF was found
|
||||
if [ "$CRLF_FOUND" = true ]; then
|
||||
exit 1
|
||||
fi
|
||||
61
.github/workflows/release-stable-all.yml
vendored
Normal file
61
.github/workflows/release-stable-all.yml
vendored
Normal file
@@ -0,0 +1,61 @@
|
||||
name: "Release Stable All Portable Versions"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
git_tag:
|
||||
description: 'Git tag'
|
||||
required: true
|
||||
type: string
|
||||
|
||||
jobs:
|
||||
release_nvidia_default:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release NVIDIA Default (cu129)"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "cu129"
|
||||
python_minor: "13"
|
||||
python_patch: "6"
|
||||
rel_name: "nvidia"
|
||||
rel_extra_name: ""
|
||||
test_release: true
|
||||
secrets: inherit
|
||||
|
||||
release_nvidia_cu128:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release NVIDIA cu128"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "cu128"
|
||||
python_minor: "12"
|
||||
python_patch: "10"
|
||||
rel_name: "nvidia"
|
||||
rel_extra_name: "_cu128"
|
||||
test_release: true
|
||||
secrets: inherit
|
||||
|
||||
release_amd_rocm:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release AMD ROCm 6.4.4"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "rocm644"
|
||||
python_minor: "12"
|
||||
python_patch: "10"
|
||||
rel_name: "amd"
|
||||
rel_extra_name: ""
|
||||
test_release: false
|
||||
secrets: inherit
|
||||
107
.github/workflows/stable-release.yml
vendored
107
.github/workflows/stable-release.yml
vendored
@@ -2,28 +2,78 @@
|
||||
name: "Release Stable Version"
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
git_tag:
|
||||
description: 'Git tag'
|
||||
required: true
|
||||
type: string
|
||||
cache_tag:
|
||||
description: 'Cached dependencies tag'
|
||||
required: true
|
||||
type: string
|
||||
default: "cu129"
|
||||
python_minor:
|
||||
description: 'Python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "13"
|
||||
python_patch:
|
||||
description: 'Python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "6"
|
||||
rel_name:
|
||||
description: 'Release name'
|
||||
required: true
|
||||
type: string
|
||||
default: "nvidia"
|
||||
rel_extra_name:
|
||||
description: 'Release extra name'
|
||||
required: false
|
||||
type: string
|
||||
default: ""
|
||||
test_release:
|
||||
description: 'Test Release'
|
||||
required: true
|
||||
type: boolean
|
||||
default: true
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
git_tag:
|
||||
description: 'Git tag'
|
||||
required: true
|
||||
type: string
|
||||
cu:
|
||||
description: 'CUDA version'
|
||||
cache_tag:
|
||||
description: 'Cached dependencies tag'
|
||||
required: true
|
||||
type: string
|
||||
default: "128"
|
||||
default: "cu129"
|
||||
python_minor:
|
||||
description: 'Python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "12"
|
||||
default: "13"
|
||||
python_patch:
|
||||
description: 'Python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "10"
|
||||
|
||||
default: "6"
|
||||
rel_name:
|
||||
description: 'Release name'
|
||||
required: true
|
||||
type: string
|
||||
default: "nvidia"
|
||||
rel_extra_name:
|
||||
description: 'Release extra name'
|
||||
required: false
|
||||
type: string
|
||||
default: ""
|
||||
test_release:
|
||||
description: 'Test Release'
|
||||
required: true
|
||||
type: boolean
|
||||
default: true
|
||||
|
||||
jobs:
|
||||
package_comfy_windows:
|
||||
@@ -42,15 +92,15 @@ jobs:
|
||||
id: cache
|
||||
with:
|
||||
path: |
|
||||
cu${{ inputs.cu }}_python_deps.tar
|
||||
${{ inputs.cache_tag }}_python_deps.tar
|
||||
update_comfyui_and_python_dependencies.bat
|
||||
key: ${{ runner.os }}-build-cu${{ inputs.cu }}-${{ inputs.python_minor }}
|
||||
key: ${{ runner.os }}-build-${{ inputs.cache_tag }}-${{ inputs.python_minor }}
|
||||
- shell: bash
|
||||
run: |
|
||||
mv cu${{ inputs.cu }}_python_deps.tar ../
|
||||
mv ${{ inputs.cache_tag }}_python_deps.tar ../
|
||||
mv update_comfyui_and_python_dependencies.bat ../
|
||||
cd ..
|
||||
tar xf cu${{ inputs.cu }}_python_deps.tar
|
||||
tar xf ${{ inputs.cache_tag }}_python_deps.tar
|
||||
pwd
|
||||
ls
|
||||
|
||||
@@ -65,9 +115,21 @@ jobs:
|
||||
echo 'import site' >> ./python3${{ inputs.python_minor }}._pth
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
cd ..
|
||||
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
|
||||
|
||||
grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
|
||||
./python.exe -s -m pip install -r requirements_comfyui.txt
|
||||
rm requirements_comfyui.txt
|
||||
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
|
||||
if test -f ./Lib/site-packages/torch/lib/dnnl.lib; then
|
||||
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
|
||||
rm ./Lib/site-packages/torch/lib/libprotoc.lib
|
||||
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
|
||||
fi
|
||||
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
|
||||
@@ -80,14 +142,18 @@ jobs:
|
||||
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
cp -r ComfyUI/.ci/windows_${{ inputs.rel_name }}_base_files/* ./
|
||||
cp ../update_comfyui_and_python_dependencies.bat ./update/
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=768m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_${{ inputs.rel_name }}${{ inputs.rel_extra_name }}.7z
|
||||
|
||||
- shell: bash
|
||||
if: ${{ inputs.test_release }}
|
||||
run: |
|
||||
cd ..
|
||||
cd ComfyUI_windows_portable
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
@@ -96,10 +162,9 @@ jobs:
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
uses: svenstaro/upload-release-action@v2
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
repo_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: ComfyUI_windows_portable_nvidia.7z
|
||||
tag: ${{ inputs.git_tag }}
|
||||
overwrite: true
|
||||
files: ComfyUI_windows_portable_${{ inputs.rel_name }}${{ inputs.rel_extra_name }}.7z
|
||||
tag_name: ${{ inputs.git_tag }}
|
||||
draft: true
|
||||
overwrite_files: true
|
||||
|
||||
30
.github/workflows/test-execution.yml
vendored
Normal file
30
.github/workflows/test-execution.yml
vendored
Normal file
@@ -0,0 +1,30 @@
|
||||
name: Execution Tests
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, windows-latest, macos-latest]
|
||||
runs-on: ${{ matrix.os }}
|
||||
continue-on-error: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.12'
|
||||
- name: Install requirements
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -r requirements.txt
|
||||
pip install -r tests-unit/requirements.txt
|
||||
- name: Run Execution Tests
|
||||
run: |
|
||||
python -m pytest tests/execution -v --skip-timing-checks
|
||||
2
.github/workflows/test-unit.yml
vendored
2
.github/workflows/test-unit.yml
vendored
@@ -10,7 +10,7 @@ jobs:
|
||||
test:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, windows-latest, macos-latest]
|
||||
os: [ubuntu-latest, windows-2022, macos-latest]
|
||||
runs-on: ${{ matrix.os }}
|
||||
continue-on-error: true
|
||||
steps:
|
||||
|
||||
@@ -17,19 +17,19 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "128"
|
||||
default: "129"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "12"
|
||||
default: "13"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "10"
|
||||
default: "6"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -56,7 +56,8 @@ jobs:
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2
|
||||
pause" > update_comfyui_and_python_dependencies.bat
|
||||
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} ${{ inputs.extra_dependencies }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
grep -v comfyui requirements.txt > requirements_nocomfyui.txt
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} ${{ inputs.extra_dependencies }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements_nocomfyui.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip install --no-cache-dir ./temp_wheel_dir/*
|
||||
echo installed basic
|
||||
ls -lah temp_wheel_dir
|
||||
|
||||
64
.github/workflows/windows_release_dependencies_manual.yml
vendored
Normal file
64
.github/workflows/windows_release_dependencies_manual.yml
vendored
Normal file
@@ -0,0 +1,64 @@
|
||||
name: "Windows Release dependencies Manual"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
torch_dependencies:
|
||||
description: 'torch dependencies'
|
||||
required: false
|
||||
type: string
|
||||
default: "torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128"
|
||||
cache_tag:
|
||||
description: 'Cached dependencies tag'
|
||||
required: true
|
||||
type: string
|
||||
default: "cu128"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "12"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "10"
|
||||
|
||||
jobs:
|
||||
build_dependencies:
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.${{ inputs.python_minor }}.${{ inputs.python_patch }}
|
||||
|
||||
- shell: bash
|
||||
run: |
|
||||
echo "@echo off
|
||||
call update_comfyui.bat nopause
|
||||
echo -
|
||||
echo This will try to update pytorch and all python dependencies.
|
||||
echo -
|
||||
echo If you just want to update normally, close this and run update_comfyui.bat instead.
|
||||
echo -
|
||||
pause
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade ${{ inputs.torch_dependencies }} -r ../ComfyUI/requirements.txt pygit2
|
||||
pause" > update_comfyui_and_python_dependencies.bat
|
||||
|
||||
grep -v comfyui requirements.txt > requirements_nocomfyui.txt
|
||||
python -m pip wheel --no-cache-dir ${{ inputs.torch_dependencies }} -r requirements_nocomfyui.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip install --no-cache-dir ./temp_wheel_dir/*
|
||||
echo installed basic
|
||||
ls -lah temp_wheel_dir
|
||||
mv temp_wheel_dir ${{ inputs.cache_tag }}_python_deps
|
||||
tar cf ${{ inputs.cache_tag }}_python_deps.tar ${{ inputs.cache_tag }}_python_deps
|
||||
|
||||
- uses: actions/cache/save@v4
|
||||
with:
|
||||
path: |
|
||||
${{ inputs.cache_tag }}_python_deps.tar
|
||||
update_comfyui_and_python_dependencies.bat
|
||||
key: ${{ runner.os }}-build-${{ inputs.cache_tag }}-${{ inputs.python_minor }}
|
||||
@@ -7,7 +7,7 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "128"
|
||||
default: "129"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
@@ -19,7 +19,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "2"
|
||||
default: "5"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -53,6 +53,8 @@ jobs:
|
||||
ls ../temp_wheel_dir
|
||||
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
|
||||
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
@@ -66,7 +68,7 @@ jobs:
|
||||
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
cp -r ComfyUI/.ci/windows_nvidia_base_files/* ./
|
||||
cp -r ComfyUI/.ci/windows_nightly_base_files/* ./
|
||||
|
||||
echo "call update_comfyui.bat nopause
|
||||
|
||||
14
.github/workflows/windows_release_package.yml
vendored
14
.github/workflows/windows_release_package.yml
vendored
@@ -7,19 +7,19 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "128"
|
||||
default: "129"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "12"
|
||||
default: "13"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "10"
|
||||
default: "6"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -64,6 +64,10 @@ jobs:
|
||||
./python.exe get-pip.py
|
||||
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
|
||||
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
|
||||
rm ./Lib/site-packages/torch/lib/libprotoc.lib
|
||||
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
@@ -77,12 +81,12 @@ jobs:
|
||||
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
cp -r ComfyUI/.ci/windows_nvidia_base_files/* ./
|
||||
cp ../update_comfyui_and_python_dependencies.bat ./update/
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=768m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
|
||||
23
CODEOWNERS
23
CODEOWNERS
@@ -1,24 +1,3 @@
|
||||
# Admins
|
||||
* @comfyanonymous
|
||||
|
||||
# Note: Github teams syntax cannot be used here as the repo is not owned by Comfy-Org.
|
||||
# Inlined the team members for now.
|
||||
|
||||
# Maintainers
|
||||
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
|
||||
# Python web server
|
||||
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
|
||||
# Node developers
|
||||
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
|
||||
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
|
||||
* @kosinkadink
|
||||
|
||||
71
README.md
71
README.md
@@ -39,7 +39,7 @@ ComfyUI lets you design and execute advanced stable diffusion pipelines using a
|
||||
## Get Started
|
||||
|
||||
#### [Desktop Application](https://www.comfy.org/download)
|
||||
- The easiest way to get started.
|
||||
- The easiest way to get started.
|
||||
- Available on Windows & macOS.
|
||||
|
||||
#### [Windows Portable Package](#installing)
|
||||
@@ -55,7 +55,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
## Features
|
||||
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
|
||||
- Image Models
|
||||
- SD1.x, SD2.x,
|
||||
- SD1.x, SD2.x ([unCLIP](https://comfyanonymous.github.io/ComfyUI_examples/unclip/))
|
||||
- [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [SDXL Turbo](https://comfyanonymous.github.io/ComfyUI_examples/sdturbo/)
|
||||
- [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/)
|
||||
- [SD3 and SD3.5](https://comfyanonymous.github.io/ComfyUI_examples/sd3/)
|
||||
@@ -65,17 +65,20 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
|
||||
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
|
||||
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
|
||||
- [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
|
||||
- [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/)
|
||||
- [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/)
|
||||
- Image Editing Models
|
||||
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
|
||||
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
|
||||
- [HiDream E1.1](https://comfyanonymous.github.io/ComfyUI_examples/hidream/#hidream-e11)
|
||||
- [Qwen Image Edit](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/#edit-model)
|
||||
- Video Models
|
||||
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
|
||||
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
|
||||
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
|
||||
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
|
||||
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/) and [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
|
||||
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
|
||||
- [Wan 2.2](https://comfyanonymous.github.io/ComfyUI_examples/wan22/)
|
||||
- Audio Models
|
||||
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
@@ -83,9 +86,10 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
|
||||
- Asynchronous Queue system
|
||||
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
|
||||
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
|
||||
- Smart memory management: can automatically run large models on GPUs with as low as 1GB vram with smart offloading.
|
||||
- Works even if you don't have a GPU with: ```--cpu``` (slow)
|
||||
- Can load ckpt, safetensors and diffusers models/checkpoints. Standalone VAEs and CLIP models.
|
||||
- Can load ckpt and safetensors: All in one checkpoints or standalone diffusion models, VAEs and CLIP models.
|
||||
- Safe loading of ckpt, pt, pth, etc.. files.
|
||||
- Embeddings/Textual inversion
|
||||
- [Loras (regular, locon and loha)](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
|
||||
- [Hypernetworks](https://comfyanonymous.github.io/ComfyUI_examples/hypernetworks/)
|
||||
@@ -96,12 +100,10 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [Inpainting](https://comfyanonymous.github.io/ComfyUI_examples/inpaint/) with both regular and inpainting models.
|
||||
- [ControlNet and T2I-Adapter](https://comfyanonymous.github.io/ComfyUI_examples/controlnet/)
|
||||
- [Upscale Models (ESRGAN, ESRGAN variants, SwinIR, Swin2SR, etc...)](https://comfyanonymous.github.io/ComfyUI_examples/upscale_models/)
|
||||
- [unCLIP Models](https://comfyanonymous.github.io/ComfyUI_examples/unclip/)
|
||||
- [GLIGEN](https://comfyanonymous.github.io/ComfyUI_examples/gligen/)
|
||||
- [Model Merging](https://comfyanonymous.github.io/ComfyUI_examples/model_merging/)
|
||||
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
|
||||
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
|
||||
- Starts up very fast.
|
||||
- Works fully offline: core will never download anything unless you want to.
|
||||
- Optional API nodes to use paid models from external providers through the online [Comfy API](https://docs.comfy.org/tutorials/api-nodes/overview).
|
||||
- [Config file](extra_model_paths.yaml.example) to set the search paths for models.
|
||||
@@ -110,7 +112,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
|
||||
|
||||
## Release Process
|
||||
|
||||
ComfyUI follows a weekly release cycle every Friday, with three interconnected repositories:
|
||||
ComfyUI follows a weekly release cycle targeting Friday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
|
||||
|
||||
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
|
||||
- Releases a new stable version (e.g., v0.7.0)
|
||||
@@ -174,14 +176,16 @@ Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you
|
||||
|
||||
If you have trouble extracting it, right click the file -> properties -> unblock
|
||||
|
||||
#### Alternative Downloads:
|
||||
|
||||
[Experimental portable for AMD GPUs](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_amd.7z)
|
||||
|
||||
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z) (Supports Nvidia 10 series and older GPUs).
|
||||
|
||||
#### How do I share models between another UI and ComfyUI?
|
||||
|
||||
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
|
||||
|
||||
## Jupyter Notebook
|
||||
|
||||
To run it on services like paperspace, kaggle or colab you can use my [Jupyter Notebook](notebooks/comfyui_colab.ipynb)
|
||||
|
||||
|
||||
## [comfy-cli](https://docs.comfy.org/comfy-cli/getting-started)
|
||||
|
||||
@@ -193,7 +197,7 @@ comfy install
|
||||
|
||||
## Manual Install (Windows, Linux)
|
||||
|
||||
python 3.13 is supported but using 3.12 is recommended because some custom nodes and their dependencies might not support it yet.
|
||||
Python 3.13 is very well supported. If you have trouble with some custom node dependencies you can try 3.12
|
||||
|
||||
Git clone this repo.
|
||||
|
||||
@@ -205,7 +209,7 @@ Put your VAE in: models/vae
|
||||
### AMD GPUs (Linux only)
|
||||
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
|
||||
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.3```
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.4```
|
||||
|
||||
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements:
|
||||
|
||||
@@ -213,37 +217,29 @@ This is the command to install the nightly with ROCm 6.4 which might have some p
|
||||
|
||||
### Intel GPUs (Windows and Linux)
|
||||
|
||||
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip (currently available in PyTorch nightly builds). More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
|
||||
|
||||
1. To install PyTorch nightly, use the following command:
|
||||
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
|
||||
|
||||
1. To install PyTorch xpu, use the following command:
|
||||
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/xpu```
|
||||
|
||||
This is the command to install the Pytorch xpu nightly which might have some performance improvements:
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
|
||||
|
||||
2. Launch ComfyUI by running `python main.py`
|
||||
|
||||
|
||||
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
|
||||
|
||||
1. For Intel® Arc™ A-Series Graphics utilizing IPEX, create a conda environment and use the commands below:
|
||||
|
||||
```
|
||||
conda install libuv
|
||||
pip install torch==2.3.1.post0+cxx11.abi torchvision==0.18.1.post0+cxx11.abi torchaudio==2.3.1.post0+cxx11.abi intel-extension-for-pytorch==2.3.110.post0+xpu --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
|
||||
```
|
||||
|
||||
For other supported Intel GPUs with IPEX, visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
|
||||
|
||||
Additional discussion and help can be found [here](https://github.com/comfyanonymous/ComfyUI/discussions/476).
|
||||
1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
|
||||
|
||||
### NVIDIA
|
||||
|
||||
Nvidia users should install stable pytorch using this command:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128```
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu129```
|
||||
|
||||
This is the command to install pytorch nightly instead which might have performance improvements.
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu130```
|
||||
|
||||
#### Troubleshooting
|
||||
|
||||
@@ -297,6 +293,13 @@ For models compatible with Cambricon Extension for PyTorch (torch_mlu). Here's a
|
||||
2. Next, install the PyTorch(torch_mlu) following the instructions on the [Installation](https://www.cambricon.com/docs/sdk_1.15.0/cambricon_pytorch_1.17.0/user_guide_1.9/index.html)
|
||||
3. Launch ComfyUI by running `python main.py`
|
||||
|
||||
#### Iluvatar Corex
|
||||
|
||||
For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step guide tailored to your platform and installation method:
|
||||
|
||||
1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536)
|
||||
2. Launch ComfyUI by running `python main.py`
|
||||
|
||||
# Running
|
||||
|
||||
```python main.py```
|
||||
@@ -347,7 +350,7 @@ Generate a self-signed certificate (not appropriate for shared/production use) a
|
||||
|
||||
Use `--tls-keyfile key.pem --tls-certfile cert.pem` to enable TLS/SSL, the app will now be accessible with `https://...` instead of `http://...`.
|
||||
|
||||
> Note: Windows users can use [alexisrolland/docker-openssl](https://github.com/alexisrolland/docker-openssl) or one of the [3rd party binary distributions](https://wiki.openssl.org/index.php/Binaries) to run the command example above.
|
||||
> Note: Windows users can use [alexisrolland/docker-openssl](https://github.com/alexisrolland/docker-openssl) or one of the [3rd party binary distributions](https://wiki.openssl.org/index.php/Binaries) to run the command example above.
|
||||
<br/><br/>If you use a container, note that the volume mount `-v` can be a relative path so `... -v ".\:/openssl-certs" ...` would create the key & cert files in the current directory of your command prompt or powershell terminal.
|
||||
|
||||
## Support and dev channel
|
||||
|
||||
@@ -29,18 +29,50 @@ def frontend_install_warning_message():
|
||||
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
|
||||
""".strip()
|
||||
|
||||
def parse_version(version: str) -> tuple[int, int, int]:
|
||||
return tuple(map(int, version.split(".")))
|
||||
|
||||
def is_valid_version(version: str) -> bool:
|
||||
"""Validate if a string is a valid semantic version (X.Y.Z format)."""
|
||||
pattern = r"^(\d+)\.(\d+)\.(\d+)$"
|
||||
return bool(re.match(pattern, version))
|
||||
|
||||
def get_installed_frontend_version():
|
||||
"""Get the currently installed frontend package version."""
|
||||
frontend_version_str = version("comfyui-frontend-package")
|
||||
return frontend_version_str
|
||||
|
||||
|
||||
def get_required_frontend_version():
|
||||
"""Get the required frontend version from requirements.txt."""
|
||||
try:
|
||||
with open(requirements_path, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if line.startswith("comfyui-frontend-package=="):
|
||||
version_str = line.split("==")[-1]
|
||||
if not is_valid_version(version_str):
|
||||
logging.error(f"Invalid version format in requirements.txt: {version_str}")
|
||||
return None
|
||||
return version_str
|
||||
logging.error("comfyui-frontend-package not found in requirements.txt")
|
||||
return None
|
||||
except FileNotFoundError:
|
||||
logging.error("requirements.txt not found. Cannot determine required frontend version.")
|
||||
return None
|
||||
except Exception as e:
|
||||
logging.error(f"Error reading requirements.txt: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def check_frontend_version():
|
||||
"""Check if the frontend version is up to date."""
|
||||
|
||||
def parse_version(version: str) -> tuple[int, int, int]:
|
||||
return tuple(map(int, version.split(".")))
|
||||
|
||||
try:
|
||||
frontend_version_str = version("comfyui-frontend-package")
|
||||
frontend_version_str = get_installed_frontend_version()
|
||||
frontend_version = parse_version(frontend_version_str)
|
||||
with open(requirements_path, "r", encoding="utf-8") as f:
|
||||
required_frontend = parse_version(f.readline().split("=")[-1])
|
||||
required_frontend_str = get_required_frontend_version()
|
||||
required_frontend = parse_version(required_frontend_str)
|
||||
if frontend_version < required_frontend:
|
||||
app.logger.log_startup_warning(
|
||||
f"""
|
||||
@@ -168,6 +200,42 @@ def download_release_asset_zip(release: Release, destination_path: str) -> None:
|
||||
class FrontendManager:
|
||||
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
|
||||
|
||||
@classmethod
|
||||
def get_required_frontend_version(cls) -> str:
|
||||
"""Get the required frontend package version."""
|
||||
return get_required_frontend_version()
|
||||
|
||||
@classmethod
|
||||
def get_installed_templates_version(cls) -> str:
|
||||
"""Get the currently installed workflow templates package version."""
|
||||
try:
|
||||
templates_version_str = version("comfyui-workflow-templates")
|
||||
return templates_version_str
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def get_required_templates_version(cls) -> str:
|
||||
"""Get the required workflow templates version from requirements.txt."""
|
||||
try:
|
||||
with open(requirements_path, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if line.startswith("comfyui-workflow-templates=="):
|
||||
version_str = line.split("==")[-1]
|
||||
if not is_valid_version(version_str):
|
||||
logging.error(f"Invalid templates version format in requirements.txt: {version_str}")
|
||||
return None
|
||||
return version_str
|
||||
logging.error("comfyui-workflow-templates not found in requirements.txt")
|
||||
return None
|
||||
except FileNotFoundError:
|
||||
logging.error("requirements.txt not found. Cannot determine required templates version.")
|
||||
return None
|
||||
except Exception as e:
|
||||
logging.error(f"Error reading requirements.txt: {e}")
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def default_frontend_path(cls) -> str:
|
||||
try:
|
||||
|
||||
@@ -130,10 +130,21 @@ class ModelFileManager:
|
||||
|
||||
for file_name in filenames:
|
||||
try:
|
||||
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
|
||||
result.append(relative_path)
|
||||
except:
|
||||
logging.warning(f"Warning: Unable to access {file_name}. Skipping this file.")
|
||||
full_path = os.path.join(dirpath, file_name)
|
||||
relative_path = os.path.relpath(full_path, directory)
|
||||
|
||||
# Get file metadata
|
||||
file_info = {
|
||||
"name": relative_path,
|
||||
"pathIndex": pathIndex,
|
||||
"modified": os.path.getmtime(full_path), # Add modification time
|
||||
"created": os.path.getctime(full_path), # Add creation time
|
||||
"size": os.path.getsize(full_path) # Add file size
|
||||
}
|
||||
result.append(file_info)
|
||||
|
||||
except Exception as e:
|
||||
logging.warning(f"Warning: Unable to access {file_name}. Error: {e}. Skipping this file.")
|
||||
continue
|
||||
|
||||
for d in subdirs:
|
||||
@@ -144,7 +155,7 @@ class ModelFileManager:
|
||||
logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
|
||||
continue
|
||||
|
||||
return [{"name": f, "pathIndex": pathIndex} for f in result], dirs, time.perf_counter()
|
||||
return result, dirs, time.perf_counter()
|
||||
|
||||
def get_model_previews(self, filepath: str) -> list[str | BytesIO]:
|
||||
dirname = os.path.dirname(filepath)
|
||||
|
||||
@@ -20,13 +20,15 @@ class FileInfo(TypedDict):
|
||||
path: str
|
||||
size: int
|
||||
modified: int
|
||||
created: int
|
||||
|
||||
|
||||
def get_file_info(path: str, relative_to: str) -> FileInfo:
|
||||
return {
|
||||
"path": os.path.relpath(path, relative_to).replace(os.sep, '/'),
|
||||
"size": os.path.getsize(path),
|
||||
"modified": os.path.getmtime(path)
|
||||
"modified": os.path.getmtime(path),
|
||||
"created": os.path.getctime(path)
|
||||
}
|
||||
|
||||
|
||||
@@ -361,10 +363,17 @@ class UserManager():
|
||||
if not overwrite and os.path.exists(path):
|
||||
return web.Response(status=409, text="File already exists")
|
||||
|
||||
body = await request.read()
|
||||
try:
|
||||
body = await request.read()
|
||||
|
||||
with open(path, "wb") as f:
|
||||
f.write(body)
|
||||
with open(path, "wb") as f:
|
||||
f.write(body)
|
||||
except OSError as e:
|
||||
logging.warning(f"Error saving file '{path}': {e}")
|
||||
return web.Response(
|
||||
status=400,
|
||||
reason="Invalid filename. Please avoid special characters like :\\/*?\"<>|"
|
||||
)
|
||||
|
||||
user_path = self.get_request_user_filepath(request, None)
|
||||
if full_info:
|
||||
|
||||
91
comfy/audio_encoders/audio_encoders.py
Normal file
91
comfy/audio_encoders/audio_encoders.py
Normal file
@@ -0,0 +1,91 @@
|
||||
from .wav2vec2 import Wav2Vec2Model
|
||||
from .whisper import WhisperLargeV3
|
||||
import comfy.model_management
|
||||
import comfy.ops
|
||||
import comfy.utils
|
||||
import logging
|
||||
import torchaudio
|
||||
|
||||
|
||||
class AudioEncoderModel():
|
||||
def __init__(self, config):
|
||||
self.load_device = comfy.model_management.text_encoder_device()
|
||||
offload_device = comfy.model_management.text_encoder_offload_device()
|
||||
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
||||
model_type = config.pop("model_type")
|
||||
model_config = dict(config)
|
||||
model_config.update({
|
||||
"dtype": self.dtype,
|
||||
"device": offload_device,
|
||||
"operations": comfy.ops.manual_cast
|
||||
})
|
||||
|
||||
if model_type == "wav2vec2":
|
||||
self.model = Wav2Vec2Model(**model_config)
|
||||
elif model_type == "whisper3":
|
||||
self.model = WhisperLargeV3(**model_config)
|
||||
self.model.eval()
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
self.model_sample_rate = 16000
|
||||
|
||||
def load_sd(self, sd):
|
||||
return self.model.load_state_dict(sd, strict=False)
|
||||
|
||||
def get_sd(self):
|
||||
return self.model.state_dict()
|
||||
|
||||
def encode_audio(self, audio, sample_rate):
|
||||
comfy.model_management.load_model_gpu(self.patcher)
|
||||
audio = torchaudio.functional.resample(audio, sample_rate, self.model_sample_rate)
|
||||
out, all_layers = self.model(audio.to(self.load_device))
|
||||
outputs = {}
|
||||
outputs["encoded_audio"] = out
|
||||
outputs["encoded_audio_all_layers"] = all_layers
|
||||
outputs["audio_samples"] = audio.shape[2]
|
||||
return outputs
|
||||
|
||||
|
||||
def load_audio_encoder_from_sd(sd, prefix=""):
|
||||
sd = comfy.utils.state_dict_prefix_replace(sd, {"wav2vec2.": ""})
|
||||
if "encoder.layer_norm.bias" in sd: #wav2vec2
|
||||
embed_dim = sd["encoder.layer_norm.bias"].shape[0]
|
||||
if embed_dim == 1024:# large
|
||||
config = {
|
||||
"model_type": "wav2vec2",
|
||||
"embed_dim": 1024,
|
||||
"num_heads": 16,
|
||||
"num_layers": 24,
|
||||
"conv_norm": True,
|
||||
"conv_bias": True,
|
||||
"do_normalize": True,
|
||||
"do_stable_layer_norm": True
|
||||
}
|
||||
elif embed_dim == 768: # base
|
||||
config = {
|
||||
"model_type": "wav2vec2",
|
||||
"embed_dim": 768,
|
||||
"num_heads": 12,
|
||||
"num_layers": 12,
|
||||
"conv_norm": False,
|
||||
"conv_bias": False,
|
||||
"do_normalize": False, # chinese-wav2vec2-base has this False
|
||||
"do_stable_layer_norm": False
|
||||
}
|
||||
else:
|
||||
raise RuntimeError("ERROR: audio encoder file is invalid or unsupported embed_dim: {}".format(embed_dim))
|
||||
elif "model.encoder.embed_positions.weight" in sd:
|
||||
sd = comfy.utils.state_dict_prefix_replace(sd, {"model.": ""})
|
||||
config = {
|
||||
"model_type": "whisper3",
|
||||
}
|
||||
else:
|
||||
raise RuntimeError("ERROR: audio encoder not supported.")
|
||||
|
||||
audio_encoder = AudioEncoderModel(config)
|
||||
m, u = audio_encoder.load_sd(sd)
|
||||
if len(m) > 0:
|
||||
logging.warning("missing audio encoder: {}".format(m))
|
||||
if len(u) > 0:
|
||||
logging.warning("unexpected audio encoder: {}".format(u))
|
||||
|
||||
return audio_encoder
|
||||
252
comfy/audio_encoders/wav2vec2.py
Normal file
252
comfy/audio_encoders/wav2vec2.py
Normal file
@@ -0,0 +1,252 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
|
||||
|
||||
class LayerNormConv(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
|
||||
self.layer_norm = operations.LayerNorm(out_channels, elementwise_affine=True, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
return torch.nn.functional.gelu(self.layer_norm(x.transpose(-2, -1)).transpose(-2, -1))
|
||||
|
||||
class LayerGroupNormConv(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
|
||||
self.layer_norm = operations.GroupNorm(num_groups=out_channels, num_channels=out_channels, affine=True, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
return torch.nn.functional.gelu(self.layer_norm(x))
|
||||
|
||||
class ConvNoNorm(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
return torch.nn.functional.gelu(x)
|
||||
|
||||
|
||||
class ConvFeatureEncoder(nn.Module):
|
||||
def __init__(self, conv_dim, conv_bias=False, conv_norm=True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
if conv_norm:
|
||||
self.conv_layers = nn.ModuleList([
|
||||
LayerNormConv(1, conv_dim, kernel_size=10, stride=5, bias=True, device=device, dtype=dtype, operations=operations),
|
||||
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
])
|
||||
else:
|
||||
self.conv_layers = nn.ModuleList([
|
||||
LayerGroupNormConv(1, conv_dim, kernel_size=10, stride=5, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
ConvNoNorm(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
ConvNoNorm(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
|
||||
])
|
||||
|
||||
def forward(self, x):
|
||||
x = x.unsqueeze(1)
|
||||
|
||||
for conv in self.conv_layers:
|
||||
x = conv(x)
|
||||
|
||||
return x.transpose(1, 2)
|
||||
|
||||
|
||||
class FeatureProjection(nn.Module):
|
||||
def __init__(self, conv_dim, embed_dim, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.layer_norm = operations.LayerNorm(conv_dim, eps=1e-05, device=device, dtype=dtype)
|
||||
self.projection = operations.Linear(conv_dim, embed_dim, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.layer_norm(x)
|
||||
x = self.projection(x)
|
||||
return x
|
||||
|
||||
|
||||
class PositionalConvEmbedding(nn.Module):
|
||||
def __init__(self, embed_dim=768, kernel_size=128, groups=16):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv1d(
|
||||
embed_dim,
|
||||
embed_dim,
|
||||
kernel_size=kernel_size,
|
||||
padding=kernel_size // 2,
|
||||
groups=groups,
|
||||
)
|
||||
self.conv = torch.nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2)
|
||||
self.activation = nn.GELU()
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, 2)
|
||||
x = self.conv(x)[:, :, :-1]
|
||||
x = self.activation(x)
|
||||
x = x.transpose(1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim=768,
|
||||
num_heads=12,
|
||||
num_layers=12,
|
||||
mlp_ratio=4.0,
|
||||
do_stable_layer_norm=True,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.pos_conv_embed = PositionalConvEmbedding(embed_dim=embed_dim)
|
||||
self.layers = nn.ModuleList([
|
||||
TransformerEncoderLayer(
|
||||
embed_dim=embed_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
do_stable_layer_norm=do_stable_layer_norm,
|
||||
device=device, dtype=dtype, operations=operations
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
|
||||
self.layer_norm = operations.LayerNorm(embed_dim, eps=1e-05, device=device, dtype=dtype)
|
||||
self.do_stable_layer_norm = do_stable_layer_norm
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
x = x + self.pos_conv_embed(x)
|
||||
all_x = ()
|
||||
if not self.do_stable_layer_norm:
|
||||
x = self.layer_norm(x)
|
||||
for layer in self.layers:
|
||||
all_x += (x,)
|
||||
x = layer(x, mask)
|
||||
if self.do_stable_layer_norm:
|
||||
x = self.layer_norm(x)
|
||||
all_x += (x,)
|
||||
return x, all_x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, embed_dim, num_heads, bias=True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = embed_dim // num_heads
|
||||
|
||||
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
|
||||
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
|
||||
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
|
||||
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
assert (mask is None) # TODO?
|
||||
q = self.q_proj(x)
|
||||
k = self.k_proj(x)
|
||||
v = self.v_proj(x)
|
||||
|
||||
out = optimized_attention_masked(q, k, v, self.num_heads)
|
||||
return self.out_proj(out)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, embed_dim, mlp_ratio, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.intermediate_dense = operations.Linear(embed_dim, int(embed_dim * mlp_ratio), device=device, dtype=dtype)
|
||||
self.output_dense = operations.Linear(int(embed_dim * mlp_ratio), embed_dim, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.intermediate_dense(x)
|
||||
x = torch.nn.functional.gelu(x)
|
||||
x = self.output_dense(x)
|
||||
return x
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim=768,
|
||||
num_heads=12,
|
||||
mlp_ratio=4.0,
|
||||
do_stable_layer_norm=True,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.attention = Attention(embed_dim, num_heads, device=device, dtype=dtype, operations=operations)
|
||||
|
||||
self.layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
|
||||
self.feed_forward = FeedForward(embed_dim, mlp_ratio, device=device, dtype=dtype, operations=operations)
|
||||
self.final_layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
|
||||
self.do_stable_layer_norm = do_stable_layer_norm
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
residual = x
|
||||
if self.do_stable_layer_norm:
|
||||
x = self.layer_norm(x)
|
||||
x = self.attention(x, mask=mask)
|
||||
x = residual + x
|
||||
if not self.do_stable_layer_norm:
|
||||
x = self.layer_norm(x)
|
||||
return self.final_layer_norm(x + self.feed_forward(x))
|
||||
else:
|
||||
return x + self.feed_forward(self.final_layer_norm(x))
|
||||
|
||||
|
||||
class Wav2Vec2Model(nn.Module):
|
||||
"""Complete Wav2Vec 2.0 model."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim=1024,
|
||||
final_dim=256,
|
||||
num_heads=16,
|
||||
num_layers=24,
|
||||
conv_norm=True,
|
||||
conv_bias=True,
|
||||
do_normalize=True,
|
||||
do_stable_layer_norm=True,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
conv_dim = 512
|
||||
self.feature_extractor = ConvFeatureEncoder(conv_dim, conv_norm=conv_norm, conv_bias=conv_bias, device=device, dtype=dtype, operations=operations)
|
||||
self.feature_projection = FeatureProjection(conv_dim, embed_dim, device=device, dtype=dtype, operations=operations)
|
||||
|
||||
self.masked_spec_embed = nn.Parameter(torch.empty(embed_dim, device=device, dtype=dtype))
|
||||
self.do_normalize = do_normalize
|
||||
|
||||
self.encoder = TransformerEncoder(
|
||||
embed_dim=embed_dim,
|
||||
num_heads=num_heads,
|
||||
num_layers=num_layers,
|
||||
do_stable_layer_norm=do_stable_layer_norm,
|
||||
device=device, dtype=dtype, operations=operations
|
||||
)
|
||||
|
||||
def forward(self, x, mask_time_indices=None, return_dict=False):
|
||||
x = torch.mean(x, dim=1)
|
||||
|
||||
if self.do_normalize:
|
||||
x = (x - x.mean()) / torch.sqrt(x.var() + 1e-7)
|
||||
|
||||
features = self.feature_extractor(x)
|
||||
features = self.feature_projection(features)
|
||||
batch_size, seq_len, _ = features.shape
|
||||
|
||||
x, all_x = self.encoder(features)
|
||||
return x, all_x
|
||||
186
comfy/audio_encoders/whisper.py
Executable file
186
comfy/audio_encoders/whisper.py
Executable file
@@ -0,0 +1,186 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from typing import Optional
|
||||
from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
import comfy.ops
|
||||
|
||||
class WhisperFeatureExtractor(nn.Module):
|
||||
def __init__(self, n_mels=128, device=None):
|
||||
super().__init__()
|
||||
self.sample_rate = 16000
|
||||
self.n_fft = 400
|
||||
self.hop_length = 160
|
||||
self.n_mels = n_mels
|
||||
self.chunk_length = 30
|
||||
self.n_samples = 480000
|
||||
|
||||
self.mel_spectrogram = torchaudio.transforms.MelSpectrogram(
|
||||
sample_rate=self.sample_rate,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mels,
|
||||
f_min=0,
|
||||
f_max=8000,
|
||||
norm="slaney",
|
||||
mel_scale="slaney",
|
||||
).to(device)
|
||||
|
||||
def __call__(self, audio):
|
||||
audio = torch.mean(audio, dim=1)
|
||||
batch_size = audio.shape[0]
|
||||
processed_audio = []
|
||||
|
||||
for i in range(batch_size):
|
||||
aud = audio[i]
|
||||
if aud.shape[0] > self.n_samples:
|
||||
aud = aud[:self.n_samples]
|
||||
elif aud.shape[0] < self.n_samples:
|
||||
aud = F.pad(aud, (0, self.n_samples - aud.shape[0]))
|
||||
processed_audio.append(aud)
|
||||
|
||||
audio = torch.stack(processed_audio)
|
||||
|
||||
mel_spec = self.mel_spectrogram(audio.to(self.mel_spectrogram.spectrogram.window.device))[:, :, :-1].to(audio.device)
|
||||
|
||||
log_mel_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
||||
log_mel_spec = torch.maximum(log_mel_spec, log_mel_spec.max() - 8.0)
|
||||
log_mel_spec = (log_mel_spec + 4.0) / 4.0
|
||||
|
||||
return log_mel_spec
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, d_model: int, n_heads: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
assert d_model % n_heads == 0
|
||||
|
||||
self.d_model = d_model
|
||||
self.n_heads = n_heads
|
||||
self.d_k = d_model // n_heads
|
||||
|
||||
self.q_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
|
||||
self.k_proj = operations.Linear(d_model, d_model, bias=False, dtype=dtype, device=device)
|
||||
self.v_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
|
||||
self.out_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
batch_size, seq_len, _ = query.shape
|
||||
|
||||
q = self.q_proj(query)
|
||||
k = self.k_proj(key)
|
||||
v = self.v_proj(value)
|
||||
|
||||
attn_output = optimized_attention_masked(q, k, v, self.n_heads, mask)
|
||||
attn_output = self.out_proj(attn_output)
|
||||
|
||||
return attn_output
|
||||
|
||||
|
||||
class EncoderLayer(nn.Module):
|
||||
def __init__(self, d_model: int, n_heads: int, d_ff: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
self.self_attn = MultiHeadAttention(d_model, n_heads, dtype=dtype, device=device, operations=operations)
|
||||
self.self_attn_layer_norm = operations.LayerNorm(d_model, dtype=dtype, device=device)
|
||||
|
||||
self.fc1 = operations.Linear(d_model, d_ff, dtype=dtype, device=device)
|
||||
self.fc2 = operations.Linear(d_ff, d_model, dtype=dtype, device=device)
|
||||
self.final_layer_norm = operations.LayerNorm(d_model, dtype=dtype, device=device)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None
|
||||
) -> torch.Tensor:
|
||||
residual = x
|
||||
x = self.self_attn_layer_norm(x)
|
||||
x = self.self_attn(x, x, x, attention_mask)
|
||||
x = residual + x
|
||||
|
||||
residual = x
|
||||
x = self.final_layer_norm(x)
|
||||
x = self.fc1(x)
|
||||
x = F.gelu(x)
|
||||
x = self.fc2(x)
|
||||
x = residual + x
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class AudioEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
n_mels: int = 128,
|
||||
n_ctx: int = 1500,
|
||||
n_state: int = 1280,
|
||||
n_head: int = 20,
|
||||
n_layer: int = 32,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.conv1 = operations.Conv1d(n_mels, n_state, kernel_size=3, padding=1, dtype=dtype, device=device)
|
||||
self.conv2 = operations.Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1, dtype=dtype, device=device)
|
||||
|
||||
self.embed_positions = operations.Embedding(n_ctx, n_state, dtype=dtype, device=device)
|
||||
|
||||
self.layers = nn.ModuleList([
|
||||
EncoderLayer(n_state, n_head, n_state * 4, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(n_layer)
|
||||
])
|
||||
|
||||
self.layer_norm = operations.LayerNorm(n_state, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = F.gelu(self.conv1(x))
|
||||
x = F.gelu(self.conv2(x))
|
||||
|
||||
x = x.transpose(1, 2)
|
||||
|
||||
x = x + comfy.ops.cast_to_input(self.embed_positions.weight[:, :x.shape[1]], x)
|
||||
|
||||
all_x = ()
|
||||
for layer in self.layers:
|
||||
all_x += (x,)
|
||||
x = layer(x)
|
||||
|
||||
x = self.layer_norm(x)
|
||||
all_x += (x,)
|
||||
return x, all_x
|
||||
|
||||
|
||||
class WhisperLargeV3(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
n_mels: int = 128,
|
||||
n_audio_ctx: int = 1500,
|
||||
n_audio_state: int = 1280,
|
||||
n_audio_head: int = 20,
|
||||
n_audio_layer: int = 32,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.feature_extractor = WhisperFeatureExtractor(n_mels=n_mels, device=device)
|
||||
|
||||
self.encoder = AudioEncoder(
|
||||
n_mels, n_audio_ctx, n_audio_state, n_audio_head, n_audio_layer,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def forward(self, audio):
|
||||
mel = self.feature_extractor(audio)
|
||||
x, all_x = self.encoder(mel)
|
||||
return x, all_x
|
||||
@@ -49,7 +49,8 @@ parser.add_argument("--temp-directory", type=str, default=None, help="Set the Co
|
||||
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
|
||||
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
||||
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
||||
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
||||
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use. All other devices will not be visible.")
|
||||
parser.add_argument("--default-device", type=int, default=None, metavar="DEFAULT_DEVICE_ID", help="Set the id of the default device, all other devices will stay visible.")
|
||||
cm_group = parser.add_mutually_exclusive_group()
|
||||
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
||||
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
||||
@@ -131,6 +132,8 @@ parser.add_argument("--reserve-vram", type=float, default=None, help="Set the am
|
||||
|
||||
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
|
||||
|
||||
parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.")
|
||||
|
||||
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
||||
|
||||
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
||||
@@ -140,10 +143,12 @@ class PerformanceFeature(enum.Enum):
|
||||
Fp16Accumulation = "fp16_accumulation"
|
||||
Fp8MatrixMultiplication = "fp8_matrix_mult"
|
||||
CublasOps = "cublas_ops"
|
||||
AutoTune = "autotune"
|
||||
|
||||
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
|
||||
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
|
||||
|
||||
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
|
||||
parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")
|
||||
|
||||
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
||||
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
||||
|
||||
@@ -61,8 +61,12 @@ class CLIPEncoder(torch.nn.Module):
|
||||
def forward(self, x, mask=None, intermediate_output=None):
|
||||
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
||||
|
||||
all_intermediate = None
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
if intermediate_output == "all":
|
||||
all_intermediate = []
|
||||
intermediate_output = None
|
||||
elif intermediate_output < 0:
|
||||
intermediate_output = len(self.layers) + intermediate_output
|
||||
|
||||
intermediate = None
|
||||
@@ -70,6 +74,12 @@ class CLIPEncoder(torch.nn.Module):
|
||||
x = l(x, mask, optimized_attention)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
if all_intermediate is not None:
|
||||
all_intermediate.append(x.unsqueeze(1).clone())
|
||||
|
||||
if all_intermediate is not None:
|
||||
intermediate = torch.cat(all_intermediate, dim=1)
|
||||
|
||||
return x, intermediate
|
||||
|
||||
class CLIPEmbeddings(torch.nn.Module):
|
||||
@@ -97,7 +107,7 @@ class CLIPTextModel_(torch.nn.Module):
|
||||
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
|
||||
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32, embeds_info=[]):
|
||||
if embeds is not None:
|
||||
x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
|
||||
else:
|
||||
|
||||
@@ -50,7 +50,13 @@ class ClipVisionModel():
|
||||
self.image_size = config.get("image_size", 224)
|
||||
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
|
||||
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
|
||||
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
|
||||
model_type = config.get("model_type", "clip_vision_model")
|
||||
model_class = IMAGE_ENCODERS.get(model_type)
|
||||
if model_type == "siglip_vision_model":
|
||||
self.return_all_hidden_states = True
|
||||
else:
|
||||
self.return_all_hidden_states = False
|
||||
|
||||
self.load_device = comfy.model_management.text_encoder_device()
|
||||
offload_device = comfy.model_management.text_encoder_offload_device()
|
||||
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
||||
@@ -68,12 +74,18 @@ class ClipVisionModel():
|
||||
def encode_image(self, image, crop=True):
|
||||
comfy.model_management.load_model_gpu(self.patcher)
|
||||
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
||||
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
||||
out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2)
|
||||
|
||||
outputs = Output()
|
||||
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
|
||||
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
|
||||
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
|
||||
if self.return_all_hidden_states:
|
||||
all_hs = out[1].to(comfy.model_management.intermediate_device())
|
||||
outputs["penultimate_hidden_states"] = all_hs[:, -2]
|
||||
outputs["all_hidden_states"] = all_hs
|
||||
else:
|
||||
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
|
||||
|
||||
outputs["mm_projected"] = out[3]
|
||||
return outputs
|
||||
|
||||
@@ -124,8 +136,12 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
|
||||
else:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
||||
elif "embeddings.patch_embeddings.projection.weight" in sd:
|
||||
|
||||
# Dinov2
|
||||
elif 'encoder.layer.39.layer_scale2.lambda1' in sd:
|
||||
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
|
||||
elif 'encoder.layer.23.layer_scale2.lambda1' in sd:
|
||||
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_large.json")
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import math
|
||||
import comfy.utils
|
||||
import logging
|
||||
|
||||
|
||||
class CONDRegular:
|
||||
@@ -10,12 +11,15 @@ class CONDRegular:
|
||||
def _copy_with(self, cond):
|
||||
return self.__class__(cond)
|
||||
|
||||
def process_cond(self, batch_size, device, **kwargs):
|
||||
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
|
||||
def process_cond(self, batch_size, **kwargs):
|
||||
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size))
|
||||
|
||||
def can_concat(self, other):
|
||||
if self.cond.shape != other.cond.shape:
|
||||
return False
|
||||
if self.cond.device != other.cond.device:
|
||||
logging.warning("WARNING: conds not on same device, skipping concat.")
|
||||
return False
|
||||
return True
|
||||
|
||||
def concat(self, others):
|
||||
@@ -29,14 +33,14 @@ class CONDRegular:
|
||||
|
||||
|
||||
class CONDNoiseShape(CONDRegular):
|
||||
def process_cond(self, batch_size, device, area, **kwargs):
|
||||
def process_cond(self, batch_size, area, **kwargs):
|
||||
data = self.cond
|
||||
if area is not None:
|
||||
dims = len(area) // 2
|
||||
for i in range(dims):
|
||||
data = data.narrow(i + 2, area[i + dims], area[i])
|
||||
|
||||
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
|
||||
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size))
|
||||
|
||||
|
||||
class CONDCrossAttn(CONDRegular):
|
||||
@@ -51,6 +55,9 @@ class CONDCrossAttn(CONDRegular):
|
||||
diff = mult_min // min(s1[1], s2[1])
|
||||
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
|
||||
return False
|
||||
if self.cond.device != other.cond.device:
|
||||
logging.warning("WARNING: conds not on same device: skipping concat.")
|
||||
return False
|
||||
return True
|
||||
|
||||
def concat(self, others):
|
||||
@@ -73,7 +80,7 @@ class CONDConstant(CONDRegular):
|
||||
def __init__(self, cond):
|
||||
self.cond = cond
|
||||
|
||||
def process_cond(self, batch_size, device, **kwargs):
|
||||
def process_cond(self, batch_size, **kwargs):
|
||||
return self._copy_with(self.cond)
|
||||
|
||||
def can_concat(self, other):
|
||||
@@ -92,10 +99,10 @@ class CONDList(CONDRegular):
|
||||
def __init__(self, cond):
|
||||
self.cond = cond
|
||||
|
||||
def process_cond(self, batch_size, device, **kwargs):
|
||||
def process_cond(self, batch_size, **kwargs):
|
||||
out = []
|
||||
for c in self.cond:
|
||||
out.append(comfy.utils.repeat_to_batch_size(c, batch_size).to(device))
|
||||
out.append(comfy.utils.repeat_to_batch_size(c, batch_size))
|
||||
|
||||
return self._copy_with(out)
|
||||
|
||||
|
||||
540
comfy/context_windows.py
Normal file
540
comfy/context_windows.py
Normal file
@@ -0,0 +1,540 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING, Callable
|
||||
import torch
|
||||
import numpy as np
|
||||
import collections
|
||||
from dataclasses import dataclass
|
||||
from abc import ABC, abstractmethod
|
||||
import logging
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
if TYPE_CHECKING:
|
||||
from comfy.model_base import BaseModel
|
||||
from comfy.model_patcher import ModelPatcher
|
||||
from comfy.controlnet import ControlBase
|
||||
|
||||
|
||||
class ContextWindowABC(ABC):
|
||||
def __init__(self):
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def get_tensor(self, full: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Get torch.Tensor applicable to current window.
|
||||
"""
|
||||
raise NotImplementedError("Not implemented.")
|
||||
|
||||
@abstractmethod
|
||||
def add_window(self, full: torch.Tensor, to_add: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Apply torch.Tensor of window to the full tensor, in place. Returns reference to updated full tensor, not a copy.
|
||||
"""
|
||||
raise NotImplementedError("Not implemented.")
|
||||
|
||||
class ContextHandlerABC(ABC):
|
||||
def __init__(self):
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
|
||||
raise NotImplementedError("Not implemented.")
|
||||
|
||||
@abstractmethod
|
||||
def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: ContextWindowABC, device=None) -> list:
|
||||
raise NotImplementedError("Not implemented.")
|
||||
|
||||
@abstractmethod
|
||||
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
|
||||
raise NotImplementedError("Not implemented.")
|
||||
|
||||
|
||||
|
||||
class IndexListContextWindow(ContextWindowABC):
|
||||
def __init__(self, index_list: list[int], dim: int=0):
|
||||
self.index_list = index_list
|
||||
self.context_length = len(index_list)
|
||||
self.dim = dim
|
||||
|
||||
def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor:
|
||||
if dim is None:
|
||||
dim = self.dim
|
||||
if dim == 0 and full.shape[dim] == 1:
|
||||
return full
|
||||
idx = [slice(None)] * dim + [self.index_list]
|
||||
return full[idx].to(device)
|
||||
|
||||
def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor:
|
||||
if dim is None:
|
||||
dim = self.dim
|
||||
idx = [slice(None)] * dim + [self.index_list]
|
||||
full[idx] += to_add
|
||||
return full
|
||||
|
||||
|
||||
class IndexListCallbacks:
|
||||
EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows"
|
||||
COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results"
|
||||
EXECUTE_START = "execute_start"
|
||||
EXECUTE_CLEANUP = "execute_cleanup"
|
||||
|
||||
def init_callbacks(self):
|
||||
return {}
|
||||
|
||||
|
||||
@dataclass
|
||||
class ContextSchedule:
|
||||
name: str
|
||||
func: Callable
|
||||
|
||||
@dataclass
|
||||
class ContextFuseMethod:
|
||||
name: str
|
||||
func: Callable
|
||||
|
||||
ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window'])
|
||||
class IndexListContextHandler(ContextHandlerABC):
|
||||
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0):
|
||||
self.context_schedule = context_schedule
|
||||
self.fuse_method = fuse_method
|
||||
self.context_length = context_length
|
||||
self.context_overlap = context_overlap
|
||||
self.context_stride = context_stride
|
||||
self.closed_loop = closed_loop
|
||||
self.dim = dim
|
||||
self._step = 0
|
||||
|
||||
self.callbacks = {}
|
||||
|
||||
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
|
||||
# for now, assume first dim is batch - should have stored on BaseModel in actual implementation
|
||||
if x_in.size(self.dim) > self.context_length:
|
||||
logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.")
|
||||
return True
|
||||
return False
|
||||
|
||||
def prepare_control_objects(self, control: ControlBase, device=None) -> ControlBase:
|
||||
if control.previous_controlnet is not None:
|
||||
self.prepare_control_objects(control.previous_controlnet, device)
|
||||
return control
|
||||
|
||||
def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: IndexListContextWindow, device=None) -> list:
|
||||
if cond_in is None:
|
||||
return None
|
||||
# reuse or resize cond items to match context requirements
|
||||
resized_cond = []
|
||||
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
|
||||
for actual_cond in cond_in:
|
||||
resized_actual_cond = actual_cond.copy()
|
||||
# now we are in the inner dict - "pooled_output" is a tensor, "control" is a ControlBase object, "model_conds" is dictionary
|
||||
for key in actual_cond:
|
||||
try:
|
||||
cond_item = actual_cond[key]
|
||||
if isinstance(cond_item, torch.Tensor):
|
||||
# check that tensor is the expected length - x.size(0)
|
||||
if self.dim < cond_item.ndim and cond_item.size(self.dim) == x_in.size(self.dim):
|
||||
# if so, it's subsetting time - tell controls the expected indeces so they can handle them
|
||||
actual_cond_item = window.get_tensor(cond_item)
|
||||
resized_actual_cond[key] = actual_cond_item.to(device)
|
||||
else:
|
||||
resized_actual_cond[key] = cond_item.to(device)
|
||||
# look for control
|
||||
elif key == "control":
|
||||
resized_actual_cond[key] = self.prepare_control_objects(cond_item, device)
|
||||
elif isinstance(cond_item, dict):
|
||||
new_cond_item = cond_item.copy()
|
||||
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
|
||||
for cond_key, cond_value in new_cond_item.items():
|
||||
if isinstance(cond_value, torch.Tensor):
|
||||
if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
|
||||
new_cond_item[cond_key] = window.get_tensor(cond_value, device)
|
||||
# if has cond that is a Tensor, check if needs to be subset
|
||||
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
|
||||
if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
|
||||
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
|
||||
elif cond_key == "num_video_frames": # for SVD
|
||||
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
|
||||
new_cond_item[cond_key].cond = window.context_length
|
||||
resized_actual_cond[key] = new_cond_item
|
||||
else:
|
||||
resized_actual_cond[key] = cond_item
|
||||
finally:
|
||||
del cond_item # just in case to prevent VRAM issues
|
||||
resized_cond.append(resized_actual_cond)
|
||||
return resized_cond
|
||||
|
||||
def set_step(self, timestep: torch.Tensor, model_options: dict[str]):
|
||||
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001)
|
||||
matches = torch.nonzero(mask)
|
||||
if torch.numel(matches) == 0:
|
||||
raise Exception("No sample_sigmas matched current timestep; something went wrong.")
|
||||
self._step = int(matches[0].item())
|
||||
|
||||
def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]:
|
||||
full_length = x_in.size(self.dim) # TODO: choose dim based on model
|
||||
context_windows = self.context_schedule.func(full_length, self, model_options)
|
||||
context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows]
|
||||
return context_windows
|
||||
|
||||
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
|
||||
self.set_step(timestep, model_options)
|
||||
context_windows = self.get_context_windows(model, x_in, model_options)
|
||||
enumerated_context_windows = list(enumerate(context_windows))
|
||||
|
||||
conds_final = [torch.zeros_like(x_in) for _ in conds]
|
||||
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
|
||||
counts_final = [torch.ones(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
|
||||
else:
|
||||
counts_final = [torch.zeros(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
|
||||
biases_final = [([0.0] * x_in.shape[self.dim]) for _ in conds]
|
||||
|
||||
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_START, self.callbacks):
|
||||
callback(self, model, x_in, conds, timestep, model_options)
|
||||
|
||||
for enum_window in enumerated_context_windows:
|
||||
results = self.evaluate_context_windows(calc_cond_batch, model, x_in, conds, timestep, [enum_window], model_options)
|
||||
for result in results:
|
||||
self.combine_context_window_results(x_in, result.sub_conds_out, result.sub_conds, result.window, result.window_idx, len(enumerated_context_windows), timestep,
|
||||
conds_final, counts_final, biases_final)
|
||||
try:
|
||||
# finalize conds
|
||||
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
|
||||
# relative is already normalized, so return as is
|
||||
del counts_final
|
||||
return conds_final
|
||||
else:
|
||||
# normalize conds via division by context usage counts
|
||||
for i in range(len(conds_final)):
|
||||
conds_final[i] /= counts_final[i]
|
||||
del counts_final
|
||||
return conds_final
|
||||
finally:
|
||||
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_CLEANUP, self.callbacks):
|
||||
callback(self, model, x_in, conds, timestep, model_options)
|
||||
|
||||
def evaluate_context_windows(self, calc_cond_batch: Callable, model: BaseModel, x_in: torch.Tensor, conds, timestep: torch.Tensor, enumerated_context_windows: list[tuple[int, IndexListContextWindow]],
|
||||
model_options, device=None, first_device=None):
|
||||
results: list[ContextResults] = []
|
||||
for window_idx, window in enumerated_context_windows:
|
||||
# allow processing to end between context window executions for faster Cancel
|
||||
comfy.model_management.throw_exception_if_processing_interrupted()
|
||||
|
||||
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EVALUATE_CONTEXT_WINDOWS, self.callbacks):
|
||||
callback(self, model, x_in, conds, timestep, model_options, window_idx, window, model_options, device, first_device)
|
||||
|
||||
# update exposed params
|
||||
model_options["transformer_options"]["context_window"] = window
|
||||
# get subsections of x, timestep, conds
|
||||
sub_x = window.get_tensor(x_in, device)
|
||||
sub_timestep = window.get_tensor(timestep, device, dim=0)
|
||||
sub_conds = [self.get_resized_cond(cond, x_in, window, device) for cond in conds]
|
||||
|
||||
sub_conds_out = calc_cond_batch(model, sub_conds, sub_x, sub_timestep, model_options)
|
||||
if device is not None:
|
||||
for i in range(len(sub_conds_out)):
|
||||
sub_conds_out[i] = sub_conds_out[i].to(x_in.device)
|
||||
results.append(ContextResults(window_idx, sub_conds_out, sub_conds, window))
|
||||
return results
|
||||
|
||||
|
||||
def combine_context_window_results(self, x_in: torch.Tensor, sub_conds_out, sub_conds, window: IndexListContextWindow, window_idx: int, total_windows: int, timestep: torch.Tensor,
|
||||
conds_final: list[torch.Tensor], counts_final: list[torch.Tensor], biases_final: list[torch.Tensor]):
|
||||
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
|
||||
for pos, idx in enumerate(window.index_list):
|
||||
# bias is the influence of a specific index in relation to the whole context window
|
||||
bias = 1 - abs(idx - (window.index_list[0] + window.index_list[-1]) / 2) / ((window.index_list[-1] - window.index_list[0] + 1e-2) / 2)
|
||||
bias = max(1e-2, bias)
|
||||
# take weighted average relative to total bias of current idx
|
||||
for i in range(len(sub_conds_out)):
|
||||
bias_total = biases_final[i][idx]
|
||||
prev_weight = (bias_total / (bias_total + bias))
|
||||
new_weight = (bias / (bias_total + bias))
|
||||
# account for dims of tensors
|
||||
idx_window = [slice(None)] * self.dim + [idx]
|
||||
pos_window = [slice(None)] * self.dim + [pos]
|
||||
# apply new values
|
||||
conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight
|
||||
biases_final[i][idx] = bias_total + bias
|
||||
else:
|
||||
# add conds and counts based on weights of fuse method
|
||||
weights = get_context_weights(window.context_length, x_in.shape[self.dim], window.index_list, self, sigma=timestep)
|
||||
weights_tensor = match_weights_to_dim(weights, x_in, self.dim, device=x_in.device)
|
||||
for i in range(len(sub_conds_out)):
|
||||
window.add_window(conds_final[i], sub_conds_out[i] * weights_tensor)
|
||||
window.add_window(counts_final[i], weights_tensor)
|
||||
|
||||
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.COMBINE_CONTEXT_WINDOW_RESULTS, self.callbacks):
|
||||
callback(self, x_in, sub_conds_out, sub_conds, window, window_idx, total_windows, timestep, conds_final, counts_final, biases_final)
|
||||
|
||||
|
||||
def _prepare_sampling_wrapper(executor, model, noise_shape: torch.Tensor, *args, **kwargs):
|
||||
# limit noise_shape length to context_length for more accurate vram use estimation
|
||||
model_options = kwargs.get("model_options", None)
|
||||
if model_options is None:
|
||||
raise Exception("model_options not found in prepare_sampling_wrapper; this should never happen, something went wrong.")
|
||||
handler: IndexListContextHandler = model_options.get("context_handler", None)
|
||||
if handler is not None:
|
||||
noise_shape = list(noise_shape)
|
||||
noise_shape[handler.dim] = min(noise_shape[handler.dim], handler.context_length)
|
||||
return executor(model, noise_shape, *args, **kwargs)
|
||||
|
||||
|
||||
def create_prepare_sampling_wrapper(model: ModelPatcher):
|
||||
model.add_wrapper_with_key(
|
||||
comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING,
|
||||
"ContextWindows_prepare_sampling",
|
||||
_prepare_sampling_wrapper
|
||||
)
|
||||
|
||||
|
||||
def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor:
|
||||
total_dims = len(x_in.shape)
|
||||
weights_tensor = torch.Tensor(weights).to(device=device)
|
||||
for _ in range(dim):
|
||||
weights_tensor = weights_tensor.unsqueeze(0)
|
||||
for _ in range(total_dims - dim - 1):
|
||||
weights_tensor = weights_tensor.unsqueeze(-1)
|
||||
return weights_tensor
|
||||
|
||||
def get_shape_for_dim(x_in: torch.Tensor, dim: int) -> list[int]:
|
||||
total_dims = len(x_in.shape)
|
||||
shape = []
|
||||
for _ in range(dim):
|
||||
shape.append(1)
|
||||
shape.append(x_in.shape[dim])
|
||||
for _ in range(total_dims - dim - 1):
|
||||
shape.append(1)
|
||||
return shape
|
||||
|
||||
class ContextSchedules:
|
||||
UNIFORM_LOOPED = "looped_uniform"
|
||||
UNIFORM_STANDARD = "standard_uniform"
|
||||
STATIC_STANDARD = "standard_static"
|
||||
BATCHED = "batched"
|
||||
|
||||
|
||||
# from https://github.com/neggles/animatediff-cli/blob/main/src/animatediff/pipelines/context.py
|
||||
def create_windows_uniform_looped(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
|
||||
windows = []
|
||||
if num_frames < handler.context_length:
|
||||
windows.append(list(range(num_frames)))
|
||||
return windows
|
||||
|
||||
context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
|
||||
# obtain uniform windows as normal, looping and all
|
||||
for context_step in 1 << np.arange(context_stride):
|
||||
pad = int(round(num_frames * ordered_halving(handler._step)))
|
||||
for j in range(
|
||||
int(ordered_halving(handler._step) * context_step) + pad,
|
||||
num_frames + pad + (0 if handler.closed_loop else -handler.context_overlap),
|
||||
(handler.context_length * context_step - handler.context_overlap),
|
||||
):
|
||||
windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])
|
||||
|
||||
return windows
|
||||
|
||||
def create_windows_uniform_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
|
||||
# unlike looped, uniform_straight does NOT allow windows that loop back to the beginning;
|
||||
# instead, they get shifted to the corresponding end of the frames.
|
||||
# in the case that a window (shifted or not) is identical to the previous one, it gets skipped.
|
||||
windows = []
|
||||
if num_frames <= handler.context_length:
|
||||
windows.append(list(range(num_frames)))
|
||||
return windows
|
||||
|
||||
context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
|
||||
# first, obtain uniform windows as normal, looping and all
|
||||
for context_step in 1 << np.arange(context_stride):
|
||||
pad = int(round(num_frames * ordered_halving(handler._step)))
|
||||
for j in range(
|
||||
int(ordered_halving(handler._step) * context_step) + pad,
|
||||
num_frames + pad + (-handler.context_overlap),
|
||||
(handler.context_length * context_step - handler.context_overlap),
|
||||
):
|
||||
windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])
|
||||
|
||||
# now that windows are created, shift any windows that loop, and delete duplicate windows
|
||||
delete_idxs = []
|
||||
win_i = 0
|
||||
while win_i < len(windows):
|
||||
# if window is rolls over itself, need to shift it
|
||||
is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
|
||||
if is_roll:
|
||||
roll_val = windows[win_i][roll_idx] # roll_val might not be 0 for windows of higher strides
|
||||
shift_window_to_end(windows[win_i], num_frames=num_frames)
|
||||
# check if next window (cyclical) is missing roll_val
|
||||
if roll_val not in windows[(win_i+1) % len(windows)]:
|
||||
# need to insert new window here - just insert window starting at roll_val
|
||||
windows.insert(win_i+1, list(range(roll_val, roll_val + handler.context_length)))
|
||||
# delete window if it's not unique
|
||||
for pre_i in range(0, win_i):
|
||||
if windows[win_i] == windows[pre_i]:
|
||||
delete_idxs.append(win_i)
|
||||
break
|
||||
win_i += 1
|
||||
|
||||
# reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
|
||||
delete_idxs.reverse()
|
||||
for i in delete_idxs:
|
||||
windows.pop(i)
|
||||
|
||||
return windows
|
||||
|
||||
|
||||
def create_windows_static_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
|
||||
windows = []
|
||||
if num_frames <= handler.context_length:
|
||||
windows.append(list(range(num_frames)))
|
||||
return windows
|
||||
# always return the same set of windows
|
||||
delta = handler.context_length - handler.context_overlap
|
||||
for start_idx in range(0, num_frames, delta):
|
||||
# if past the end of frames, move start_idx back to allow same context_length
|
||||
ending = start_idx + handler.context_length
|
||||
if ending >= num_frames:
|
||||
final_delta = ending - num_frames
|
||||
final_start_idx = start_idx - final_delta
|
||||
windows.append(list(range(final_start_idx, final_start_idx + handler.context_length)))
|
||||
break
|
||||
windows.append(list(range(start_idx, start_idx + handler.context_length)))
|
||||
return windows
|
||||
|
||||
|
||||
def create_windows_batched(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
|
||||
windows = []
|
||||
if num_frames <= handler.context_length:
|
||||
windows.append(list(range(num_frames)))
|
||||
return windows
|
||||
# always return the same set of windows;
|
||||
# no overlap, just cut up based on context_length;
|
||||
# last window size will be different if num_frames % opts.context_length != 0
|
||||
for start_idx in range(0, num_frames, handler.context_length):
|
||||
windows.append(list(range(start_idx, min(start_idx + handler.context_length, num_frames))))
|
||||
return windows
|
||||
|
||||
|
||||
def create_windows_default(num_frames: int, handler: IndexListContextHandler):
|
||||
return [list(range(num_frames))]
|
||||
|
||||
|
||||
CONTEXT_MAPPING = {
|
||||
ContextSchedules.UNIFORM_LOOPED: create_windows_uniform_looped,
|
||||
ContextSchedules.UNIFORM_STANDARD: create_windows_uniform_standard,
|
||||
ContextSchedules.STATIC_STANDARD: create_windows_static_standard,
|
||||
ContextSchedules.BATCHED: create_windows_batched,
|
||||
}
|
||||
|
||||
|
||||
def get_matching_context_schedule(context_schedule: str) -> ContextSchedule:
|
||||
func = CONTEXT_MAPPING.get(context_schedule, None)
|
||||
if func is None:
|
||||
raise ValueError(f"Unknown context_schedule '{context_schedule}'.")
|
||||
return ContextSchedule(context_schedule, func)
|
||||
|
||||
|
||||
def get_context_weights(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, sigma: torch.Tensor=None):
|
||||
return handler.fuse_method.func(length, sigma=sigma, handler=handler, full_length=full_length, idxs=idxs)
|
||||
|
||||
|
||||
def create_weights_flat(length: int, **kwargs) -> list[float]:
|
||||
# weight is the same for all
|
||||
return [1.0] * length
|
||||
|
||||
def create_weights_pyramid(length: int, **kwargs) -> list[float]:
|
||||
# weight is based on the distance away from the edge of the context window;
|
||||
# based on weighted average concept in FreeNoise paper
|
||||
if length % 2 == 0:
|
||||
max_weight = length // 2
|
||||
weight_sequence = list(range(1, max_weight + 1, 1)) + list(range(max_weight, 0, -1))
|
||||
else:
|
||||
max_weight = (length + 1) // 2
|
||||
weight_sequence = list(range(1, max_weight, 1)) + [max_weight] + list(range(max_weight - 1, 0, -1))
|
||||
return weight_sequence
|
||||
|
||||
def create_weights_overlap_linear(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, **kwargs):
|
||||
# based on code in Kijai's WanVideoWrapper: https://github.com/kijai/ComfyUI-WanVideoWrapper/blob/dbb2523b37e4ccdf45127e5ae33e31362f755c8e/nodes.py#L1302
|
||||
# only expected overlap is given different weights
|
||||
weights_torch = torch.ones((length))
|
||||
# blend left-side on all except first window
|
||||
if min(idxs) > 0:
|
||||
ramp_up = torch.linspace(1e-37, 1, handler.context_overlap)
|
||||
weights_torch[:handler.context_overlap] = ramp_up
|
||||
# blend right-side on all except last window
|
||||
if max(idxs) < full_length-1:
|
||||
ramp_down = torch.linspace(1, 1e-37, handler.context_overlap)
|
||||
weights_torch[-handler.context_overlap:] = ramp_down
|
||||
return weights_torch
|
||||
|
||||
class ContextFuseMethods:
|
||||
FLAT = "flat"
|
||||
PYRAMID = "pyramid"
|
||||
RELATIVE = "relative"
|
||||
OVERLAP_LINEAR = "overlap-linear"
|
||||
|
||||
LIST = [PYRAMID, FLAT, OVERLAP_LINEAR]
|
||||
LIST_STATIC = [PYRAMID, RELATIVE, FLAT, OVERLAP_LINEAR]
|
||||
|
||||
|
||||
FUSE_MAPPING = {
|
||||
ContextFuseMethods.FLAT: create_weights_flat,
|
||||
ContextFuseMethods.PYRAMID: create_weights_pyramid,
|
||||
ContextFuseMethods.RELATIVE: create_weights_pyramid,
|
||||
ContextFuseMethods.OVERLAP_LINEAR: create_weights_overlap_linear,
|
||||
}
|
||||
|
||||
def get_matching_fuse_method(fuse_method: str) -> ContextFuseMethod:
|
||||
func = FUSE_MAPPING.get(fuse_method, None)
|
||||
if func is None:
|
||||
raise ValueError(f"Unknown fuse_method '{fuse_method}'.")
|
||||
return ContextFuseMethod(fuse_method, func)
|
||||
|
||||
# Returns fraction that has denominator that is a power of 2
|
||||
def ordered_halving(val):
|
||||
# get binary value, padded with 0s for 64 bits
|
||||
bin_str = f"{val:064b}"
|
||||
# flip binary value, padding included
|
||||
bin_flip = bin_str[::-1]
|
||||
# convert binary to int
|
||||
as_int = int(bin_flip, 2)
|
||||
# divide by 1 << 64, equivalent to 2**64, or 18446744073709551616,
|
||||
# or b10000000000000000000000000000000000000000000000000000000000000000 (1 with 64 zero's)
|
||||
return as_int / (1 << 64)
|
||||
|
||||
|
||||
def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
|
||||
all_indexes = list(range(num_frames))
|
||||
for w in windows:
|
||||
for val in w:
|
||||
try:
|
||||
all_indexes.remove(val)
|
||||
except ValueError:
|
||||
pass
|
||||
return all_indexes
|
||||
|
||||
|
||||
def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
|
||||
prev_val = -1
|
||||
for i, val in enumerate(window):
|
||||
val = val % num_frames
|
||||
if val < prev_val:
|
||||
return True, i
|
||||
prev_val = val
|
||||
return False, -1
|
||||
|
||||
|
||||
def shift_window_to_start(window: list[int], num_frames: int):
|
||||
start_val = window[0]
|
||||
for i in range(len(window)):
|
||||
# 1) subtract each element by start_val to move vals relative to the start of all frames
|
||||
# 2) add num_frames and take modulus to get adjusted vals
|
||||
window[i] = ((window[i] - start_val) + num_frames) % num_frames
|
||||
|
||||
|
||||
def shift_window_to_end(window: list[int], num_frames: int):
|
||||
# 1) shift window to start
|
||||
shift_window_to_start(window, num_frames)
|
||||
end_val = window[-1]
|
||||
end_delta = num_frames - end_val - 1
|
||||
for i in range(len(window)):
|
||||
# 2) add end_delta to each val to slide windows to end
|
||||
window[i] = window[i] + end_delta
|
||||
@@ -28,6 +28,7 @@ import comfy.model_detection
|
||||
import comfy.model_patcher
|
||||
import comfy.ops
|
||||
import comfy.latent_formats
|
||||
import comfy.model_base
|
||||
|
||||
import comfy.cldm.cldm
|
||||
import comfy.t2i_adapter.adapter
|
||||
@@ -35,6 +36,7 @@ import comfy.ldm.cascade.controlnet
|
||||
import comfy.cldm.mmdit
|
||||
import comfy.ldm.hydit.controlnet
|
||||
import comfy.ldm.flux.controlnet
|
||||
import comfy.ldm.qwen_image.controlnet
|
||||
import comfy.cldm.dit_embedder
|
||||
from typing import TYPE_CHECKING
|
||||
if TYPE_CHECKING:
|
||||
@@ -43,7 +45,6 @@ if TYPE_CHECKING:
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
current_batch_size = tensor.shape[0]
|
||||
#print(current_batch_size, target_batch_size)
|
||||
if current_batch_size == 1:
|
||||
return tensor
|
||||
|
||||
@@ -236,11 +237,11 @@ class ControlNet(ControlBase):
|
||||
self.cond_hint = None
|
||||
compression_ratio = self.compression_ratio
|
||||
if self.vae is not None:
|
||||
compression_ratio *= self.vae.downscale_ratio
|
||||
compression_ratio *= self.vae.spacial_compression_encode()
|
||||
else:
|
||||
if self.latent_format is not None:
|
||||
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[-1] * compression_ratio, x_noisy.shape[-2] * compression_ratio, self.upscale_algorithm, "center")
|
||||
self.cond_hint = self.preprocess_image(self.cond_hint)
|
||||
if self.vae is not None:
|
||||
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
|
||||
@@ -252,7 +253,10 @@ class ControlNet(ControlBase):
|
||||
to_concat = []
|
||||
for c in self.extra_concat_orig:
|
||||
c = c.to(self.cond_hint.device)
|
||||
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
|
||||
c = comfy.utils.common_upscale(c, self.cond_hint.shape[-1], self.cond_hint.shape[-2], self.upscale_algorithm, "center")
|
||||
if c.ndim < self.cond_hint.ndim:
|
||||
c = c.unsqueeze(2)
|
||||
c = comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[2], dim=2)
|
||||
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
|
||||
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
|
||||
|
||||
@@ -265,12 +269,12 @@ class ControlNet(ControlBase):
|
||||
for c in self.extra_conds:
|
||||
temp = cond.get(c, None)
|
||||
if temp is not None:
|
||||
extra[c] = temp.to(dtype)
|
||||
extra[c] = comfy.model_base.convert_tensor(temp, dtype, x_noisy.device)
|
||||
|
||||
timestep = self.model_sampling_current.timestep(t)
|
||||
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
||||
|
||||
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
|
||||
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=comfy.model_management.cast_to_device(context, x_noisy.device, dtype), **extra)
|
||||
return self.control_merge(control, control_prev, output_dtype=None)
|
||||
|
||||
def copy(self):
|
||||
@@ -582,6 +586,22 @@ def load_controlnet_flux_instantx(sd, model_options={}):
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
def load_controlnet_qwen_instantx(sd, model_options={}):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
|
||||
control_latent_channels = sd.get("controlnet_x_embedder.weight").shape[1]
|
||||
|
||||
extra_condition_channels = 0
|
||||
concat_mask = False
|
||||
if control_latent_channels == 68: #inpaint controlnet
|
||||
extra_condition_channels = control_latent_channels - 64
|
||||
concat_mask = True
|
||||
control_model = comfy.ldm.qwen_image.controlnet.QwenImageControlNetModel(extra_condition_channels=extra_condition_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, sd)
|
||||
latent_format = comfy.latent_formats.Wan21()
|
||||
extra_conds = []
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
def convert_mistoline(sd):
|
||||
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
|
||||
|
||||
@@ -655,8 +675,11 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
|
||||
return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
|
||||
else:
|
||||
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
|
||||
elif "transformer_blocks.0.img_mlp.net.0.proj.weight" in controlnet_data:
|
||||
return load_controlnet_qwen_instantx(controlnet_data, model_options=model_options)
|
||||
elif "controlnet_x_embedder.weight" in controlnet_data:
|
||||
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
|
||||
|
||||
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
|
||||
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
|
||||
|
||||
|
||||
@@ -1,55 +1,10 @@
|
||||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from .ldm.modules.attention import CrossAttention
|
||||
from inspect import isfunction
|
||||
from .ldm.modules.attention import CrossAttention, FeedForward
|
||||
import comfy.ops
|
||||
ops = comfy.ops.manual_cast
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def uniq(arr):
|
||||
return{el: True for el in arr}.keys()
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
super().__init__()
|
||||
self.proj = ops.Linear(dim_in, dim_out * 2)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
return x * torch.nn.functional.gelu(gate)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = nn.Sequential(
|
||||
ops.Linear(dim, inner_dim),
|
||||
nn.GELU()
|
||||
) if not glu else GEGLU(dim, inner_dim)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
ops.Linear(inner_dim, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class GatedCrossAttentionDense(nn.Module):
|
||||
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
||||
|
||||
@@ -31,6 +31,20 @@ class LayerScale(torch.nn.Module):
|
||||
def forward(self, x):
|
||||
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)
|
||||
|
||||
class Dinov2MLP(torch.nn.Module):
|
||||
def __init__(self, hidden_size: int, dtype, device, operations):
|
||||
super().__init__()
|
||||
|
||||
mlp_ratio = 4
|
||||
hidden_features = int(hidden_size * mlp_ratio)
|
||||
self.fc1 = operations.Linear(hidden_size, hidden_features, bias = True, device=device, dtype=dtype)
|
||||
self.fc2 = operations.Linear(hidden_features, hidden_size, bias = True, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
||||
hidden_state = self.fc1(hidden_state)
|
||||
hidden_state = torch.nn.functional.gelu(hidden_state)
|
||||
hidden_state = self.fc2(hidden_state)
|
||||
return hidden_state
|
||||
|
||||
class SwiGLUFFN(torch.nn.Module):
|
||||
def __init__(self, dim, dtype, device, operations):
|
||||
@@ -50,12 +64,15 @@ class SwiGLUFFN(torch.nn.Module):
|
||||
|
||||
|
||||
class Dino2Block(torch.nn.Module):
|
||||
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
|
||||
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn):
|
||||
super().__init__()
|
||||
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
|
||||
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
|
||||
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
|
||||
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
|
||||
if use_swiglu_ffn:
|
||||
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
|
||||
else:
|
||||
self.mlp = Dinov2MLP(dim, dtype, device, operations)
|
||||
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
|
||||
@@ -66,9 +83,10 @@ class Dino2Block(torch.nn.Module):
|
||||
|
||||
|
||||
class Dino2Encoder(torch.nn.Module):
|
||||
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
|
||||
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
|
||||
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
|
||||
for _ in range(num_layers)])
|
||||
|
||||
def forward(self, x, intermediate_output=None):
|
||||
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
|
||||
@@ -78,8 +96,8 @@ class Dino2Encoder(torch.nn.Module):
|
||||
intermediate_output = len(self.layer) + intermediate_output
|
||||
|
||||
intermediate = None
|
||||
for i, l in enumerate(self.layer):
|
||||
x = l(x, optimized_attention)
|
||||
for i, layer in enumerate(self.layer):
|
||||
x = layer(x, optimized_attention)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
return x, intermediate
|
||||
@@ -128,9 +146,10 @@ class Dinov2Model(torch.nn.Module):
|
||||
dim = config_dict["hidden_size"]
|
||||
heads = config_dict["num_attention_heads"]
|
||||
layer_norm_eps = config_dict["layer_norm_eps"]
|
||||
use_swiglu_ffn = config_dict["use_swiglu_ffn"]
|
||||
|
||||
self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
|
||||
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
|
||||
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
|
||||
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
|
||||
|
||||
22
comfy/image_encoders/dino2_large.json
Normal file
22
comfy/image_encoders/dino2_large.json
Normal file
@@ -0,0 +1,22 @@
|
||||
{
|
||||
"hidden_size": 1024,
|
||||
"use_mask_token": true,
|
||||
"patch_size": 14,
|
||||
"image_size": 518,
|
||||
"num_channels": 3,
|
||||
"num_attention_heads": 16,
|
||||
"initializer_range": 0.02,
|
||||
"attention_probs_dropout_prob": 0.0,
|
||||
"hidden_dropout_prob": 0.0,
|
||||
"hidden_act": "gelu",
|
||||
"mlp_ratio": 4,
|
||||
"model_type": "dinov2",
|
||||
"num_hidden_layers": 24,
|
||||
"layer_norm_eps": 1e-6,
|
||||
"qkv_bias": true,
|
||||
"use_swiglu_ffn": false,
|
||||
"layerscale_value": 1.0,
|
||||
"drop_path_rate": 0.0,
|
||||
"image_mean": [0.485, 0.456, 0.406],
|
||||
"image_std": [0.229, 0.224, 0.225]
|
||||
}
|
||||
121
comfy/k_diffusion/sa_solver.py
Normal file
121
comfy/k_diffusion/sa_solver.py
Normal file
@@ -0,0 +1,121 @@
|
||||
# SA-Solver: Stochastic Adams Solver (NeurIPS 2023, arXiv:2309.05019)
|
||||
# Conference: https://proceedings.neurips.cc/paper_files/paper/2023/file/f4a6806490d31216a3ba667eb240c897-Paper-Conference.pdf
|
||||
# Codebase ref: https://github.com/scxue/SA-Solver
|
||||
|
||||
import math
|
||||
from typing import Union, Callable
|
||||
import torch
|
||||
|
||||
|
||||
def compute_exponential_coeffs(s: torch.Tensor, t: torch.Tensor, solver_order: int, tau_t: float) -> torch.Tensor:
|
||||
"""Compute (1 + tau^2) * integral of exp((1 + tau^2) * x) * x^p dx from s to t with exp((1 + tau^2) * t) factored out, using integration by parts.
|
||||
|
||||
Integral of exp((1 + tau^2) * x) * x^p dx
|
||||
= product_terms[p] - (p / (1 + tau^2)) * integral of exp((1 + tau^2) * x) * x^(p-1) dx,
|
||||
with base case p=0 where integral equals product_terms[0].
|
||||
|
||||
where
|
||||
product_terms[p] = x^p * exp((1 + tau^2) * x) / (1 + tau^2).
|
||||
|
||||
Construct a recursive coefficient matrix following the above recursive relation to compute all integral terms up to p = (solver_order - 1).
|
||||
Return coefficients used by the SA-Solver in data prediction mode.
|
||||
|
||||
Args:
|
||||
s: Start time s.
|
||||
t: End time t.
|
||||
solver_order: Current order of the solver.
|
||||
tau_t: Stochastic strength parameter in the SDE.
|
||||
|
||||
Returns:
|
||||
Exponential coefficients used in data prediction, with exp((1 + tau^2) * t) factored out, ordered from p=0 to p=solver_order−1, shape (solver_order,).
|
||||
"""
|
||||
tau_mul = 1 + tau_t ** 2
|
||||
h = t - s
|
||||
p = torch.arange(solver_order, dtype=s.dtype, device=s.device)
|
||||
|
||||
# product_terms after factoring out exp((1 + tau^2) * t)
|
||||
# Includes (1 + tau^2) factor from outside the integral
|
||||
product_terms_factored = (t ** p - s ** p * (-tau_mul * h).exp())
|
||||
|
||||
# Lower triangular recursive coefficient matrix
|
||||
# Accumulates recursive coefficients based on p / (1 + tau^2)
|
||||
recursive_depth_mat = p.unsqueeze(1) - p.unsqueeze(0)
|
||||
log_factorial = (p + 1).lgamma()
|
||||
recursive_coeff_mat = log_factorial.unsqueeze(1) - log_factorial.unsqueeze(0)
|
||||
if tau_t > 0:
|
||||
recursive_coeff_mat = recursive_coeff_mat - (recursive_depth_mat * math.log(tau_mul))
|
||||
signs = torch.where(recursive_depth_mat % 2 == 0, 1.0, -1.0)
|
||||
recursive_coeff_mat = (recursive_coeff_mat.exp() * signs).tril()
|
||||
|
||||
return recursive_coeff_mat @ product_terms_factored
|
||||
|
||||
|
||||
def compute_simple_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, is_corrector_step: bool = False) -> torch.Tensor:
|
||||
"""Compute simple order-2 b coefficients from SA-Solver paper (Appendix D. Implementation Details)."""
|
||||
tau_mul = 1 + tau_t ** 2
|
||||
h = lambda_t - lambda_s
|
||||
alpha_t = sigma_next * lambda_t.exp()
|
||||
if is_corrector_step:
|
||||
# Simplified 1-step (order-2) corrector
|
||||
b_1 = alpha_t * (0.5 * tau_mul * h)
|
||||
b_2 = alpha_t * (-h * tau_mul).expm1().neg() - b_1
|
||||
else:
|
||||
# Simplified 2-step predictor
|
||||
b_2 = alpha_t * (0.5 * tau_mul * h ** 2) / (curr_lambdas[-2] - lambda_s)
|
||||
b_1 = alpha_t * (-h * tau_mul).expm1().neg() - b_2
|
||||
return torch.stack([b_2, b_1])
|
||||
|
||||
|
||||
def compute_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, simple_order_2: bool = False, is_corrector_step: bool = False) -> torch.Tensor:
|
||||
"""Compute b_i coefficients for the SA-Solver (see eqs. 15 and 18).
|
||||
|
||||
The solver order corresponds to the number of input lambdas (half-logSNR points).
|
||||
|
||||
Args:
|
||||
sigma_next: Sigma at end time t.
|
||||
curr_lambdas: Lambda time points used to construct the Lagrange basis, shape (N,).
|
||||
lambda_s: Lambda at start time s.
|
||||
lambda_t: Lambda at end time t.
|
||||
tau_t: Stochastic strength parameter in the SDE.
|
||||
simple_order_2: Whether to enable the simple order-2 scheme.
|
||||
is_corrector_step: Flag for corrector step in simple order-2 mode.
|
||||
|
||||
Returns:
|
||||
b_i coefficients for the SA-Solver, shape (N,), where N is the solver order.
|
||||
"""
|
||||
num_timesteps = curr_lambdas.shape[0]
|
||||
|
||||
if simple_order_2 and num_timesteps == 2:
|
||||
return compute_simple_stochastic_adams_b_coeffs(sigma_next, curr_lambdas, lambda_s, lambda_t, tau_t, is_corrector_step)
|
||||
|
||||
# Compute coefficients by solving a linear system from Lagrange basis interpolation
|
||||
exp_integral_coeffs = compute_exponential_coeffs(lambda_s, lambda_t, num_timesteps, tau_t)
|
||||
vandermonde_matrix_T = torch.vander(curr_lambdas, num_timesteps, increasing=True).T
|
||||
lagrange_integrals = torch.linalg.solve(vandermonde_matrix_T, exp_integral_coeffs)
|
||||
|
||||
# (sigma_t * exp(-tau^2 * lambda_t)) * exp((1 + tau^2) * lambda_t)
|
||||
# = sigma_t * exp(lambda_t) = alpha_t
|
||||
# exp((1 + tau^2) * lambda_t) is extracted from the integral
|
||||
alpha_t = sigma_next * lambda_t.exp()
|
||||
return alpha_t * lagrange_integrals
|
||||
|
||||
|
||||
def get_tau_interval_func(start_sigma: float, end_sigma: float, eta: float = 1.0) -> Callable[[Union[torch.Tensor, float]], float]:
|
||||
"""Return a function that controls the stochasticity of SA-Solver.
|
||||
|
||||
When eta = 0, SA-Solver runs as ODE. The official approach uses
|
||||
time t to determine the SDE interval, while here we use sigma instead.
|
||||
|
||||
See:
|
||||
https://github.com/scxue/SA-Solver/blob/main/README.md
|
||||
"""
|
||||
|
||||
def tau_func(sigma: Union[torch.Tensor, float]) -> float:
|
||||
if eta <= 0:
|
||||
return 0.0 # ODE
|
||||
|
||||
if isinstance(sigma, torch.Tensor):
|
||||
sigma = sigma.item()
|
||||
return eta if start_sigma >= sigma >= end_sigma else 0.0
|
||||
|
||||
return tau_func
|
||||
@@ -9,6 +9,7 @@ from tqdm.auto import trange, tqdm
|
||||
|
||||
from . import utils
|
||||
from . import deis
|
||||
from . import sa_solver
|
||||
import comfy.model_patcher
|
||||
import comfy.model_sampling
|
||||
|
||||
@@ -85,24 +86,24 @@ class BatchedBrownianTree:
|
||||
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
|
||||
|
||||
def __init__(self, x, t0, t1, seed=None, **kwargs):
|
||||
self.cpu_tree = True
|
||||
if "cpu" in kwargs:
|
||||
self.cpu_tree = kwargs.pop("cpu")
|
||||
self.cpu_tree = kwargs.pop("cpu", True)
|
||||
t0, t1, self.sign = self.sort(t0, t1)
|
||||
w0 = kwargs.get('w0', torch.zeros_like(x))
|
||||
w0 = kwargs.pop('w0', None)
|
||||
if w0 is None:
|
||||
w0 = torch.zeros_like(x)
|
||||
self.batched = False
|
||||
if seed is None:
|
||||
seed = torch.randint(0, 2 ** 63 - 1, []).item()
|
||||
self.batched = True
|
||||
try:
|
||||
assert len(seed) == x.shape[0]
|
||||
seed = (torch.randint(0, 2 ** 63 - 1, ()).item(),)
|
||||
elif isinstance(seed, (tuple, list)):
|
||||
if len(seed) != x.shape[0]:
|
||||
raise ValueError("Passing a list or tuple of seeds to BatchedBrownianTree requires a length matching the batch size.")
|
||||
self.batched = True
|
||||
w0 = w0[0]
|
||||
except TypeError:
|
||||
seed = [seed]
|
||||
self.batched = False
|
||||
if self.cpu_tree:
|
||||
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
|
||||
else:
|
||||
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
|
||||
seed = (seed,)
|
||||
if self.cpu_tree:
|
||||
t0, w0, t1 = t0.detach().cpu(), w0.detach().cpu(), t1.detach().cpu()
|
||||
self.trees = tuple(torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed)
|
||||
|
||||
@staticmethod
|
||||
def sort(a, b):
|
||||
@@ -110,11 +111,10 @@ class BatchedBrownianTree:
|
||||
|
||||
def __call__(self, t0, t1):
|
||||
t0, t1, sign = self.sort(t0, t1)
|
||||
device, dtype = t0.device, t0.dtype
|
||||
if self.cpu_tree:
|
||||
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
|
||||
else:
|
||||
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
|
||||
|
||||
t0, t1 = t0.detach().cpu().float(), t1.detach().cpu().float()
|
||||
w = torch.stack([tree(t0, t1) for tree in self.trees]).to(device=device, dtype=dtype) * (self.sign * sign)
|
||||
return w if self.batched else w[0]
|
||||
|
||||
|
||||
@@ -170,6 +170,16 @@ def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4):
|
||||
return sigmas
|
||||
|
||||
|
||||
def ei_h_phi_1(h: torch.Tensor) -> torch.Tensor:
|
||||
"""Compute the result of h*phi_1(h) in exponential integrator methods."""
|
||||
return torch.expm1(h)
|
||||
|
||||
|
||||
def ei_h_phi_2(h: torch.Tensor) -> torch.Tensor:
|
||||
"""Compute the result of h*phi_2(h) in exponential integrator methods."""
|
||||
return (torch.expm1(h) - h) / h
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
||||
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
|
||||
@@ -412,9 +422,13 @@ def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, o
|
||||
ds.pop(0)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
cur_order = min(i + 1, order)
|
||||
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
|
||||
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
||||
if sigmas[i + 1] == 0:
|
||||
# Denoising step
|
||||
x = denoised
|
||||
else:
|
||||
cur_order = min(i + 1, order)
|
||||
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
|
||||
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
||||
return x
|
||||
|
||||
|
||||
@@ -848,6 +862,11 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
|
||||
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""DPM-Solver++(3M) SDE."""
|
||||
@@ -920,6 +939,16 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
|
||||
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_sde_heun_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
||||
if len(sigmas) <= 1:
|
||||
@@ -1067,7 +1096,9 @@ def sample_ipndm(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
d_cur = (x_cur - denoised) / t_cur
|
||||
|
||||
order = min(max_order, i+1)
|
||||
if order == 1: # First Euler step.
|
||||
if t_next == 0: # Denoising step
|
||||
x_next = denoised
|
||||
elif order == 1: # First Euler step.
|
||||
x_next = x_cur + (t_next - t_cur) * d_cur
|
||||
elif order == 2: # Use one history point.
|
||||
x_next = x_cur + (t_next - t_cur) * (3 * d_cur - buffer_model[-1]) / 2
|
||||
@@ -1085,6 +1116,7 @@ def sample_ipndm(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
|
||||
return x_next
|
||||
|
||||
|
||||
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
|
||||
#under Apache 2 license
|
||||
def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=4):
|
||||
@@ -1108,7 +1140,9 @@ def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
d_cur = (x_cur - denoised) / t_cur
|
||||
|
||||
order = min(max_order, i+1)
|
||||
if order == 1: # First Euler step.
|
||||
if t_next == 0: # Denoising step
|
||||
x_next = denoised
|
||||
elif order == 1: # First Euler step.
|
||||
x_next = x_cur + (t_next - t_cur) * d_cur
|
||||
elif order == 2: # Use one history point.
|
||||
h_n = (t_next - t_cur)
|
||||
@@ -1148,6 +1182,7 @@ def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
|
||||
return x_next
|
||||
|
||||
|
||||
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
|
||||
#under Apache 2 license
|
||||
@torch.no_grad()
|
||||
@@ -1198,39 +1233,22 @@ def sample_deis(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
|
||||
return x_next
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
|
||||
temp = [0]
|
||||
def post_cfg_function(args):
|
||||
temp[0] = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
sigma_hat = sigmas[i]
|
||||
denoised = model(x, sigma_hat * s_in, **extra_args)
|
||||
d = to_d(x, sigma_hat, temp[0])
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
||||
# Euler method
|
||||
x = denoised + d * sigmas[i + 1]
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""Ancestral sampling with Euler method steps."""
|
||||
"""Ancestral sampling with Euler method steps (CFG++)."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
|
||||
temp = [0]
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
|
||||
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
|
||||
|
||||
uncond_denoised = None
|
||||
|
||||
def post_cfg_function(args):
|
||||
temp[0] = args["uncond_denoised"]
|
||||
nonlocal uncond_denoised
|
||||
uncond_denoised = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
@@ -1239,15 +1257,33 @@ def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=No
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
d = to_d(x, sigmas[i], temp[0])
|
||||
# Euler method
|
||||
x = denoised + d * sigma_down
|
||||
if sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
if sigmas[i + 1] == 0:
|
||||
# Denoising step
|
||||
x = denoised
|
||||
else:
|
||||
alpha_s = sigmas[i] * lambda_fn(sigmas[i]).exp()
|
||||
alpha_t = sigmas[i + 1] * lambda_fn(sigmas[i + 1]).exp()
|
||||
d = to_d(x, sigmas[i], alpha_s * uncond_denoised) # to noise
|
||||
|
||||
# DDIM stochastic sampling
|
||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i] / alpha_s, sigmas[i + 1] / alpha_t, eta=eta)
|
||||
sigma_down = alpha_t * sigma_down
|
||||
|
||||
# Euler method
|
||||
x = alpha_t * denoised + sigma_down * d
|
||||
if eta > 0 and s_noise > 0:
|
||||
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
||||
"""Euler method steps (CFG++)."""
|
||||
return sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=0.0, s_noise=0.0, noise_sampler=None)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
||||
@@ -1404,6 +1440,7 @@ def sample_res_multistep_ancestral(model, x, sigmas, extra_args=None, callback=N
|
||||
def sample_res_multistep_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2., cfg_pp=False):
|
||||
"""Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK"""
|
||||
@@ -1430,19 +1467,19 @@ def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None,
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
dt = sigmas[i + 1] - sigmas[i]
|
||||
if i == 0:
|
||||
if sigmas[i + 1] == 0:
|
||||
# Denoising step
|
||||
x = denoised
|
||||
else:
|
||||
# Euler method
|
||||
if cfg_pp:
|
||||
x = denoised + d * sigmas[i + 1]
|
||||
else:
|
||||
x = x + d * dt
|
||||
else:
|
||||
# Gradient estimation
|
||||
if cfg_pp:
|
||||
|
||||
if i >= 1:
|
||||
# Gradient estimation
|
||||
d_bar = (ge_gamma - 1) * (d - old_d)
|
||||
x = denoised + d * sigmas[i + 1] + d_bar * dt
|
||||
else:
|
||||
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
|
||||
x = x + d_bar * dt
|
||||
old_d = d
|
||||
return x
|
||||
@@ -1522,13 +1559,12 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
@torch.no_grad()
|
||||
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
|
||||
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
|
||||
arXiv: https://arxiv.org/abs/2305.14267
|
||||
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
|
||||
"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
inject_noise = eta > 0 and s_noise > 0
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||
@@ -1536,55 +1572,53 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
|
||||
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||
|
||||
fac = 1 / (2 * r)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||
h = lambda_t - lambda_s
|
||||
h_eta = h * (eta + 1)
|
||||
lambda_s_1 = lambda_s + r * h
|
||||
fac = 1 / (2 * r)
|
||||
sigma_s_1 = sigma_fn(lambda_s_1)
|
||||
continue
|
||||
|
||||
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
|
||||
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
|
||||
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||
h = lambda_t - lambda_s
|
||||
h_eta = h * (eta + 1)
|
||||
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r)
|
||||
sigma_s_1 = sigma_fn(lambda_s_1)
|
||||
|
||||
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
|
||||
if inject_noise:
|
||||
# 0 < r < 1
|
||||
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_2 = (-r * h * eta).exp() * (-2 * (1 - r) * h * eta).expm1().neg().sqrt()
|
||||
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigmas[i + 1])
|
||||
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
|
||||
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||
|
||||
# Step 1
|
||||
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
|
||||
if inject_noise:
|
||||
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
# Step 1
|
||||
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r * h_eta) * denoised
|
||||
if inject_noise:
|
||||
sde_noise = (-2 * r * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
|
||||
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_2 * denoised_d
|
||||
if inject_noise:
|
||||
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
|
||||
# Step 2
|
||||
denoised_d = torch.lerp(denoised, denoised_2, fac)
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
|
||||
if inject_noise:
|
||||
segment_factor = (r - 1) * h * eta
|
||||
sde_noise = sde_noise * segment_factor.exp()
|
||||
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigmas[i + 1])
|
||||
x = x + sde_noise * sigmas[i + 1] * s_noise
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
|
||||
"""SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 3.
|
||||
arXiv: https://arxiv.org/abs/2305.14267
|
||||
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
|
||||
"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
inject_noise = eta > 0 and s_noise > 0
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||
@@ -1596,43 +1630,157 @@ def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||
h = lambda_t - lambda_s
|
||||
h_eta = h * (eta + 1)
|
||||
lambda_s_1 = lambda_s + r_1 * h
|
||||
lambda_s_2 = lambda_s + r_2 * h
|
||||
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
|
||||
continue
|
||||
|
||||
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
|
||||
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
|
||||
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
|
||||
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||
h = lambda_t - lambda_s
|
||||
h_eta = h * (eta + 1)
|
||||
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r_1)
|
||||
lambda_s_2 = torch.lerp(lambda_s, lambda_t, r_2)
|
||||
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
|
||||
|
||||
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
|
||||
if inject_noise:
|
||||
# 0 < r_1 < r_2 < 1
|
||||
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_2 = (-r_1 * h * eta).exp() * (-2 * (r_2 - r_1) * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_3 = (-r_2 * h * eta).exp() * (-2 * (1 - r_2) * h * eta).expm1().neg().sqrt()
|
||||
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
|
||||
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
|
||||
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
|
||||
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||
|
||||
# Step 1
|
||||
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
|
||||
if inject_noise:
|
||||
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
# Step 1
|
||||
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r_1 * h_eta) * denoised
|
||||
if inject_noise:
|
||||
sde_noise = (-2 * r_1 * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
|
||||
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * coeff_2 * denoised + (r_2 / r_1) * alpha_s_2 * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
|
||||
if inject_noise:
|
||||
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
|
||||
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
|
||||
# Step 2
|
||||
a3_2 = r_2 / r_1 * ei_h_phi_2(-r_2 * h_eta)
|
||||
a3_1 = ei_h_phi_1(-r_2 * h_eta) - a3_2
|
||||
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * (a3_1 * denoised + a3_2 * denoised_2)
|
||||
if inject_noise:
|
||||
segment_factor = (r_1 - r_2) * h * eta
|
||||
sde_noise = sde_noise * segment_factor.exp()
|
||||
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigma_s_2)
|
||||
x_3 = x_3 + sde_noise * sigma_s_2 * s_noise
|
||||
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
|
||||
|
||||
# Step 3
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_3 * denoised + (1. / r_2) * alpha_t * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
|
||||
if inject_noise:
|
||||
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
|
||||
# Step 3
|
||||
b3 = ei_h_phi_2(-h_eta) / r_2
|
||||
b1 = ei_h_phi_1(-h_eta) - b3
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b3 * denoised_3)
|
||||
if inject_noise:
|
||||
segment_factor = (r_2 - 1) * h * eta
|
||||
sde_noise = sde_noise * segment_factor.exp()
|
||||
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_2, sigmas[i + 1])
|
||||
x = x + sde_noise * sigmas[i + 1] * s_noise
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=False, tau_func=None, s_noise=1.0, noise_sampler=None, predictor_order=3, corrector_order=4, use_pece=False, simple_order_2=False):
|
||||
"""Stochastic Adams Solver with predictor-corrector method (NeurIPS 2023)."""
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
|
||||
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||
lambdas = sigma_to_half_log_snr(sigmas, model_sampling=model_sampling)
|
||||
|
||||
if tau_func is None:
|
||||
# Use default interval for stochastic sampling
|
||||
start_sigma = model_sampling.percent_to_sigma(0.2)
|
||||
end_sigma = model_sampling.percent_to_sigma(0.8)
|
||||
tau_func = sa_solver.get_tau_interval_func(start_sigma, end_sigma, eta=1.0)
|
||||
|
||||
max_used_order = max(predictor_order, corrector_order)
|
||||
x_pred = x # x: current state, x_pred: predicted next state
|
||||
|
||||
h = 0.0
|
||||
tau_t = 0.0
|
||||
noise = 0.0
|
||||
pred_list = []
|
||||
|
||||
# Lower order near the end to improve stability
|
||||
lower_order_to_end = sigmas[-1].item() == 0
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
# Evaluation
|
||||
denoised = model(x_pred, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({"x": x_pred, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
|
||||
pred_list.append(denoised)
|
||||
pred_list = pred_list[-max_used_order:]
|
||||
|
||||
predictor_order_used = min(predictor_order, len(pred_list))
|
||||
if i == 0 or (sigmas[i + 1] == 0 and not use_pece):
|
||||
corrector_order_used = 0
|
||||
else:
|
||||
corrector_order_used = min(corrector_order, len(pred_list))
|
||||
|
||||
if lower_order_to_end:
|
||||
predictor_order_used = min(predictor_order_used, len(sigmas) - 2 - i)
|
||||
corrector_order_used = min(corrector_order_used, len(sigmas) - 1 - i)
|
||||
|
||||
# Corrector
|
||||
if corrector_order_used == 0:
|
||||
# Update by the predicted state
|
||||
x = x_pred
|
||||
else:
|
||||
curr_lambdas = lambdas[i - corrector_order_used + 1:i + 1]
|
||||
b_coeffs = sa_solver.compute_stochastic_adams_b_coeffs(
|
||||
sigmas[i],
|
||||
curr_lambdas,
|
||||
lambdas[i - 1],
|
||||
lambdas[i],
|
||||
tau_t,
|
||||
simple_order_2,
|
||||
is_corrector_step=True,
|
||||
)
|
||||
pred_mat = torch.stack(pred_list[-corrector_order_used:], dim=1) # (B, K, ...)
|
||||
corr_res = torch.tensordot(pred_mat, b_coeffs, dims=([1], [0])) # (B, ...)
|
||||
x = sigmas[i] / sigmas[i - 1] * (-(tau_t ** 2) * h).exp() * x + corr_res
|
||||
|
||||
if tau_t > 0 and s_noise > 0:
|
||||
# The noise from the previous predictor step
|
||||
x = x + noise
|
||||
|
||||
if use_pece:
|
||||
# Evaluate the corrected state
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
pred_list[-1] = denoised
|
||||
|
||||
# Predictor
|
||||
if sigmas[i + 1] == 0:
|
||||
# Denoising step
|
||||
x = denoised
|
||||
else:
|
||||
tau_t = tau_func(sigmas[i + 1])
|
||||
curr_lambdas = lambdas[i - predictor_order_used + 1:i + 1]
|
||||
b_coeffs = sa_solver.compute_stochastic_adams_b_coeffs(
|
||||
sigmas[i + 1],
|
||||
curr_lambdas,
|
||||
lambdas[i],
|
||||
lambdas[i + 1],
|
||||
tau_t,
|
||||
simple_order_2,
|
||||
is_corrector_step=False,
|
||||
)
|
||||
pred_mat = torch.stack(pred_list[-predictor_order_used:], dim=1) # (B, K, ...)
|
||||
pred_res = torch.tensordot(pred_mat, b_coeffs, dims=([1], [0])) # (B, ...)
|
||||
h = lambdas[i + 1] - lambdas[i]
|
||||
x_pred = sigmas[i + 1] / sigmas[i] * (-(tau_t ** 2) * h).exp() * x + pred_res
|
||||
|
||||
if tau_t > 0 and s_noise > 0:
|
||||
noise = noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * tau_t ** 2 * h).expm1().neg().sqrt() * s_noise
|
||||
x_pred = x_pred + noise
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_sa_solver_pece(model, x, sigmas, extra_args=None, callback=None, disable=False, tau_func=None, s_noise=1.0, noise_sampler=None, predictor_order=3, corrector_order=4, simple_order_2=False):
|
||||
"""Stochastic Adams Solver with PECE (Predict–Evaluate–Correct–Evaluate) mode (NeurIPS 2023)."""
|
||||
return sample_sa_solver(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, tau_func=tau_func, s_noise=s_noise, noise_sampler=noise_sampler, predictor_order=predictor_order, corrector_order=corrector_order, use_pece=True, simple_order_2=simple_order_2)
|
||||
|
||||
@@ -457,11 +457,170 @@ class Wan21(LatentFormat):
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return latent * latents_std / self.scale_factor + latents_mean
|
||||
|
||||
class Wan22(Wan21):
|
||||
latent_channels = 48
|
||||
latent_dimensions = 3
|
||||
|
||||
latent_rgb_factors = [
|
||||
[ 0.0119, 0.0103, 0.0046],
|
||||
[-0.1062, -0.0504, 0.0165],
|
||||
[ 0.0140, 0.0409, 0.0491],
|
||||
[-0.0813, -0.0677, 0.0607],
|
||||
[ 0.0656, 0.0851, 0.0808],
|
||||
[ 0.0264, 0.0463, 0.0912],
|
||||
[ 0.0295, 0.0326, 0.0590],
|
||||
[-0.0244, -0.0270, 0.0025],
|
||||
[ 0.0443, -0.0102, 0.0288],
|
||||
[-0.0465, -0.0090, -0.0205],
|
||||
[ 0.0359, 0.0236, 0.0082],
|
||||
[-0.0776, 0.0854, 0.1048],
|
||||
[ 0.0564, 0.0264, 0.0561],
|
||||
[ 0.0006, 0.0594, 0.0418],
|
||||
[-0.0319, -0.0542, -0.0637],
|
||||
[-0.0268, 0.0024, 0.0260],
|
||||
[ 0.0539, 0.0265, 0.0358],
|
||||
[-0.0359, -0.0312, -0.0287],
|
||||
[-0.0285, -0.1032, -0.1237],
|
||||
[ 0.1041, 0.0537, 0.0622],
|
||||
[-0.0086, -0.0374, -0.0051],
|
||||
[ 0.0390, 0.0670, 0.2863],
|
||||
[ 0.0069, 0.0144, 0.0082],
|
||||
[ 0.0006, -0.0167, 0.0079],
|
||||
[ 0.0313, -0.0574, -0.0232],
|
||||
[-0.1454, -0.0902, -0.0481],
|
||||
[ 0.0714, 0.0827, 0.0447],
|
||||
[-0.0304, -0.0574, -0.0196],
|
||||
[ 0.0401, 0.0384, 0.0204],
|
||||
[-0.0758, -0.0297, -0.0014],
|
||||
[ 0.0568, 0.1307, 0.1372],
|
||||
[-0.0055, -0.0310, -0.0380],
|
||||
[ 0.0239, -0.0305, 0.0325],
|
||||
[-0.0663, -0.0673, -0.0140],
|
||||
[-0.0416, -0.0047, -0.0023],
|
||||
[ 0.0166, 0.0112, -0.0093],
|
||||
[-0.0211, 0.0011, 0.0331],
|
||||
[ 0.1833, 0.1466, 0.2250],
|
||||
[-0.0368, 0.0370, 0.0295],
|
||||
[-0.3441, -0.3543, -0.2008],
|
||||
[-0.0479, -0.0489, -0.0420],
|
||||
[-0.0660, -0.0153, 0.0800],
|
||||
[-0.0101, 0.0068, 0.0156],
|
||||
[-0.0690, -0.0452, -0.0927],
|
||||
[-0.0145, 0.0041, 0.0015],
|
||||
[ 0.0421, 0.0451, 0.0373],
|
||||
[ 0.0504, -0.0483, -0.0356],
|
||||
[-0.0837, 0.0168, 0.0055]
|
||||
]
|
||||
|
||||
latent_rgb_factors_bias = [0.0317, -0.0878, -0.1388]
|
||||
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.0
|
||||
self.latents_mean = torch.tensor([
|
||||
-0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557,
|
||||
-0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825,
|
||||
-0.2246, -0.1207, -0.0698, 0.5109, 0.2665, -0.2108, -0.2158, 0.2502,
|
||||
-0.2055, -0.0322, 0.1109, 0.1567, -0.0729, 0.0899, -0.2799, -0.1230,
|
||||
-0.0313, -0.1649, 0.0117, 0.0723, -0.2839, -0.2083, -0.0520, 0.3748,
|
||||
0.0152, 0.1957, 0.1433, -0.2944, 0.3573, -0.0548, -0.1681, -0.0667,
|
||||
]).view(1, self.latent_channels, 1, 1, 1)
|
||||
self.latents_std = torch.tensor([
|
||||
0.4765, 1.0364, 0.4514, 1.1677, 0.5313, 0.4990, 0.4818, 0.5013,
|
||||
0.8158, 1.0344, 0.5894, 1.0901, 0.6885, 0.6165, 0.8454, 0.4978,
|
||||
0.5759, 0.3523, 0.7135, 0.6804, 0.5833, 1.4146, 0.8986, 0.5659,
|
||||
0.7069, 0.5338, 0.4889, 0.4917, 0.4069, 0.4999, 0.6866, 0.4093,
|
||||
0.5709, 0.6065, 0.6415, 0.4944, 0.5726, 1.2042, 0.5458, 1.6887,
|
||||
0.3971, 1.0600, 0.3943, 0.5537, 0.5444, 0.4089, 0.7468, 0.7744
|
||||
]).view(1, self.latent_channels, 1, 1, 1)
|
||||
|
||||
class HunyuanImage21(LatentFormat):
|
||||
latent_channels = 64
|
||||
latent_dimensions = 2
|
||||
scale_factor = 0.75289
|
||||
|
||||
latent_rgb_factors = [
|
||||
[-0.0154, -0.0397, -0.0521],
|
||||
[ 0.0005, 0.0093, 0.0006],
|
||||
[-0.0805, -0.0773, -0.0586],
|
||||
[-0.0494, -0.0487, -0.0498],
|
||||
[-0.0212, -0.0076, -0.0261],
|
||||
[-0.0179, -0.0417, -0.0505],
|
||||
[ 0.0158, 0.0310, 0.0239],
|
||||
[ 0.0409, 0.0516, 0.0201],
|
||||
[ 0.0350, 0.0553, 0.0036],
|
||||
[-0.0447, -0.0327, -0.0479],
|
||||
[-0.0038, -0.0221, -0.0365],
|
||||
[-0.0423, -0.0718, -0.0654],
|
||||
[ 0.0039, 0.0368, 0.0104],
|
||||
[ 0.0655, 0.0217, 0.0122],
|
||||
[ 0.0490, 0.1638, 0.2053],
|
||||
[ 0.0932, 0.0829, 0.0650],
|
||||
[-0.0186, -0.0209, -0.0135],
|
||||
[-0.0080, -0.0076, -0.0148],
|
||||
[-0.0284, -0.0201, 0.0011],
|
||||
[-0.0642, -0.0294, -0.0777],
|
||||
[-0.0035, 0.0076, -0.0140],
|
||||
[ 0.0519, 0.0731, 0.0887],
|
||||
[-0.0102, 0.0095, 0.0704],
|
||||
[ 0.0068, 0.0218, -0.0023],
|
||||
[-0.0726, -0.0486, -0.0519],
|
||||
[ 0.0260, 0.0295, 0.0263],
|
||||
[ 0.0250, 0.0333, 0.0341],
|
||||
[ 0.0168, -0.0120, -0.0174],
|
||||
[ 0.0226, 0.1037, 0.0114],
|
||||
[ 0.2577, 0.1906, 0.1604],
|
||||
[-0.0646, -0.0137, -0.0018],
|
||||
[-0.0112, 0.0309, 0.0358],
|
||||
[-0.0347, 0.0146, -0.0481],
|
||||
[ 0.0234, 0.0179, 0.0201],
|
||||
[ 0.0157, 0.0313, 0.0225],
|
||||
[ 0.0423, 0.0675, 0.0524],
|
||||
[-0.0031, 0.0027, -0.0255],
|
||||
[ 0.0447, 0.0555, 0.0330],
|
||||
[-0.0152, 0.0103, 0.0299],
|
||||
[-0.0755, -0.0489, -0.0635],
|
||||
[ 0.0853, 0.0788, 0.1017],
|
||||
[-0.0272, -0.0294, -0.0471],
|
||||
[ 0.0440, 0.0400, -0.0137],
|
||||
[ 0.0335, 0.0317, -0.0036],
|
||||
[-0.0344, -0.0621, -0.0984],
|
||||
[-0.0127, -0.0630, -0.0620],
|
||||
[-0.0648, 0.0360, 0.0924],
|
||||
[-0.0781, -0.0801, -0.0409],
|
||||
[ 0.0363, 0.0613, 0.0499],
|
||||
[ 0.0238, 0.0034, 0.0041],
|
||||
[-0.0135, 0.0258, 0.0310],
|
||||
[ 0.0614, 0.1086, 0.0589],
|
||||
[ 0.0428, 0.0350, 0.0205],
|
||||
[ 0.0153, 0.0173, -0.0018],
|
||||
[-0.0288, -0.0455, -0.0091],
|
||||
[ 0.0344, 0.0109, -0.0157],
|
||||
[-0.0205, -0.0247, -0.0187],
|
||||
[ 0.0487, 0.0126, 0.0064],
|
||||
[-0.0220, -0.0013, 0.0074],
|
||||
[-0.0203, -0.0094, -0.0048],
|
||||
[-0.0719, 0.0429, -0.0442],
|
||||
[ 0.1042, 0.0497, 0.0356],
|
||||
[-0.0659, -0.0578, -0.0280],
|
||||
[-0.0060, -0.0322, -0.0234]]
|
||||
|
||||
latent_rgb_factors_bias = [0.0007, -0.0256, -0.0206]
|
||||
|
||||
class HunyuanImage21Refiner(LatentFormat):
|
||||
latent_channels = 64
|
||||
latent_dimensions = 3
|
||||
scale_factor = 1.03682
|
||||
|
||||
class Hunyuan3Dv2(LatentFormat):
|
||||
latent_channels = 64
|
||||
latent_dimensions = 1
|
||||
scale_factor = 0.9990943042622529
|
||||
|
||||
class Hunyuan3Dv2_1(LatentFormat):
|
||||
scale_factor = 1.0039506158752403
|
||||
latent_channels = 64
|
||||
latent_dimensions = 1
|
||||
|
||||
class Hunyuan3Dv2mini(LatentFormat):
|
||||
latent_channels = 64
|
||||
latent_dimensions = 1
|
||||
@@ -470,3 +629,20 @@ class Hunyuan3Dv2mini(LatentFormat):
|
||||
class ACEAudio(LatentFormat):
|
||||
latent_channels = 8
|
||||
latent_dimensions = 2
|
||||
|
||||
class ChromaRadiance(LatentFormat):
|
||||
latent_channels = 3
|
||||
|
||||
def __init__(self):
|
||||
self.latent_rgb_factors = [
|
||||
# R G B
|
||||
[ 1.0, 0.0, 0.0 ],
|
||||
[ 0.0, 1.0, 0.0 ],
|
||||
[ 0.0, 0.0, 1.0 ]
|
||||
]
|
||||
|
||||
def process_in(self, latent):
|
||||
return latent
|
||||
|
||||
def process_out(self, latent):
|
||||
return latent
|
||||
|
||||
@@ -133,6 +133,7 @@ class Attention(nn.Module):
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
transformer_options={},
|
||||
**cross_attention_kwargs,
|
||||
) -> torch.Tensor:
|
||||
return self.processor(
|
||||
@@ -140,6 +141,7 @@ class Attention(nn.Module):
|
||||
hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
transformer_options=transformer_options,
|
||||
**cross_attention_kwargs,
|
||||
)
|
||||
|
||||
@@ -366,6 +368,7 @@ class CustomerAttnProcessor2_0:
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
|
||||
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
|
||||
transformer_options={},
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
@@ -433,7 +436,7 @@ class CustomerAttnProcessor2_0:
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
hidden_states = optimized_attention(
|
||||
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
|
||||
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True, transformer_options=transformer_options,
|
||||
).to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
@@ -697,6 +700,7 @@ class LinearTransformerBlock(nn.Module):
|
||||
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
|
||||
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
|
||||
temb: torch.FloatTensor = None,
|
||||
transformer_options={},
|
||||
):
|
||||
|
||||
N = hidden_states.shape[0]
|
||||
@@ -720,6 +724,7 @@ class LinearTransformerBlock(nn.Module):
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
rotary_freqs_cis=rotary_freqs_cis,
|
||||
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
else:
|
||||
attn_output, _ = self.attn(
|
||||
@@ -729,6 +734,7 @@ class LinearTransformerBlock(nn.Module):
|
||||
encoder_attention_mask=None,
|
||||
rotary_freqs_cis=rotary_freqs_cis,
|
||||
rotary_freqs_cis_cross=None,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
if self.use_adaln_single:
|
||||
@@ -743,6 +749,7 @@ class LinearTransformerBlock(nn.Module):
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
rotary_freqs_cis=rotary_freqs_cis,
|
||||
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
hidden_states = attn_output + hidden_states
|
||||
|
||||
|
||||
@@ -19,6 +19,7 @@ import torch
|
||||
from torch import nn
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
|
||||
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
|
||||
from .attention import LinearTransformerBlock, t2i_modulate
|
||||
@@ -313,6 +314,7 @@ class ACEStepTransformer2DModel(nn.Module):
|
||||
output_length: int = 0,
|
||||
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
|
||||
controlnet_scale: Union[float, torch.Tensor] = 1.0,
|
||||
transformer_options={},
|
||||
):
|
||||
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
|
||||
temb = self.t_block(embedded_timestep)
|
||||
@@ -338,12 +340,34 @@ class ACEStepTransformer2DModel(nn.Module):
|
||||
rotary_freqs_cis=rotary_freqs_cis,
|
||||
rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
|
||||
temb=temb,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
output = self.final_layer(hidden_states, embedded_timestep, output_length)
|
||||
return output
|
||||
|
||||
def forward(
|
||||
def forward(self,
|
||||
x,
|
||||
timestep,
|
||||
attention_mask=None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
text_attention_mask: Optional[torch.LongTensor] = None,
|
||||
speaker_embeds: Optional[torch.FloatTensor] = None,
|
||||
lyric_token_idx: Optional[torch.LongTensor] = None,
|
||||
lyric_mask: Optional[torch.LongTensor] = None,
|
||||
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
|
||||
controlnet_scale: Union[float, torch.Tensor] = 1.0,
|
||||
lyrics_strength=1.0,
|
||||
**kwargs
|
||||
):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
|
||||
).execute(x, timestep, attention_mask, context, text_attention_mask, speaker_embeds, lyric_token_idx, lyric_mask, block_controlnet_hidden_states,
|
||||
controlnet_scale, lyrics_strength, **kwargs)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
x,
|
||||
timestep,
|
||||
@@ -371,6 +395,7 @@ class ACEStepTransformer2DModel(nn.Module):
|
||||
|
||||
output_length = hidden_states.shape[-1]
|
||||
|
||||
transformer_options = kwargs.get("transformer_options", {})
|
||||
output = self.decode(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
@@ -380,6 +405,7 @@ class ACEStepTransformer2DModel(nn.Module):
|
||||
output_length=output_length,
|
||||
block_controlnet_hidden_states=block_controlnet_hidden_states,
|
||||
controlnet_scale=controlnet_scale,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
return output
|
||||
|
||||
@@ -298,7 +298,8 @@ class Attention(nn.Module):
|
||||
mask = None,
|
||||
context_mask = None,
|
||||
rotary_pos_emb = None,
|
||||
causal = None
|
||||
causal = None,
|
||||
transformer_options={},
|
||||
):
|
||||
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
|
||||
|
||||
@@ -363,7 +364,7 @@ class Attention(nn.Module):
|
||||
heads_per_kv_head = h // kv_h
|
||||
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
|
||||
|
||||
out = optimized_attention(q, k, v, h, skip_reshape=True)
|
||||
out = optimized_attention(q, k, v, h, skip_reshape=True, transformer_options=transformer_options)
|
||||
out = self.to_out(out)
|
||||
|
||||
if mask is not None:
|
||||
@@ -488,7 +489,8 @@ class TransformerBlock(nn.Module):
|
||||
global_cond=None,
|
||||
mask = None,
|
||||
context_mask = None,
|
||||
rotary_pos_emb = None
|
||||
rotary_pos_emb = None,
|
||||
transformer_options={}
|
||||
):
|
||||
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
|
||||
|
||||
@@ -498,12 +500,12 @@ class TransformerBlock(nn.Module):
|
||||
residual = x
|
||||
x = self.pre_norm(x)
|
||||
x = x * (1 + scale_self) + shift_self
|
||||
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
|
||||
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb, transformer_options=transformer_options)
|
||||
x = x * torch.sigmoid(1 - gate_self)
|
||||
x = x + residual
|
||||
|
||||
if context is not None:
|
||||
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
||||
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask, transformer_options=transformer_options)
|
||||
|
||||
if self.conformer is not None:
|
||||
x = x + self.conformer(x)
|
||||
@@ -517,10 +519,10 @@ class TransformerBlock(nn.Module):
|
||||
x = x + residual
|
||||
|
||||
else:
|
||||
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
|
||||
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb, transformer_options=transformer_options)
|
||||
|
||||
if context is not None:
|
||||
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
||||
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask, transformer_options=transformer_options)
|
||||
|
||||
if self.conformer is not None:
|
||||
x = x + self.conformer(x)
|
||||
@@ -606,7 +608,8 @@ class ContinuousTransformer(nn.Module):
|
||||
return_info = False,
|
||||
**kwargs
|
||||
):
|
||||
patches_replace = kwargs.get("transformer_options", {}).get("patches_replace", {})
|
||||
transformer_options = kwargs.get("transformer_options", {})
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
batch, seq, device = *x.shape[:2], x.device
|
||||
context = kwargs["context"]
|
||||
|
||||
@@ -632,7 +635,7 @@ class ContinuousTransformer(nn.Module):
|
||||
# Attention layers
|
||||
|
||||
if self.rotary_pos_emb is not None:
|
||||
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
|
||||
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=torch.float, device=x.device)
|
||||
else:
|
||||
rotary_pos_emb = None
|
||||
|
||||
@@ -645,13 +648,13 @@ class ContinuousTransformer(nn.Module):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"])
|
||||
out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"], transformer_options=args["transformer_options"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context)
|
||||
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context, transformer_options=transformer_options)
|
||||
# x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
||||
|
||||
if return_info:
|
||||
|
||||
@@ -9,6 +9,7 @@ import torch.nn.functional as F
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.ops
|
||||
import comfy.patcher_extension
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
def modulate(x, shift, scale):
|
||||
@@ -84,7 +85,7 @@ class SingleAttention(nn.Module):
|
||||
)
|
||||
|
||||
#@torch.compile()
|
||||
def forward(self, c):
|
||||
def forward(self, c, transformer_options={}):
|
||||
|
||||
bsz, seqlen1, _ = c.shape
|
||||
|
||||
@@ -94,7 +95,7 @@ class SingleAttention(nn.Module):
|
||||
v = v.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
||||
q, k = self.q_norm1(q), self.k_norm1(k)
|
||||
|
||||
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
|
||||
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True, transformer_options=transformer_options)
|
||||
c = self.w1o(output)
|
||||
return c
|
||||
|
||||
@@ -143,7 +144,7 @@ class DoubleAttention(nn.Module):
|
||||
|
||||
|
||||
#@torch.compile()
|
||||
def forward(self, c, x):
|
||||
def forward(self, c, x, transformer_options={}):
|
||||
|
||||
bsz, seqlen1, _ = c.shape
|
||||
bsz, seqlen2, _ = x.shape
|
||||
@@ -167,7 +168,7 @@ class DoubleAttention(nn.Module):
|
||||
torch.cat([cv, xv], dim=1),
|
||||
)
|
||||
|
||||
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
|
||||
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True, transformer_options=transformer_options)
|
||||
|
||||
c, x = output.split([seqlen1, seqlen2], dim=1)
|
||||
c = self.w1o(c)
|
||||
@@ -206,7 +207,7 @@ class MMDiTBlock(nn.Module):
|
||||
self.is_last = is_last
|
||||
|
||||
#@torch.compile()
|
||||
def forward(self, c, x, global_cond, **kwargs):
|
||||
def forward(self, c, x, global_cond, transformer_options={}, **kwargs):
|
||||
|
||||
cres, xres = c, x
|
||||
|
||||
@@ -224,7 +225,7 @@ class MMDiTBlock(nn.Module):
|
||||
x = modulate(self.normX1(x), xshift_msa, xscale_msa)
|
||||
|
||||
# attention
|
||||
c, x = self.attn(c, x)
|
||||
c, x = self.attn(c, x, transformer_options=transformer_options)
|
||||
|
||||
|
||||
c = self.normC2(cres + cgate_msa.unsqueeze(1) * c)
|
||||
@@ -254,13 +255,13 @@ class DiTBlock(nn.Module):
|
||||
self.mlp = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
#@torch.compile()
|
||||
def forward(self, cx, global_cond, **kwargs):
|
||||
def forward(self, cx, global_cond, transformer_options={}, **kwargs):
|
||||
cxres = cx
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.modCX(
|
||||
global_cond
|
||||
).chunk(6, dim=1)
|
||||
cx = modulate(self.norm1(cx), shift_msa, scale_msa)
|
||||
cx = self.attn(cx)
|
||||
cx = self.attn(cx, transformer_options=transformer_options)
|
||||
cx = self.norm2(cxres + gate_msa.unsqueeze(1) * cx)
|
||||
mlpout = self.mlp(modulate(cx, shift_mlp, scale_mlp))
|
||||
cx = gate_mlp.unsqueeze(1) * mlpout
|
||||
@@ -436,6 +437,13 @@ class MMDiT(nn.Module):
|
||||
return x + pos_encoding.reshape(1, -1, self.positional_encoding.shape[-1])
|
||||
|
||||
def forward(self, x, timestep, context, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, transformer_options, **kwargs)
|
||||
|
||||
def _forward(self, x, timestep, context, transformer_options={}, **kwargs):
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
# patchify x, add PE
|
||||
b, c, h, w = x.shape
|
||||
@@ -465,13 +473,14 @@ class MMDiT(nn.Module):
|
||||
out = {}
|
||||
out["txt"], out["img"] = layer(args["txt"],
|
||||
args["img"],
|
||||
args["vec"])
|
||||
args["vec"],
|
||||
transformer_options=args["transformer_options"])
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
c = out["txt"]
|
||||
x = out["img"]
|
||||
else:
|
||||
c, x = layer(c, x, global_cond, **kwargs)
|
||||
c, x = layer(c, x, global_cond, transformer_options=transformer_options, **kwargs)
|
||||
|
||||
if len(self.single_layers) > 0:
|
||||
c_len = c.size(1)
|
||||
@@ -480,13 +489,13 @@ class MMDiT(nn.Module):
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = layer(args["img"], args["vec"])
|
||||
out["img"] = layer(args["img"], args["vec"], transformer_options=args["transformer_options"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
cx = out["img"]
|
||||
else:
|
||||
cx = layer(cx, global_cond, **kwargs)
|
||||
cx = layer(cx, global_cond, transformer_options=transformer_options, **kwargs)
|
||||
|
||||
x = cx[:, c_len:]
|
||||
|
||||
|
||||
@@ -32,12 +32,12 @@ class OptimizedAttention(nn.Module):
|
||||
|
||||
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, q, k, v):
|
||||
def forward(self, q, k, v, transformer_options={}):
|
||||
q = self.to_q(q)
|
||||
k = self.to_k(k)
|
||||
v = self.to_v(v)
|
||||
|
||||
out = optimized_attention(q, k, v, self.heads)
|
||||
out = optimized_attention(q, k, v, self.heads, transformer_options=transformer_options)
|
||||
|
||||
return self.out_proj(out)
|
||||
|
||||
@@ -47,13 +47,13 @@ class Attention2D(nn.Module):
|
||||
self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
|
||||
# self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, kv, self_attn=False):
|
||||
def forward(self, x, kv, self_attn=False, transformer_options={}):
|
||||
orig_shape = x.shape
|
||||
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
|
||||
if self_attn:
|
||||
kv = torch.cat([x, kv], dim=1)
|
||||
# x = self.attn(x, kv, kv, need_weights=False)[0]
|
||||
x = self.attn(x, kv, kv)
|
||||
x = self.attn(x, kv, kv, transformer_options=transformer_options)
|
||||
x = x.permute(0, 2, 1).view(*orig_shape)
|
||||
return x
|
||||
|
||||
@@ -114,9 +114,9 @@ class AttnBlock(nn.Module):
|
||||
operations.Linear(c_cond, c, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x, kv):
|
||||
def forward(self, x, kv, transformer_options={}):
|
||||
kv = self.kv_mapper(kv)
|
||||
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
|
||||
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn, transformer_options=transformer_options)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
@@ -173,7 +173,7 @@ class StageB(nn.Module):
|
||||
clip = self.clip_norm(clip)
|
||||
return clip
|
||||
|
||||
def _down_encode(self, x, r_embed, clip):
|
||||
def _down_encode(self, x, r_embed, clip, transformer_options={}):
|
||||
level_outputs = []
|
||||
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
||||
for down_block, downscaler, repmap in block_group:
|
||||
@@ -187,7 +187,7 @@ class StageB(nn.Module):
|
||||
elif isinstance(block, AttnBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
AttnBlock)):
|
||||
x = block(x, clip)
|
||||
x = block(x, clip, transformer_options=transformer_options)
|
||||
elif isinstance(block, TimestepBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
TimestepBlock)):
|
||||
@@ -199,7 +199,7 @@ class StageB(nn.Module):
|
||||
level_outputs.insert(0, x)
|
||||
return level_outputs
|
||||
|
||||
def _up_decode(self, level_outputs, r_embed, clip):
|
||||
def _up_decode(self, level_outputs, r_embed, clip, transformer_options={}):
|
||||
x = level_outputs[0]
|
||||
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
||||
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
||||
@@ -216,7 +216,7 @@ class StageB(nn.Module):
|
||||
elif isinstance(block, AttnBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
AttnBlock)):
|
||||
x = block(x, clip)
|
||||
x = block(x, clip, transformer_options=transformer_options)
|
||||
elif isinstance(block, TimestepBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
TimestepBlock)):
|
||||
@@ -228,7 +228,7 @@ class StageB(nn.Module):
|
||||
x = upscaler(x)
|
||||
return x
|
||||
|
||||
def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
|
||||
def forward(self, x, r, effnet, clip, pixels=None, transformer_options={}, **kwargs):
|
||||
if pixels is None:
|
||||
pixels = x.new_zeros(x.size(0), 3, 8, 8)
|
||||
|
||||
@@ -245,8 +245,8 @@ class StageB(nn.Module):
|
||||
nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True))
|
||||
x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear',
|
||||
align_corners=True)
|
||||
level_outputs = self._down_encode(x, r_embed, clip)
|
||||
x = self._up_decode(level_outputs, r_embed, clip)
|
||||
level_outputs = self._down_encode(x, r_embed, clip, transformer_options=transformer_options)
|
||||
x = self._up_decode(level_outputs, r_embed, clip, transformer_options=transformer_options)
|
||||
return self.clf(x)
|
||||
|
||||
def update_weights_ema(self, src_model, beta=0.999):
|
||||
|
||||
@@ -182,7 +182,7 @@ class StageC(nn.Module):
|
||||
clip = self.clip_norm(clip)
|
||||
return clip
|
||||
|
||||
def _down_encode(self, x, r_embed, clip, cnet=None):
|
||||
def _down_encode(self, x, r_embed, clip, cnet=None, transformer_options={}):
|
||||
level_outputs = []
|
||||
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
||||
for down_block, downscaler, repmap in block_group:
|
||||
@@ -201,7 +201,7 @@ class StageC(nn.Module):
|
||||
elif isinstance(block, AttnBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
AttnBlock)):
|
||||
x = block(x, clip)
|
||||
x = block(x, clip, transformer_options=transformer_options)
|
||||
elif isinstance(block, TimestepBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
TimestepBlock)):
|
||||
@@ -213,7 +213,7 @@ class StageC(nn.Module):
|
||||
level_outputs.insert(0, x)
|
||||
return level_outputs
|
||||
|
||||
def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
|
||||
def _up_decode(self, level_outputs, r_embed, clip, cnet=None, transformer_options={}):
|
||||
x = level_outputs[0]
|
||||
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
||||
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
||||
@@ -235,7 +235,7 @@ class StageC(nn.Module):
|
||||
elif isinstance(block, AttnBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
AttnBlock)):
|
||||
x = block(x, clip)
|
||||
x = block(x, clip, transformer_options=transformer_options)
|
||||
elif isinstance(block, TimestepBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
TimestepBlock)):
|
||||
@@ -247,7 +247,7 @@ class StageC(nn.Module):
|
||||
x = upscaler(x)
|
||||
return x
|
||||
|
||||
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, **kwargs):
|
||||
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, transformer_options={}, **kwargs):
|
||||
# Process the conditioning embeddings
|
||||
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
|
||||
for c in self.t_conds:
|
||||
@@ -262,8 +262,8 @@ class StageC(nn.Module):
|
||||
|
||||
# Model Blocks
|
||||
x = self.embedding(x)
|
||||
level_outputs = self._down_encode(x, r_embed, clip, cnet)
|
||||
x = self._up_decode(level_outputs, r_embed, clip, cnet)
|
||||
level_outputs = self._down_encode(x, r_embed, clip, cnet, transformer_options=transformer_options)
|
||||
x = self._up_decode(level_outputs, r_embed, clip, cnet, transformer_options=transformer_options)
|
||||
return self.clf(x)
|
||||
|
||||
def update_weights_ema(self, src_model, beta=0.999):
|
||||
|
||||
@@ -76,7 +76,7 @@ class DoubleStreamBlock(nn.Module):
|
||||
)
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None):
|
||||
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}):
|
||||
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
|
||||
|
||||
# prepare image for attention
|
||||
@@ -95,7 +95,7 @@ class DoubleStreamBlock(nn.Module):
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2),
|
||||
pe=pe, mask=attn_mask)
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||
|
||||
@@ -148,7 +148,7 @@ class SingleStreamBlock(nn.Module):
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
|
||||
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
|
||||
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}) -> Tensor:
|
||||
mod = vec
|
||||
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
|
||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
@@ -157,7 +157,7 @@ class SingleStreamBlock(nn.Module):
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask)
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x.addcmul_(mod.gate, output)
|
||||
|
||||
@@ -5,6 +5,7 @@ from dataclasses import dataclass
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
import comfy.patcher_extension
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
from comfy.ldm.flux.layers import (
|
||||
@@ -150,8 +151,6 @@ class Chroma(nn.Module):
|
||||
attn_mask: Tensor = None,
|
||||
) -> Tensor:
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
@@ -192,14 +191,16 @@ class Chroma(nn.Module):
|
||||
txt=args["txt"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
attn_mask=args.get("attn_mask"),
|
||||
transformer_options=args.get("transformer_options"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img,
|
||||
"txt": txt,
|
||||
"vec": double_mod,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
"attn_mask": attn_mask,
|
||||
"transformer_options": transformer_options},
|
||||
{"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
@@ -208,7 +209,8 @@ class Chroma(nn.Module):
|
||||
txt=txt,
|
||||
vec=double_mod,
|
||||
pe=pe,
|
||||
attn_mask=attn_mask)
|
||||
attn_mask=attn_mask,
|
||||
transformer_options=transformer_options)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
@@ -228,17 +230,19 @@ class Chroma(nn.Module):
|
||||
out["img"] = block(args["img"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
attn_mask=args.get("attn_mask"),
|
||||
transformer_options=args.get("transformer_options"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img,
|
||||
"vec": single_mod,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
"attn_mask": attn_mask,
|
||||
"transformer_options": transformer_options},
|
||||
{"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)
|
||||
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
@@ -248,19 +252,29 @@ class Chroma(nn.Module):
|
||||
img[:, txt.shape[1] :, ...] += add
|
||||
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
final_mod = self.get_modulations(mod_vectors, "final")
|
||||
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
|
||||
if hasattr(self, "final_layer"):
|
||||
final_mod = self.get_modulations(mod_vectors, "final")
|
||||
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, guidance, control, transformer_options, **kwargs)
|
||||
|
||||
def _forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = 2
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=self.patch_size, pw=self.patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
if img.ndim != 3 or context.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
h_len = ((h + (self.patch_size // 2)) // self.patch_size)
|
||||
w_len = ((w + (self.patch_size // 2)) // self.patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
@@ -268,4 +282,4 @@ class Chroma(nn.Module):
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h,:w]
|
||||
|
||||
206
comfy/ldm/chroma_radiance/layers.py
Normal file
206
comfy/ldm/chroma_radiance/layers.py
Normal file
@@ -0,0 +1,206 @@
|
||||
# Adapted from https://github.com/lodestone-rock/flow
|
||||
from functools import lru_cache
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from comfy.ldm.flux.layers import RMSNorm
|
||||
|
||||
|
||||
class NerfEmbedder(nn.Module):
|
||||
"""
|
||||
An embedder module that combines input features with a 2D positional
|
||||
encoding that mimics the Discrete Cosine Transform (DCT).
|
||||
|
||||
This module takes an input tensor of shape (B, P^2, C), where P is the
|
||||
patch size, and enriches it with positional information before projecting
|
||||
it to a new hidden size.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
hidden_size_input: int,
|
||||
max_freqs: int,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
"""
|
||||
Initializes the NerfEmbedder.
|
||||
|
||||
Args:
|
||||
in_channels (int): The number of channels in the input tensor.
|
||||
hidden_size_input (int): The desired dimension of the output embedding.
|
||||
max_freqs (int): The number of frequency components to use for both
|
||||
the x and y dimensions of the positional encoding.
|
||||
The total number of positional features will be max_freqs^2.
|
||||
"""
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
self.max_freqs = max_freqs
|
||||
self.hidden_size_input = hidden_size_input
|
||||
|
||||
# A linear layer to project the concatenated input features and
|
||||
# positional encodings to the final output dimension.
|
||||
self.embedder = nn.Sequential(
|
||||
operations.Linear(in_channels + max_freqs**2, hidden_size_input, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
@lru_cache(maxsize=4)
|
||||
def fetch_pos(self, patch_size: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
|
||||
"""
|
||||
Generates and caches 2D DCT-like positional embeddings for a given patch size.
|
||||
|
||||
The LRU cache is a performance optimization that avoids recomputing the
|
||||
same positional grid on every forward pass.
|
||||
|
||||
Args:
|
||||
patch_size (int): The side length of the square input patch.
|
||||
device: The torch device to create the tensors on.
|
||||
dtype: The torch dtype for the tensors.
|
||||
|
||||
Returns:
|
||||
A tensor of shape (1, patch_size^2, max_freqs^2) containing the
|
||||
positional embeddings.
|
||||
"""
|
||||
# Create normalized 1D coordinate grids from 0 to 1.
|
||||
pos_x = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
|
||||
pos_y = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
|
||||
|
||||
# Create a 2D meshgrid of coordinates.
|
||||
pos_y, pos_x = torch.meshgrid(pos_y, pos_x, indexing="ij")
|
||||
|
||||
# Reshape positions to be broadcastable with frequencies.
|
||||
# Shape becomes (patch_size^2, 1, 1).
|
||||
pos_x = pos_x.reshape(-1, 1, 1)
|
||||
pos_y = pos_y.reshape(-1, 1, 1)
|
||||
|
||||
# Create a 1D tensor of frequency values from 0 to max_freqs-1.
|
||||
freqs = torch.linspace(0, self.max_freqs - 1, self.max_freqs, dtype=dtype, device=device)
|
||||
|
||||
# Reshape frequencies to be broadcastable for creating 2D basis functions.
|
||||
# freqs_x shape: (1, max_freqs, 1)
|
||||
# freqs_y shape: (1, 1, max_freqs)
|
||||
freqs_x = freqs[None, :, None]
|
||||
freqs_y = freqs[None, None, :]
|
||||
|
||||
# A custom weighting coefficient, not part of standard DCT.
|
||||
# This seems to down-weight the contribution of higher-frequency interactions.
|
||||
coeffs = (1 + freqs_x * freqs_y) ** -1
|
||||
|
||||
# Calculate the 1D cosine basis functions for x and y coordinates.
|
||||
# This is the core of the DCT formulation.
|
||||
dct_x = torch.cos(pos_x * freqs_x * torch.pi)
|
||||
dct_y = torch.cos(pos_y * freqs_y * torch.pi)
|
||||
|
||||
# Combine the 1D basis functions to create 2D basis functions by element-wise
|
||||
# multiplication, and apply the custom coefficients. Broadcasting handles the
|
||||
# combination of all (pos_x, freqs_x) with all (pos_y, freqs_y).
|
||||
# The result is flattened into a feature vector for each position.
|
||||
dct = (dct_x * dct_y * coeffs).view(1, -1, self.max_freqs ** 2)
|
||||
|
||||
return dct
|
||||
|
||||
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass for the embedder.
|
||||
|
||||
Args:
|
||||
inputs (Tensor): The input tensor of shape (B, P^2, C).
|
||||
|
||||
Returns:
|
||||
Tensor: The output tensor of shape (B, P^2, hidden_size_input).
|
||||
"""
|
||||
# Get the batch size, number of pixels, and number of channels.
|
||||
B, P2, C = inputs.shape
|
||||
|
||||
# Infer the patch side length from the number of pixels (P^2).
|
||||
patch_size = int(P2 ** 0.5)
|
||||
|
||||
input_dtype = inputs.dtype
|
||||
inputs = inputs.to(dtype=self.dtype)
|
||||
|
||||
# Fetch the pre-computed or cached positional embeddings.
|
||||
dct = self.fetch_pos(patch_size, inputs.device, self.dtype)
|
||||
|
||||
# Repeat the positional embeddings for each item in the batch.
|
||||
dct = dct.repeat(B, 1, 1)
|
||||
|
||||
# Concatenate the original input features with the positional embeddings
|
||||
# along the feature dimension.
|
||||
inputs = torch.cat((inputs, dct), dim=-1)
|
||||
|
||||
# Project the combined tensor to the target hidden size.
|
||||
return self.embedder(inputs).to(dtype=input_dtype)
|
||||
|
||||
|
||||
class NerfGLUBlock(nn.Module):
|
||||
"""
|
||||
A NerfBlock using a Gated Linear Unit (GLU) like MLP.
|
||||
"""
|
||||
def __init__(self, hidden_size_s: int, hidden_size_x: int, mlp_ratio, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
# The total number of parameters for the MLP is increased to accommodate
|
||||
# the gate, value, and output projection matrices.
|
||||
# We now need to generate parameters for 3 matrices.
|
||||
total_params = 3 * hidden_size_x**2 * mlp_ratio
|
||||
self.param_generator = operations.Linear(hidden_size_s, total_params, dtype=dtype, device=device)
|
||||
self.norm = RMSNorm(hidden_size_x, dtype=dtype, device=device, operations=operations)
|
||||
self.mlp_ratio = mlp_ratio
|
||||
|
||||
|
||||
def forward(self, x: torch.Tensor, s: torch.Tensor) -> torch.Tensor:
|
||||
batch_size, num_x, hidden_size_x = x.shape
|
||||
mlp_params = self.param_generator(s)
|
||||
|
||||
# Split the generated parameters into three parts for the gate, value, and output projection.
|
||||
fc1_gate_params, fc1_value_params, fc2_params = mlp_params.chunk(3, dim=-1)
|
||||
|
||||
# Reshape the parameters into matrices for batch matrix multiplication.
|
||||
fc1_gate = fc1_gate_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio)
|
||||
fc1_value = fc1_value_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio)
|
||||
fc2 = fc2_params.view(batch_size, hidden_size_x * self.mlp_ratio, hidden_size_x)
|
||||
|
||||
# Normalize the generated weight matrices as in the original implementation.
|
||||
fc1_gate = torch.nn.functional.normalize(fc1_gate, dim=-2)
|
||||
fc1_value = torch.nn.functional.normalize(fc1_value, dim=-2)
|
||||
fc2 = torch.nn.functional.normalize(fc2, dim=-2)
|
||||
|
||||
res_x = x
|
||||
x = self.norm(x)
|
||||
|
||||
# Apply the final output projection.
|
||||
x = torch.bmm(torch.nn.functional.silu(torch.bmm(x, fc1_gate)) * torch.bmm(x, fc1_value), fc2)
|
||||
|
||||
return x + res_x
|
||||
|
||||
|
||||
class NerfFinalLayer(nn.Module):
|
||||
def __init__(self, hidden_size, out_channels, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.linear = operations.Linear(hidden_size, out_channels, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
# RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1.
|
||||
# So we temporarily move the channel dimension to the end for the norm operation.
|
||||
return self.linear(self.norm(x.movedim(1, -1))).movedim(-1, 1)
|
||||
|
||||
|
||||
class NerfFinalLayerConv(nn.Module):
|
||||
def __init__(self, hidden_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.conv = operations.Conv2d(
|
||||
in_channels=hidden_size,
|
||||
out_channels=out_channels,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
# RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1.
|
||||
# So we temporarily move the channel dimension to the end for the norm operation.
|
||||
return self.conv(self.norm(x.movedim(1, -1)).movedim(-1, 1))
|
||||
329
comfy/ldm/chroma_radiance/model.py
Normal file
329
comfy/ldm/chroma_radiance/model.py
Normal file
@@ -0,0 +1,329 @@
|
||||
# Credits:
|
||||
# Original Flux code can be found on: https://github.com/black-forest-labs/flux
|
||||
# Chroma Radiance adaption referenced from https://github.com/lodestone-rock/flow
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from einops import repeat
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
|
||||
from comfy.ldm.chroma.model import Chroma, ChromaParams
|
||||
from comfy.ldm.chroma.layers import (
|
||||
DoubleStreamBlock,
|
||||
SingleStreamBlock,
|
||||
Approximator,
|
||||
)
|
||||
from .layers import (
|
||||
NerfEmbedder,
|
||||
NerfGLUBlock,
|
||||
NerfFinalLayer,
|
||||
NerfFinalLayerConv,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChromaRadianceParams(ChromaParams):
|
||||
patch_size: int
|
||||
nerf_hidden_size: int
|
||||
nerf_mlp_ratio: int
|
||||
nerf_depth: int
|
||||
nerf_max_freqs: int
|
||||
# Setting nerf_tile_size to 0 disables tiling.
|
||||
nerf_tile_size: int
|
||||
# Currently one of linear (legacy) or conv.
|
||||
nerf_final_head_type: str
|
||||
# None means use the same dtype as the model.
|
||||
nerf_embedder_dtype: Optional[torch.dtype]
|
||||
|
||||
|
||||
class ChromaRadiance(Chroma):
|
||||
"""
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||
if operations is None:
|
||||
raise RuntimeError("Attempt to create ChromaRadiance object without setting operations")
|
||||
nn.Module.__init__(self)
|
||||
self.dtype = dtype
|
||||
params = ChromaRadianceParams(**kwargs)
|
||||
self.params = params
|
||||
self.patch_size = params.patch_size
|
||||
self.in_channels = params.in_channels
|
||||
self.out_channels = params.out_channels
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(
|
||||
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
||||
)
|
||||
pe_dim = params.hidden_size // params.num_heads
|
||||
if sum(params.axes_dim) != pe_dim:
|
||||
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
||||
self.hidden_size = params.hidden_size
|
||||
self.num_heads = params.num_heads
|
||||
self.in_dim = params.in_dim
|
||||
self.out_dim = params.out_dim
|
||||
self.hidden_dim = params.hidden_dim
|
||||
self.n_layers = params.n_layers
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
self.img_in_patch = operations.Conv2d(
|
||||
params.in_channels,
|
||||
params.hidden_size,
|
||||
kernel_size=params.patch_size,
|
||||
stride=params.patch_size,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
||||
# set as nn identity for now, will overwrite it later.
|
||||
self.distilled_guidance_layer = Approximator(
|
||||
in_dim=self.in_dim,
|
||||
hidden_dim=self.hidden_dim,
|
||||
out_dim=self.out_dim,
|
||||
n_layers=self.n_layers,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
# pixel channel concat with DCT
|
||||
self.nerf_image_embedder = NerfEmbedder(
|
||||
in_channels=params.in_channels,
|
||||
hidden_size_input=params.nerf_hidden_size,
|
||||
max_freqs=params.nerf_max_freqs,
|
||||
dtype=params.nerf_embedder_dtype or dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
self.nerf_blocks = nn.ModuleList([
|
||||
NerfGLUBlock(
|
||||
hidden_size_s=params.hidden_size,
|
||||
hidden_size_x=params.nerf_hidden_size,
|
||||
mlp_ratio=params.nerf_mlp_ratio,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
) for _ in range(params.nerf_depth)
|
||||
])
|
||||
|
||||
if params.nerf_final_head_type == "linear":
|
||||
self.nerf_final_layer = NerfFinalLayer(
|
||||
params.nerf_hidden_size,
|
||||
out_channels=params.in_channels,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
elif params.nerf_final_head_type == "conv":
|
||||
self.nerf_final_layer_conv = NerfFinalLayerConv(
|
||||
params.nerf_hidden_size,
|
||||
out_channels=params.in_channels,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
else:
|
||||
errstr = f"Unsupported nerf_final_head_type {params.nerf_final_head_type}"
|
||||
raise ValueError(errstr)
|
||||
|
||||
self.skip_mmdit = []
|
||||
self.skip_dit = []
|
||||
self.lite = False
|
||||
|
||||
@property
|
||||
def _nerf_final_layer(self) -> nn.Module:
|
||||
if self.params.nerf_final_head_type == "linear":
|
||||
return self.nerf_final_layer
|
||||
if self.params.nerf_final_head_type == "conv":
|
||||
return self.nerf_final_layer_conv
|
||||
# Impossible to get here as we raise an error on unexpected types on initialization.
|
||||
raise NotImplementedError
|
||||
|
||||
def img_in(self, img: Tensor) -> Tensor:
|
||||
img = self.img_in_patch(img) # -> [B, Hidden, H/P, W/P]
|
||||
# flatten into a sequence for the transformer.
|
||||
return img.flatten(2).transpose(1, 2) # -> [B, NumPatches, Hidden]
|
||||
|
||||
def forward_nerf(
|
||||
self,
|
||||
img_orig: Tensor,
|
||||
img_out: Tensor,
|
||||
params: ChromaRadianceParams,
|
||||
) -> Tensor:
|
||||
B, C, H, W = img_orig.shape
|
||||
num_patches = img_out.shape[1]
|
||||
patch_size = params.patch_size
|
||||
|
||||
# Store the raw pixel values of each patch for the NeRF head later.
|
||||
# unfold creates patches: [B, C * P * P, NumPatches]
|
||||
nerf_pixels = nn.functional.unfold(img_orig, kernel_size=patch_size, stride=patch_size)
|
||||
nerf_pixels = nerf_pixels.transpose(1, 2) # -> [B, NumPatches, C * P * P]
|
||||
|
||||
if params.nerf_tile_size > 0 and num_patches > params.nerf_tile_size:
|
||||
# Enable tiling if nerf_tile_size isn't 0 and we actually have more patches than
|
||||
# the tile size.
|
||||
img_dct = self.forward_tiled_nerf(img_out, nerf_pixels, B, C, num_patches, patch_size, params)
|
||||
else:
|
||||
# Reshape for per-patch processing
|
||||
nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size)
|
||||
nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2)
|
||||
|
||||
# Get DCT-encoded pixel embeddings [pixel-dct]
|
||||
img_dct = self.nerf_image_embedder(nerf_pixels)
|
||||
|
||||
# Pass through the dynamic MLP blocks (the NeRF)
|
||||
for block in self.nerf_blocks:
|
||||
img_dct = block(img_dct, nerf_hidden)
|
||||
|
||||
# Reassemble the patches into the final image.
|
||||
img_dct = img_dct.transpose(1, 2) # -> [B*NumPatches, C, P*P]
|
||||
# Reshape to combine with batch dimension for fold
|
||||
img_dct = img_dct.reshape(B, num_patches, -1) # -> [B, NumPatches, C*P*P]
|
||||
img_dct = img_dct.transpose(1, 2) # -> [B, C*P*P, NumPatches]
|
||||
img_dct = nn.functional.fold(
|
||||
img_dct,
|
||||
output_size=(H, W),
|
||||
kernel_size=patch_size,
|
||||
stride=patch_size,
|
||||
)
|
||||
return self._nerf_final_layer(img_dct)
|
||||
|
||||
def forward_tiled_nerf(
|
||||
self,
|
||||
nerf_hidden: Tensor,
|
||||
nerf_pixels: Tensor,
|
||||
batch: int,
|
||||
channels: int,
|
||||
num_patches: int,
|
||||
patch_size: int,
|
||||
params: ChromaRadianceParams,
|
||||
) -> Tensor:
|
||||
"""
|
||||
Processes the NeRF head in tiles to save memory.
|
||||
nerf_hidden has shape [B, L, D]
|
||||
nerf_pixels has shape [B, L, C * P * P]
|
||||
"""
|
||||
tile_size = params.nerf_tile_size
|
||||
output_tiles = []
|
||||
# Iterate over the patches in tiles. The dimension L (num_patches) is at index 1.
|
||||
for i in range(0, num_patches, tile_size):
|
||||
end = min(i + tile_size, num_patches)
|
||||
|
||||
# Slice the current tile from the input tensors
|
||||
nerf_hidden_tile = nerf_hidden[:, i:end, :]
|
||||
nerf_pixels_tile = nerf_pixels[:, i:end, :]
|
||||
|
||||
# Get the actual number of patches in this tile (can be smaller for the last tile)
|
||||
num_patches_tile = nerf_hidden_tile.shape[1]
|
||||
|
||||
# Reshape the tile for per-patch processing
|
||||
# [B, NumPatches_tile, D] -> [B * NumPatches_tile, D]
|
||||
nerf_hidden_tile = nerf_hidden_tile.reshape(batch * num_patches_tile, params.hidden_size)
|
||||
# [B, NumPatches_tile, C*P*P] -> [B*NumPatches_tile, C, P*P] -> [B*NumPatches_tile, P*P, C]
|
||||
nerf_pixels_tile = nerf_pixels_tile.reshape(batch * num_patches_tile, channels, patch_size**2).transpose(1, 2)
|
||||
|
||||
# get DCT-encoded pixel embeddings [pixel-dct]
|
||||
img_dct_tile = self.nerf_image_embedder(nerf_pixels_tile)
|
||||
|
||||
# pass through the dynamic MLP blocks (the NeRF)
|
||||
for block in self.nerf_blocks:
|
||||
img_dct_tile = block(img_dct_tile, nerf_hidden_tile)
|
||||
|
||||
output_tiles.append(img_dct_tile)
|
||||
|
||||
# Concatenate the processed tiles along the patch dimension
|
||||
return torch.cat(output_tiles, dim=0)
|
||||
|
||||
def radiance_get_override_params(self, overrides: dict) -> ChromaRadianceParams:
|
||||
params = self.params
|
||||
if not overrides:
|
||||
return params
|
||||
params_dict = {k: getattr(params, k) for k in params.__dataclass_fields__}
|
||||
nullable_keys = frozenset(("nerf_embedder_dtype",))
|
||||
bad_keys = tuple(k for k in overrides if k not in params_dict)
|
||||
if bad_keys:
|
||||
e = f"Unknown key(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
|
||||
raise ValueError(e)
|
||||
bad_keys = tuple(
|
||||
k
|
||||
for k, v in overrides.items()
|
||||
if type(v) != type(getattr(params, k)) and (v is not None or k not in nullable_keys)
|
||||
)
|
||||
if bad_keys:
|
||||
e = f"Invalid value(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
|
||||
raise ValueError(e)
|
||||
# At this point it's all valid keys and values so we can merge with the existing params.
|
||||
params_dict |= overrides
|
||||
return params.__class__(**params_dict)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
x: Tensor,
|
||||
timestep: Tensor,
|
||||
context: Tensor,
|
||||
guidance: Optional[Tensor],
|
||||
control: Optional[dict]=None,
|
||||
transformer_options: dict={},
|
||||
**kwargs: dict,
|
||||
) -> Tensor:
|
||||
bs, c, h, w = x.shape
|
||||
img = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
|
||||
if img.ndim != 4:
|
||||
raise ValueError("Input img tensor must be in [B, C, H, W] format.")
|
||||
if context.ndim != 3:
|
||||
raise ValueError("Input txt tensors must have 3 dimensions.")
|
||||
|
||||
params = self.radiance_get_override_params(transformer_options.get("chroma_radiance_options", {}))
|
||||
|
||||
h_len = (img.shape[-2] // self.patch_size)
|
||||
w_len = (img.shape[-1] // self.patch_size)
|
||||
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
|
||||
img_out = self.forward_orig(
|
||||
img,
|
||||
img_ids,
|
||||
context,
|
||||
txt_ids,
|
||||
timestep,
|
||||
guidance,
|
||||
control,
|
||||
transformer_options,
|
||||
attn_mask=kwargs.get("attention_mask", None),
|
||||
)
|
||||
return self.forward_nerf(img, img_out, params)[:, :, :h, :w]
|
||||
@@ -176,6 +176,7 @@ class Attention(nn.Module):
|
||||
context=None,
|
||||
mask=None,
|
||||
rope_emb=None,
|
||||
transformer_options={},
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
@@ -184,7 +185,7 @@ class Attention(nn.Module):
|
||||
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
|
||||
"""
|
||||
q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs)
|
||||
out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True)
|
||||
out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
out = rearrange(out, " b n s c -> s b (n c)")
|
||||
return self.to_out(out)
|
||||
@@ -546,6 +547,7 @@ class VideoAttn(nn.Module):
|
||||
context: Optional[torch.Tensor] = None,
|
||||
crossattn_mask: Optional[torch.Tensor] = None,
|
||||
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
|
||||
transformer_options: Optional[dict] = {},
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass for video attention.
|
||||
@@ -571,6 +573,7 @@ class VideoAttn(nn.Module):
|
||||
context_M_B_D,
|
||||
crossattn_mask,
|
||||
rope_emb=rope_emb_L_1_1_D,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W)
|
||||
return x_T_H_W_B_D
|
||||
@@ -665,6 +668,7 @@ class DITBuildingBlock(nn.Module):
|
||||
crossattn_mask: Optional[torch.Tensor] = None,
|
||||
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
|
||||
adaln_lora_B_3D: Optional[torch.Tensor] = None,
|
||||
transformer_options: Optional[dict] = {},
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass for dynamically configured blocks with adaptive normalization.
|
||||
@@ -702,6 +706,7 @@ class DITBuildingBlock(nn.Module):
|
||||
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
|
||||
context=None,
|
||||
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
elif self.block_type in ["cross_attn", "ca"]:
|
||||
x = x + gate_1_1_1_B_D * self.block(
|
||||
@@ -709,6 +714,7 @@ class DITBuildingBlock(nn.Module):
|
||||
context=crossattn_emb,
|
||||
crossattn_mask=crossattn_mask,
|
||||
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown block type: {self.block_type}")
|
||||
@@ -784,6 +790,7 @@ class GeneralDITTransformerBlock(nn.Module):
|
||||
crossattn_mask: Optional[torch.Tensor] = None,
|
||||
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
|
||||
adaln_lora_B_3D: Optional[torch.Tensor] = None,
|
||||
transformer_options: Optional[dict] = {},
|
||||
) -> torch.Tensor:
|
||||
for block in self.blocks:
|
||||
x = block(
|
||||
@@ -793,5 +800,6 @@ class GeneralDITTransformerBlock(nn.Module):
|
||||
crossattn_mask,
|
||||
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
|
||||
adaln_lora_B_3D=adaln_lora_B_3D,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
return x
|
||||
|
||||
@@ -58,7 +58,8 @@ def is_odd(n: int) -> bool:
|
||||
|
||||
|
||||
def nonlinearity(x):
|
||||
return x * torch.sigmoid(x)
|
||||
# x * sigmoid(x)
|
||||
return torch.nn.functional.silu(x)
|
||||
|
||||
|
||||
def Normalize(in_channels, num_groups=32):
|
||||
|
||||
@@ -27,6 +27,8 @@ from torchvision import transforms
|
||||
from enum import Enum
|
||||
import logging
|
||||
|
||||
import comfy.patcher_extension
|
||||
|
||||
from .blocks import (
|
||||
FinalLayer,
|
||||
GeneralDITTransformerBlock,
|
||||
@@ -435,6 +437,42 @@ class GeneralDIT(nn.Module):
|
||||
latent_condition_sigma: Optional[torch.Tensor] = None,
|
||||
condition_video_augment_sigma: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
|
||||
).execute(x,
|
||||
timesteps,
|
||||
context,
|
||||
attention_mask,
|
||||
fps,
|
||||
image_size,
|
||||
padding_mask,
|
||||
scalar_feature,
|
||||
data_type,
|
||||
latent_condition,
|
||||
latent_condition_sigma,
|
||||
condition_video_augment_sigma,
|
||||
**kwargs)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timesteps: torch.Tensor,
|
||||
context: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
# crossattn_emb: torch.Tensor,
|
||||
# crossattn_mask: Optional[torch.Tensor] = None,
|
||||
fps: Optional[torch.Tensor] = None,
|
||||
image_size: Optional[torch.Tensor] = None,
|
||||
padding_mask: Optional[torch.Tensor] = None,
|
||||
scalar_feature: Optional[torch.Tensor] = None,
|
||||
data_type: Optional[DataType] = DataType.VIDEO,
|
||||
latent_condition: Optional[torch.Tensor] = None,
|
||||
latent_condition_sigma: Optional[torch.Tensor] = None,
|
||||
condition_video_augment_sigma: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@@ -482,6 +520,7 @@ class GeneralDIT(nn.Module):
|
||||
x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
|
||||
), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}"
|
||||
|
||||
transformer_options = kwargs.get("transformer_options", {})
|
||||
for _, block in self.blocks.items():
|
||||
assert (
|
||||
self.blocks["block0"].x_format == block.x_format
|
||||
@@ -496,6 +535,7 @@ class GeneralDIT(nn.Module):
|
||||
crossattn_mask,
|
||||
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
|
||||
adaln_lora_B_3D=adaln_lora_B_3D,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D")
|
||||
|
||||
@@ -11,6 +11,7 @@ import math
|
||||
from .position_embedding import VideoRopePosition3DEmb, LearnablePosEmbAxis
|
||||
from torchvision import transforms
|
||||
|
||||
import comfy.patcher_extension
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
def apply_rotary_pos_emb(
|
||||
@@ -43,7 +44,7 @@ class GPT2FeedForward(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor) -> torch.Tensor:
|
||||
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor, transformer_options: Optional[dict] = {}) -> torch.Tensor:
|
||||
"""Computes multi-head attention using PyTorch's native implementation.
|
||||
|
||||
This function provides a PyTorch backend alternative to Transformer Engine's attention operation.
|
||||
@@ -70,7 +71,7 @@ def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H
|
||||
q_B_H_S_D = rearrange(q_B_S_H_D, "b ... h k -> b h ... k").view(in_q_shape[0], in_q_shape[-2], -1, in_q_shape[-1])
|
||||
k_B_H_S_D = rearrange(k_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
|
||||
v_B_H_S_D = rearrange(v_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
|
||||
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True)
|
||||
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True, transformer_options=transformer_options)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
@@ -179,8 +180,8 @@ class Attention(nn.Module):
|
||||
|
||||
return q, k, v
|
||||
|
||||
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
|
||||
result = self.attn_op(q, k, v) # [B, S, H, D]
|
||||
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, transformer_options: Optional[dict] = {}) -> torch.Tensor:
|
||||
result = self.attn_op(q, k, v, transformer_options=transformer_options) # [B, S, H, D]
|
||||
return self.output_dropout(self.output_proj(result))
|
||||
|
||||
def forward(
|
||||
@@ -188,6 +189,7 @@ class Attention(nn.Module):
|
||||
x: torch.Tensor,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
rope_emb: Optional[torch.Tensor] = None,
|
||||
transformer_options: Optional[dict] = {},
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
@@ -195,7 +197,7 @@ class Attention(nn.Module):
|
||||
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
|
||||
"""
|
||||
q, k, v = self.compute_qkv(x, context, rope_emb=rope_emb)
|
||||
return self.compute_attention(q, k, v)
|
||||
return self.compute_attention(q, k, v, transformer_options=transformer_options)
|
||||
|
||||
|
||||
class Timesteps(nn.Module):
|
||||
@@ -458,6 +460,7 @@ class Block(nn.Module):
|
||||
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
|
||||
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
|
||||
extra_per_block_pos_emb: Optional[torch.Tensor] = None,
|
||||
transformer_options: Optional[dict] = {},
|
||||
) -> torch.Tensor:
|
||||
if extra_per_block_pos_emb is not None:
|
||||
x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb
|
||||
@@ -511,6 +514,7 @@ class Block(nn.Module):
|
||||
rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
|
||||
None,
|
||||
rope_emb=rope_emb_L_1_1_D,
|
||||
transformer_options=transformer_options,
|
||||
),
|
||||
"b (t h w) d -> b t h w d",
|
||||
t=T,
|
||||
@@ -524,6 +528,7 @@ class Block(nn.Module):
|
||||
layer_norm_cross_attn: Callable,
|
||||
_scale_cross_attn_B_T_1_1_D: torch.Tensor,
|
||||
_shift_cross_attn_B_T_1_1_D: torch.Tensor,
|
||||
transformer_options: Optional[dict] = {},
|
||||
) -> torch.Tensor:
|
||||
_normalized_x_B_T_H_W_D = _fn(
|
||||
_x_B_T_H_W_D, layer_norm_cross_attn, _scale_cross_attn_B_T_1_1_D, _shift_cross_attn_B_T_1_1_D
|
||||
@@ -533,6 +538,7 @@ class Block(nn.Module):
|
||||
rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
|
||||
crossattn_emb,
|
||||
rope_emb=rope_emb_L_1_1_D,
|
||||
transformer_options=transformer_options,
|
||||
),
|
||||
"b (t h w) d -> b t h w d",
|
||||
t=T,
|
||||
@@ -546,6 +552,7 @@ class Block(nn.Module):
|
||||
self.layer_norm_cross_attn,
|
||||
scale_cross_attn_B_T_1_1_D,
|
||||
shift_cross_attn_B_T_1_1_D,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D
|
||||
|
||||
@@ -805,7 +812,21 @@ class MiniTrainDIT(nn.Module):
|
||||
)
|
||||
return x_B_C_Tt_Hp_Wp
|
||||
|
||||
def forward(
|
||||
def forward(self,
|
||||
x: torch.Tensor,
|
||||
timesteps: torch.Tensor,
|
||||
context: torch.Tensor,
|
||||
fps: Optional[torch.Tensor] = None,
|
||||
padding_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
|
||||
).execute(x, timesteps, context, fps, padding_mask, **kwargs)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timesteps: torch.Tensor,
|
||||
@@ -850,6 +871,7 @@ class MiniTrainDIT(nn.Module):
|
||||
"rope_emb_L_1_1_D": rope_emb_L_1_1_D.unsqueeze(1).unsqueeze(0),
|
||||
"adaln_lora_B_T_3D": adaln_lora_B_T_3D,
|
||||
"extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
|
||||
"transformer_options": kwargs.get("transformer_options", {}),
|
||||
}
|
||||
for block in self.blocks:
|
||||
x_B_T_H_W_D = block(
|
||||
|
||||
@@ -159,7 +159,7 @@ class DoubleStreamBlock(nn.Module):
|
||||
)
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None):
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
|
||||
@@ -182,7 +182,7 @@ class DoubleStreamBlock(nn.Module):
|
||||
attn = attention(torch.cat((img_q, txt_q), dim=2),
|
||||
torch.cat((img_k, txt_k), dim=2),
|
||||
torch.cat((img_v, txt_v), dim=2),
|
||||
pe=pe, mask=attn_mask)
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
|
||||
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
|
||||
else:
|
||||
@@ -190,7 +190,7 @@ class DoubleStreamBlock(nn.Module):
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2),
|
||||
pe=pe, mask=attn_mask)
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||
|
||||
@@ -244,7 +244,7 @@ class SingleStreamBlock(nn.Module):
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None) -> Tensor:
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
|
||||
mod, _ = self.modulation(vec)
|
||||
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
@@ -252,7 +252,7 @@ class SingleStreamBlock(nn.Module):
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask)
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x += apply_mod(output, mod.gate, None, modulation_dims)
|
||||
|
||||
@@ -6,7 +6,7 @@ from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.model_management
|
||||
|
||||
|
||||
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
|
||||
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor:
|
||||
q_shape = q.shape
|
||||
k_shape = k.shape
|
||||
|
||||
@@ -17,7 +17,7 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
|
||||
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
|
||||
|
||||
heads = q.shape[1]
|
||||
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask)
|
||||
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options)
|
||||
return x
|
||||
|
||||
|
||||
@@ -35,11 +35,13 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
||||
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
||||
return out.to(dtype=torch.float32, device=pos.device)
|
||||
|
||||
def apply_rope1(x: Tensor, freqs_cis: Tensor):
|
||||
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
|
||||
|
||||
x_out = freqs_cis[..., 0] * x_[..., 0]
|
||||
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
|
||||
|
||||
return x_out.reshape(*x.shape).type_as(x)
|
||||
|
||||
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
|
||||
xq_ = xq.to(dtype=freqs_cis.dtype).reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.to(dtype=freqs_cis.dtype).reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
||||
|
||||
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
|
||||
|
||||
@@ -6,6 +6,7 @@ import torch
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
import comfy.ldm.common_dit
|
||||
import comfy.patcher_extension
|
||||
|
||||
from .layers import (
|
||||
DoubleStreamBlock,
|
||||
@@ -105,6 +106,7 @@ class Flux(nn.Module):
|
||||
if y is None:
|
||||
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
|
||||
|
||||
patches = transformer_options.get("patches", {})
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
@@ -116,9 +118,17 @@ class Flux(nn.Module):
|
||||
if guidance is not None:
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
||||
|
||||
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
|
||||
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
if "post_input" in patches:
|
||||
for p in patches["post_input"]:
|
||||
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
|
||||
img = out["img"]
|
||||
txt = out["txt"]
|
||||
img_ids = out["img_ids"]
|
||||
txt_ids = out["txt_ids"]
|
||||
|
||||
if img_ids is not None:
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
@@ -134,14 +144,16 @@ class Flux(nn.Module):
|
||||
txt=args["txt"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
attn_mask=args.get("attn_mask"),
|
||||
transformer_options=args.get("transformer_options"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img,
|
||||
"txt": txt,
|
||||
"vec": vec,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
"attn_mask": attn_mask,
|
||||
"transformer_options": transformer_options},
|
||||
{"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
@@ -150,14 +162,15 @@ class Flux(nn.Module):
|
||||
txt=txt,
|
||||
vec=vec,
|
||||
pe=pe,
|
||||
attn_mask=attn_mask)
|
||||
attn_mask=attn_mask,
|
||||
transformer_options=transformer_options)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
img += add
|
||||
img[:, :add.shape[1]] += add
|
||||
|
||||
if img.dtype == torch.float16:
|
||||
img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504)
|
||||
@@ -171,24 +184,26 @@ class Flux(nn.Module):
|
||||
out["img"] = block(args["img"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
attn_mask=args.get("attn_mask"),
|
||||
transformer_options=args.get("transformer_options"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img,
|
||||
"vec": vec,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
"attn_mask": attn_mask,
|
||||
"transformer_options": transformer_options},
|
||||
{"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, txt.shape[1] :, ...] += add
|
||||
img[:, txt.shape[1] : txt.shape[1] + add.shape[1], ...] += add
|
||||
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
|
||||
@@ -214,6 +229,13 @@ class Flux(nn.Module):
|
||||
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, y, guidance, ref_latents, control, transformer_options, **kwargs)
|
||||
|
||||
def _forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, h_orig, w_orig = x.shape
|
||||
patch_size = self.patch_size
|
||||
|
||||
@@ -224,19 +246,33 @@ class Flux(nn.Module):
|
||||
if ref_latents is not None:
|
||||
h = 0
|
||||
w = 0
|
||||
index = 0
|
||||
ref_latents_method = kwargs.get("ref_latents_method", "offset")
|
||||
for ref in ref_latents:
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
if ref.shape[-2] + h > ref.shape[-1] + w:
|
||||
w_offset = w
|
||||
if ref_latents_method == "index":
|
||||
index += 1
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
elif ref_latents_method == "uxo":
|
||||
index = 0
|
||||
h_offset = h_len * patch_size + h
|
||||
w_offset = w_len * patch_size + w
|
||||
h += ref.shape[-2]
|
||||
w += ref.shape[-1]
|
||||
else:
|
||||
h_offset = h
|
||||
index = 1
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
if ref.shape[-2] + h > ref.shape[-1] + w:
|
||||
w_offset = w
|
||||
else:
|
||||
h_offset = h
|
||||
h = max(h, ref.shape[-2] + h_offset)
|
||||
w = max(w, ref.shape[-1] + w_offset)
|
||||
|
||||
kontext, kontext_ids = self.process_img(ref, index=1, h_offset=h_offset, w_offset=w_offset)
|
||||
kontext, kontext_ids = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
|
||||
img = torch.cat([img, kontext], dim=1)
|
||||
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
|
||||
h = max(h, ref.shape[-2] + h_offset)
|
||||
w = max(w, ref.shape[-1] + w_offset)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
|
||||
|
||||
@@ -109,6 +109,7 @@ class AsymmetricAttention(nn.Module):
|
||||
scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
|
||||
scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
|
||||
crop_y,
|
||||
transformer_options={},
|
||||
**rope_rotation,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
rope_cos = rope_rotation.get("rope_cos")
|
||||
@@ -143,7 +144,7 @@ class AsymmetricAttention(nn.Module):
|
||||
|
||||
xy = optimized_attention(q,
|
||||
k,
|
||||
v, self.num_heads, skip_reshape=True)
|
||||
v, self.num_heads, skip_reshape=True, transformer_options=transformer_options)
|
||||
|
||||
x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1)
|
||||
x = self.proj_x(x)
|
||||
@@ -224,6 +225,7 @@ class AsymmetricJointBlock(nn.Module):
|
||||
x: torch.Tensor,
|
||||
c: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
transformer_options={},
|
||||
**attn_kwargs,
|
||||
):
|
||||
"""Forward pass of a block.
|
||||
@@ -256,6 +258,7 @@ class AsymmetricJointBlock(nn.Module):
|
||||
y,
|
||||
scale_x=scale_msa_x,
|
||||
scale_y=scale_msa_y,
|
||||
transformer_options=transformer_options,
|
||||
**attn_kwargs,
|
||||
)
|
||||
|
||||
@@ -524,10 +527,11 @@ class AsymmDiTJoint(nn.Module):
|
||||
args["txt"],
|
||||
rope_cos=args["rope_cos"],
|
||||
rope_sin=args["rope_sin"],
|
||||
crop_y=args["num_tokens"]
|
||||
crop_y=args["num_tokens"],
|
||||
transformer_options=args["transformer_options"]
|
||||
)
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
y_feat = out["txt"]
|
||||
x = out["img"]
|
||||
else:
|
||||
@@ -538,6 +542,7 @@ class AsymmDiTJoint(nn.Module):
|
||||
rope_cos=rope_cos,
|
||||
rope_sin=rope_sin,
|
||||
crop_y=num_tokens,
|
||||
transformer_options=transformer_options,
|
||||
) # (B, M, D), (B, L, D)
|
||||
del y_feat # Final layers don't use dense text features.
|
||||
|
||||
|
||||
@@ -13,6 +13,7 @@ from comfy.ldm.flux.layers import LastLayer
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
@@ -71,8 +72,8 @@ class TimestepEmbed(nn.Module):
|
||||
return t_emb
|
||||
|
||||
|
||||
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
|
||||
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2])
|
||||
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, transformer_options={}):
|
||||
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2], transformer_options=transformer_options)
|
||||
|
||||
|
||||
class HiDreamAttnProcessor_flashattn:
|
||||
@@ -85,6 +86,7 @@ class HiDreamAttnProcessor_flashattn:
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
transformer_options={},
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
@@ -132,7 +134,7 @@ class HiDreamAttnProcessor_flashattn:
|
||||
query = torch.cat([query_1, query_2], dim=-1)
|
||||
key = torch.cat([key_1, key_2], dim=-1)
|
||||
|
||||
hidden_states = attention(query, key, value)
|
||||
hidden_states = attention(query, key, value, transformer_options=transformer_options)
|
||||
|
||||
if not attn.single:
|
||||
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
|
||||
@@ -198,6 +200,7 @@ class HiDreamAttention(nn.Module):
|
||||
image_tokens_masks: torch.FloatTensor = None,
|
||||
norm_text_tokens: torch.FloatTensor = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
transformer_options={},
|
||||
) -> torch.Tensor:
|
||||
return self.processor(
|
||||
self,
|
||||
@@ -205,6 +208,7 @@ class HiDreamAttention(nn.Module):
|
||||
image_tokens_masks = image_tokens_masks,
|
||||
text_tokens = norm_text_tokens,
|
||||
rope = rope,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
|
||||
@@ -405,7 +409,7 @@ class HiDreamImageSingleTransformerBlock(nn.Module):
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
|
||||
transformer_options={},
|
||||
) -> torch.FloatTensor:
|
||||
wtype = image_tokens.dtype
|
||||
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
|
||||
@@ -418,6 +422,7 @@ class HiDreamImageSingleTransformerBlock(nn.Module):
|
||||
norm_image_tokens,
|
||||
image_tokens_masks,
|
||||
rope = rope,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
||||
|
||||
@@ -482,6 +487,7 @@ class HiDreamImageTransformerBlock(nn.Module):
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
transformer_options={},
|
||||
) -> torch.FloatTensor:
|
||||
wtype = image_tokens.dtype
|
||||
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
|
||||
@@ -499,6 +505,7 @@ class HiDreamImageTransformerBlock(nn.Module):
|
||||
image_tokens_masks,
|
||||
norm_text_tokens,
|
||||
rope = rope,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
||||
@@ -549,6 +556,7 @@ class HiDreamImageBlock(nn.Module):
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: torch.FloatTensor = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
transformer_options={},
|
||||
) -> torch.FloatTensor:
|
||||
return self.block(
|
||||
image_tokens,
|
||||
@@ -556,6 +564,7 @@ class HiDreamImageBlock(nn.Module):
|
||||
text_tokens,
|
||||
adaln_input,
|
||||
rope,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
|
||||
@@ -692,7 +701,23 @@ class HiDreamImageTransformer2DModel(nn.Module):
|
||||
raise NotImplementedError
|
||||
return x, x_masks, img_sizes
|
||||
|
||||
def forward(
|
||||
def forward(self,
|
||||
x: torch.Tensor,
|
||||
t: torch.Tensor,
|
||||
y: Optional[torch.Tensor] = None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states_llama3=None,
|
||||
image_cond=None,
|
||||
control = None,
|
||||
transformer_options = {},
|
||||
):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, t, y, context, encoder_hidden_states_llama3, image_cond, control, transformer_options)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
t: torch.Tensor,
|
||||
@@ -769,6 +794,7 @@ class HiDreamImageTransformer2DModel(nn.Module):
|
||||
text_tokens = cur_encoder_hidden_states,
|
||||
adaln_input = adaln_input,
|
||||
rope = rope,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
|
||||
block_id += 1
|
||||
@@ -792,6 +818,7 @@ class HiDreamImageTransformer2DModel(nn.Module):
|
||||
text_tokens=None,
|
||||
adaln_input=adaln_input,
|
||||
rope=rope,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
hidden_states = hidden_states[:, :hidden_states_seq_len]
|
||||
block_id += 1
|
||||
|
||||
@@ -7,6 +7,7 @@ from comfy.ldm.flux.layers import (
|
||||
SingleStreamBlock,
|
||||
timestep_embedding,
|
||||
)
|
||||
import comfy.patcher_extension
|
||||
|
||||
|
||||
class Hunyuan3Dv2(nn.Module):
|
||||
@@ -67,6 +68,13 @@ class Hunyuan3Dv2(nn.Module):
|
||||
self.final_layer = LastLayer(hidden_size, 1, in_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, x, timestep, context, guidance=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, guidance, transformer_options, **kwargs)
|
||||
|
||||
def _forward(self, x, timestep, context, guidance=None, transformer_options={}, **kwargs):
|
||||
x = x.movedim(-1, -2)
|
||||
timestep = 1.0 - timestep
|
||||
txt = context
|
||||
@@ -91,14 +99,16 @@ class Hunyuan3Dv2(nn.Module):
|
||||
txt=args["txt"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
attn_mask=args.get("attn_mask"),
|
||||
transformer_options=args["transformer_options"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img,
|
||||
"txt": txt,
|
||||
"vec": vec,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
"attn_mask": attn_mask,
|
||||
"transformer_options": transformer_options},
|
||||
{"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
@@ -107,7 +117,8 @@ class Hunyuan3Dv2(nn.Module):
|
||||
txt=txt,
|
||||
vec=vec,
|
||||
pe=pe,
|
||||
attn_mask=attn_mask)
|
||||
attn_mask=attn_mask,
|
||||
transformer_options=transformer_options)
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
@@ -118,17 +129,19 @@ class Hunyuan3Dv2(nn.Module):
|
||||
out["img"] = block(args["img"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
attn_mask=args.get("attn_mask"),
|
||||
transformer_options=args["transformer_options"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img,
|
||||
"vec": vec,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
"attn_mask": attn_mask,
|
||||
"transformer_options": transformer_options},
|
||||
{"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
|
||||
|
||||
img = img[:, txt.shape[1]:, ...]
|
||||
img = self.final_layer(img, vec)
|
||||
|
||||
@@ -4,81 +4,458 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
from typing import Union, Tuple, List, Callable, Optional
|
||||
|
||||
import numpy as np
|
||||
from einops import repeat, rearrange
|
||||
import math
|
||||
from tqdm import tqdm
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import logging
|
||||
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
def generate_dense_grid_points(
|
||||
bbox_min: np.ndarray,
|
||||
bbox_max: np.ndarray,
|
||||
octree_resolution: int,
|
||||
indexing: str = "ij",
|
||||
):
|
||||
length = bbox_max - bbox_min
|
||||
num_cells = octree_resolution
|
||||
def fps(src: torch.Tensor, batch: torch.Tensor, sampling_ratio: float, start_random: bool = True):
|
||||
|
||||
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
|
||||
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
|
||||
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
|
||||
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
|
||||
xyz = np.stack((xs, ys, zs), axis=-1)
|
||||
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
|
||||
# manually create the pointer vector
|
||||
assert src.size(0) == batch.numel()
|
||||
|
||||
return xyz, grid_size, length
|
||||
batch_size = int(batch.max()) + 1
|
||||
deg = src.new_zeros(batch_size, dtype = torch.long)
|
||||
|
||||
deg.scatter_add_(0, batch, torch.ones_like(batch))
|
||||
|
||||
ptr_vec = deg.new_zeros(batch_size + 1)
|
||||
torch.cumsum(deg, 0, out=ptr_vec[1:])
|
||||
|
||||
#return fps_sampling(src, ptr_vec, ratio)
|
||||
sampled_indicies = []
|
||||
|
||||
for b in range(batch_size):
|
||||
# start and the end of each batch
|
||||
start, end = ptr_vec[b].item(), ptr_vec[b + 1].item()
|
||||
# points from the point cloud
|
||||
points = src[start:end]
|
||||
|
||||
num_points = points.size(0)
|
||||
num_samples = max(1, math.ceil(num_points * sampling_ratio))
|
||||
|
||||
selected = torch.zeros(num_samples, device = src.device, dtype = torch.long)
|
||||
distances = torch.full((num_points,), float("inf"), device = src.device)
|
||||
|
||||
# select a random start point
|
||||
if start_random:
|
||||
farthest = torch.randint(0, num_points, (1,), device = src.device)
|
||||
else:
|
||||
farthest = torch.tensor([0], device = src.device, dtype = torch.long)
|
||||
|
||||
for i in range(num_samples):
|
||||
selected[i] = farthest
|
||||
centroid = points[farthest].squeeze(0)
|
||||
dist = torch.norm(points - centroid, dim = 1) # compute euclidean distance
|
||||
distances = torch.minimum(distances, dist)
|
||||
farthest = torch.argmax(distances)
|
||||
|
||||
sampled_indicies.append(torch.arange(start, end)[selected])
|
||||
|
||||
return torch.cat(sampled_indicies, dim = 0)
|
||||
class PointCrossAttention(nn.Module):
|
||||
def __init__(self,
|
||||
num_latents: int,
|
||||
downsample_ratio: float,
|
||||
pc_size: int,
|
||||
pc_sharpedge_size: int,
|
||||
point_feats: int,
|
||||
width: int,
|
||||
heads: int,
|
||||
layers: int,
|
||||
fourier_embedder,
|
||||
normal_pe: bool = False,
|
||||
qkv_bias: bool = False,
|
||||
use_ln_post: bool = True,
|
||||
qk_norm: bool = True):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.fourier_embedder = fourier_embedder
|
||||
|
||||
self.pc_size = pc_size
|
||||
self.normal_pe = normal_pe
|
||||
self.downsample_ratio = downsample_ratio
|
||||
self.pc_sharpedge_size = pc_sharpedge_size
|
||||
self.num_latents = num_latents
|
||||
self.point_feats = point_feats
|
||||
|
||||
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width)
|
||||
|
||||
self.cross_attn = ResidualCrossAttentionBlock(
|
||||
width = width,
|
||||
heads = heads,
|
||||
qkv_bias = qkv_bias,
|
||||
qk_norm = qk_norm
|
||||
)
|
||||
|
||||
self.self_attn = None
|
||||
if layers > 0:
|
||||
self.self_attn = Transformer(
|
||||
width = width,
|
||||
heads = heads,
|
||||
qkv_bias = qkv_bias,
|
||||
qk_norm = qk_norm,
|
||||
layers = layers
|
||||
)
|
||||
|
||||
if use_ln_post:
|
||||
self.ln_post = nn.LayerNorm(width)
|
||||
else:
|
||||
self.ln_post = None
|
||||
|
||||
def sample_points_and_latents(self, point_cloud: torch.Tensor, features: torch.Tensor):
|
||||
|
||||
"""
|
||||
Subsample points randomly from the point cloud (input_pc)
|
||||
Further sample the subsampled points to get query_pc
|
||||
take the fourier embeddings for both input and query pc
|
||||
|
||||
Mental Note: FPS-sampled points (query_pc) act as latent tokens that attend to and learn from the broader context in input_pc.
|
||||
Goal: get a smaller represenation (query_pc) to represent the entire scence structure by learning from a broader subset (input_pc).
|
||||
More computationally efficient.
|
||||
|
||||
Features are additional information for each point in the cloud
|
||||
"""
|
||||
|
||||
B, _, D = point_cloud.shape
|
||||
|
||||
num_latents = int(self.num_latents)
|
||||
|
||||
num_random_query = self.pc_size / (self.pc_size + self.pc_sharpedge_size) * num_latents
|
||||
num_sharpedge_query = num_latents - num_random_query
|
||||
|
||||
# Split random and sharpedge surface points
|
||||
random_pc, sharpedge_pc = torch.split(point_cloud, [self.pc_size, self.pc_sharpedge_size], dim=1)
|
||||
|
||||
# assert statements
|
||||
assert random_pc.shape[1] <= self.pc_size, "Random surface points size must be less than or equal to pc_size"
|
||||
assert sharpedge_pc.shape[1] <= self.pc_sharpedge_size, "Sharpedge surface points size must be less than or equal to pc_sharpedge_size"
|
||||
|
||||
input_random_pc_size = int(num_random_query * self.downsample_ratio)
|
||||
random_query_pc, random_input_pc, random_idx_pc, random_idx_query = \
|
||||
self.subsample(pc = random_pc, num_query = num_random_query, input_pc_size = input_random_pc_size)
|
||||
|
||||
input_sharpedge_pc_size = int(num_sharpedge_query * self.downsample_ratio)
|
||||
|
||||
if input_sharpedge_pc_size == 0:
|
||||
sharpedge_input_pc = torch.zeros(B, 0, D, dtype = random_input_pc.dtype).to(point_cloud.device)
|
||||
sharpedge_query_pc = torch.zeros(B, 0, D, dtype= random_query_pc.dtype).to(point_cloud.device)
|
||||
|
||||
else:
|
||||
sharpedge_query_pc, sharpedge_input_pc, sharpedge_idx_pc, sharpedge_idx_query = \
|
||||
self.subsample(pc = sharpedge_pc, num_query = num_sharpedge_query, input_pc_size = input_sharpedge_pc_size)
|
||||
|
||||
# concat the random and sharpedges
|
||||
query_pc = torch.cat([random_query_pc, sharpedge_query_pc], dim = 1)
|
||||
input_pc = torch.cat([random_input_pc, sharpedge_input_pc], dim = 1)
|
||||
|
||||
query = self.fourier_embedder(query_pc)
|
||||
data = self.fourier_embedder(input_pc)
|
||||
|
||||
if self.point_feats > 0:
|
||||
random_surface_features, sharpedge_surface_features = torch.split(features, [self.pc_size, self.pc_sharpedge_size], dim = 1)
|
||||
|
||||
input_random_surface_features, query_random_features = \
|
||||
self.handle_features(features = random_surface_features, idx_pc = random_idx_pc, batch_size = B,
|
||||
input_pc_size = input_random_pc_size, idx_query = random_idx_query)
|
||||
|
||||
if input_sharpedge_pc_size == 0:
|
||||
input_sharpedge_surface_features = torch.zeros(B, 0, self.point_feats,
|
||||
dtype = input_random_surface_features.dtype, device = point_cloud.device)
|
||||
|
||||
query_sharpedge_features = torch.zeros(B, 0, self.point_feats,
|
||||
dtype = query_random_features.dtype, device = point_cloud.device)
|
||||
else:
|
||||
|
||||
input_sharpedge_surface_features, query_sharpedge_features = \
|
||||
self.handle_features(idx_pc = sharpedge_idx_pc, features = sharpedge_surface_features,
|
||||
batch_size = B, idx_query = sharpedge_idx_query, input_pc_size = input_sharpedge_pc_size)
|
||||
|
||||
query_features = torch.cat([query_random_features, query_sharpedge_features], dim = 1)
|
||||
input_features = torch.cat([input_random_surface_features, input_sharpedge_surface_features], dim = 1)
|
||||
|
||||
if self.normal_pe:
|
||||
# apply the fourier embeddings on the first 3 dims (xyz)
|
||||
input_features_pe = self.fourier_embedder(input_features[..., :3])
|
||||
query_features_pe = self.fourier_embedder(query_features[..., :3])
|
||||
# replace the first 3 dims with the new PE ones
|
||||
input_features = torch.cat([input_features_pe, input_features[..., :3]], dim = -1)
|
||||
query_features = torch.cat([query_features_pe, query_features[..., :3]], dim = -1)
|
||||
|
||||
# concat at the channels dim
|
||||
query = torch.cat([query, query_features], dim = -1)
|
||||
data = torch.cat([data, input_features], dim = -1)
|
||||
|
||||
# don't return pc_info to avoid unnecessary memory usuage
|
||||
return query.view(B, -1, query.shape[-1]), data.view(B, -1, data.shape[-1])
|
||||
|
||||
def forward(self, point_cloud: torch.Tensor, features: torch.Tensor):
|
||||
|
||||
query, data = self.sample_points_and_latents(point_cloud = point_cloud, features = features)
|
||||
|
||||
# apply projections
|
||||
query = self.input_proj(query)
|
||||
data = self.input_proj(data)
|
||||
|
||||
# apply cross attention between query and data
|
||||
latents = self.cross_attn(query, data)
|
||||
|
||||
if self.self_attn is not None:
|
||||
latents = self.self_attn(latents)
|
||||
|
||||
if self.ln_post is not None:
|
||||
latents = self.ln_post(latents)
|
||||
|
||||
return latents
|
||||
|
||||
|
||||
class VanillaVolumeDecoder:
|
||||
def subsample(self, pc, num_query, input_pc_size: int):
|
||||
|
||||
"""
|
||||
num_query: number of points to keep after FPS
|
||||
input_pc_size: number of points to select before FPS
|
||||
"""
|
||||
|
||||
B, _, D = pc.shape
|
||||
query_ratio = num_query / input_pc_size
|
||||
|
||||
# random subsampling of points inside the point cloud
|
||||
idx_pc = torch.randperm(pc.shape[1], device = pc.device)[:input_pc_size]
|
||||
input_pc = pc[:, idx_pc, :]
|
||||
|
||||
# flatten to allow applying fps across the whole batch
|
||||
flattent_input_pc = input_pc.view(B * input_pc_size, D)
|
||||
|
||||
# construct a batch_down tensor to tell fps
|
||||
# which points belong to which batch
|
||||
N_down = int(flattent_input_pc.shape[0] / B)
|
||||
batch_down = torch.arange(B).to(pc.device)
|
||||
batch_down = torch.repeat_interleave(batch_down, N_down)
|
||||
|
||||
idx_query = fps(flattent_input_pc, batch_down, sampling_ratio = query_ratio)
|
||||
query_pc = flattent_input_pc[idx_query].view(B, -1, D)
|
||||
|
||||
return query_pc, input_pc, idx_pc, idx_query
|
||||
|
||||
def handle_features(self, features, idx_pc, input_pc_size, batch_size: int, idx_query):
|
||||
|
||||
B = batch_size
|
||||
|
||||
input_surface_features = features[:, idx_pc, :]
|
||||
flattent_input_features = input_surface_features.view(B * input_pc_size, -1)
|
||||
query_features = flattent_input_features[idx_query].view(B, -1,
|
||||
flattent_input_features.shape[-1])
|
||||
|
||||
return input_surface_features, query_features
|
||||
|
||||
def normalize_mesh(mesh, scale = 0.9999):
|
||||
"""Normalize mesh to fit in [-scale, scale]. Translate mesh so its center is [0,0,0]"""
|
||||
|
||||
bbox = mesh.bounds
|
||||
center = (bbox[1] + bbox[0]) / 2
|
||||
|
||||
max_extent = (bbox[1] - bbox[0]).max()
|
||||
mesh.apply_translation(-center)
|
||||
mesh.apply_scale((2 * scale) / max_extent)
|
||||
|
||||
return mesh
|
||||
|
||||
def sample_pointcloud(mesh, num = 200000):
|
||||
""" Uniformly sample points from the surface of the mesh """
|
||||
|
||||
points, face_idx = mesh.sample(num, return_index = True)
|
||||
normals = mesh.face_normals[face_idx]
|
||||
return torch.from_numpy(points.astype(np.float32)), torch.from_numpy(normals.astype(np.float32))
|
||||
|
||||
def detect_sharp_edges(mesh, threshold=0.985):
|
||||
"""Return edge indices (a, b) that lie on sharp boundaries of the mesh."""
|
||||
|
||||
V, F = mesh.vertices, mesh.faces
|
||||
VN, FN = mesh.vertex_normals, mesh.face_normals
|
||||
|
||||
sharp_mask = np.ones(V.shape[0])
|
||||
for i in range(3):
|
||||
indices = F[:, i]
|
||||
alignment = np.einsum('ij,ij->i', VN[indices], FN)
|
||||
dot_stack = np.stack((sharp_mask[indices], alignment), axis=-1)
|
||||
sharp_mask[indices] = np.min(dot_stack, axis=-1)
|
||||
|
||||
edge_a = np.concatenate([F[:, 0], F[:, 1], F[:, 2]])
|
||||
edge_b = np.concatenate([F[:, 1], F[:, 2], F[:, 0]])
|
||||
sharp_edges = (sharp_mask[edge_a] < threshold) & (sharp_mask[edge_b] < threshold)
|
||||
|
||||
return edge_a[sharp_edges], edge_b[sharp_edges]
|
||||
|
||||
|
||||
def sharp_sample_pointcloud(mesh, num = 16384):
|
||||
""" Sample points preferentially from sharp edges in the mesh. """
|
||||
|
||||
edge_a, edge_b = detect_sharp_edges(mesh)
|
||||
V, VN = mesh.vertices, mesh.vertex_normals
|
||||
|
||||
va, vb = V[edge_a], V[edge_b]
|
||||
na, nb = VN[edge_a], VN[edge_b]
|
||||
|
||||
edge_lengths = np.linalg.norm(vb - va, axis=-1)
|
||||
weights = edge_lengths / edge_lengths.sum()
|
||||
|
||||
indices = np.searchsorted(np.cumsum(weights), np.random.rand(num))
|
||||
t = np.random.rand(num, 1)
|
||||
|
||||
samples = t * va[indices] + (1 - t) * vb[indices]
|
||||
normals = t * na[indices] + (1 - t) * nb[indices]
|
||||
|
||||
return samples.astype(np.float32), normals.astype(np.float32)
|
||||
|
||||
def load_surface_sharpedge(mesh, num_points=4096, num_sharp_points=4096, sharpedge_flag = True, device = "cuda"):
|
||||
"""Load a surface with optional sharp-edge annotations from a trimesh mesh."""
|
||||
|
||||
import trimesh
|
||||
|
||||
try:
|
||||
mesh_full = trimesh.util.concatenate(mesh.dump())
|
||||
except Exception:
|
||||
mesh_full = trimesh.util.concatenate(mesh)
|
||||
|
||||
mesh_full = normalize_mesh(mesh_full)
|
||||
|
||||
faces = mesh_full.faces
|
||||
vertices = mesh_full.vertices
|
||||
origin_face_count = faces.shape[0]
|
||||
|
||||
mesh_surface = trimesh.Trimesh(vertices=vertices, faces=faces[:origin_face_count])
|
||||
mesh_fill = trimesh.Trimesh(vertices=vertices, faces=faces[origin_face_count:])
|
||||
|
||||
area_surface = mesh_surface.area
|
||||
area_fill = mesh_fill.area
|
||||
total_area = area_surface + area_fill
|
||||
|
||||
sample_num = 499712 // 2
|
||||
fill_ratio = area_fill / total_area if total_area > 0 else 0
|
||||
|
||||
num_fill = int(sample_num * fill_ratio)
|
||||
num_surface = sample_num - num_fill
|
||||
|
||||
surf_pts, surf_normals = sample_pointcloud(mesh_surface, num_surface)
|
||||
fill_pts, fill_normals = (torch.zeros(0, 3), torch.zeros(0, 3)) if num_fill == 0 else sample_pointcloud(mesh_fill, num_fill)
|
||||
|
||||
sharp_pts, sharp_normals = sharp_sample_pointcloud(mesh_surface, sample_num)
|
||||
|
||||
def assemble_tensor(points, normals, label=None):
|
||||
|
||||
data = torch.cat([points, normals], dim=1).half().to(device)
|
||||
|
||||
if label is not None:
|
||||
label_tensor = torch.full((data.shape[0], 1), float(label), dtype=torch.float16).to(device)
|
||||
data = torch.cat([data, label_tensor], dim=1)
|
||||
|
||||
return data
|
||||
|
||||
surface = assemble_tensor(torch.cat([surf_pts.to(device), fill_pts.to(device)], dim=0),
|
||||
torch.cat([surf_normals.to(device), fill_normals.to(device)], dim=0),
|
||||
label = 0 if sharpedge_flag else None)
|
||||
|
||||
sharp_surface = assemble_tensor(torch.from_numpy(sharp_pts), torch.from_numpy(sharp_normals),
|
||||
label = 1 if sharpedge_flag else None)
|
||||
|
||||
rng = np.random.default_rng()
|
||||
|
||||
surface = surface[rng.choice(surface.shape[0], num_points, replace = False)]
|
||||
sharp_surface = sharp_surface[rng.choice(sharp_surface.shape[0], num_sharp_points, replace = False)]
|
||||
|
||||
full = torch.cat([surface, sharp_surface], dim = 0).unsqueeze(0)
|
||||
|
||||
return full
|
||||
|
||||
class SharpEdgeSurfaceLoader:
|
||||
""" Load mesh surface and sharp edge samples. """
|
||||
|
||||
def __init__(self, num_uniform_points = 8192, num_sharp_points = 8192):
|
||||
|
||||
self.num_uniform_points = num_uniform_points
|
||||
self.num_sharp_points = num_sharp_points
|
||||
self.total_points = num_uniform_points + num_sharp_points
|
||||
|
||||
def __call__(self, mesh_input, device = "cuda"):
|
||||
mesh = self._load_mesh(mesh_input)
|
||||
return load_surface_sharpedge(mesh, self.num_uniform_points, self.num_sharp_points, device = device)
|
||||
|
||||
@staticmethod
|
||||
def _load_mesh(mesh_input):
|
||||
import trimesh
|
||||
|
||||
if isinstance(mesh_input, str):
|
||||
mesh = trimesh.load(mesh_input, force="mesh", merge_primitives = True)
|
||||
else:
|
||||
mesh = mesh_input
|
||||
|
||||
if isinstance(mesh, trimesh.Scene):
|
||||
combined = None
|
||||
for obj in mesh.geometry.values():
|
||||
combined = obj if combined is None else combined + obj
|
||||
return combined
|
||||
|
||||
return mesh
|
||||
|
||||
class DiagonalGaussianDistribution:
|
||||
def __init__(self, params: torch.Tensor, feature_dim: int = -1):
|
||||
|
||||
# divide quant channels (8) into mean and log variance
|
||||
self.mean, self.logvar = torch.chunk(params, 2, dim = feature_dim)
|
||||
|
||||
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
|
||||
def sample(self):
|
||||
|
||||
eps = torch.randn_like(self.std)
|
||||
z = self.mean + eps * self.std
|
||||
|
||||
return z
|
||||
|
||||
################################################
|
||||
# Volume Decoder
|
||||
################################################
|
||||
|
||||
class VanillaVolumeDecoder():
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
latents: torch.FloatTensor,
|
||||
geo_decoder: Callable,
|
||||
bounds: Union[Tuple[float], List[float], float] = 1.01,
|
||||
num_chunks: int = 10000,
|
||||
octree_resolution: int = None,
|
||||
enable_pbar: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
device = latents.device
|
||||
dtype = latents.dtype
|
||||
batch_size = latents.shape[0]
|
||||
def __call__(self, latents: torch.Tensor, geo_decoder: callable, octree_resolution: int, bounds = 1.01,
|
||||
num_chunks: int = 10_000, enable_pbar: bool = True, **kwargs):
|
||||
|
||||
# 1. generate query points
|
||||
if isinstance(bounds, float):
|
||||
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
|
||||
|
||||
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
|
||||
xyz_samples, grid_size, length = generate_dense_grid_points(
|
||||
bbox_min=bbox_min,
|
||||
bbox_max=bbox_max,
|
||||
octree_resolution=octree_resolution,
|
||||
indexing="ij"
|
||||
)
|
||||
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
|
||||
bbox_min, bbox_max = torch.tensor(bounds[:3]), torch.tensor(bounds[3:])
|
||||
|
||||
x = torch.linspace(bbox_min[0], bbox_max[0], int(octree_resolution) + 1, dtype = torch.float32)
|
||||
y = torch.linspace(bbox_min[1], bbox_max[1], int(octree_resolution) + 1, dtype = torch.float32)
|
||||
z = torch.linspace(bbox_min[2], bbox_max[2], int(octree_resolution) + 1, dtype = torch.float32)
|
||||
|
||||
[xs, ys, zs] = torch.meshgrid(x, y, z, indexing = "ij")
|
||||
xyz = torch.stack((xs, ys, zs), axis=-1).to(latents.device, dtype = latents.dtype).contiguous().reshape(-1, 3)
|
||||
grid_size = [int(octree_resolution) + 1, int(octree_resolution) + 1, int(octree_resolution) + 1]
|
||||
|
||||
# 2. latents to 3d volume
|
||||
batch_logits = []
|
||||
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc="Volume Decoding",
|
||||
for start in tqdm(range(0, xyz.shape[0], num_chunks), desc="Volume Decoding",
|
||||
disable=not enable_pbar):
|
||||
chunk_queries = xyz_samples[start: start + num_chunks, :]
|
||||
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
|
||||
logits = geo_decoder(queries=chunk_queries, latents=latents)
|
||||
|
||||
chunk_queries = xyz[start: start + num_chunks, :]
|
||||
chunk_queries = chunk_queries.unsqueeze(0).repeat(latents.shape[0], 1, 1)
|
||||
logits = geo_decoder(queries = chunk_queries, latents = latents)
|
||||
batch_logits.append(logits)
|
||||
|
||||
grid_logits = torch.cat(batch_logits, dim=1)
|
||||
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
|
||||
grid_logits = torch.cat(batch_logits, dim = 1)
|
||||
grid_logits = grid_logits.view((latents.shape[0], *grid_size)).float()
|
||||
|
||||
return grid_logits
|
||||
|
||||
|
||||
class FourierEmbedder(nn.Module):
|
||||
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
|
||||
each feature dimension of `x[..., i]` into:
|
||||
@@ -175,13 +552,11 @@ class FourierEmbedder(nn.Module):
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class CrossAttentionProcessor:
|
||||
def __call__(self, attn, q, k, v):
|
||||
out = F.scaled_dot_product_attention(q, k, v)
|
||||
out = comfy.ops.scaled_dot_product_attention(q, k, v)
|
||||
return out
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
@@ -232,38 +607,41 @@ class MLP(nn.Module):
|
||||
def forward(self, x):
|
||||
return self.drop_path(self.c_proj(self.gelu(self.c_fc(x))))
|
||||
|
||||
|
||||
class QKVMultiheadCrossAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
heads: int,
|
||||
n_data = None,
|
||||
width=None,
|
||||
qk_norm=False,
|
||||
norm_layer=ops.LayerNorm
|
||||
):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.n_data = n_data
|
||||
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
|
||||
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
|
||||
|
||||
self.attn_processor = CrossAttentionProcessor()
|
||||
|
||||
def forward(self, q, kv):
|
||||
|
||||
_, n_ctx, _ = q.shape
|
||||
bs, n_data, width = kv.shape
|
||||
|
||||
attn_ch = width // self.heads // 2
|
||||
q = q.view(bs, n_ctx, self.heads, -1)
|
||||
|
||||
kv = kv.view(bs, n_data, self.heads, -1)
|
||||
k, v = torch.split(kv, attn_ch, dim=-1)
|
||||
|
||||
q = self.q_norm(q)
|
||||
k = self.k_norm(k)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
|
||||
out = self.attn_processor(self, q, k, v)
|
||||
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
|
||||
return out
|
||||
|
||||
q, k, v = [t.permute(0, 2, 1, 3) for t in (q, k, v)]
|
||||
out = F.scaled_dot_product_attention(q, k, v)
|
||||
|
||||
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
|
||||
|
||||
return out
|
||||
|
||||
class MultiheadCrossAttention(nn.Module):
|
||||
def __init__(
|
||||
@@ -306,7 +684,6 @@ class MultiheadCrossAttention(nn.Module):
|
||||
x = self.c_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class ResidualCrossAttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -366,7 +743,7 @@ class QKVMultiheadAttention(nn.Module):
|
||||
q = self.q_norm(q)
|
||||
k = self.k_norm(k)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
|
||||
q, k, v = [t.permute(0, 2, 1, 3) for t in (q, k, v)]
|
||||
out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1)
|
||||
return out
|
||||
|
||||
@@ -383,8 +760,7 @@ class MultiheadAttention(nn.Module):
|
||||
drop_path_rate: float = 0.0
|
||||
):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.heads = heads
|
||||
|
||||
self.c_qkv = ops.Linear(width, width * 3, bias=qkv_bias)
|
||||
self.c_proj = ops.Linear(width, width)
|
||||
self.attention = QKVMultiheadAttention(
|
||||
@@ -491,7 +867,7 @@ class CrossAttentionDecoder(nn.Module):
|
||||
self.query_proj = ops.Linear(self.fourier_embedder.out_dim, width)
|
||||
if self.downsample_ratio != 1:
|
||||
self.latents_proj = ops.Linear(width * downsample_ratio, width)
|
||||
if self.enable_ln_post == False:
|
||||
if not self.enable_ln_post:
|
||||
qk_norm = False
|
||||
self.cross_attn_decoder = ResidualCrossAttentionBlock(
|
||||
width=width,
|
||||
@@ -522,28 +898,44 @@ class CrossAttentionDecoder(nn.Module):
|
||||
|
||||
class ShapeVAE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
embed_dim: int,
|
||||
width: int,
|
||||
heads: int,
|
||||
num_decoder_layers: int,
|
||||
geo_decoder_downsample_ratio: int = 1,
|
||||
geo_decoder_mlp_expand_ratio: int = 4,
|
||||
geo_decoder_ln_post: bool = True,
|
||||
num_freqs: int = 8,
|
||||
include_pi: bool = True,
|
||||
qkv_bias: bool = True,
|
||||
qk_norm: bool = False,
|
||||
label_type: str = "binary",
|
||||
drop_path_rate: float = 0.0,
|
||||
scale_factor: float = 1.0,
|
||||
self,
|
||||
*,
|
||||
num_latents: int = 4096,
|
||||
embed_dim: int = 64,
|
||||
width: int = 1024,
|
||||
heads: int = 16,
|
||||
num_decoder_layers: int = 16,
|
||||
num_encoder_layers: int = 8,
|
||||
pc_size: int = 81920,
|
||||
pc_sharpedge_size: int = 0,
|
||||
point_feats: int = 4,
|
||||
downsample_ratio: int = 20,
|
||||
geo_decoder_downsample_ratio: int = 1,
|
||||
geo_decoder_mlp_expand_ratio: int = 4,
|
||||
geo_decoder_ln_post: bool = True,
|
||||
num_freqs: int = 8,
|
||||
qkv_bias: bool = False,
|
||||
qk_norm: bool = True,
|
||||
drop_path_rate: float = 0.0,
|
||||
include_pi: bool = False,
|
||||
scale_factor: float = 1.0039506158752403,
|
||||
label_type: str = "binary",
|
||||
):
|
||||
super().__init__()
|
||||
self.geo_decoder_ln_post = geo_decoder_ln_post
|
||||
|
||||
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
|
||||
|
||||
self.encoder = PointCrossAttention(layers = num_encoder_layers,
|
||||
num_latents = num_latents,
|
||||
downsample_ratio = downsample_ratio,
|
||||
heads = heads,
|
||||
pc_size = pc_size,
|
||||
width = width,
|
||||
point_feats = point_feats,
|
||||
fourier_embedder = self.fourier_embedder,
|
||||
pc_sharpedge_size = pc_sharpedge_size)
|
||||
|
||||
self.post_kl = ops.Linear(embed_dim, width)
|
||||
|
||||
self.transformer = Transformer(
|
||||
@@ -583,5 +975,14 @@ class ShapeVAE(nn.Module):
|
||||
grid_logits = self.volume_decoder(latents, self.geo_decoder, bounds=bounds, num_chunks=num_chunks, octree_resolution=octree_resolution, enable_pbar=enable_pbar)
|
||||
return grid_logits.movedim(-2, -1)
|
||||
|
||||
def encode(self, x):
|
||||
return None
|
||||
def encode(self, surface):
|
||||
|
||||
pc, feats = surface[:, :, :3], surface[:, :, 3:]
|
||||
latents = self.encoder(pc, feats)
|
||||
|
||||
moments = self.pre_kl(latents)
|
||||
posterior = DiagonalGaussianDistribution(moments, feature_dim = -1)
|
||||
|
||||
latents = posterior.sample()
|
||||
|
||||
return latents
|
||||
|
||||
659
comfy/ldm/hunyuan3dv2_1/hunyuandit.py
Normal file
659
comfy/ldm/hunyuan3dv2_1/hunyuandit.py
Normal file
@@ -0,0 +1,659 @@
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.model_management
|
||||
|
||||
class GELU(nn.Module):
|
||||
|
||||
def __init__(self, dim_in: int, dim_out: int, operations, device, dtype):
|
||||
super().__init__()
|
||||
self.proj = operations.Linear(dim_in, dim_out, device = device, dtype = dtype)
|
||||
|
||||
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
if gate.device.type == "mps":
|
||||
return F.gelu(gate.to(dtype = torch.float32)).to(dtype = gate.dtype)
|
||||
|
||||
return F.gelu(gate)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
|
||||
hidden_states = self.proj(hidden_states)
|
||||
hidden_states = self.gelu(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
|
||||
def __init__(self, dim: int, dim_out = None, mult: int = 4,
|
||||
dropout: float = 0.0, inner_dim = None, operations = None, device = None, dtype = None):
|
||||
|
||||
super().__init__()
|
||||
if inner_dim is None:
|
||||
inner_dim = int(dim * mult)
|
||||
|
||||
dim_out = dim_out if dim_out is not None else dim
|
||||
|
||||
act_fn = GELU(dim, inner_dim, operations = operations, device = device, dtype = dtype)
|
||||
|
||||
self.net = nn.ModuleList([])
|
||||
self.net.append(act_fn)
|
||||
|
||||
self.net.append(nn.Dropout(dropout))
|
||||
self.net.append(operations.Linear(inner_dim, dim_out, device = device, dtype = dtype))
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
for module in self.net:
|
||||
hidden_states = module(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
class AddAuxLoss(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x, loss):
|
||||
# do nothing in forward (no computation)
|
||||
ctx.requires_aux_loss = loss.requires_grad
|
||||
ctx.dtype = loss.dtype
|
||||
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
# add the aux loss gradients
|
||||
grad_loss = None
|
||||
# put the aux grad the same as the main grad loss
|
||||
# aux grad contributes equally
|
||||
if ctx.requires_aux_loss:
|
||||
grad_loss = torch.ones(1, dtype = ctx.dtype, device = grad_output.device)
|
||||
|
||||
return grad_output, grad_loss
|
||||
|
||||
class MoEGate(nn.Module):
|
||||
|
||||
def __init__(self, embed_dim, num_experts=16, num_experts_per_tok=2, aux_loss_alpha=0.01, device = None, dtype = None):
|
||||
|
||||
super().__init__()
|
||||
self.top_k = num_experts_per_tok
|
||||
self.n_routed_experts = num_experts
|
||||
|
||||
self.alpha = aux_loss_alpha
|
||||
|
||||
self.gating_dim = embed_dim
|
||||
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim), device = device, dtype = dtype))
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
# flatten hidden states
|
||||
hidden_states = hidden_states.view(-1, hidden_states.size(-1))
|
||||
|
||||
# get logits and pass it to softmax
|
||||
logits = F.linear(hidden_states, comfy.model_management.cast_to(self.weight, dtype=hidden_states.dtype, device=hidden_states.device), bias = None)
|
||||
scores = logits.softmax(dim = -1)
|
||||
|
||||
topk_weight, topk_idx = torch.topk(scores, k = self.top_k, dim = -1, sorted = False)
|
||||
|
||||
if self.training and self.alpha > 0.0:
|
||||
scores_for_aux = scores
|
||||
|
||||
# used bincount instead of one hot encoding
|
||||
counts = torch.bincount(topk_idx.view(-1), minlength = self.n_routed_experts).float()
|
||||
ce = counts / topk_idx.numel() # normalized expert usage
|
||||
|
||||
# mean expert score
|
||||
Pi = scores_for_aux.mean(0)
|
||||
|
||||
# expert balance loss
|
||||
aux_loss = (Pi * ce * self.n_routed_experts).sum() * self.alpha
|
||||
else:
|
||||
aux_loss = None
|
||||
|
||||
return topk_idx, topk_weight, aux_loss
|
||||
|
||||
class MoEBlock(nn.Module):
|
||||
def __init__(self, dim, num_experts: int = 6, moe_top_k: int = 2, dropout: float = 0.0,
|
||||
ff_inner_dim: int = None, operations = None, device = None, dtype = None):
|
||||
super().__init__()
|
||||
|
||||
self.moe_top_k = moe_top_k
|
||||
self.num_experts = num_experts
|
||||
|
||||
self.experts = nn.ModuleList([
|
||||
FeedForward(dim, dropout = dropout, inner_dim = ff_inner_dim, operations = operations, device = device, dtype = dtype)
|
||||
for _ in range(num_experts)
|
||||
])
|
||||
|
||||
self.gate = MoEGate(dim, num_experts = num_experts, num_experts_per_tok = moe_top_k, device = device, dtype = dtype)
|
||||
self.shared_experts = FeedForward(dim, dropout = dropout, inner_dim = ff_inner_dim, operations = operations, device = device, dtype = dtype)
|
||||
|
||||
def forward(self, hidden_states) -> torch.Tensor:
|
||||
|
||||
identity = hidden_states
|
||||
orig_shape = hidden_states.shape
|
||||
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
|
||||
|
||||
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
||||
flat_topk_idx = topk_idx.view(-1)
|
||||
|
||||
if self.training:
|
||||
|
||||
hidden_states = hidden_states.repeat_interleave(self.moe_top_k, dim = 0)
|
||||
y = torch.empty_like(hidden_states, dtype = hidden_states.dtype)
|
||||
|
||||
for i, expert in enumerate(self.experts):
|
||||
tmp = expert(hidden_states[flat_topk_idx == i])
|
||||
y[flat_topk_idx == i] = tmp.to(hidden_states.dtype)
|
||||
|
||||
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim = 1)
|
||||
y = y.view(*orig_shape)
|
||||
|
||||
y = AddAuxLoss.apply(y, aux_loss)
|
||||
else:
|
||||
y = self.moe_infer(hidden_states, flat_expert_indices = flat_topk_idx,flat_expert_weights = topk_weight.view(-1, 1)).view(*orig_shape)
|
||||
|
||||
y = y + self.shared_experts(identity)
|
||||
|
||||
return y
|
||||
|
||||
@torch.no_grad()
|
||||
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
||||
|
||||
expert_cache = torch.zeros_like(x)
|
||||
idxs = flat_expert_indices.argsort()
|
||||
|
||||
# no need for .numpy().cpu() here
|
||||
tokens_per_expert = flat_expert_indices.bincount().cumsum(0)
|
||||
token_idxs = idxs // self.moe_top_k
|
||||
|
||||
for i, end_idx in enumerate(tokens_per_expert):
|
||||
|
||||
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
|
||||
|
||||
if start_idx == end_idx:
|
||||
continue
|
||||
|
||||
expert = self.experts[i]
|
||||
exp_token_idx = token_idxs[start_idx:end_idx]
|
||||
|
||||
expert_tokens = x[exp_token_idx]
|
||||
expert_out = expert(expert_tokens)
|
||||
|
||||
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
||||
|
||||
# use index_add_ with a 1-D index tensor directly avoids building a large [N, D] index map and extra memcopy required by scatter_reduce_
|
||||
# + avoid dtype conversion
|
||||
expert_cache.index_add_(0, exp_token_idx, expert_out)
|
||||
|
||||
return expert_cache
|
||||
|
||||
class Timesteps(nn.Module):
|
||||
def __init__(self, num_channels: int, downscale_freq_shift: float = 0.0,
|
||||
scale: float = 1.0, max_period: int = 10000):
|
||||
super().__init__()
|
||||
|
||||
self.num_channels = num_channels
|
||||
half_dim = num_channels // 2
|
||||
|
||||
# precompute the “inv_freq” vector once
|
||||
exponent = -math.log(max_period) * torch.arange(
|
||||
half_dim, dtype=torch.float32
|
||||
) / (half_dim - downscale_freq_shift)
|
||||
|
||||
inv_freq = torch.exp(exponent)
|
||||
|
||||
# pad
|
||||
if num_channels % 2 == 1:
|
||||
# we’ll pad a zero at the end of the cos-half
|
||||
inv_freq = torch.cat([inv_freq, inv_freq.new_zeros(1)])
|
||||
|
||||
# register to buffer so it moves with the device
|
||||
self.register_buffer("inv_freq", inv_freq, persistent = False)
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, timesteps: torch.Tensor):
|
||||
|
||||
x = timesteps.float().unsqueeze(1) * self.inv_freq.to(timesteps.device).unsqueeze(0)
|
||||
|
||||
|
||||
# fused CUDA kernels for sin and cos
|
||||
sin_emb = x.sin()
|
||||
cos_emb = x.cos()
|
||||
|
||||
emb = torch.cat([sin_emb, cos_emb], dim = 1)
|
||||
|
||||
# scale factor
|
||||
if self.scale != 1.0:
|
||||
emb = emb * self.scale
|
||||
|
||||
# If we padded inv_freq for odd, emb is already wide enough; otherwise:
|
||||
if emb.shape[1] > self.num_channels:
|
||||
emb = emb[:, :self.num_channels]
|
||||
|
||||
return emb
|
||||
|
||||
class TimestepEmbedder(nn.Module):
|
||||
def __init__(self, hidden_size, frequency_embedding_size = 256, cond_proj_dim = None, operations = None, device = None, dtype = None):
|
||||
super().__init__()
|
||||
|
||||
self.mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, frequency_embedding_size, bias=True, device = device, dtype = dtype),
|
||||
nn.GELU(),
|
||||
operations.Linear(frequency_embedding_size, hidden_size, bias=True, device = device, dtype = dtype),
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
|
||||
if cond_proj_dim is not None:
|
||||
self.cond_proj = operations.Linear(cond_proj_dim, frequency_embedding_size, bias=False, device = device, dtype = dtype)
|
||||
|
||||
self.time_embed = Timesteps(hidden_size)
|
||||
|
||||
def forward(self, timesteps, condition):
|
||||
|
||||
timestep_embed = self.time_embed(timesteps).type(self.mlp[0].weight.dtype)
|
||||
|
||||
if condition is not None:
|
||||
cond_embed = self.cond_proj(condition)
|
||||
timestep_embed = timestep_embed + cond_embed
|
||||
|
||||
time_conditioned = self.mlp(timestep_embed)
|
||||
|
||||
# for broadcasting with image tokens
|
||||
return time_conditioned.unsqueeze(1)
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, *, width: int, operations = None, device = None, dtype = None):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.fc1 = operations.Linear(width, width * 4, device = device, dtype = dtype)
|
||||
self.fc2 = operations.Linear(width * 4, width, device = device, dtype = dtype)
|
||||
self.gelu = nn.GELU()
|
||||
|
||||
def forward(self, x):
|
||||
return self.fc2(self.gelu(self.fc1(x)))
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
qdim,
|
||||
kdim,
|
||||
num_heads,
|
||||
qkv_bias=True,
|
||||
qk_norm=False,
|
||||
norm_layer=nn.LayerNorm,
|
||||
use_fp16: bool = False,
|
||||
operations = None,
|
||||
dtype = None,
|
||||
device = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.qdim = qdim
|
||||
self.kdim = kdim
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = self.qdim // num_heads
|
||||
|
||||
self.scale = self.head_dim ** -0.5
|
||||
|
||||
self.to_q = operations.Linear(qdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
|
||||
self.to_k = operations.Linear(kdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
|
||||
self.to_v = operations.Linear(kdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
|
||||
|
||||
if use_fp16:
|
||||
eps = 1.0 / 65504
|
||||
else:
|
||||
eps = 1e-6
|
||||
|
||||
if norm_layer == nn.LayerNorm:
|
||||
norm_layer = operations.LayerNorm
|
||||
else:
|
||||
norm_layer = operations.RMSNorm
|
||||
|
||||
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
|
||||
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
|
||||
self.out_proj = operations.Linear(qdim, qdim, bias=True, device = device, dtype = dtype)
|
||||
|
||||
def forward(self, x, y):
|
||||
|
||||
b, s1, _ = x.shape
|
||||
_, s2, _ = y.shape
|
||||
|
||||
y = y.to(next(self.to_k.parameters()).dtype)
|
||||
|
||||
q = self.to_q(x)
|
||||
k = self.to_k(y)
|
||||
v = self.to_v(y)
|
||||
|
||||
kv = torch.cat((k, v), dim=-1)
|
||||
split_size = kv.shape[-1] // self.num_heads // 2
|
||||
|
||||
kv = kv.view(1, -1, self.num_heads, split_size * 2)
|
||||
k, v = torch.split(kv, split_size, dim=-1)
|
||||
|
||||
q = q.view(b, s1, self.num_heads, self.head_dim)
|
||||
k = k.view(b, s2, self.num_heads, self.head_dim)
|
||||
v = v.reshape(b, s2, self.num_heads * self.head_dim)
|
||||
|
||||
q = self.q_norm(q)
|
||||
k = self.k_norm(k)
|
||||
|
||||
x = optimized_attention(
|
||||
q.reshape(b, s1, self.num_heads * self.head_dim),
|
||||
k.reshape(b, s2, self.num_heads * self.head_dim),
|
||||
v,
|
||||
heads=self.num_heads,
|
||||
)
|
||||
|
||||
out = self.out_proj(x)
|
||||
|
||||
return out
|
||||
|
||||
class Attention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads,
|
||||
qkv_bias = True,
|
||||
qk_norm = False,
|
||||
norm_layer = nn.LayerNorm,
|
||||
use_fp16: bool = False,
|
||||
operations = None,
|
||||
device = None,
|
||||
dtype = None
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = self.dim // num_heads
|
||||
self.scale = self.head_dim ** -0.5
|
||||
|
||||
self.to_q = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
|
||||
self.to_k = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
|
||||
self.to_v = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
|
||||
|
||||
if use_fp16:
|
||||
eps = 1.0 / 65504
|
||||
else:
|
||||
eps = 1e-6
|
||||
|
||||
if norm_layer == nn.LayerNorm:
|
||||
norm_layer = operations.LayerNorm
|
||||
else:
|
||||
norm_layer = operations.RMSNorm
|
||||
|
||||
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
|
||||
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
|
||||
self.out_proj = operations.Linear(dim, dim, device = device, dtype = dtype)
|
||||
|
||||
def forward(self, x):
|
||||
B, N, _ = x.shape
|
||||
|
||||
query = self.to_q(x)
|
||||
key = self.to_k(x)
|
||||
value = self.to_v(x)
|
||||
|
||||
qkv_combined = torch.cat((query, key, value), dim=-1)
|
||||
split_size = qkv_combined.shape[-1] // self.num_heads // 3
|
||||
|
||||
qkv = qkv_combined.view(1, -1, self.num_heads, split_size * 3)
|
||||
query, key, value = torch.split(qkv, split_size, dim=-1)
|
||||
|
||||
query = query.reshape(B, N, self.num_heads, self.head_dim)
|
||||
key = key.reshape(B, N, self.num_heads, self.head_dim)
|
||||
value = value.reshape(B, N, self.num_heads * self.head_dim)
|
||||
|
||||
query = self.q_norm(query)
|
||||
key = self.k_norm(key)
|
||||
|
||||
x = optimized_attention(
|
||||
query.reshape(B, N, self.num_heads * self.head_dim),
|
||||
key.reshape(B, N, self.num_heads * self.head_dim),
|
||||
value,
|
||||
heads=self.num_heads,
|
||||
)
|
||||
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
class HunYuanDiTBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size,
|
||||
c_emb_size,
|
||||
num_heads,
|
||||
text_states_dim=1024,
|
||||
qk_norm=False,
|
||||
norm_layer=nn.LayerNorm,
|
||||
qk_norm_layer=True,
|
||||
qkv_bias=True,
|
||||
skip_connection=True,
|
||||
timested_modulate=False,
|
||||
use_moe: bool = False,
|
||||
num_experts: int = 8,
|
||||
moe_top_k: int = 2,
|
||||
use_fp16: bool = False,
|
||||
operations = None,
|
||||
device = None, dtype = None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# eps can't be 1e-6 in fp16 mode because of numerical stability issues
|
||||
if use_fp16:
|
||||
eps = 1.0 / 65504
|
||||
else:
|
||||
eps = 1e-6
|
||||
|
||||
self.norm1 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
|
||||
|
||||
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm,
|
||||
norm_layer=qk_norm_layer, use_fp16 = use_fp16, device = device, dtype = dtype, operations = operations)
|
||||
|
||||
self.norm2 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
|
||||
|
||||
self.timested_modulate = timested_modulate
|
||||
if self.timested_modulate:
|
||||
self.default_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(c_emb_size, hidden_size, bias=True, device = device, dtype = dtype)
|
||||
)
|
||||
|
||||
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=qkv_bias,
|
||||
qk_norm=qk_norm, norm_layer=qk_norm_layer, use_fp16 = use_fp16,
|
||||
device = device, dtype = dtype, operations = operations)
|
||||
|
||||
self.norm3 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
|
||||
|
||||
if skip_connection:
|
||||
self.skip_norm = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
|
||||
self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, device = device, dtype = dtype)
|
||||
else:
|
||||
self.skip_linear = None
|
||||
|
||||
self.use_moe = use_moe
|
||||
|
||||
if self.use_moe:
|
||||
self.moe = MoEBlock(
|
||||
hidden_size,
|
||||
num_experts = num_experts,
|
||||
moe_top_k = moe_top_k,
|
||||
dropout = 0.0,
|
||||
ff_inner_dim = int(hidden_size * 4.0),
|
||||
device = device, dtype = dtype,
|
||||
operations = operations
|
||||
)
|
||||
else:
|
||||
self.mlp = MLP(width=hidden_size, operations=operations, device = device, dtype = dtype)
|
||||
|
||||
def forward(self, hidden_states, conditioning=None, text_states=None, skip_tensor=None):
|
||||
|
||||
if self.skip_linear is not None:
|
||||
combined = torch.cat([skip_tensor, hidden_states], dim=-1)
|
||||
hidden_states = self.skip_linear(combined)
|
||||
hidden_states = self.skip_norm(hidden_states)
|
||||
|
||||
# self attention
|
||||
if self.timested_modulate:
|
||||
modulation_shift = self.default_modulation(conditioning).unsqueeze(dim=1)
|
||||
hidden_states = hidden_states + modulation_shift
|
||||
|
||||
self_attn_out = self.attn1(self.norm1(hidden_states))
|
||||
hidden_states = hidden_states + self_attn_out
|
||||
|
||||
# cross attention
|
||||
hidden_states = hidden_states + self.attn2(self.norm2(hidden_states), text_states)
|
||||
|
||||
# MLP Layer
|
||||
mlp_input = self.norm3(hidden_states)
|
||||
|
||||
if self.use_moe:
|
||||
hidden_states = hidden_states + self.moe(mlp_input)
|
||||
else:
|
||||
hidden_states = hidden_states + self.mlp(mlp_input)
|
||||
|
||||
return hidden_states
|
||||
|
||||
class FinalLayer(nn.Module):
|
||||
|
||||
def __init__(self, final_hidden_size, out_channels, operations, use_fp16: bool = False, device = None, dtype = None):
|
||||
super().__init__()
|
||||
|
||||
if use_fp16:
|
||||
eps = 1.0 / 65504
|
||||
else:
|
||||
eps = 1e-6
|
||||
|
||||
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
|
||||
self.linear = operations.Linear(final_hidden_size, out_channels, bias = True, device = device, dtype = dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm_final(x)
|
||||
x = x[:, 1:]
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
class HunYuanDiTPlain(nn.Module):
|
||||
|
||||
# init with the defaults values from https://huggingface.co/tencent/Hunyuan3D-2.1/blob/main/hunyuan3d-dit-v2-1/config.yaml
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int = 64,
|
||||
hidden_size: int = 2048,
|
||||
context_dim: int = 1024,
|
||||
depth: int = 21,
|
||||
num_heads: int = 16,
|
||||
qk_norm: bool = True,
|
||||
qkv_bias: bool = False,
|
||||
num_moe_layers: int = 6,
|
||||
guidance_cond_proj_dim = 2048,
|
||||
norm_type = 'layer',
|
||||
num_experts: int = 8,
|
||||
moe_top_k: int = 2,
|
||||
use_fp16: bool = False,
|
||||
dtype = None,
|
||||
device = None,
|
||||
operations = None,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
self.dtype = dtype
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.depth = depth
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
norm = operations.LayerNorm if norm_type == 'layer' else operations.RMSNorm
|
||||
qk_norm = operations.RMSNorm
|
||||
|
||||
self.context_dim = context_dim
|
||||
self.guidance_cond_proj_dim = guidance_cond_proj_dim
|
||||
|
||||
self.x_embedder = operations.Linear(in_channels, hidden_size, bias = True, device = device, dtype = dtype)
|
||||
self.t_embedder = TimestepEmbedder(hidden_size, hidden_size * 4, cond_proj_dim = guidance_cond_proj_dim, device = device, dtype = dtype, operations = operations)
|
||||
|
||||
|
||||
# HUnYuanDiT Blocks
|
||||
self.blocks = nn.ModuleList([
|
||||
HunYuanDiTBlock(hidden_size=hidden_size,
|
||||
c_emb_size=hidden_size,
|
||||
num_heads=num_heads,
|
||||
text_states_dim=context_dim,
|
||||
qk_norm=qk_norm,
|
||||
norm_layer = norm,
|
||||
qk_norm_layer = qk_norm,
|
||||
skip_connection=layer > depth // 2,
|
||||
qkv_bias=qkv_bias,
|
||||
use_moe=True if depth - layer <= num_moe_layers else False,
|
||||
num_experts=num_experts,
|
||||
moe_top_k=moe_top_k,
|
||||
use_fp16 = use_fp16,
|
||||
device = device, dtype = dtype, operations = operations)
|
||||
for layer in range(depth)
|
||||
])
|
||||
|
||||
self.depth = depth
|
||||
|
||||
self.final_layer = FinalLayer(hidden_size, self.out_channels, use_fp16 = use_fp16, operations = operations, device = device, dtype = dtype)
|
||||
|
||||
def forward(self, x, t, context, transformer_options = {}, **kwargs):
|
||||
|
||||
x = x.movedim(-1, -2)
|
||||
uncond_emb, cond_emb = context.chunk(2, dim = 0)
|
||||
|
||||
context = torch.cat([cond_emb, uncond_emb], dim = 0)
|
||||
main_condition = context
|
||||
|
||||
t = 1.0 - t
|
||||
|
||||
time_embedded = self.t_embedder(t, condition = kwargs.get('guidance_cond'))
|
||||
|
||||
x = x.to(dtype = next(self.x_embedder.parameters()).dtype)
|
||||
x_embedded = self.x_embedder(x)
|
||||
|
||||
combined = torch.cat([time_embedded, x_embedded], dim=1)
|
||||
|
||||
def block_wrap(args):
|
||||
return block(
|
||||
args["x"],
|
||||
args["t"],
|
||||
args["cond"],
|
||||
skip_tensor=args.get("skip"),)
|
||||
|
||||
skip_stack = []
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for idx, block in enumerate(self.blocks):
|
||||
if idx <= self.depth // 2:
|
||||
skip_input = None
|
||||
else:
|
||||
skip_input = skip_stack.pop()
|
||||
|
||||
if ("block", idx) in blocks_replace:
|
||||
|
||||
combined = blocks_replace[("block", idx)](
|
||||
{
|
||||
"x": combined,
|
||||
"t": time_embedded,
|
||||
"cond": main_condition,
|
||||
"skip": skip_input,
|
||||
},
|
||||
{"original_block": block_wrap},
|
||||
)
|
||||
else:
|
||||
combined = block(combined, time_embedded, main_condition, skip_tensor=skip_input)
|
||||
|
||||
if idx < self.depth // 2:
|
||||
skip_stack.append(combined)
|
||||
|
||||
output = self.final_layer(combined)
|
||||
output = output.movedim(-2, -1) * (-1.0)
|
||||
|
||||
cond_emb, uncond_emb = output.chunk(2, dim = 0)
|
||||
return torch.cat([uncond_emb, cond_emb])
|
||||
@@ -1,6 +1,7 @@
|
||||
#Based on Flux code because of weird hunyuan video code license.
|
||||
|
||||
import torch
|
||||
import comfy.patcher_extension
|
||||
import comfy.ldm.flux.layers
|
||||
import comfy.ldm.modules.diffusionmodules.mmdit
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
@@ -39,6 +40,8 @@ class HunyuanVideoParams:
|
||||
patch_size: list
|
||||
qkv_bias: bool
|
||||
guidance_embed: bool
|
||||
byt5: bool
|
||||
meanflow: bool
|
||||
|
||||
|
||||
class SelfAttentionRef(nn.Module):
|
||||
@@ -77,13 +80,13 @@ class TokenRefinerBlock(nn.Module):
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
def forward(self, x, c, mask):
|
||||
def forward(self, x, c, mask, transformer_options={}):
|
||||
mod1, mod2 = self.adaLN_modulation(c).chunk(2, dim=1)
|
||||
|
||||
norm_x = self.norm1(x)
|
||||
qkv = self.self_attn.qkv(norm_x)
|
||||
q, k, v = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, self.heads, -1).permute(2, 0, 3, 1, 4)
|
||||
attn = optimized_attention(q, k, v, self.heads, mask=mask, skip_reshape=True)
|
||||
attn = optimized_attention(q, k, v, self.heads, mask=mask, skip_reshape=True, transformer_options=transformer_options)
|
||||
|
||||
x = x + self.self_attn.proj(attn) * mod1.unsqueeze(1)
|
||||
x = x + self.mlp(self.norm2(x)) * mod2.unsqueeze(1)
|
||||
@@ -114,14 +117,14 @@ class IndividualTokenRefiner(nn.Module):
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x, c, mask):
|
||||
def forward(self, x, c, mask, transformer_options={}):
|
||||
m = None
|
||||
if mask is not None:
|
||||
m = mask.view(mask.shape[0], 1, 1, mask.shape[1]).repeat(1, 1, mask.shape[1], 1)
|
||||
m = m + m.transpose(2, 3)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, c, m)
|
||||
x = block(x, c, m, transformer_options=transformer_options)
|
||||
return x
|
||||
|
||||
|
||||
@@ -149,6 +152,7 @@ class TokenRefiner(nn.Module):
|
||||
x,
|
||||
timesteps,
|
||||
mask,
|
||||
transformer_options={},
|
||||
):
|
||||
t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
|
||||
# m = mask.float().unsqueeze(-1)
|
||||
@@ -157,9 +161,33 @@ class TokenRefiner(nn.Module):
|
||||
|
||||
c = t + self.c_embedder(c.to(x.dtype))
|
||||
x = self.input_embedder(x)
|
||||
x = self.individual_token_refiner(x, c, mask)
|
||||
x = self.individual_token_refiner(x, c, mask, transformer_options=transformer_options)
|
||||
return x
|
||||
|
||||
|
||||
class ByT5Mapper(nn.Module):
|
||||
def __init__(self, in_dim, out_dim, hidden_dim, out_dim1, use_res=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.layernorm = operations.LayerNorm(in_dim, dtype=dtype, device=device)
|
||||
self.fc1 = operations.Linear(in_dim, hidden_dim, dtype=dtype, device=device)
|
||||
self.fc2 = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
|
||||
self.fc3 = operations.Linear(out_dim, out_dim1, dtype=dtype, device=device)
|
||||
self.use_res = use_res
|
||||
self.act_fn = nn.GELU()
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_res:
|
||||
res = x
|
||||
x = self.layernorm(x)
|
||||
x = self.fc1(x)
|
||||
x = self.act_fn(x)
|
||||
x = self.fc2(x)
|
||||
x2 = self.act_fn(x)
|
||||
x2 = self.fc3(x2)
|
||||
if self.use_res:
|
||||
x2 = x2 + res
|
||||
return x2
|
||||
|
||||
class HunyuanVideo(nn.Module):
|
||||
"""
|
||||
Transformer model for flow matching on sequences.
|
||||
@@ -184,9 +212,13 @@ class HunyuanVideo(nn.Module):
|
||||
self.num_heads = params.num_heads
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
|
||||
self.img_in = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(None, self.patch_size, self.in_channels, self.hidden_size, conv3d=True, dtype=dtype, device=device, operations=operations)
|
||||
self.img_in = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(None, self.patch_size, self.in_channels, self.hidden_size, conv3d=len(self.patch_size) == 3, dtype=dtype, device=device, operations=operations)
|
||||
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
if params.vec_in_dim is not None:
|
||||
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.vector_in = None
|
||||
|
||||
self.guidance_in = (
|
||||
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
|
||||
)
|
||||
@@ -214,6 +246,23 @@ class HunyuanVideo(nn.Module):
|
||||
]
|
||||
)
|
||||
|
||||
if params.byt5:
|
||||
self.byt5_in = ByT5Mapper(
|
||||
in_dim=1472,
|
||||
out_dim=2048,
|
||||
hidden_dim=2048,
|
||||
out_dim1=self.hidden_size,
|
||||
use_res=False,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
else:
|
||||
self.byt5_in = None
|
||||
|
||||
if params.meanflow:
|
||||
self.time_r_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.time_r_in = None
|
||||
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
@@ -225,10 +274,12 @@ class HunyuanVideo(nn.Module):
|
||||
txt_ids: Tensor,
|
||||
txt_mask: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
y: Tensor = None,
|
||||
txt_byt5=None,
|
||||
guidance: Tensor = None,
|
||||
guiding_frame_index=None,
|
||||
ref_latent=None,
|
||||
disable_time_r=False,
|
||||
control=None,
|
||||
transformer_options={},
|
||||
) -> Tensor:
|
||||
@@ -239,6 +290,14 @@ class HunyuanVideo(nn.Module):
|
||||
img = self.img_in(img)
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
|
||||
|
||||
if (self.time_r_in is not None) and (not disable_time_r):
|
||||
w = torch.where(transformer_options['sigmas'][0] == transformer_options['sample_sigmas'])[0] # This most likely could be improved
|
||||
if len(w) > 0:
|
||||
timesteps_r = transformer_options['sample_sigmas'][w[0] + 1]
|
||||
timesteps_r = timesteps_r.unsqueeze(0).to(device=timesteps.device, dtype=timesteps.dtype)
|
||||
vec_r = self.time_r_in(timestep_embedding(timesteps_r, 256, time_factor=1000.0).to(img.dtype))
|
||||
vec = (vec + vec_r) / 2
|
||||
|
||||
if ref_latent is not None:
|
||||
ref_latent_ids = self.img_ids(ref_latent)
|
||||
ref_latent = self.img_in(ref_latent)
|
||||
@@ -249,13 +308,17 @@ class HunyuanVideo(nn.Module):
|
||||
|
||||
if guiding_frame_index is not None:
|
||||
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
|
||||
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
|
||||
if self.vector_in is not None:
|
||||
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
|
||||
else:
|
||||
vec = torch.cat([(token_replace_vec).unsqueeze(1), (vec).unsqueeze(1)], dim=1)
|
||||
frame_tokens = (initial_shape[-1] // self.patch_size[-1]) * (initial_shape[-2] // self.patch_size[-2])
|
||||
modulation_dims = [(0, frame_tokens, 0), (frame_tokens, None, 1)]
|
||||
modulation_dims_txt = [(0, None, 1)]
|
||||
else:
|
||||
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
if self.vector_in is not None:
|
||||
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
modulation_dims = None
|
||||
modulation_dims_txt = None
|
||||
|
||||
@@ -266,7 +329,13 @@ class HunyuanVideo(nn.Module):
|
||||
if txt_mask is not None and not torch.is_floating_point(txt_mask):
|
||||
txt_mask = (txt_mask - 1).to(img.dtype) * torch.finfo(img.dtype).max
|
||||
|
||||
txt = self.txt_in(txt, timesteps, txt_mask)
|
||||
txt = self.txt_in(txt, timesteps, txt_mask, transformer_options=transformer_options)
|
||||
|
||||
if self.byt5_in is not None and txt_byt5 is not None:
|
||||
txt_byt5 = self.byt5_in(txt_byt5)
|
||||
txt_byt5_ids = torch.zeros((txt_ids.shape[0], txt_byt5.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
|
||||
txt = torch.cat((txt, txt_byt5), dim=1)
|
||||
txt_ids = torch.cat((txt_ids, txt_byt5_ids), dim=1)
|
||||
|
||||
ids = torch.cat((img_ids, txt_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
@@ -284,14 +353,14 @@ class HunyuanVideo(nn.Module):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims_img=args["modulation_dims_img"], modulation_dims_txt=args["modulation_dims_txt"])
|
||||
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims_img=args["modulation_dims_img"], modulation_dims_txt=args["modulation_dims_txt"], transformer_options=args["transformer_options"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims_img': modulation_dims, 'modulation_dims_txt': modulation_dims_txt}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims_img': modulation_dims, 'modulation_dims_txt': modulation_dims_txt, 'transformer_options': transformer_options}, {"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
else:
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims_img=modulation_dims, modulation_dims_txt=modulation_dims_txt)
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims_img=modulation_dims, modulation_dims_txt=modulation_dims_txt, transformer_options=transformer_options)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
@@ -306,13 +375,13 @@ class HunyuanVideo(nn.Module):
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims=args["modulation_dims"])
|
||||
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims=args["modulation_dims"], transformer_options=args["transformer_options"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims': modulation_dims}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims': modulation_dims, 'transformer_options': transformer_options}, {"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims)
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims, transformer_options=transformer_options)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
@@ -327,12 +396,16 @@ class HunyuanVideo(nn.Module):
|
||||
|
||||
img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels)
|
||||
|
||||
shape = initial_shape[-3:]
|
||||
shape = initial_shape[-len(self.patch_size):]
|
||||
for i in range(len(shape)):
|
||||
shape[i] = shape[i] // self.patch_size[i]
|
||||
img = img.reshape([img.shape[0]] + shape + [self.out_channels] + self.patch_size)
|
||||
img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
|
||||
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
|
||||
if img.ndim == 8:
|
||||
img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
|
||||
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
|
||||
else:
|
||||
img = img.permute(0, 3, 1, 4, 2, 5)
|
||||
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3])
|
||||
return img
|
||||
|
||||
def img_ids(self, x):
|
||||
@@ -347,9 +420,30 @@ class HunyuanVideo(nn.Module):
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
|
||||
return repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, t, h, w = x.shape
|
||||
img_ids = self.img_ids(x)
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, ref_latent, control=control, transformer_options=transformer_options)
|
||||
def img_ids_2d(self, x):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
h_len = ((h + (patch_size[0] // 2)) // patch_size[0])
|
||||
w_len = ((w + (patch_size[1] // 2)) // patch_size[1])
|
||||
img_ids = torch.zeros((h_len, w_len, 2), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 0] = img_ids[:, :, 0] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
return repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
def forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, y, txt_byt5, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
|
||||
|
||||
def _forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
|
||||
bs = x.shape[0]
|
||||
if len(self.patch_size) == 3:
|
||||
img_ids = self.img_ids(x)
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
else:
|
||||
img_ids = self.img_ids_2d(x)
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 2), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
|
||||
return out
|
||||
|
||||
136
comfy/ldm/hunyuan_video/vae.py
Normal file
136
comfy/ldm/hunyuan_video/vae.py
Normal file
@@ -0,0 +1,136 @@
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
|
||||
class PixelShuffle2D(nn.Module):
|
||||
def __init__(self, in_dim, out_dim, op=ops.Conv2d):
|
||||
super().__init__()
|
||||
self.conv = op(in_dim, out_dim >> 2, 3, 1, 1)
|
||||
self.ratio = (in_dim << 2) // out_dim
|
||||
|
||||
def forward(self, x):
|
||||
b, c, h, w = x.shape
|
||||
h2, w2 = h >> 1, w >> 1
|
||||
y = self.conv(x).view(b, -1, h2, 2, w2, 2).permute(0, 3, 5, 1, 2, 4).reshape(b, -1, h2, w2)
|
||||
r = x.view(b, c, h2, 2, w2, 2).permute(0, 3, 5, 1, 2, 4).reshape(b, c << 2, h2, w2)
|
||||
return y + r.view(b, y.shape[1], self.ratio, h2, w2).mean(2)
|
||||
|
||||
|
||||
class PixelUnshuffle2D(nn.Module):
|
||||
def __init__(self, in_dim, out_dim, op=ops.Conv2d):
|
||||
super().__init__()
|
||||
self.conv = op(in_dim, out_dim << 2, 3, 1, 1)
|
||||
self.scale = (out_dim << 2) // in_dim
|
||||
|
||||
def forward(self, x):
|
||||
b, c, h, w = x.shape
|
||||
h2, w2 = h << 1, w << 1
|
||||
y = self.conv(x).view(b, 2, 2, -1, h, w).permute(0, 3, 4, 1, 5, 2).reshape(b, -1, h2, w2)
|
||||
r = x.repeat_interleave(self.scale, 1).view(b, 2, 2, -1, h, w).permute(0, 3, 4, 1, 5, 2).reshape(b, -1, h2, w2)
|
||||
return y + r
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
|
||||
ffactor_spatial, downsample_match_channel=True, **_):
|
||||
super().__init__()
|
||||
self.z_channels = z_channels
|
||||
self.block_out_channels = block_out_channels
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.conv_in = ops.Conv2d(in_channels, block_out_channels[0], 3, 1, 1)
|
||||
|
||||
self.down = nn.ModuleList()
|
||||
ch = block_out_channels[0]
|
||||
depth = (ffactor_spatial >> 1).bit_length()
|
||||
|
||||
for i, tgt in enumerate(block_out_channels):
|
||||
stage = nn.Module()
|
||||
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
|
||||
out_channels=tgt,
|
||||
temb_channels=0,
|
||||
conv_op=ops.Conv2d)
|
||||
for j in range(num_res_blocks)])
|
||||
ch = tgt
|
||||
if i < depth:
|
||||
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and downsample_match_channel else ch
|
||||
stage.downsample = PixelShuffle2D(ch, nxt, ops.Conv2d)
|
||||
ch = nxt
|
||||
self.down.append(stage)
|
||||
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
|
||||
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv2d)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
|
||||
|
||||
self.norm_out = ops.GroupNorm(32, ch, 1e-6, True)
|
||||
self.conv_out = ops.Conv2d(ch, z_channels << 1, 3, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv_in(x)
|
||||
|
||||
for stage in self.down:
|
||||
for blk in stage.block:
|
||||
x = blk(x)
|
||||
if hasattr(stage, 'downsample'):
|
||||
x = stage.downsample(x)
|
||||
|
||||
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
|
||||
|
||||
b, c, h, w = x.shape
|
||||
grp = c // (self.z_channels << 1)
|
||||
skip = x.view(b, c // grp, grp, h, w).mean(2)
|
||||
|
||||
return self.conv_out(F.silu(self.norm_out(x))) + skip
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, z_channels, out_channels, block_out_channels, num_res_blocks,
|
||||
ffactor_spatial, upsample_match_channel=True, **_):
|
||||
super().__init__()
|
||||
block_out_channels = block_out_channels[::-1]
|
||||
self.z_channels = z_channels
|
||||
self.block_out_channels = block_out_channels
|
||||
self.num_res_blocks = num_res_blocks
|
||||
|
||||
ch = block_out_channels[0]
|
||||
self.conv_in = ops.Conv2d(z_channels, ch, 3, 1, 1)
|
||||
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
|
||||
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv2d)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
|
||||
|
||||
self.up = nn.ModuleList()
|
||||
depth = (ffactor_spatial >> 1).bit_length()
|
||||
|
||||
for i, tgt in enumerate(block_out_channels):
|
||||
stage = nn.Module()
|
||||
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
|
||||
out_channels=tgt,
|
||||
temb_channels=0,
|
||||
conv_op=ops.Conv2d)
|
||||
for j in range(num_res_blocks + 1)])
|
||||
ch = tgt
|
||||
if i < depth:
|
||||
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and upsample_match_channel else ch
|
||||
stage.upsample = PixelUnshuffle2D(ch, nxt, ops.Conv2d)
|
||||
ch = nxt
|
||||
self.up.append(stage)
|
||||
|
||||
self.norm_out = ops.GroupNorm(32, ch, 1e-6, True)
|
||||
self.conv_out = ops.Conv2d(ch, out_channels, 3, 1, 1)
|
||||
|
||||
def forward(self, z):
|
||||
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
|
||||
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
|
||||
|
||||
for stage in self.up:
|
||||
for blk in stage.block:
|
||||
x = blk(x)
|
||||
if hasattr(stage, 'upsample'):
|
||||
x = stage.upsample(x)
|
||||
|
||||
return self.conv_out(F.silu(self.norm_out(x)))
|
||||
267
comfy/ldm/hunyuan_video/vae_refiner.py
Normal file
267
comfy/ldm/hunyuan_video/vae_refiner.py
Normal file
@@ -0,0 +1,267 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d
|
||||
import comfy.ops
|
||||
import comfy.ldm.models.autoencoder
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
class RMS_norm(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
shape = (dim, 1, 1, 1)
|
||||
self.scale = dim**0.5
|
||||
self.gamma = nn.Parameter(torch.empty(shape))
|
||||
|
||||
def forward(self, x):
|
||||
return F.normalize(x, dim=1) * self.scale * self.gamma
|
||||
|
||||
class DnSmpl(nn.Module):
|
||||
def __init__(self, ic, oc, tds=True):
|
||||
super().__init__()
|
||||
fct = 2 * 2 * 2 if tds else 1 * 2 * 2
|
||||
assert oc % fct == 0
|
||||
self.conv = VideoConv3d(ic, oc // fct, kernel_size=3)
|
||||
|
||||
self.tds = tds
|
||||
self.gs = fct * ic // oc
|
||||
|
||||
def forward(self, x):
|
||||
r1 = 2 if self.tds else 1
|
||||
h = self.conv(x)
|
||||
|
||||
if self.tds:
|
||||
hf = h[:, :, :1, :, :]
|
||||
b, c, f, ht, wd = hf.shape
|
||||
hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2)
|
||||
hf = hf.permute(0, 4, 6, 1, 2, 3, 5)
|
||||
hf = hf.reshape(b, 2 * 2 * c, f, ht // 2, wd // 2)
|
||||
hf = torch.cat([hf, hf], dim=1)
|
||||
|
||||
hn = h[:, :, 1:, :, :]
|
||||
b, c, frms, ht, wd = hn.shape
|
||||
nf = frms // r1
|
||||
hn = hn.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
|
||||
hn = hn.permute(0, 3, 5, 7, 1, 2, 4, 6)
|
||||
hn = hn.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
|
||||
|
||||
h = torch.cat([hf, hn], dim=2)
|
||||
|
||||
xf = x[:, :, :1, :, :]
|
||||
b, ci, f, ht, wd = xf.shape
|
||||
xf = xf.reshape(b, ci, f, ht // 2, 2, wd // 2, 2)
|
||||
xf = xf.permute(0, 4, 6, 1, 2, 3, 5)
|
||||
xf = xf.reshape(b, 2 * 2 * ci, f, ht // 2, wd // 2)
|
||||
B, C, T, H, W = xf.shape
|
||||
xf = xf.view(B, h.shape[1], self.gs // 2, T, H, W).mean(dim=2)
|
||||
|
||||
xn = x[:, :, 1:, :, :]
|
||||
b, ci, frms, ht, wd = xn.shape
|
||||
nf = frms // r1
|
||||
xn = xn.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
|
||||
xn = xn.permute(0, 3, 5, 7, 1, 2, 4, 6)
|
||||
xn = xn.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
|
||||
B, C, T, H, W = xn.shape
|
||||
xn = xn.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
|
||||
sc = torch.cat([xf, xn], dim=2)
|
||||
else:
|
||||
b, c, frms, ht, wd = h.shape
|
||||
nf = frms // r1
|
||||
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
|
||||
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
|
||||
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
|
||||
|
||||
b, ci, frms, ht, wd = x.shape
|
||||
nf = frms // r1
|
||||
sc = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
|
||||
sc = sc.permute(0, 3, 5, 7, 1, 2, 4, 6)
|
||||
sc = sc.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
|
||||
B, C, T, H, W = sc.shape
|
||||
sc = sc.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
|
||||
|
||||
return h + sc
|
||||
|
||||
|
||||
class UpSmpl(nn.Module):
|
||||
def __init__(self, ic, oc, tus=True):
|
||||
super().__init__()
|
||||
fct = 2 * 2 * 2 if tus else 1 * 2 * 2
|
||||
self.conv = VideoConv3d(ic, oc * fct, kernel_size=3)
|
||||
|
||||
self.tus = tus
|
||||
self.rp = fct * oc // ic
|
||||
|
||||
def forward(self, x):
|
||||
r1 = 2 if self.tus else 1
|
||||
h = self.conv(x)
|
||||
|
||||
if self.tus:
|
||||
hf = h[:, :, :1, :, :]
|
||||
b, c, f, ht, wd = hf.shape
|
||||
nc = c // (2 * 2)
|
||||
hf = hf.reshape(b, 2, 2, nc, f, ht, wd)
|
||||
hf = hf.permute(0, 3, 4, 5, 1, 6, 2)
|
||||
hf = hf.reshape(b, nc, f, ht * 2, wd * 2)
|
||||
hf = hf[:, : hf.shape[1] // 2]
|
||||
|
||||
hn = h[:, :, 1:, :, :]
|
||||
b, c, frms, ht, wd = hn.shape
|
||||
nc = c // (r1 * 2 * 2)
|
||||
hn = hn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
|
||||
hn = hn.permute(0, 4, 5, 1, 6, 2, 7, 3)
|
||||
hn = hn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
|
||||
|
||||
h = torch.cat([hf, hn], dim=2)
|
||||
|
||||
xf = x[:, :, :1, :, :]
|
||||
b, ci, f, ht, wd = xf.shape
|
||||
xf = xf.repeat_interleave(repeats=self.rp // 2, dim=1)
|
||||
b, c, f, ht, wd = xf.shape
|
||||
nc = c // (2 * 2)
|
||||
xf = xf.reshape(b, 2, 2, nc, f, ht, wd)
|
||||
xf = xf.permute(0, 3, 4, 5, 1, 6, 2)
|
||||
xf = xf.reshape(b, nc, f, ht * 2, wd * 2)
|
||||
|
||||
xn = x[:, :, 1:, :, :]
|
||||
xn = xn.repeat_interleave(repeats=self.rp, dim=1)
|
||||
b, c, frms, ht, wd = xn.shape
|
||||
nc = c // (r1 * 2 * 2)
|
||||
xn = xn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
|
||||
xn = xn.permute(0, 4, 5, 1, 6, 2, 7, 3)
|
||||
xn = xn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
|
||||
sc = torch.cat([xf, xn], dim=2)
|
||||
else:
|
||||
b, c, frms, ht, wd = h.shape
|
||||
nc = c // (r1 * 2 * 2)
|
||||
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
|
||||
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
|
||||
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
|
||||
|
||||
sc = x.repeat_interleave(repeats=self.rp, dim=1)
|
||||
b, c, frms, ht, wd = sc.shape
|
||||
nc = c // (r1 * 2 * 2)
|
||||
sc = sc.reshape(b, r1, 2, 2, nc, frms, ht, wd)
|
||||
sc = sc.permute(0, 4, 5, 1, 6, 2, 7, 3)
|
||||
sc = sc.reshape(b, nc, frms * r1, ht * 2, wd * 2)
|
||||
|
||||
return h + sc
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
|
||||
ffactor_spatial, ffactor_temporal, downsample_match_channel=True, **_):
|
||||
super().__init__()
|
||||
self.z_channels = z_channels
|
||||
self.block_out_channels = block_out_channels
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.conv_in = VideoConv3d(in_channels, block_out_channels[0], 3, 1, 1)
|
||||
|
||||
self.down = nn.ModuleList()
|
||||
ch = block_out_channels[0]
|
||||
depth = (ffactor_spatial >> 1).bit_length()
|
||||
depth_temporal = ((ffactor_spatial // ffactor_temporal) >> 1).bit_length()
|
||||
|
||||
for i, tgt in enumerate(block_out_channels):
|
||||
stage = nn.Module()
|
||||
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
|
||||
out_channels=tgt,
|
||||
temb_channels=0,
|
||||
conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
for j in range(num_res_blocks)])
|
||||
ch = tgt
|
||||
if i < depth:
|
||||
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and downsample_match_channel else ch
|
||||
stage.downsample = DnSmpl(ch, nxt, tds=i >= depth_temporal)
|
||||
ch = nxt
|
||||
self.down.append(stage)
|
||||
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=RMS_norm)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
|
||||
self.norm_out = RMS_norm(ch)
|
||||
self.conv_out = VideoConv3d(ch, z_channels << 1, 3, 1, 1)
|
||||
|
||||
self.regul = comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv_in(x)
|
||||
|
||||
for stage in self.down:
|
||||
for blk in stage.block:
|
||||
x = blk(x)
|
||||
if hasattr(stage, 'downsample'):
|
||||
x = stage.downsample(x)
|
||||
|
||||
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
|
||||
|
||||
b, c, t, h, w = x.shape
|
||||
grp = c // (self.z_channels << 1)
|
||||
skip = x.view(b, c // grp, grp, t, h, w).mean(2)
|
||||
|
||||
out = self.conv_out(F.silu(self.norm_out(x))) + skip
|
||||
out = self.regul(out)[0]
|
||||
|
||||
out = torch.cat((out[:, :, :1], out), dim=2)
|
||||
out = out.permute(0, 2, 1, 3, 4)
|
||||
b, f_times_2, c, h, w = out.shape
|
||||
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
|
||||
out = out.permute(0, 2, 1, 3, 4).contiguous()
|
||||
return out
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, z_channels, out_channels, block_out_channels, num_res_blocks,
|
||||
ffactor_spatial, ffactor_temporal, upsample_match_channel=True, **_):
|
||||
super().__init__()
|
||||
block_out_channels = block_out_channels[::-1]
|
||||
self.z_channels = z_channels
|
||||
self.block_out_channels = block_out_channels
|
||||
self.num_res_blocks = num_res_blocks
|
||||
|
||||
ch = block_out_channels[0]
|
||||
self.conv_in = VideoConv3d(z_channels, ch, 3)
|
||||
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=RMS_norm)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
|
||||
self.up = nn.ModuleList()
|
||||
depth = (ffactor_spatial >> 1).bit_length()
|
||||
depth_temporal = (ffactor_temporal >> 1).bit_length()
|
||||
|
||||
for i, tgt in enumerate(block_out_channels):
|
||||
stage = nn.Module()
|
||||
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
|
||||
out_channels=tgt,
|
||||
temb_channels=0,
|
||||
conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
for j in range(num_res_blocks + 1)])
|
||||
ch = tgt
|
||||
if i < depth:
|
||||
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and upsample_match_channel else ch
|
||||
stage.upsample = UpSmpl(ch, nxt, tus=i < depth_temporal)
|
||||
ch = nxt
|
||||
self.up.append(stage)
|
||||
|
||||
self.norm_out = RMS_norm(ch)
|
||||
self.conv_out = VideoConv3d(ch, out_channels, 3)
|
||||
|
||||
def forward(self, z):
|
||||
z = z.permute(0, 2, 1, 3, 4)
|
||||
b, f, c, h, w = z.shape
|
||||
z = z.reshape(b, f, 2, c // 2, h, w)
|
||||
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
|
||||
z = z.permute(0, 2, 1, 3, 4)
|
||||
z = z[:, :, 1:]
|
||||
|
||||
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
|
||||
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
|
||||
|
||||
for stage in self.up:
|
||||
for blk in stage.block:
|
||||
x = blk(x)
|
||||
if hasattr(stage, 'upsample'):
|
||||
x = stage.upsample(x)
|
||||
|
||||
return self.conv_out(F.silu(self.norm_out(x)))
|
||||
@@ -1,5 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import comfy.patcher_extension
|
||||
import comfy.ldm.modules.attention
|
||||
import comfy.ldm.common_dit
|
||||
from einops import rearrange
|
||||
@@ -270,7 +271,7 @@ class CrossAttention(nn.Module):
|
||||
|
||||
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
|
||||
def forward(self, x, context=None, mask=None, pe=None):
|
||||
def forward(self, x, context=None, mask=None, pe=None, transformer_options={}):
|
||||
q = self.to_q(x)
|
||||
context = x if context is None else context
|
||||
k = self.to_k(context)
|
||||
@@ -284,9 +285,9 @@ class CrossAttention(nn.Module):
|
||||
k = apply_rotary_emb(k, pe)
|
||||
|
||||
if mask is None:
|
||||
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
|
||||
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
|
||||
else:
|
||||
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
|
||||
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision, transformer_options=transformer_options)
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
@@ -302,12 +303,12 @@ class BasicTransformerBlock(nn.Module):
|
||||
|
||||
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))
|
||||
|
||||
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None):
|
||||
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}):
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
|
||||
|
||||
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe) * gate_msa
|
||||
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe, transformer_options=transformer_options) * gate_msa
|
||||
|
||||
x += self.attn2(x, context=context, mask=attention_mask)
|
||||
x += self.attn2(x, context=context, mask=attention_mask, transformer_options=transformer_options)
|
||||
|
||||
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
|
||||
x += self.ff(y) * gate_mlp
|
||||
@@ -420,6 +421,13 @@ class LTXVModel(torch.nn.Module):
|
||||
self.patchifier = SymmetricPatchifier(1)
|
||||
|
||||
def forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, **kwargs)
|
||||
|
||||
def _forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
|
||||
orig_shape = list(x.shape)
|
||||
@@ -471,10 +479,10 @@ class LTXVModel(torch.nn.Module):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"])
|
||||
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"], transformer_options=args["transformer_options"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(
|
||||
@@ -482,7 +490,8 @@ class LTXVModel(torch.nn.Module):
|
||||
context=context,
|
||||
attention_mask=attention_mask,
|
||||
timestep=timestep,
|
||||
pe=pe
|
||||
pe=pe,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
# 3. Output
|
||||
|
||||
@@ -973,7 +973,7 @@ class VideoVAE(nn.Module):
|
||||
norm_layer=config.get("norm_layer", "group_norm"),
|
||||
causal=config.get("causal_decoder", False),
|
||||
timestep_conditioning=self.timestep_conditioning,
|
||||
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
|
||||
spatial_padding_mode=config.get("spatial_padding_mode", "reflect"),
|
||||
)
|
||||
|
||||
self.per_channel_statistics = processor()
|
||||
|
||||
@@ -11,6 +11,7 @@ import comfy.ldm.common_dit
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
|
||||
from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
import comfy.patcher_extension
|
||||
|
||||
|
||||
def modulate(x, scale):
|
||||
@@ -103,6 +104,7 @@ class JointAttention(nn.Module):
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
transformer_options={},
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
|
||||
@@ -139,7 +141,7 @@ class JointAttention(nn.Module):
|
||||
if n_rep >= 1:
|
||||
xk = xk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
||||
xv = xv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
||||
output = optimized_attention_masked(xq.movedim(1, 2), xk.movedim(1, 2), xv.movedim(1, 2), self.n_local_heads, x_mask, skip_reshape=True)
|
||||
output = optimized_attention_masked(xq.movedim(1, 2), xk.movedim(1, 2), xv.movedim(1, 2), self.n_local_heads, x_mask, skip_reshape=True, transformer_options=transformer_options)
|
||||
|
||||
return self.out(output)
|
||||
|
||||
@@ -267,6 +269,7 @@ class JointTransformerBlock(nn.Module):
|
||||
x_mask: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
adaln_input: Optional[torch.Tensor]=None,
|
||||
transformer_options={},
|
||||
):
|
||||
"""
|
||||
Perform a forward pass through the TransformerBlock.
|
||||
@@ -289,6 +292,7 @@ class JointTransformerBlock(nn.Module):
|
||||
modulate(self.attention_norm1(x), scale_msa),
|
||||
x_mask,
|
||||
freqs_cis,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
)
|
||||
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
|
||||
@@ -303,6 +307,7 @@ class JointTransformerBlock(nn.Module):
|
||||
self.attention_norm1(x),
|
||||
x_mask,
|
||||
freqs_cis,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
)
|
||||
x = x + self.ffn_norm2(
|
||||
@@ -493,7 +498,7 @@ class NextDiT(nn.Module):
|
||||
return imgs
|
||||
|
||||
def patchify_and_embed(
|
||||
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens
|
||||
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens, transformer_options={}
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]:
|
||||
bsz = len(x)
|
||||
pH = pW = self.patch_size
|
||||
@@ -553,7 +558,7 @@ class NextDiT(nn.Module):
|
||||
|
||||
# refine context
|
||||
for layer in self.context_refiner:
|
||||
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis)
|
||||
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis, transformer_options=transformer_options)
|
||||
|
||||
# refine image
|
||||
flat_x = []
|
||||
@@ -572,7 +577,7 @@ class NextDiT(nn.Module):
|
||||
padded_img_embed = self.x_embedder(padded_img_embed)
|
||||
padded_img_mask = padded_img_mask.unsqueeze(1)
|
||||
for layer in self.noise_refiner:
|
||||
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t)
|
||||
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t, transformer_options=transformer_options)
|
||||
|
||||
if cap_mask is not None:
|
||||
mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device)
|
||||
@@ -590,8 +595,15 @@ class NextDiT(nn.Module):
|
||||
|
||||
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
|
||||
|
||||
# def forward(self, x, t, cap_feats, cap_mask):
|
||||
def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {}))
|
||||
).execute(x, timesteps, context, num_tokens, attention_mask, **kwargs)
|
||||
|
||||
# def forward(self, x, t, cap_feats, cap_mask):
|
||||
def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
|
||||
t = 1.0 - timesteps
|
||||
cap_feats = context
|
||||
cap_mask = attention_mask
|
||||
@@ -608,12 +620,13 @@ class NextDiT(nn.Module):
|
||||
|
||||
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
|
||||
|
||||
transformer_options = kwargs.get("transformer_options", {})
|
||||
x_is_tensor = isinstance(x, torch.Tensor)
|
||||
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens)
|
||||
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options)
|
||||
freqs_cis = freqs_cis.to(x.device)
|
||||
|
||||
for layer in self.layers:
|
||||
x = layer(x, mask, freqs_cis, adaln_input)
|
||||
x = layer(x, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
|
||||
|
||||
x = self.final_layer(x, adaln_input)
|
||||
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w]
|
||||
|
||||
@@ -26,6 +26,12 @@ class DiagonalGaussianRegularizer(torch.nn.Module):
|
||||
z = posterior.mode()
|
||||
return z, None
|
||||
|
||||
class EmptyRegularizer(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
||||
return z, None
|
||||
|
||||
class AbstractAutoencoder(torch.nn.Module):
|
||||
"""
|
||||
|
||||
@@ -5,8 +5,9 @@ import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn, einsum
|
||||
from einops import rearrange, repeat
|
||||
from typing import Optional
|
||||
from typing import Optional, Any, Callable, Union
|
||||
import logging
|
||||
import functools
|
||||
|
||||
from .diffusionmodules.util import AlphaBlender, timestep_embedding
|
||||
from .sub_quadratic_attention import efficient_dot_product_attention
|
||||
@@ -17,23 +18,45 @@ if model_management.xformers_enabled():
|
||||
import xformers
|
||||
import xformers.ops
|
||||
|
||||
if model_management.sage_attention_enabled():
|
||||
try:
|
||||
from sageattention import sageattn
|
||||
except ModuleNotFoundError as e:
|
||||
SAGE_ATTENTION_IS_AVAILABLE = False
|
||||
try:
|
||||
from sageattention import sageattn
|
||||
SAGE_ATTENTION_IS_AVAILABLE = True
|
||||
except ImportError as e:
|
||||
if model_management.sage_attention_enabled():
|
||||
if e.name == "sageattention":
|
||||
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
|
||||
else:
|
||||
raise e
|
||||
exit(-1)
|
||||
|
||||
if model_management.flash_attention_enabled():
|
||||
try:
|
||||
from flash_attn import flash_attn_func
|
||||
except ModuleNotFoundError:
|
||||
FLASH_ATTENTION_IS_AVAILABLE = False
|
||||
try:
|
||||
from flash_attn import flash_attn_func
|
||||
FLASH_ATTENTION_IS_AVAILABLE = True
|
||||
except ImportError:
|
||||
if model_management.flash_attention_enabled():
|
||||
logging.error(f"\n\nTo use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install flash-attn")
|
||||
exit(-1)
|
||||
|
||||
REGISTERED_ATTENTION_FUNCTIONS = {}
|
||||
def register_attention_function(name: str, func: Callable):
|
||||
# avoid replacing existing functions
|
||||
if name not in REGISTERED_ATTENTION_FUNCTIONS:
|
||||
REGISTERED_ATTENTION_FUNCTIONS[name] = func
|
||||
else:
|
||||
logging.warning(f"Attention function {name} already registered, skipping registration.")
|
||||
|
||||
def get_attention_function(name: str, default: Any=...) -> Union[Callable, None]:
|
||||
if name == "optimized":
|
||||
return optimized_attention
|
||||
elif name not in REGISTERED_ATTENTION_FUNCTIONS:
|
||||
if default is ...:
|
||||
raise KeyError(f"Attention function {name} not found.")
|
||||
else:
|
||||
return default
|
||||
return REGISTERED_ATTENTION_FUNCTIONS[name]
|
||||
|
||||
from comfy.cli_args import args
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
@@ -91,7 +114,27 @@ class FeedForward(nn.Module):
|
||||
def Normalize(in_channels, dtype=None, device=None):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
|
||||
|
||||
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
||||
|
||||
def wrap_attn(func):
|
||||
@functools.wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
remove_attn_wrapper_key = False
|
||||
try:
|
||||
if "_inside_attn_wrapper" not in kwargs:
|
||||
transformer_options = kwargs.get("transformer_options", None)
|
||||
remove_attn_wrapper_key = True
|
||||
kwargs["_inside_attn_wrapper"] = True
|
||||
if transformer_options is not None:
|
||||
if "optimized_attention_override" in transformer_options:
|
||||
return transformer_options["optimized_attention_override"](func, *args, **kwargs)
|
||||
return func(*args, **kwargs)
|
||||
finally:
|
||||
if remove_attn_wrapper_key:
|
||||
del kwargs["_inside_attn_wrapper"]
|
||||
return wrapper
|
||||
|
||||
@wrap_attn
|
||||
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
|
||||
attn_precision = get_attn_precision(attn_precision, q.dtype)
|
||||
|
||||
if skip_reshape:
|
||||
@@ -159,8 +202,8 @@ def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
|
||||
)
|
||||
return out
|
||||
|
||||
|
||||
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
||||
@wrap_attn
|
||||
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
|
||||
attn_precision = get_attn_precision(attn_precision, query.dtype)
|
||||
|
||||
if skip_reshape:
|
||||
@@ -230,7 +273,8 @@ def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None,
|
||||
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
|
||||
return hidden_states
|
||||
|
||||
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
||||
@wrap_attn
|
||||
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
|
||||
attn_precision = get_attn_precision(attn_precision, q.dtype)
|
||||
|
||||
if skip_reshape:
|
||||
@@ -359,7 +403,8 @@ try:
|
||||
except:
|
||||
pass
|
||||
|
||||
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
||||
@wrap_attn
|
||||
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
|
||||
b = q.shape[0]
|
||||
dim_head = q.shape[-1]
|
||||
# check to make sure xformers isn't broken
|
||||
@@ -374,7 +419,7 @@ def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_resh
|
||||
disabled_xformers = True
|
||||
|
||||
if disabled_xformers:
|
||||
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)
|
||||
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape, **kwargs)
|
||||
|
||||
if skip_reshape:
|
||||
# b h k d -> b k h d
|
||||
@@ -427,8 +472,8 @@ else:
|
||||
#TODO: other GPUs ?
|
||||
SDP_BATCH_LIMIT = 2**31
|
||||
|
||||
|
||||
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
||||
@wrap_attn
|
||||
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
else:
|
||||
@@ -448,7 +493,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
if SDP_BATCH_LIMIT >= b:
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
||||
out = comfy.ops.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
||||
if not skip_output_reshape:
|
||||
out = (
|
||||
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
||||
@@ -461,7 +506,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
|
||||
if mask.shape[0] > 1:
|
||||
m = mask[i : i + SDP_BATCH_LIMIT]
|
||||
|
||||
out[i : i + SDP_BATCH_LIMIT] = torch.nn.functional.scaled_dot_product_attention(
|
||||
out[i : i + SDP_BATCH_LIMIT] = comfy.ops.scaled_dot_product_attention(
|
||||
q[i : i + SDP_BATCH_LIMIT],
|
||||
k[i : i + SDP_BATCH_LIMIT],
|
||||
v[i : i + SDP_BATCH_LIMIT],
|
||||
@@ -470,8 +515,8 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
|
||||
).transpose(1, 2).reshape(-1, q.shape[2], heads * dim_head)
|
||||
return out
|
||||
|
||||
|
||||
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
||||
@wrap_attn
|
||||
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
tensor_layout = "HND"
|
||||
@@ -501,7 +546,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
|
||||
lambda t: t.transpose(1, 2),
|
||||
(q, k, v),
|
||||
)
|
||||
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape)
|
||||
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape, **kwargs)
|
||||
|
||||
if tensor_layout == "HND":
|
||||
if not skip_output_reshape:
|
||||
@@ -534,8 +579,8 @@ except AttributeError as error:
|
||||
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
|
||||
assert False, f"Could not define flash_attn_wrapper: {FLASH_ATTN_ERROR}"
|
||||
|
||||
|
||||
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
||||
@wrap_attn
|
||||
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
else:
|
||||
@@ -555,7 +600,8 @@ def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
try:
|
||||
assert mask is None
|
||||
if mask is not None:
|
||||
raise RuntimeError("Mask must not be set for Flash attention")
|
||||
out = flash_attn_wrapper(
|
||||
q.transpose(1, 2),
|
||||
k.transpose(1, 2),
|
||||
@@ -597,6 +643,19 @@ else:
|
||||
|
||||
optimized_attention_masked = optimized_attention
|
||||
|
||||
|
||||
# register core-supported attention functions
|
||||
if SAGE_ATTENTION_IS_AVAILABLE:
|
||||
register_attention_function("sage", attention_sage)
|
||||
if FLASH_ATTENTION_IS_AVAILABLE:
|
||||
register_attention_function("flash", attention_flash)
|
||||
if model_management.xformers_enabled():
|
||||
register_attention_function("xformers", attention_xformers)
|
||||
register_attention_function("pytorch", attention_pytorch)
|
||||
register_attention_function("sub_quad", attention_sub_quad)
|
||||
register_attention_function("split", attention_split)
|
||||
|
||||
|
||||
def optimized_attention_for_device(device, mask=False, small_input=False):
|
||||
if small_input:
|
||||
if model_management.pytorch_attention_enabled():
|
||||
@@ -629,7 +688,7 @@ class CrossAttention(nn.Module):
|
||||
|
||||
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
def forward(self, x, context=None, value=None, mask=None, transformer_options={}):
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k = self.to_k(context)
|
||||
@@ -640,9 +699,9 @@ class CrossAttention(nn.Module):
|
||||
v = self.to_v(context)
|
||||
|
||||
if mask is None:
|
||||
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
|
||||
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
|
||||
else:
|
||||
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
|
||||
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision, transformer_options=transformer_options)
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
@@ -746,7 +805,7 @@ class BasicTransformerBlock(nn.Module):
|
||||
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
|
||||
n = self.attn1.to_out(n)
|
||||
else:
|
||||
n = self.attn1(n, context=context_attn1, value=value_attn1)
|
||||
n = self.attn1(n, context=context_attn1, value=value_attn1, transformer_options=transformer_options)
|
||||
|
||||
if "attn1_output_patch" in transformer_patches:
|
||||
patch = transformer_patches["attn1_output_patch"]
|
||||
@@ -786,7 +845,7 @@ class BasicTransformerBlock(nn.Module):
|
||||
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
|
||||
n = self.attn2.to_out(n)
|
||||
else:
|
||||
n = self.attn2(n, context=context_attn2, value=value_attn2)
|
||||
n = self.attn2(n, context=context_attn2, value=value_attn2, transformer_options=transformer_options)
|
||||
|
||||
if "attn2_output_patch" in transformer_patches:
|
||||
patch = transformer_patches["attn2_output_patch"]
|
||||
@@ -1017,7 +1076,7 @@ class SpatialVideoTransformer(SpatialTransformer):
|
||||
|
||||
B, S, C = x_mix.shape
|
||||
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
|
||||
x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
|
||||
x_mix = mix_block(x_mix, context=time_context, transformer_options=transformer_options)
|
||||
x_mix = rearrange(
|
||||
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
|
||||
)
|
||||
|
||||
@@ -109,7 +109,7 @@ class PatchEmbed(nn.Module):
|
||||
def modulate(x, shift, scale):
|
||||
if shift is None:
|
||||
shift = torch.zeros_like(scale)
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
return torch.addcmul(shift.unsqueeze(1), x, 1+ scale.unsqueeze(1))
|
||||
|
||||
|
||||
#################################################################################
|
||||
@@ -564,10 +564,7 @@ class DismantledBlock(nn.Module):
|
||||
assert not self.pre_only
|
||||
attn1 = self.attn.post_attention(attn)
|
||||
attn2 = self.attn2.post_attention(attn2)
|
||||
out1 = gate_msa.unsqueeze(1) * attn1
|
||||
out2 = gate_msa2.unsqueeze(1) * attn2
|
||||
x = x + out1
|
||||
x = x + out2
|
||||
x = gate_cat(x, gate_msa, gate_msa2, attn1, attn2)
|
||||
x = x + gate_mlp.unsqueeze(1) * self.mlp(
|
||||
modulate(self.norm2(x), shift_mlp, scale_mlp)
|
||||
)
|
||||
@@ -594,6 +591,11 @@ class DismantledBlock(nn.Module):
|
||||
)
|
||||
return self.post_attention(attn, *intermediates)
|
||||
|
||||
def gate_cat(x, gate_msa, gate_msa2, attn1, attn2):
|
||||
out1 = gate_msa.unsqueeze(1) * attn1
|
||||
out2 = gate_msa2.unsqueeze(1) * attn2
|
||||
x = torch.stack([x, out1, out2], dim=0).sum(dim=0)
|
||||
return x
|
||||
|
||||
def block_mixing(*args, use_checkpoint=True, **kwargs):
|
||||
if use_checkpoint:
|
||||
@@ -604,7 +606,7 @@ def block_mixing(*args, use_checkpoint=True, **kwargs):
|
||||
return _block_mixing(*args, **kwargs)
|
||||
|
||||
|
||||
def _block_mixing(context, x, context_block, x_block, c):
|
||||
def _block_mixing(context, x, context_block, x_block, c, transformer_options={}):
|
||||
context_qkv, context_intermediates = context_block.pre_attention(context, c)
|
||||
|
||||
if x_block.x_block_self_attn:
|
||||
@@ -620,6 +622,7 @@ def _block_mixing(context, x, context_block, x_block, c):
|
||||
attn = optimized_attention(
|
||||
qkv[0], qkv[1], qkv[2],
|
||||
heads=x_block.attn.num_heads,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
context_attn, x_attn = (
|
||||
attn[:, : context_qkv[0].shape[1]],
|
||||
@@ -635,6 +638,7 @@ def _block_mixing(context, x, context_block, x_block, c):
|
||||
attn2 = optimized_attention(
|
||||
x_qkv2[0], x_qkv2[1], x_qkv2[2],
|
||||
heads=x_block.attn2.num_heads,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
x = x_block.post_attention_x(x_attn, attn2, *x_intermediates)
|
||||
else:
|
||||
@@ -956,10 +960,10 @@ class MMDiT(nn.Module):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["txt"], out["img"] = self.joint_blocks[i](args["txt"], args["img"], c=args["vec"])
|
||||
out["txt"], out["img"] = self.joint_blocks[i](args["txt"], args["img"], c=args["vec"], transformer_options=args["transformer_options"])
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": c_mod}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": c_mod, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
context = out["txt"]
|
||||
x = out["img"]
|
||||
else:
|
||||
@@ -968,6 +972,7 @@ class MMDiT(nn.Module):
|
||||
x,
|
||||
c=c_mod,
|
||||
use_checkpoint=self.use_checkpoint,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
if control is not None:
|
||||
control_o = control.get("output")
|
||||
|
||||
@@ -36,7 +36,7 @@ def get_timestep_embedding(timesteps, embedding_dim):
|
||||
|
||||
def nonlinearity(x):
|
||||
# swish
|
||||
return x*torch.sigmoid(x)
|
||||
return torch.nn.functional.silu(x)
|
||||
|
||||
|
||||
def Normalize(in_channels, num_groups=32):
|
||||
@@ -145,7 +145,7 @@ class Downsample(nn.Module):
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
||||
dropout, temb_channels=512, conv_op=ops.Conv2d):
|
||||
dropout=0.0, temb_channels=512, conv_op=ops.Conv2d, norm_op=Normalize):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
@@ -153,7 +153,7 @@ class ResnetBlock(nn.Module):
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
|
||||
self.swish = torch.nn.SiLU(inplace=True)
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.norm1 = norm_op(in_channels)
|
||||
self.conv1 = conv_op(in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
@@ -162,7 +162,7 @@ class ResnetBlock(nn.Module):
|
||||
if temb_channels > 0:
|
||||
self.temb_proj = ops.Linear(temb_channels,
|
||||
out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.norm2 = norm_op(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout, inplace=True)
|
||||
self.conv2 = conv_op(out_channels,
|
||||
out_channels,
|
||||
@@ -183,7 +183,7 @@ class ResnetBlock(nn.Module):
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
def forward(self, x, temb):
|
||||
def forward(self, x, temb=None):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = self.swish(h)
|
||||
@@ -285,7 +285,7 @@ def pytorch_attention(q, k, v):
|
||||
)
|
||||
|
||||
try:
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
out = comfy.ops.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
out = out.transpose(2, 3).reshape(orig_shape)
|
||||
except model_management.OOM_EXCEPTION:
|
||||
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
|
||||
@@ -305,11 +305,11 @@ def vae_attention():
|
||||
return normal_attention
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
def __init__(self, in_channels, conv_op=ops.Conv2d):
|
||||
def __init__(self, in_channels, conv_op=ops.Conv2d, norm_op=Normalize):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.norm = norm_op(in_channels)
|
||||
self.q = conv_op(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
|
||||
@@ -120,7 +120,7 @@ class Attention(nn.Module):
|
||||
nn.Dropout(0.0)
|
||||
)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, transformer_options={}) -> torch.Tensor:
|
||||
batch_size, sequence_length, _ = hidden_states.shape
|
||||
|
||||
query = self.to_q(hidden_states)
|
||||
@@ -146,7 +146,7 @@ class Attention(nn.Module):
|
||||
key = key.repeat_interleave(self.heads // self.kv_heads, dim=1)
|
||||
value = value.repeat_interleave(self.heads // self.kv_heads, dim=1)
|
||||
|
||||
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True)
|
||||
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True, transformer_options=transformer_options)
|
||||
hidden_states = self.to_out[0](hidden_states)
|
||||
return hidden_states
|
||||
|
||||
@@ -182,16 +182,16 @@ class OmniGen2TransformerBlock(nn.Module):
|
||||
self.norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
|
||||
self.ffn_norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None, transformer_options={}) -> torch.Tensor:
|
||||
if self.modulation:
|
||||
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
|
||||
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
|
||||
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb, transformer_options=transformer_options)
|
||||
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
|
||||
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
|
||||
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
|
||||
else:
|
||||
norm_hidden_states = self.norm1(hidden_states)
|
||||
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
|
||||
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb, transformer_options=transformer_options)
|
||||
hidden_states = hidden_states + self.norm2(attn_output)
|
||||
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
|
||||
hidden_states = hidden_states + self.ffn_norm2(mlp_output)
|
||||
@@ -390,7 +390,7 @@ class OmniGen2Transformer2DModel(nn.Module):
|
||||
ref_img_sizes, img_sizes,
|
||||
)
|
||||
|
||||
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb):
|
||||
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb, transformer_options={}):
|
||||
batch_size = len(hidden_states)
|
||||
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
@@ -405,17 +405,17 @@ class OmniGen2Transformer2DModel(nn.Module):
|
||||
shift += ref_img_len
|
||||
|
||||
for layer in self.noise_refiner:
|
||||
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)
|
||||
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb, transformer_options=transformer_options)
|
||||
|
||||
if ref_image_hidden_states is not None:
|
||||
for layer in self.ref_image_refiner:
|
||||
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb)
|
||||
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb, transformer_options=transformer_options)
|
||||
|
||||
hidden_states = torch.cat([ref_image_hidden_states, hidden_states], dim=1)
|
||||
|
||||
return hidden_states
|
||||
|
||||
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, **kwargs):
|
||||
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, transformer_options={}, **kwargs):
|
||||
B, C, H, W = x.shape
|
||||
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
_, _, H_padded, W_padded = hidden_states.shape
|
||||
@@ -444,7 +444,7 @@ class OmniGen2Transformer2DModel(nn.Module):
|
||||
)
|
||||
|
||||
for layer in self.context_refiner:
|
||||
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
|
||||
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb, transformer_options=transformer_options)
|
||||
|
||||
img_len = hidden_states.shape[1]
|
||||
combined_img_hidden_states = self.img_patch_embed_and_refine(
|
||||
@@ -453,13 +453,14 @@ class OmniGen2Transformer2DModel(nn.Module):
|
||||
noise_rotary_emb, ref_img_rotary_emb,
|
||||
l_effective_ref_img_len, l_effective_img_len,
|
||||
temb,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
hidden_states = torch.cat([text_hidden_states, combined_img_hidden_states], dim=1)
|
||||
attention_mask = None
|
||||
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)
|
||||
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb, transformer_options=transformer_options)
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
|
||||
|
||||
@@ -1,256 +1,256 @@
|
||||
# Based on:
|
||||
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
|
||||
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .blocks import (
|
||||
t2i_modulate,
|
||||
CaptionEmbedder,
|
||||
AttentionKVCompress,
|
||||
MultiHeadCrossAttention,
|
||||
T2IFinalLayer,
|
||||
SizeEmbedder,
|
||||
)
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32):
|
||||
grid_h, grid_w = torch.meshgrid(
|
||||
torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation,
|
||||
torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation,
|
||||
indexing='ij'
|
||||
)
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype)
|
||||
emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
class PixArtMSBlock(nn.Module):
|
||||
"""
|
||||
A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
||||
"""
|
||||
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None,
|
||||
sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.attn = AttentionKVCompress(
|
||||
hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
|
||||
qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.cross_attn = MultiHeadCrossAttention(
|
||||
hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
# to be compatible with lower version pytorch
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.mlp = Mlp(
|
||||
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
|
||||
|
||||
def forward(self, x, y, t, mask=None, HW=None, **kwargs):
|
||||
B, N, C = x.shape
|
||||
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1)
|
||||
x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
|
||||
x = x + self.cross_attn(x, y, mask)
|
||||
x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
### Core PixArt Model ###
|
||||
class PixArtMS(nn.Module):
|
||||
"""
|
||||
Diffusion model with a Transformer backbone.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
input_size=32,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
hidden_size=1152,
|
||||
depth=28,
|
||||
num_heads=16,
|
||||
mlp_ratio=4.0,
|
||||
class_dropout_prob=0.1,
|
||||
learn_sigma=True,
|
||||
pred_sigma=True,
|
||||
drop_path: float = 0.,
|
||||
caption_channels=4096,
|
||||
pe_interpolation=None,
|
||||
pe_precision=None,
|
||||
config=None,
|
||||
model_max_length=120,
|
||||
micro_condition=True,
|
||||
qk_norm=False,
|
||||
kv_compress_config=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
nn.Module.__init__(self)
|
||||
self.dtype = dtype
|
||||
self.pred_sigma = pred_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if pred_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.pe_interpolation = pe_interpolation
|
||||
self.pe_precision = pe_precision
|
||||
self.hidden_size = hidden_size
|
||||
self.depth = depth
|
||||
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.t_block = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
self.x_embedder = PatchEmbed(
|
||||
patch_size=patch_size,
|
||||
in_chans=in_channels,
|
||||
embed_dim=hidden_size,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
self.t_embedder = TimestepEmbedder(
|
||||
hidden_size, dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
self.y_embedder = CaptionEmbedder(
|
||||
in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
|
||||
act_layer=approx_gelu, token_num=model_max_length,
|
||||
dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
|
||||
self.micro_conditioning = micro_condition
|
||||
if self.micro_conditioning:
|
||||
self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# For fixed sin-cos embedding:
|
||||
# num_patches = (input_size // patch_size) * (input_size // patch_size)
|
||||
# self.base_size = input_size // self.patch_size
|
||||
# self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
|
||||
|
||||
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
|
||||
if kv_compress_config is None:
|
||||
kv_compress_config = {
|
||||
'sampling': None,
|
||||
'scale_factor': 1,
|
||||
'kv_compress_layer': [],
|
||||
}
|
||||
self.blocks = nn.ModuleList([
|
||||
PixArtMSBlock(
|
||||
hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
|
||||
sampling=kv_compress_config['sampling'],
|
||||
sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1,
|
||||
qk_norm=qk_norm,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for i in range(depth)
|
||||
])
|
||||
self.final_layer = T2IFinalLayer(
|
||||
hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs):
|
||||
"""
|
||||
Original forward pass of PixArt.
|
||||
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
||||
t: (N,) tensor of diffusion timesteps
|
||||
y: (N, 1, 120, C) conditioning
|
||||
ar: (N, 1): aspect ratio
|
||||
cs: (N ,2) size conditioning for height/width
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
c_res = (H + W) // 2
|
||||
pe_interpolation = self.pe_interpolation
|
||||
if pe_interpolation is None or self.pe_precision is not None:
|
||||
# calculate pe_interpolation on-the-fly
|
||||
pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0)
|
||||
|
||||
pos_embed = get_2d_sincos_pos_embed_torch(
|
||||
self.hidden_size,
|
||||
h=(H // self.patch_size),
|
||||
w=(W // self.patch_size),
|
||||
pe_interpolation=pe_interpolation,
|
||||
base_size=((round(c_res / 64) * 64) // self.patch_size),
|
||||
device=x.device,
|
||||
dtype=x.dtype,
|
||||
).unsqueeze(0)
|
||||
|
||||
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
|
||||
t = self.t_embedder(timestep, x.dtype) # (N, D)
|
||||
|
||||
if self.micro_conditioning and (c_size is not None and c_ar is not None):
|
||||
bs = x.shape[0]
|
||||
c_size = self.csize_embedder(c_size, bs) # (N, D)
|
||||
c_ar = self.ar_embedder(c_ar, bs) # (N, D)
|
||||
t = t + torch.cat([c_size, c_ar], dim=1)
|
||||
|
||||
t0 = self.t_block(t)
|
||||
y = self.y_embedder(y, self.training) # (N, D)
|
||||
|
||||
if mask is not None:
|
||||
if mask.shape[0] != y.shape[0]:
|
||||
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
|
||||
mask = mask.squeeze(1).squeeze(1)
|
||||
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
|
||||
y_lens = mask.sum(dim=1).tolist()
|
||||
else:
|
||||
y_lens = None
|
||||
y = y.squeeze(1).view(1, -1, x.shape[-1])
|
||||
for block in self.blocks:
|
||||
x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D)
|
||||
|
||||
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
|
||||
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs):
|
||||
B, C, H, W = x.shape
|
||||
|
||||
# Fallback for missing microconds
|
||||
if self.micro_conditioning:
|
||||
if c_size is None:
|
||||
c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
if c_ar is None:
|
||||
c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
## Still accepts the input w/o that dim but returns garbage
|
||||
if len(context.shape) == 3:
|
||||
context = context.unsqueeze(1)
|
||||
|
||||
## run original forward pass
|
||||
out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar)
|
||||
|
||||
## only return EPS
|
||||
if self.pred_sigma:
|
||||
return out[:, :self.in_channels]
|
||||
return out
|
||||
|
||||
def unpatchify(self, x, h, w):
|
||||
"""
|
||||
x: (N, T, patch_size**2 * C)
|
||||
imgs: (N, H, W, C)
|
||||
"""
|
||||
c = self.out_channels
|
||||
p = self.x_embedder.patch_size[0]
|
||||
h = h // self.patch_size
|
||||
w = w // self.patch_size
|
||||
assert h * w == x.shape[1]
|
||||
|
||||
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
||||
x = torch.einsum('nhwpqc->nchpwq', x)
|
||||
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
||||
return imgs
|
||||
# Based on:
|
||||
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
|
||||
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .blocks import (
|
||||
t2i_modulate,
|
||||
CaptionEmbedder,
|
||||
AttentionKVCompress,
|
||||
MultiHeadCrossAttention,
|
||||
T2IFinalLayer,
|
||||
SizeEmbedder,
|
||||
)
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32):
|
||||
grid_h, grid_w = torch.meshgrid(
|
||||
torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation,
|
||||
torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation,
|
||||
indexing='ij'
|
||||
)
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype)
|
||||
emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
class PixArtMSBlock(nn.Module):
|
||||
"""
|
||||
A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
||||
"""
|
||||
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None,
|
||||
sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.attn = AttentionKVCompress(
|
||||
hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
|
||||
qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.cross_attn = MultiHeadCrossAttention(
|
||||
hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
# to be compatible with lower version pytorch
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.mlp = Mlp(
|
||||
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
|
||||
|
||||
def forward(self, x, y, t, mask=None, HW=None, **kwargs):
|
||||
B, N, C = x.shape
|
||||
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1)
|
||||
x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
|
||||
x = x + self.cross_attn(x, y, mask)
|
||||
x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
### Core PixArt Model ###
|
||||
class PixArtMS(nn.Module):
|
||||
"""
|
||||
Diffusion model with a Transformer backbone.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
input_size=32,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
hidden_size=1152,
|
||||
depth=28,
|
||||
num_heads=16,
|
||||
mlp_ratio=4.0,
|
||||
class_dropout_prob=0.1,
|
||||
learn_sigma=True,
|
||||
pred_sigma=True,
|
||||
drop_path: float = 0.,
|
||||
caption_channels=4096,
|
||||
pe_interpolation=None,
|
||||
pe_precision=None,
|
||||
config=None,
|
||||
model_max_length=120,
|
||||
micro_condition=True,
|
||||
qk_norm=False,
|
||||
kv_compress_config=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
nn.Module.__init__(self)
|
||||
self.dtype = dtype
|
||||
self.pred_sigma = pred_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if pred_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.pe_interpolation = pe_interpolation
|
||||
self.pe_precision = pe_precision
|
||||
self.hidden_size = hidden_size
|
||||
self.depth = depth
|
||||
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.t_block = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
self.x_embedder = PatchEmbed(
|
||||
patch_size=patch_size,
|
||||
in_chans=in_channels,
|
||||
embed_dim=hidden_size,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
self.t_embedder = TimestepEmbedder(
|
||||
hidden_size, dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
self.y_embedder = CaptionEmbedder(
|
||||
in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
|
||||
act_layer=approx_gelu, token_num=model_max_length,
|
||||
dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
|
||||
self.micro_conditioning = micro_condition
|
||||
if self.micro_conditioning:
|
||||
self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# For fixed sin-cos embedding:
|
||||
# num_patches = (input_size // patch_size) * (input_size // patch_size)
|
||||
# self.base_size = input_size // self.patch_size
|
||||
# self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
|
||||
|
||||
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
|
||||
if kv_compress_config is None:
|
||||
kv_compress_config = {
|
||||
'sampling': None,
|
||||
'scale_factor': 1,
|
||||
'kv_compress_layer': [],
|
||||
}
|
||||
self.blocks = nn.ModuleList([
|
||||
PixArtMSBlock(
|
||||
hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
|
||||
sampling=kv_compress_config['sampling'],
|
||||
sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1,
|
||||
qk_norm=qk_norm,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for i in range(depth)
|
||||
])
|
||||
self.final_layer = T2IFinalLayer(
|
||||
hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs):
|
||||
"""
|
||||
Original forward pass of PixArt.
|
||||
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
||||
t: (N,) tensor of diffusion timesteps
|
||||
y: (N, 1, 120, C) conditioning
|
||||
ar: (N, 1): aspect ratio
|
||||
cs: (N ,2) size conditioning for height/width
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
c_res = (H + W) // 2
|
||||
pe_interpolation = self.pe_interpolation
|
||||
if pe_interpolation is None or self.pe_precision is not None:
|
||||
# calculate pe_interpolation on-the-fly
|
||||
pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0)
|
||||
|
||||
pos_embed = get_2d_sincos_pos_embed_torch(
|
||||
self.hidden_size,
|
||||
h=(H // self.patch_size),
|
||||
w=(W // self.patch_size),
|
||||
pe_interpolation=pe_interpolation,
|
||||
base_size=((round(c_res / 64) * 64) // self.patch_size),
|
||||
device=x.device,
|
||||
dtype=x.dtype,
|
||||
).unsqueeze(0)
|
||||
|
||||
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
|
||||
t = self.t_embedder(timestep, x.dtype) # (N, D)
|
||||
|
||||
if self.micro_conditioning and (c_size is not None and c_ar is not None):
|
||||
bs = x.shape[0]
|
||||
c_size = self.csize_embedder(c_size, bs) # (N, D)
|
||||
c_ar = self.ar_embedder(c_ar, bs) # (N, D)
|
||||
t = t + torch.cat([c_size, c_ar], dim=1)
|
||||
|
||||
t0 = self.t_block(t)
|
||||
y = self.y_embedder(y, self.training) # (N, D)
|
||||
|
||||
if mask is not None:
|
||||
if mask.shape[0] != y.shape[0]:
|
||||
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
|
||||
mask = mask.squeeze(1).squeeze(1)
|
||||
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
|
||||
y_lens = mask.sum(dim=1).tolist()
|
||||
else:
|
||||
y_lens = None
|
||||
y = y.squeeze(1).view(1, -1, x.shape[-1])
|
||||
for block in self.blocks:
|
||||
x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D)
|
||||
|
||||
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
|
||||
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs):
|
||||
B, C, H, W = x.shape
|
||||
|
||||
# Fallback for missing microconds
|
||||
if self.micro_conditioning:
|
||||
if c_size is None:
|
||||
c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
if c_ar is None:
|
||||
c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
## Still accepts the input w/o that dim but returns garbage
|
||||
if len(context.shape) == 3:
|
||||
context = context.unsqueeze(1)
|
||||
|
||||
## run original forward pass
|
||||
out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar)
|
||||
|
||||
## only return EPS
|
||||
if self.pred_sigma:
|
||||
return out[:, :self.in_channels]
|
||||
return out
|
||||
|
||||
def unpatchify(self, x, h, w):
|
||||
"""
|
||||
x: (N, T, patch_size**2 * C)
|
||||
imgs: (N, H, W, C)
|
||||
"""
|
||||
c = self.out_channels
|
||||
p = self.x_embedder.patch_size[0]
|
||||
h = h // self.patch_size
|
||||
w = w // self.patch_size
|
||||
assert h * w == x.shape[1]
|
||||
|
||||
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
||||
x = torch.einsum('nhwpqc->nchpwq', x)
|
||||
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
||||
return imgs
|
||||
|
||||
77
comfy/ldm/qwen_image/controlnet.py
Normal file
77
comfy/ldm/qwen_image/controlnet.py
Normal file
@@ -0,0 +1,77 @@
|
||||
import torch
|
||||
import math
|
||||
|
||||
from .model import QwenImageTransformer2DModel
|
||||
|
||||
|
||||
class QwenImageControlNetModel(QwenImageTransformer2DModel):
|
||||
def __init__(
|
||||
self,
|
||||
extra_condition_channels=0,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)
|
||||
self.main_model_double = 60
|
||||
|
||||
# controlnet_blocks
|
||||
self.controlnet_blocks = torch.nn.ModuleList([])
|
||||
for _ in range(len(self.transformer_blocks)):
|
||||
self.controlnet_blocks.append(operations.Linear(self.inner_dim, self.inner_dim, device=device, dtype=dtype))
|
||||
self.controlnet_x_embedder = operations.Linear(self.in_channels + extra_condition_channels, self.inner_dim, device=device, dtype=dtype)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
timesteps,
|
||||
context,
|
||||
attention_mask=None,
|
||||
guidance: torch.Tensor = None,
|
||||
ref_latents=None,
|
||||
hint=None,
|
||||
transformer_options={},
|
||||
**kwargs
|
||||
):
|
||||
timestep = timesteps
|
||||
encoder_hidden_states = context
|
||||
encoder_hidden_states_mask = attention_mask
|
||||
|
||||
hidden_states, img_ids, orig_shape = self.process_img(x)
|
||||
hint, _, _ = self.process_img(hint)
|
||||
|
||||
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
|
||||
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
|
||||
del ids, txt_ids, img_ids
|
||||
|
||||
hidden_states = self.img_in(hidden_states) + self.controlnet_x_embedder(hint)
|
||||
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
||||
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
||||
|
||||
if guidance is not None:
|
||||
guidance = guidance * 1000
|
||||
|
||||
temb = (
|
||||
self.time_text_embed(timestep, hidden_states)
|
||||
if guidance is None
|
||||
else self.time_text_embed(timestep, guidance, hidden_states)
|
||||
)
|
||||
|
||||
repeat = math.ceil(self.main_model_double / len(self.controlnet_blocks))
|
||||
|
||||
controlnet_block_samples = ()
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
controlnet_block_samples = controlnet_block_samples + (self.controlnet_blocks[i](hidden_states),) * repeat
|
||||
|
||||
return {"input": controlnet_block_samples[:self.main_model_double]}
|
||||
473
comfy/ldm/qwen_image/model.py
Normal file
473
comfy/ldm/qwen_image/model.py
Normal file
@@ -0,0 +1,473 @@
|
||||
# https://github.com/QwenLM/Qwen-Image (Apache 2.0)
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from typing import Optional, Tuple
|
||||
from einops import repeat
|
||||
|
||||
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
|
||||
from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
import comfy.ldm.common_dit
|
||||
import comfy.patcher_extension
|
||||
|
||||
class GELU(nn.Module):
|
||||
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.proj = operations.Linear(dim_in, dim_out, bias=bias, dtype=dtype, device=device)
|
||||
self.approximate = approximate
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.proj(hidden_states)
|
||||
hidden_states = F.gelu(hidden_states, approximate=self.approximate)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
dim_out: Optional[int] = None,
|
||||
mult: int = 4,
|
||||
dropout: float = 0.0,
|
||||
inner_dim=None,
|
||||
bias: bool = True,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
if inner_dim is None:
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = dim_out if dim_out is not None else dim
|
||||
|
||||
self.net = nn.ModuleList([])
|
||||
self.net.append(GELU(dim, inner_dim, approximate="tanh", bias=bias, dtype=dtype, device=device, operations=operations))
|
||||
self.net.append(nn.Dropout(dropout))
|
||||
self.net.append(operations.Linear(inner_dim, dim_out, bias=bias, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
||||
for module in self.net:
|
||||
hidden_states = module(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
def apply_rotary_emb(x, freqs_cis):
|
||||
if x.shape[1] == 0:
|
||||
return x
|
||||
|
||||
t_ = x.reshape(*x.shape[:-1], -1, 1, 2)
|
||||
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
|
||||
return t_out.reshape(*x.shape)
|
||||
|
||||
|
||||
class QwenTimestepProjEmbeddings(nn.Module):
|
||||
def __init__(self, embedding_dim, pooled_projection_dim, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
|
||||
self.timestep_embedder = TimestepEmbedding(
|
||||
in_channels=256,
|
||||
time_embed_dim=embedding_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
|
||||
def forward(self, timestep, hidden_states):
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype))
|
||||
return timesteps_emb
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
dim_head: int = 64,
|
||||
heads: int = 8,
|
||||
dropout: float = 0.0,
|
||||
bias: bool = False,
|
||||
eps: float = 1e-5,
|
||||
out_bias: bool = True,
|
||||
out_dim: int = None,
|
||||
out_context_dim: int = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
||||
self.inner_kv_dim = self.inner_dim
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
self.out_dim = out_dim if out_dim is not None else query_dim
|
||||
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
|
||||
self.dropout = dropout
|
||||
|
||||
# Q/K normalization
|
||||
self.norm_q = operations.RMSNorm(dim_head, eps=eps, elementwise_affine=True, dtype=dtype, device=device)
|
||||
self.norm_k = operations.RMSNorm(dim_head, eps=eps, elementwise_affine=True, dtype=dtype, device=device)
|
||||
self.norm_added_q = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
|
||||
self.norm_added_k = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
|
||||
|
||||
# Image stream projections
|
||||
self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
# Text stream projections
|
||||
self.add_q_proj = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
|
||||
self.add_k_proj = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
||||
self.add_v_proj = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
# Output projections
|
||||
self.to_out = nn.ModuleList([
|
||||
operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout)
|
||||
])
|
||||
self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor, # Image stream
|
||||
encoder_hidden_states: torch.FloatTensor = None, # Text stream
|
||||
encoder_hidden_states_mask: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
transformer_options={},
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
seq_txt = encoder_hidden_states.shape[1]
|
||||
|
||||
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
|
||||
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
|
||||
img_query = self.norm_q(img_query)
|
||||
img_key = self.norm_k(img_key)
|
||||
txt_query = self.norm_added_q(txt_query)
|
||||
txt_key = self.norm_added_k(txt_key)
|
||||
|
||||
joint_query = torch.cat([txt_query, img_query], dim=1)
|
||||
joint_key = torch.cat([txt_key, img_key], dim=1)
|
||||
joint_value = torch.cat([txt_value, img_value], dim=1)
|
||||
|
||||
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
|
||||
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
|
||||
|
||||
joint_query = joint_query.flatten(start_dim=2)
|
||||
joint_key = joint_key.flatten(start_dim=2)
|
||||
joint_value = joint_value.flatten(start_dim=2)
|
||||
|
||||
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask, transformer_options=transformer_options)
|
||||
|
||||
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
|
||||
img_attn_output = joint_hidden_states[:, seq_txt:, :]
|
||||
|
||||
img_attn_output = self.to_out[0](img_attn_output)
|
||||
img_attn_output = self.to_out[1](img_attn_output)
|
||||
txt_attn_output = self.to_add_out(txt_attn_output)
|
||||
|
||||
return img_attn_output, txt_attn_output
|
||||
|
||||
|
||||
class QwenImageTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
eps: float = 1e-6,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.attention_head_dim = attention_head_dim
|
||||
|
||||
self.img_mod = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.img_norm1 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
||||
self.img_norm2 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
||||
self.img_mlp = FeedForward(dim=dim, dim_out=dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_mod = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.txt_norm1 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
||||
self.txt_norm2 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
||||
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
bias=True,
|
||||
eps=eps,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
shift, scale, gate = torch.chunk(mod_params, 3, dim=-1)
|
||||
return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
encoder_hidden_states_mask: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
transformer_options={},
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
img_mod_params = self.img_mod(temb)
|
||||
txt_mod_params = self.txt_mod(temb)
|
||||
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)
|
||||
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)
|
||||
|
||||
img_normed = self.img_norm1(hidden_states)
|
||||
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
|
||||
txt_normed = self.txt_norm1(encoder_hidden_states)
|
||||
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
|
||||
|
||||
img_attn_output, txt_attn_output = self.attn(
|
||||
hidden_states=img_modulated,
|
||||
encoder_hidden_states=txt_modulated,
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states + img_gate1 * img_attn_output
|
||||
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
|
||||
|
||||
img_normed2 = self.img_norm2(hidden_states)
|
||||
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
|
||||
hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2))
|
||||
|
||||
txt_normed2 = self.txt_norm2(encoder_hidden_states)
|
||||
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
|
||||
encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2))
|
||||
|
||||
return encoder_hidden_states, hidden_states
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
conditioning_embedding_dim: int,
|
||||
elementwise_affine=False,
|
||||
eps=1e-6,
|
||||
bias=True,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = operations.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias, dtype=dtype, device=device)
|
||||
self.norm = operations.LayerNorm(embedding_dim, eps, elementwise_affine=False, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
|
||||
emb = self.linear(self.silu(conditioning_embedding))
|
||||
scale, shift = torch.chunk(emb, 2, dim=1)
|
||||
x = torch.addcmul(shift[:, None, :], self.norm(x), (1 + scale)[:, None, :])
|
||||
return x
|
||||
|
||||
|
||||
class QwenImageTransformer2DModel(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 64,
|
||||
out_channels: Optional[int] = 16,
|
||||
num_layers: int = 60,
|
||||
attention_head_dim: int = 128,
|
||||
num_attention_heads: int = 24,
|
||||
joint_attention_dim: int = 3584,
|
||||
pooled_projection_dim: int = 768,
|
||||
guidance_embeds: bool = False,
|
||||
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
||||
image_model=None,
|
||||
final_layer=True,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
self.patch_size = patch_size
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
self.pe_embedder = EmbedND(dim=attention_head_dim, theta=10000, axes_dim=list(axes_dims_rope))
|
||||
|
||||
self.time_text_embed = QwenTimestepProjEmbeddings(
|
||||
embedding_dim=self.inner_dim,
|
||||
pooled_projection_dim=pooled_projection_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
|
||||
self.txt_norm = operations.RMSNorm(joint_attention_dim, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_in = operations.Linear(in_channels, self.inner_dim, dtype=dtype, device=device)
|
||||
self.txt_in = operations.Linear(joint_attention_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList([
|
||||
QwenImageTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
|
||||
if final_layer:
|
||||
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def process_img(self, x, index=0, h_offset=0, w_offset=0):
|
||||
bs, c, t, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (1, self.patch_size, self.patch_size))
|
||||
orig_shape = hidden_states.shape
|
||||
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
|
||||
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
|
||||
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
|
||||
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
|
||||
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
|
||||
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device)
|
||||
img_ids[:, :, 0] = img_ids[:, :, 1] + index
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) - (h_len // 2)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) - (w_len // 2)
|
||||
return hidden_states, repeat(img_ids, "h w c -> b (h w) c", b=bs), orig_shape
|
||||
|
||||
def forward(self, x, timestep, context, attention_mask=None, guidance=None, ref_latents=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, attention_mask, guidance, ref_latents, transformer_options, **kwargs)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
x,
|
||||
timesteps,
|
||||
context,
|
||||
attention_mask=None,
|
||||
guidance: torch.Tensor = None,
|
||||
ref_latents=None,
|
||||
transformer_options={},
|
||||
control=None,
|
||||
**kwargs
|
||||
):
|
||||
timestep = timesteps
|
||||
encoder_hidden_states = context
|
||||
encoder_hidden_states_mask = attention_mask
|
||||
|
||||
hidden_states, img_ids, orig_shape = self.process_img(x)
|
||||
num_embeds = hidden_states.shape[1]
|
||||
|
||||
if ref_latents is not None:
|
||||
h = 0
|
||||
w = 0
|
||||
index = 0
|
||||
index_ref_method = kwargs.get("ref_latents_method", "index") == "index"
|
||||
for ref in ref_latents:
|
||||
if index_ref_method:
|
||||
index += 1
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
else:
|
||||
index = 1
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
if ref.shape[-2] + h > ref.shape[-1] + w:
|
||||
w_offset = w
|
||||
else:
|
||||
h_offset = h
|
||||
h = max(h, ref.shape[-2] + h_offset)
|
||||
w = max(w, ref.shape[-1] + w_offset)
|
||||
|
||||
kontext, kontext_ids, _ = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
|
||||
hidden_states = torch.cat([hidden_states, kontext], dim=1)
|
||||
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
|
||||
|
||||
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
|
||||
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
|
||||
del ids, txt_ids, img_ids
|
||||
|
||||
hidden_states = self.img_in(hidden_states)
|
||||
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
||||
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
||||
|
||||
if guidance is not None:
|
||||
guidance = guidance * 1000
|
||||
|
||||
temb = (
|
||||
self.time_text_embed(timestep, hidden_states)
|
||||
if guidance is None
|
||||
else self.time_text_embed(timestep, guidance, hidden_states)
|
||||
)
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
patches = transformer_options.get("patches", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
hidden_states = out["img"]
|
||||
encoder_hidden_states = out["txt"]
|
||||
else:
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
if "double_block" in patches:
|
||||
for p in patches["double_block"]:
|
||||
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i, "transformer_options": transformer_options})
|
||||
hidden_states = out["img"]
|
||||
encoder_hidden_states = out["txt"]
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
hidden_states[:, :add.shape[1]] += add
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2)
|
||||
hidden_states = hidden_states.permute(0, 3, 1, 4, 2, 5)
|
||||
return hidden_states.reshape(orig_shape)[:, :, :, :x.shape[-2], :x.shape[-1]]
|
||||
File diff suppressed because it is too large
Load Diff
548
comfy/ldm/wan/model_animate.py
Normal file
548
comfy/ldm/wan/model_animate.py
Normal file
@@ -0,0 +1,548 @@
|
||||
from torch import nn
|
||||
import torch
|
||||
from typing import Tuple, Optional
|
||||
from einops import rearrange
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
from .model import WanModel, sinusoidal_embedding_1d
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.model_management
|
||||
|
||||
class CausalConv1d(nn.Module):
|
||||
|
||||
def __init__(self, chan_in, chan_out, kernel_size=3, stride=1, dilation=1, pad_mode="replicate", operations=None, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.pad_mode = pad_mode
|
||||
padding = (kernel_size - 1, 0) # T
|
||||
self.time_causal_padding = padding
|
||||
|
||||
self.conv = operations.Conv1d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class FaceEncoder(nn.Module):
|
||||
def __init__(self, in_dim: int, hidden_dim: int, num_heads=int, dtype=None, device=None, operations=None):
|
||||
factory_kwargs = {"dtype": dtype, "device": device}
|
||||
super().__init__()
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.conv1_local = CausalConv1d(in_dim, 1024 * num_heads, 3, stride=1, operations=operations, **factory_kwargs)
|
||||
self.norm1 = operations.LayerNorm(hidden_dim // 8, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
||||
self.act = nn.SiLU()
|
||||
self.conv2 = CausalConv1d(1024, 1024, 3, stride=2, operations=operations, **factory_kwargs)
|
||||
self.conv3 = CausalConv1d(1024, 1024, 3, stride=2, operations=operations, **factory_kwargs)
|
||||
|
||||
self.out_proj = operations.Linear(1024, hidden_dim, **factory_kwargs)
|
||||
self.norm1 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
||||
|
||||
self.norm2 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
||||
|
||||
self.norm3 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
||||
|
||||
self.padding_tokens = nn.Parameter(torch.empty(1, 1, 1, hidden_dim, **factory_kwargs))
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
x = rearrange(x, "b t c -> b c t")
|
||||
b, c, t = x.shape
|
||||
|
||||
x = self.conv1_local(x)
|
||||
x = rearrange(x, "b (n c) t -> (b n) t c", n=self.num_heads)
|
||||
|
||||
x = self.norm1(x)
|
||||
x = self.act(x)
|
||||
x = rearrange(x, "b t c -> b c t")
|
||||
x = self.conv2(x)
|
||||
x = rearrange(x, "b c t -> b t c")
|
||||
x = self.norm2(x)
|
||||
x = self.act(x)
|
||||
x = rearrange(x, "b t c -> b c t")
|
||||
x = self.conv3(x)
|
||||
x = rearrange(x, "b c t -> b t c")
|
||||
x = self.norm3(x)
|
||||
x = self.act(x)
|
||||
x = self.out_proj(x)
|
||||
x = rearrange(x, "(b n) t c -> b t n c", b=b)
|
||||
padding = comfy.model_management.cast_to(self.padding_tokens, dtype=x.dtype, device=x.device).repeat(b, x.shape[1], 1, 1)
|
||||
x = torch.cat([x, padding], dim=-2)
|
||||
x_local = x.clone()
|
||||
|
||||
return x_local
|
||||
|
||||
|
||||
def get_norm_layer(norm_layer, operations=None):
|
||||
"""
|
||||
Get the normalization layer.
|
||||
|
||||
Args:
|
||||
norm_layer (str): The type of normalization layer.
|
||||
|
||||
Returns:
|
||||
norm_layer (nn.Module): The normalization layer.
|
||||
"""
|
||||
if norm_layer == "layer":
|
||||
return operations.LayerNorm
|
||||
elif norm_layer == "rms":
|
||||
return operations.RMSNorm
|
||||
else:
|
||||
raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")
|
||||
|
||||
|
||||
class FaceAdapter(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_dim: int,
|
||||
heads_num: int,
|
||||
qk_norm: bool = True,
|
||||
qk_norm_type: str = "rms",
|
||||
num_adapter_layers: int = 1,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
|
||||
factory_kwargs = {"dtype": dtype, "device": device}
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_dim
|
||||
self.heads_num = heads_num
|
||||
self.fuser_blocks = nn.ModuleList(
|
||||
[
|
||||
FaceBlock(
|
||||
self.hidden_size,
|
||||
self.heads_num,
|
||||
qk_norm=qk_norm,
|
||||
qk_norm_type=qk_norm_type,
|
||||
operations=operations,
|
||||
**factory_kwargs,
|
||||
)
|
||||
for _ in range(num_adapter_layers)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
motion_embed: torch.Tensor,
|
||||
idx: int,
|
||||
freqs_cis_q: Tuple[torch.Tensor, torch.Tensor] = None,
|
||||
freqs_cis_k: Tuple[torch.Tensor, torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
return self.fuser_blocks[idx](x, motion_embed, freqs_cis_q, freqs_cis_k)
|
||||
|
||||
|
||||
|
||||
class FaceBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
heads_num: int,
|
||||
qk_norm: bool = True,
|
||||
qk_norm_type: str = "rms",
|
||||
qk_scale: float = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
operations=None
|
||||
):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
|
||||
self.deterministic = False
|
||||
self.hidden_size = hidden_size
|
||||
self.heads_num = heads_num
|
||||
head_dim = hidden_size // heads_num
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.linear1_kv = operations.Linear(hidden_size, hidden_size * 2, **factory_kwargs)
|
||||
self.linear1_q = operations.Linear(hidden_size, hidden_size, **factory_kwargs)
|
||||
|
||||
self.linear2 = operations.Linear(hidden_size, hidden_size, **factory_kwargs)
|
||||
|
||||
qk_norm_layer = get_norm_layer(qk_norm_type, operations=operations)
|
||||
self.q_norm = (
|
||||
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
||||
)
|
||||
self.k_norm = (
|
||||
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
||||
)
|
||||
|
||||
self.pre_norm_feat = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
||||
|
||||
self.pre_norm_motion = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
motion_vec: torch.Tensor,
|
||||
motion_mask: Optional[torch.Tensor] = None,
|
||||
# use_context_parallel=False,
|
||||
) -> torch.Tensor:
|
||||
|
||||
B, T, N, C = motion_vec.shape
|
||||
T_comp = T
|
||||
|
||||
x_motion = self.pre_norm_motion(motion_vec)
|
||||
x_feat = self.pre_norm_feat(x)
|
||||
|
||||
kv = self.linear1_kv(x_motion)
|
||||
q = self.linear1_q(x_feat)
|
||||
|
||||
k, v = rearrange(kv, "B L N (K H D) -> K B L N H D", K=2, H=self.heads_num)
|
||||
q = rearrange(q, "B S (H D) -> B S H D", H=self.heads_num)
|
||||
|
||||
# Apply QK-Norm if needed.
|
||||
q = self.q_norm(q).to(v)
|
||||
k = self.k_norm(k).to(v)
|
||||
|
||||
k = rearrange(k, "B L N H D -> (B L) N H D")
|
||||
v = rearrange(v, "B L N H D -> (B L) N H D")
|
||||
|
||||
q = rearrange(q, "B (L S) H D -> (B L) S (H D)", L=T_comp)
|
||||
|
||||
attn = optimized_attention(q, k, v, heads=self.heads_num)
|
||||
|
||||
attn = rearrange(attn, "(B L) S C -> B (L S) C", L=T_comp)
|
||||
|
||||
output = self.linear2(attn)
|
||||
|
||||
if motion_mask is not None:
|
||||
output = output * rearrange(motion_mask, "B T H W -> B (T H W)").unsqueeze(-1)
|
||||
|
||||
return output
|
||||
|
||||
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/ops/upfirdn2d/upfirdn2d.py#L162
|
||||
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
|
||||
_, minor, in_h, in_w = input.shape
|
||||
kernel_h, kernel_w = kernel.shape
|
||||
|
||||
out = input.view(-1, minor, in_h, 1, in_w, 1)
|
||||
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
|
||||
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
|
||||
|
||||
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
||||
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0)]
|
||||
|
||||
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
||||
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
||||
out = F.conv2d(out, w)
|
||||
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
|
||||
return out[:, :, ::down_y, ::down_x]
|
||||
|
||||
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
||||
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
|
||||
|
||||
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/ops/fused_act/fused_act.py#L81
|
||||
class FusedLeakyReLU(torch.nn.Module):
|
||||
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.bias = torch.nn.Parameter(torch.empty(1, channel, 1, 1, dtype=dtype, device=device))
|
||||
self.negative_slope = negative_slope
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, input):
|
||||
return fused_leaky_relu(input, comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype), self.negative_slope, self.scale)
|
||||
|
||||
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
||||
return F.leaky_relu(input + bias, negative_slope) * scale
|
||||
|
||||
class Blur(torch.nn.Module):
|
||||
def __init__(self, kernel, pad, dtype=None, device=None):
|
||||
super().__init__()
|
||||
kernel = torch.tensor(kernel, dtype=dtype, device=device)
|
||||
kernel = kernel[None, :] * kernel[:, None]
|
||||
kernel = kernel / kernel.sum()
|
||||
self.register_buffer('kernel', kernel)
|
||||
self.pad = pad
|
||||
|
||||
def forward(self, input):
|
||||
return upfirdn2d(input, comfy.model_management.cast_to(self.kernel, dtype=input.dtype, device=input.device), pad=self.pad)
|
||||
|
||||
#https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L590
|
||||
class ScaledLeakyReLU(torch.nn.Module):
|
||||
def __init__(self, negative_slope=0.2):
|
||||
super().__init__()
|
||||
self.negative_slope = negative_slope
|
||||
|
||||
def forward(self, input):
|
||||
return F.leaky_relu(input, negative_slope=self.negative_slope)
|
||||
|
||||
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L605
|
||||
class EqualConv2d(torch.nn.Module):
|
||||
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.weight = torch.nn.Parameter(torch.empty(out_channel, in_channel, kernel_size, kernel_size, device=device, dtype=dtype))
|
||||
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.bias = torch.nn.Parameter(torch.empty(out_channel, device=device, dtype=dtype)) if bias else None
|
||||
|
||||
def forward(self, input):
|
||||
if self.bias is None:
|
||||
bias = None
|
||||
else:
|
||||
bias = comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype)
|
||||
|
||||
return F.conv2d(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale, bias=bias, stride=self.stride, padding=self.padding)
|
||||
|
||||
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L134
|
||||
class EqualLinear(torch.nn.Module):
|
||||
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.weight = torch.nn.Parameter(torch.empty(out_dim, in_dim, device=device, dtype=dtype))
|
||||
self.bias = torch.nn.Parameter(torch.empty(out_dim, device=device, dtype=dtype)) if bias else None
|
||||
self.activation = activation
|
||||
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
||||
self.lr_mul = lr_mul
|
||||
|
||||
def forward(self, input):
|
||||
if self.bias is None:
|
||||
bias = None
|
||||
else:
|
||||
bias = comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype) * self.lr_mul
|
||||
|
||||
if self.activation:
|
||||
out = F.linear(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale)
|
||||
return fused_leaky_relu(out, bias)
|
||||
return F.linear(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale, bias=bias)
|
||||
|
||||
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L654
|
||||
class ConvLayer(torch.nn.Sequential):
|
||||
def __init__(self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, dtype=None, device=None, operations=None):
|
||||
layers = []
|
||||
|
||||
if downsample:
|
||||
factor = 2
|
||||
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
||||
layers.append(Blur(blur_kernel, pad=((p + 1) // 2, p // 2)))
|
||||
stride, padding = 2, 0
|
||||
else:
|
||||
stride, padding = 1, kernel_size // 2
|
||||
|
||||
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias and not activate, dtype=dtype, device=device, operations=operations))
|
||||
|
||||
if activate:
|
||||
layers.append(FusedLeakyReLU(out_channel) if bias else ScaledLeakyReLU(0.2))
|
||||
|
||||
super().__init__(*layers)
|
||||
|
||||
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L704
|
||||
class ResBlock(torch.nn.Module):
|
||||
def __init__(self, in_channel, out_channel, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.conv1 = ConvLayer(in_channel, in_channel, 3, dtype=dtype, device=device, operations=operations)
|
||||
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True, dtype=dtype, device=device, operations=operations)
|
||||
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, input):
|
||||
out = self.conv2(self.conv1(input))
|
||||
skip = self.skip(input)
|
||||
return (out + skip) / math.sqrt(2)
|
||||
|
||||
|
||||
class EncoderApp(torch.nn.Module):
|
||||
def __init__(self, w_dim=512, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
kwargs = {"device": device, "dtype": dtype, "operations": operations}
|
||||
|
||||
self.convs = torch.nn.ModuleList([
|
||||
ConvLayer(3, 32, 1, **kwargs), ResBlock(32, 64, **kwargs),
|
||||
ResBlock(64, 128, **kwargs), ResBlock(128, 256, **kwargs),
|
||||
ResBlock(256, 512, **kwargs), ResBlock(512, 512, **kwargs),
|
||||
ResBlock(512, 512, **kwargs), ResBlock(512, 512, **kwargs),
|
||||
EqualConv2d(512, w_dim, 4, padding=0, bias=False, **kwargs)
|
||||
])
|
||||
|
||||
def forward(self, x):
|
||||
h = x
|
||||
for conv in self.convs:
|
||||
h = conv(h)
|
||||
return h.squeeze(-1).squeeze(-1)
|
||||
|
||||
class Encoder(torch.nn.Module):
|
||||
def __init__(self, dim=512, motion_dim=20, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.net_app = EncoderApp(dim, dtype=dtype, device=device, operations=operations)
|
||||
self.fc = torch.nn.Sequential(*[EqualLinear(dim, dim, dtype=dtype, device=device, operations=operations) for _ in range(4)] + [EqualLinear(dim, motion_dim, dtype=dtype, device=device, operations=operations)])
|
||||
|
||||
def encode_motion(self, x):
|
||||
return self.fc(self.net_app(x))
|
||||
|
||||
class Direction(torch.nn.Module):
|
||||
def __init__(self, motion_dim, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.weight = torch.nn.Parameter(torch.empty(512, motion_dim, device=device, dtype=dtype))
|
||||
self.motion_dim = motion_dim
|
||||
|
||||
def forward(self, input):
|
||||
stabilized_weight = comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) + 1e-8 * torch.eye(512, self.motion_dim, device=input.device, dtype=input.dtype)
|
||||
Q, _ = torch.linalg.qr(stabilized_weight.float())
|
||||
if input is None:
|
||||
return Q
|
||||
return torch.sum(input.unsqueeze(-1) * Q.T.to(input.dtype), dim=1)
|
||||
|
||||
class Synthesis(torch.nn.Module):
|
||||
def __init__(self, motion_dim, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.direction = Direction(motion_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(self, style_dim=512, motion_dim=20, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.enc = Encoder(style_dim, motion_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.dec = Synthesis(motion_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def get_motion(self, img):
|
||||
motion_feat = self.enc.encode_motion(img)
|
||||
return self.dec.direction(motion_feat)
|
||||
|
||||
class AnimateWanModel(WanModel):
|
||||
r"""
|
||||
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model_type='animate',
|
||||
patch_size=(1, 2, 2),
|
||||
text_len=512,
|
||||
in_dim=16,
|
||||
dim=2048,
|
||||
ffn_dim=8192,
|
||||
freq_dim=256,
|
||||
text_dim=4096,
|
||||
out_dim=16,
|
||||
num_heads=16,
|
||||
num_layers=32,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6,
|
||||
flf_pos_embed_token_number=None,
|
||||
motion_encoder_dim=512,
|
||||
image_model=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
|
||||
super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
|
||||
|
||||
self.pose_patch_embedding = operations.Conv3d(
|
||||
16, dim, kernel_size=patch_size, stride=patch_size, device=device, dtype=dtype
|
||||
)
|
||||
|
||||
self.motion_encoder = Generator(style_dim=512, motion_dim=20, device=device, dtype=dtype, operations=operations)
|
||||
|
||||
self.face_adapter = FaceAdapter(
|
||||
heads_num=self.num_heads,
|
||||
hidden_dim=self.dim,
|
||||
num_adapter_layers=self.num_layers // 5,
|
||||
device=device, dtype=dtype, operations=operations
|
||||
)
|
||||
|
||||
self.face_encoder = FaceEncoder(
|
||||
in_dim=motion_encoder_dim,
|
||||
hidden_dim=self.dim,
|
||||
num_heads=4,
|
||||
device=device, dtype=dtype, operations=operations
|
||||
)
|
||||
|
||||
def after_patch_embedding(self, x, pose_latents, face_pixel_values):
|
||||
if pose_latents is not None:
|
||||
pose_latents = self.pose_patch_embedding(pose_latents)
|
||||
x[:, :, 1:pose_latents.shape[2] + 1] += pose_latents[:, :, :x.shape[2] - 1]
|
||||
|
||||
if face_pixel_values is None:
|
||||
return x, None
|
||||
|
||||
b, c, T, h, w = face_pixel_values.shape
|
||||
face_pixel_values = rearrange(face_pixel_values, "b c t h w -> (b t) c h w")
|
||||
encode_bs = 8
|
||||
face_pixel_values_tmp = []
|
||||
for i in range(math.ceil(face_pixel_values.shape[0] / encode_bs)):
|
||||
face_pixel_values_tmp.append(self.motion_encoder.get_motion(face_pixel_values[i * encode_bs: (i + 1) * encode_bs]))
|
||||
|
||||
motion_vec = torch.cat(face_pixel_values_tmp)
|
||||
|
||||
motion_vec = rearrange(motion_vec, "(b t) c -> b t c", t=T)
|
||||
motion_vec = self.face_encoder(motion_vec)
|
||||
|
||||
B, L, H, C = motion_vec.shape
|
||||
pad_face = torch.zeros(B, 1, H, C).type_as(motion_vec)
|
||||
motion_vec = torch.cat([pad_face, motion_vec], dim=1)
|
||||
|
||||
if motion_vec.shape[1] < x.shape[2]:
|
||||
B, L, H, C = motion_vec.shape
|
||||
pad = torch.zeros(B, x.shape[2] - motion_vec.shape[1], H, C).type_as(motion_vec)
|
||||
motion_vec = torch.cat([motion_vec, pad], dim=1)
|
||||
else:
|
||||
motion_vec = motion_vec[:, :x.shape[2]]
|
||||
return x, motion_vec
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
x,
|
||||
t,
|
||||
context,
|
||||
clip_fea=None,
|
||||
pose_latents=None,
|
||||
face_pixel_values=None,
|
||||
freqs=None,
|
||||
transformer_options={},
|
||||
**kwargs,
|
||||
):
|
||||
# embeddings
|
||||
x = self.patch_embedding(x.float()).to(x.dtype)
|
||||
x, motion_vec = self.after_patch_embedding(x, pose_latents, face_pixel_values)
|
||||
grid_sizes = x.shape[2:]
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
|
||||
# time embeddings
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
|
||||
e = e.reshape(t.shape[0], -1, e.shape[-1])
|
||||
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
|
||||
|
||||
full_ref = None
|
||||
if self.ref_conv is not None:
|
||||
full_ref = kwargs.get("reference_latent", None)
|
||||
if full_ref is not None:
|
||||
full_ref = self.ref_conv(full_ref).flatten(2).transpose(1, 2)
|
||||
x = torch.concat((full_ref, x), dim=1)
|
||||
|
||||
# context
|
||||
context = self.text_embedding(context)
|
||||
|
||||
context_img_len = None
|
||||
if clip_fea is not None:
|
||||
if self.img_emb is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
context_img_len = clip_fea.shape[-2]
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
|
||||
|
||||
if i % 5 == 0 and motion_vec is not None:
|
||||
x = x + self.face_adapter.fuser_blocks[i // 5](x, motion_vec)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
if full_ref is not None:
|
||||
x = x[:, full_ref.shape[1]:]
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
@@ -24,12 +24,17 @@ class CausalConv3d(ops.Conv3d):
|
||||
self.padding[1], 2 * self.padding[0], 0)
|
||||
self.padding = (0, 0, 0)
|
||||
|
||||
def forward(self, x, cache_x=None):
|
||||
def forward(self, x, cache_x=None, cache_list=None, cache_idx=None):
|
||||
if cache_list is not None:
|
||||
cache_x = cache_list[cache_idx]
|
||||
cache_list[cache_idx] = None
|
||||
|
||||
padding = list(self._padding)
|
||||
if cache_x is not None and self._padding[4] > 0:
|
||||
cache_x = cache_x.to(x.device)
|
||||
x = torch.cat([cache_x, x], dim=2)
|
||||
padding[4] -= cache_x.shape[2]
|
||||
del cache_x
|
||||
x = F.pad(x, padding)
|
||||
|
||||
return super().forward(x)
|
||||
@@ -52,15 +57,6 @@ class RMS_norm(nn.Module):
|
||||
x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma.to(x) + (self.bias.to(x) if self.bias is not None else 0)
|
||||
|
||||
|
||||
class Upsample(nn.Upsample):
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Fix bfloat16 support for nearest neighbor interpolation.
|
||||
"""
|
||||
return super().forward(x.float()).type_as(x)
|
||||
|
||||
|
||||
class Resample(nn.Module):
|
||||
|
||||
def __init__(self, dim, mode):
|
||||
@@ -73,11 +69,11 @@ class Resample(nn.Module):
|
||||
# layers
|
||||
if mode == 'upsample2d':
|
||||
self.resample = nn.Sequential(
|
||||
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
||||
nn.Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
||||
ops.Conv2d(dim, dim // 2, 3, padding=1))
|
||||
elif mode == 'upsample3d':
|
||||
self.resample = nn.Sequential(
|
||||
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
||||
nn.Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
||||
ops.Conv2d(dim, dim // 2, 3, padding=1))
|
||||
self.time_conv = CausalConv3d(
|
||||
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
||||
@@ -157,29 +153,6 @@ class Resample(nn.Module):
|
||||
feat_idx[0] += 1
|
||||
return x
|
||||
|
||||
def init_weight(self, conv):
|
||||
conv_weight = conv.weight
|
||||
nn.init.zeros_(conv_weight)
|
||||
c1, c2, t, h, w = conv_weight.size()
|
||||
one_matrix = torch.eye(c1, c2)
|
||||
init_matrix = one_matrix
|
||||
nn.init.zeros_(conv_weight)
|
||||
#conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
|
||||
conv_weight.data[:, :, 1, 0, 0] = init_matrix #* 0.5
|
||||
conv.weight.data.copy_(conv_weight)
|
||||
nn.init.zeros_(conv.bias.data)
|
||||
|
||||
def init_weight2(self, conv):
|
||||
conv_weight = conv.weight.data
|
||||
nn.init.zeros_(conv_weight)
|
||||
c1, c2, t, h, w = conv_weight.size()
|
||||
init_matrix = torch.eye(c1 // 2, c2)
|
||||
#init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
|
||||
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
|
||||
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
|
||||
conv.weight.data.copy_(conv_weight)
|
||||
nn.init.zeros_(conv.bias.data)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
|
||||
@@ -198,7 +171,7 @@ class ResidualBlock(nn.Module):
|
||||
if in_dim != out_dim else nn.Identity()
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
h = self.shortcut(x)
|
||||
old_x = x
|
||||
for layer in self.residual:
|
||||
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
@@ -210,12 +183,12 @@ class ResidualBlock(nn.Module):
|
||||
cache_x.device), cache_x
|
||||
],
|
||||
dim=2)
|
||||
x = layer(x, feat_cache[idx])
|
||||
x = layer(x, cache_list=feat_cache, cache_idx=idx)
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = layer(x)
|
||||
return x + h
|
||||
return x + self.shortcut(old_x)
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
@@ -494,12 +467,6 @@ class WanVAE(nn.Module):
|
||||
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
|
||||
attn_scales, self.temperal_upsample, dropout)
|
||||
|
||||
def forward(self, x):
|
||||
mu, log_var = self.encode(x)
|
||||
z = self.reparameterize(mu, log_var)
|
||||
x_recon = self.decode(z)
|
||||
return x_recon, mu, log_var
|
||||
|
||||
def encode(self, x):
|
||||
self.clear_cache()
|
||||
## cache
|
||||
@@ -545,18 +512,6 @@ class WanVAE(nn.Module):
|
||||
self.clear_cache()
|
||||
return out
|
||||
|
||||
def reparameterize(self, mu, log_var):
|
||||
std = torch.exp(0.5 * log_var)
|
||||
eps = torch.randn_like(std)
|
||||
return eps * std + mu
|
||||
|
||||
def sample(self, imgs, deterministic=False):
|
||||
mu, log_var = self.encode(imgs)
|
||||
if deterministic:
|
||||
return mu
|
||||
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
||||
return mu + std * torch.randn_like(std)
|
||||
|
||||
def clear_cache(self):
|
||||
self._conv_num = count_conv3d(self.decoder)
|
||||
self._conv_idx = [0]
|
||||
|
||||
726
comfy/ldm/wan/vae2_2.py
Normal file
726
comfy/ldm/wan/vae2_2.py
Normal file
@@ -0,0 +1,726 @@
|
||||
# original version: https://github.com/Wan-Video/Wan2.2/blob/main/wan/modules/vae2_2.py
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from .vae import AttentionBlock, CausalConv3d, RMS_norm
|
||||
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
CACHE_T = 2
|
||||
|
||||
|
||||
class Resample(nn.Module):
|
||||
|
||||
def __init__(self, dim, mode):
|
||||
assert mode in (
|
||||
"none",
|
||||
"upsample2d",
|
||||
"upsample3d",
|
||||
"downsample2d",
|
||||
"downsample3d",
|
||||
)
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.mode = mode
|
||||
|
||||
# layers
|
||||
if mode == "upsample2d":
|
||||
self.resample = nn.Sequential(
|
||||
nn.Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
||||
ops.Conv2d(dim, dim, 3, padding=1),
|
||||
)
|
||||
elif mode == "upsample3d":
|
||||
self.resample = nn.Sequential(
|
||||
nn.Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
||||
ops.Conv2d(dim, dim, 3, padding=1),
|
||||
# ops.Conv2d(dim, dim//2, 3, padding=1)
|
||||
)
|
||||
self.time_conv = CausalConv3d(
|
||||
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
||||
elif mode == "downsample2d":
|
||||
self.resample = nn.Sequential(
|
||||
nn.ZeroPad2d((0, 1, 0, 1)),
|
||||
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
|
||||
elif mode == "downsample3d":
|
||||
self.resample = nn.Sequential(
|
||||
nn.ZeroPad2d((0, 1, 0, 1)),
|
||||
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
|
||||
self.time_conv = CausalConv3d(
|
||||
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
||||
else:
|
||||
self.resample = nn.Identity()
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
b, c, t, h, w = x.size()
|
||||
if self.mode == "upsample3d":
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
if feat_cache[idx] is None:
|
||||
feat_cache[idx] = "Rep"
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and
|
||||
feat_cache[idx] != "Rep"):
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and
|
||||
feat_cache[idx] == "Rep"):
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
torch.zeros_like(cache_x).to(cache_x.device),
|
||||
cache_x
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
if feat_cache[idx] == "Rep":
|
||||
x = self.time_conv(x)
|
||||
else:
|
||||
x = self.time_conv(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
x = x.reshape(b, 2, c, t, h, w)
|
||||
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
|
||||
3)
|
||||
x = x.reshape(b, c, t * 2, h, w)
|
||||
t = x.shape[2]
|
||||
x = rearrange(x, "b c t h w -> (b t) c h w")
|
||||
x = self.resample(x)
|
||||
x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
|
||||
|
||||
if self.mode == "downsample3d":
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
if feat_cache[idx] is None:
|
||||
feat_cache[idx] = x.clone()
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
cache_x = x[:, :, -1:, :, :].clone()
|
||||
x = self.time_conv(
|
||||
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
return x
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
|
||||
def __init__(self, in_dim, out_dim, dropout=0.0):
|
||||
super().__init__()
|
||||
self.in_dim = in_dim
|
||||
self.out_dim = out_dim
|
||||
|
||||
# layers
|
||||
self.residual = nn.Sequential(
|
||||
RMS_norm(in_dim, images=False),
|
||||
nn.SiLU(),
|
||||
CausalConv3d(in_dim, out_dim, 3, padding=1),
|
||||
RMS_norm(out_dim, images=False),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(dropout),
|
||||
CausalConv3d(out_dim, out_dim, 3, padding=1),
|
||||
)
|
||||
self.shortcut = (
|
||||
CausalConv3d(in_dim, out_dim, 1)
|
||||
if in_dim != out_dim else nn.Identity())
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
old_x = x
|
||||
for layer in self.residual:
|
||||
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
x = layer(x, cache_list=feat_cache, cache_idx=idx)
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = layer(x)
|
||||
return x + self.shortcut(old_x)
|
||||
|
||||
|
||||
def patchify(x, patch_size):
|
||||
if patch_size == 1:
|
||||
return x
|
||||
if x.dim() == 4:
|
||||
x = rearrange(
|
||||
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size, r=patch_size)
|
||||
elif x.dim() == 5:
|
||||
x = rearrange(
|
||||
x,
|
||||
"b c f (h q) (w r) -> b (c r q) f h w",
|
||||
q=patch_size,
|
||||
r=patch_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Invalid input shape: {x.shape}")
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def unpatchify(x, patch_size):
|
||||
if patch_size == 1:
|
||||
return x
|
||||
|
||||
if x.dim() == 4:
|
||||
x = rearrange(
|
||||
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size, r=patch_size)
|
||||
elif x.dim() == 5:
|
||||
x = rearrange(
|
||||
x,
|
||||
"b (c r q) f h w -> b c f (h q) (w r)",
|
||||
q=patch_size,
|
||||
r=patch_size,
|
||||
)
|
||||
return x
|
||||
|
||||
|
||||
class AvgDown3D(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
factor_t,
|
||||
factor_s=1,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.factor_t = factor_t
|
||||
self.factor_s = factor_s
|
||||
self.factor = self.factor_t * self.factor_s * self.factor_s
|
||||
|
||||
assert in_channels * self.factor % out_channels == 0
|
||||
self.group_size = in_channels * self.factor // out_channels
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
pad_t = (self.factor_t - x.shape[2] % self.factor_t) % self.factor_t
|
||||
pad = (0, 0, 0, 0, pad_t, 0)
|
||||
x = F.pad(x, pad)
|
||||
B, C, T, H, W = x.shape
|
||||
x = x.view(
|
||||
B,
|
||||
C,
|
||||
T // self.factor_t,
|
||||
self.factor_t,
|
||||
H // self.factor_s,
|
||||
self.factor_s,
|
||||
W // self.factor_s,
|
||||
self.factor_s,
|
||||
)
|
||||
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous()
|
||||
x = x.view(
|
||||
B,
|
||||
C * self.factor,
|
||||
T // self.factor_t,
|
||||
H // self.factor_s,
|
||||
W // self.factor_s,
|
||||
)
|
||||
x = x.view(
|
||||
B,
|
||||
self.out_channels,
|
||||
self.group_size,
|
||||
T // self.factor_t,
|
||||
H // self.factor_s,
|
||||
W // self.factor_s,
|
||||
)
|
||||
x = x.mean(dim=2)
|
||||
return x
|
||||
|
||||
|
||||
class DupUp3D(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
factor_t,
|
||||
factor_s=1,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
|
||||
self.factor_t = factor_t
|
||||
self.factor_s = factor_s
|
||||
self.factor = self.factor_t * self.factor_s * self.factor_s
|
||||
|
||||
assert out_channels * self.factor % in_channels == 0
|
||||
self.repeats = out_channels * self.factor // in_channels
|
||||
|
||||
def forward(self, x: torch.Tensor, first_chunk=False) -> torch.Tensor:
|
||||
x = x.repeat_interleave(self.repeats, dim=1)
|
||||
x = x.view(
|
||||
x.size(0),
|
||||
self.out_channels,
|
||||
self.factor_t,
|
||||
self.factor_s,
|
||||
self.factor_s,
|
||||
x.size(2),
|
||||
x.size(3),
|
||||
x.size(4),
|
||||
)
|
||||
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
|
||||
x = x.view(
|
||||
x.size(0),
|
||||
self.out_channels,
|
||||
x.size(2) * self.factor_t,
|
||||
x.size(4) * self.factor_s,
|
||||
x.size(6) * self.factor_s,
|
||||
)
|
||||
if first_chunk:
|
||||
x = x[:, :, self.factor_t - 1:, :, :]
|
||||
return x
|
||||
|
||||
|
||||
class Down_ResidualBlock(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
in_dim,
|
||||
out_dim,
|
||||
dropout,
|
||||
mult,
|
||||
temperal_downsample=False,
|
||||
down_flag=False):
|
||||
super().__init__()
|
||||
|
||||
# Shortcut path with downsample
|
||||
self.avg_shortcut = AvgDown3D(
|
||||
in_dim,
|
||||
out_dim,
|
||||
factor_t=2 if temperal_downsample else 1,
|
||||
factor_s=2 if down_flag else 1,
|
||||
)
|
||||
|
||||
# Main path with residual blocks and downsample
|
||||
downsamples = []
|
||||
for _ in range(mult):
|
||||
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
||||
in_dim = out_dim
|
||||
|
||||
# Add the final downsample block
|
||||
if down_flag:
|
||||
mode = "downsample3d" if temperal_downsample else "downsample2d"
|
||||
downsamples.append(Resample(out_dim, mode=mode))
|
||||
|
||||
self.downsamples = nn.Sequential(*downsamples)
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
x_copy = x
|
||||
for module in self.downsamples:
|
||||
x = module(x, feat_cache, feat_idx)
|
||||
|
||||
return x + self.avg_shortcut(x_copy)
|
||||
|
||||
|
||||
class Up_ResidualBlock(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
in_dim,
|
||||
out_dim,
|
||||
dropout,
|
||||
mult,
|
||||
temperal_upsample=False,
|
||||
up_flag=False):
|
||||
super().__init__()
|
||||
# Shortcut path with upsample
|
||||
if up_flag:
|
||||
self.avg_shortcut = DupUp3D(
|
||||
in_dim,
|
||||
out_dim,
|
||||
factor_t=2 if temperal_upsample else 1,
|
||||
factor_s=2 if up_flag else 1,
|
||||
)
|
||||
else:
|
||||
self.avg_shortcut = None
|
||||
|
||||
# Main path with residual blocks and upsample
|
||||
upsamples = []
|
||||
for _ in range(mult):
|
||||
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
||||
in_dim = out_dim
|
||||
|
||||
# Add the final upsample block
|
||||
if up_flag:
|
||||
mode = "upsample3d" if temperal_upsample else "upsample2d"
|
||||
upsamples.append(Resample(out_dim, mode=mode))
|
||||
|
||||
self.upsamples = nn.Sequential(*upsamples)
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
|
||||
x_main = x
|
||||
for module in self.upsamples:
|
||||
x_main = module(x_main, feat_cache, feat_idx)
|
||||
if self.avg_shortcut is not None:
|
||||
x_shortcut = self.avg_shortcut(x, first_chunk)
|
||||
return x_main + x_shortcut
|
||||
else:
|
||||
return x_main
|
||||
|
||||
|
||||
class Encoder3d(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_downsample=[True, True, False],
|
||||
dropout=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_downsample = temperal_downsample
|
||||
|
||||
# dimensions
|
||||
dims = [dim * u for u in [1] + dim_mult]
|
||||
scale = 1.0
|
||||
|
||||
# init block
|
||||
self.conv1 = CausalConv3d(12, dims[0], 3, padding=1)
|
||||
|
||||
# downsample blocks
|
||||
downsamples = []
|
||||
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
||||
t_down_flag = (
|
||||
temperal_downsample[i]
|
||||
if i < len(temperal_downsample) else False)
|
||||
downsamples.append(
|
||||
Down_ResidualBlock(
|
||||
in_dim=in_dim,
|
||||
out_dim=out_dim,
|
||||
dropout=dropout,
|
||||
mult=num_res_blocks,
|
||||
temperal_downsample=t_down_flag,
|
||||
down_flag=i != len(dim_mult) - 1,
|
||||
))
|
||||
scale /= 2.0
|
||||
self.downsamples = nn.Sequential(*downsamples)
|
||||
|
||||
# middle blocks
|
||||
self.middle = nn.Sequential(
|
||||
ResidualBlock(out_dim, out_dim, dropout),
|
||||
AttentionBlock(out_dim),
|
||||
ResidualBlock(out_dim, out_dim, dropout),
|
||||
)
|
||||
|
||||
# # output blocks
|
||||
self.head = nn.Sequential(
|
||||
RMS_norm(out_dim, images=False),
|
||||
nn.SiLU(),
|
||||
CausalConv3d(out_dim, z_dim, 3, padding=1),
|
||||
)
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
x = self.conv1(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv1(x)
|
||||
|
||||
## downsamples
|
||||
for layer in self.downsamples:
|
||||
if feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## middle
|
||||
for layer in self.middle:
|
||||
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## head
|
||||
for layer in self.head:
|
||||
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
x = layer(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Decoder3d(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_upsample=[False, True, True],
|
||||
dropout=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_upsample = temperal_upsample
|
||||
|
||||
# dimensions
|
||||
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
||||
# init block
|
||||
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
|
||||
|
||||
# middle blocks
|
||||
self.middle = nn.Sequential(
|
||||
ResidualBlock(dims[0], dims[0], dropout),
|
||||
AttentionBlock(dims[0]),
|
||||
ResidualBlock(dims[0], dims[0], dropout),
|
||||
)
|
||||
|
||||
# upsample blocks
|
||||
upsamples = []
|
||||
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
||||
t_up_flag = temperal_upsample[i] if i < len(
|
||||
temperal_upsample) else False
|
||||
upsamples.append(
|
||||
Up_ResidualBlock(
|
||||
in_dim=in_dim,
|
||||
out_dim=out_dim,
|
||||
dropout=dropout,
|
||||
mult=num_res_blocks + 1,
|
||||
temperal_upsample=t_up_flag,
|
||||
up_flag=i != len(dim_mult) - 1,
|
||||
))
|
||||
self.upsamples = nn.Sequential(*upsamples)
|
||||
|
||||
# output blocks
|
||||
self.head = nn.Sequential(
|
||||
RMS_norm(out_dim, images=False),
|
||||
nn.SiLU(),
|
||||
CausalConv3d(out_dim, 12, 3, padding=1),
|
||||
)
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
x = self.conv1(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv1(x)
|
||||
|
||||
for layer in self.middle:
|
||||
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## upsamples
|
||||
for layer in self.upsamples:
|
||||
if feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx, first_chunk)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## head
|
||||
for layer in self.head:
|
||||
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
x = layer(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
def count_conv3d(model):
|
||||
count = 0
|
||||
for m in model.modules():
|
||||
if isinstance(m, CausalConv3d):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
|
||||
class WanVAE(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim=160,
|
||||
dec_dim=256,
|
||||
z_dim=16,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_downsample=[True, True, False],
|
||||
dropout=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_downsample = temperal_downsample
|
||||
self.temperal_upsample = temperal_downsample[::-1]
|
||||
|
||||
# modules
|
||||
self.encoder = Encoder3d(
|
||||
dim,
|
||||
z_dim * 2,
|
||||
dim_mult,
|
||||
num_res_blocks,
|
||||
attn_scales,
|
||||
self.temperal_downsample,
|
||||
dropout,
|
||||
)
|
||||
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
|
||||
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
|
||||
self.decoder = Decoder3d(
|
||||
dec_dim,
|
||||
z_dim,
|
||||
dim_mult,
|
||||
num_res_blocks,
|
||||
attn_scales,
|
||||
self.temperal_upsample,
|
||||
dropout,
|
||||
)
|
||||
|
||||
def encode(self, x):
|
||||
self.clear_cache()
|
||||
x = patchify(x, patch_size=2)
|
||||
t = x.shape[2]
|
||||
iter_ = 1 + (t - 1) // 4
|
||||
for i in range(iter_):
|
||||
self._enc_conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.encoder(
|
||||
x[:, :, :1, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx,
|
||||
)
|
||||
else:
|
||||
out_ = self.encoder(
|
||||
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx,
|
||||
)
|
||||
out = torch.cat([out, out_], 2)
|
||||
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
||||
self.clear_cache()
|
||||
return mu
|
||||
|
||||
def decode(self, z):
|
||||
self.clear_cache()
|
||||
iter_ = z.shape[2]
|
||||
x = self.conv2(z)
|
||||
for i in range(iter_):
|
||||
self._conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx,
|
||||
first_chunk=True,
|
||||
)
|
||||
else:
|
||||
out_ = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx,
|
||||
)
|
||||
out = torch.cat([out, out_], 2)
|
||||
out = unpatchify(out, patch_size=2)
|
||||
self.clear_cache()
|
||||
return out
|
||||
|
||||
def reparameterize(self, mu, log_var):
|
||||
std = torch.exp(0.5 * log_var)
|
||||
eps = torch.randn_like(std)
|
||||
return eps * std + mu
|
||||
|
||||
def sample(self, imgs, deterministic=False):
|
||||
mu, log_var = self.encode(imgs)
|
||||
if deterministic:
|
||||
return mu
|
||||
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
||||
return mu + std * torch.randn_like(std)
|
||||
|
||||
def clear_cache(self):
|
||||
self._conv_num = count_conv3d(self.decoder)
|
||||
self._conv_idx = [0]
|
||||
self._feat_map = [None] * self._conv_num
|
||||
# cache encode
|
||||
self._enc_conv_num = count_conv3d(self.encoder)
|
||||
self._enc_conv_idx = [0]
|
||||
self._enc_feat_map = [None] * self._enc_conv_num
|
||||
@@ -260,6 +260,10 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
|
||||
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
|
||||
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
|
||||
for k in sdk:
|
||||
hidden_size = model.model_config.unet_config.get("hidden_size", 0)
|
||||
if k.endswith(".weight") and ".linear1." in k:
|
||||
key_map["{}".format(k.replace(".linear1.weight", ".linear1_qkv"))] = (k, (0, 0, hidden_size * 3))
|
||||
|
||||
if isinstance(model, comfy.model_base.GenmoMochi):
|
||||
for k in sdk:
|
||||
@@ -293,6 +297,22 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
key_map["{}".format(key_lora)] = k
|
||||
|
||||
if isinstance(model, comfy.model_base.Omnigen2):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
key_map["{}".format(key_lora)] = k
|
||||
|
||||
if isinstance(model, comfy.model_base.QwenImage):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"): #QwenImage lora format
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
# Direct mapping for transformer_blocks format (QwenImage LoRA format)
|
||||
key_map["{}".format(key_lora)] = k
|
||||
# Support transformer prefix format
|
||||
key_map["transformer.{}".format(key_lora)] = k
|
||||
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
|
||||
|
||||
return key_map
|
||||
|
||||
|
||||
|
||||
@@ -15,10 +15,29 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
|
||||
def convert_lora_wan_fun(sd): #Wan Fun loras
|
||||
return comfy.utils.state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
|
||||
|
||||
def convert_uso_lora(sd):
|
||||
sd_out = {}
|
||||
for k in sd:
|
||||
tensor = sd[k]
|
||||
k_to = "diffusion_model.{}".format(k.replace(".down.weight", ".lora_down.weight")
|
||||
.replace(".up.weight", ".lora_up.weight")
|
||||
.replace(".qkv_lora2.", ".txt_attn.qkv.")
|
||||
.replace(".qkv_lora1.", ".img_attn.qkv.")
|
||||
.replace(".proj_lora1.", ".img_attn.proj.")
|
||||
.replace(".proj_lora2.", ".txt_attn.proj.")
|
||||
.replace(".qkv_lora.", ".linear1_qkv.")
|
||||
.replace(".proj_lora.", ".linear2.")
|
||||
.replace(".processor.", ".")
|
||||
)
|
||||
sd_out[k_to] = tensor
|
||||
return sd_out
|
||||
|
||||
|
||||
def convert_lora(sd):
|
||||
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
|
||||
return convert_lora_bfl_control(sd)
|
||||
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
|
||||
return convert_lora_wan_fun(sd)
|
||||
if "single_blocks.37.processor.qkv_lora.up.weight" in sd and "double_blocks.18.processor.qkv_lora2.up.weight" in sd:
|
||||
return convert_uso_lora(sd)
|
||||
return sd
|
||||
|
||||
@@ -16,6 +16,8 @@
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import comfy.ldm.hunyuan3dv2_1
|
||||
import comfy.ldm.hunyuan3dv2_1.hunyuandit
|
||||
import torch
|
||||
import logging
|
||||
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
|
||||
@@ -37,11 +39,14 @@ import comfy.ldm.cosmos.model
|
||||
import comfy.ldm.cosmos.predict2
|
||||
import comfy.ldm.lumina.model
|
||||
import comfy.ldm.wan.model
|
||||
import comfy.ldm.wan.model_animate
|
||||
import comfy.ldm.hunyuan3d.model
|
||||
import comfy.ldm.hidream.model
|
||||
import comfy.ldm.chroma.model
|
||||
import comfy.ldm.chroma_radiance.model
|
||||
import comfy.ldm.ace.model
|
||||
import comfy.ldm.omnigen.omnigen2
|
||||
import comfy.ldm.qwen_image.model
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
@@ -106,10 +111,12 @@ def model_sampling(model_config, model_type):
|
||||
return ModelSampling(model_config)
|
||||
|
||||
|
||||
def convert_tensor(extra, dtype):
|
||||
def convert_tensor(extra, dtype, device):
|
||||
if hasattr(extra, "dtype"):
|
||||
if extra.dtype != torch.int and extra.dtype != torch.long:
|
||||
extra = extra.to(dtype)
|
||||
extra = comfy.model_management.cast_to_device(extra, device, dtype)
|
||||
else:
|
||||
extra = comfy.model_management.cast_to_device(extra, device, None)
|
||||
return extra
|
||||
|
||||
|
||||
@@ -147,6 +154,7 @@ class BaseModel(torch.nn.Module):
|
||||
logging.debug("adm {}".format(self.adm_channels))
|
||||
self.memory_usage_factor = model_config.memory_usage_factor
|
||||
self.memory_usage_factor_conds = ()
|
||||
self.memory_usage_shape_process = {}
|
||||
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
@@ -160,7 +168,7 @@ class BaseModel(torch.nn.Module):
|
||||
xc = self.model_sampling.calculate_input(sigma, x)
|
||||
|
||||
if c_concat is not None:
|
||||
xc = torch.cat([xc] + [c_concat], dim=1)
|
||||
xc = torch.cat([xc] + [comfy.model_management.cast_to_device(c_concat, xc.device, xc.dtype)], dim=1)
|
||||
|
||||
context = c_crossattn
|
||||
dtype = self.get_dtype()
|
||||
@@ -169,20 +177,21 @@ class BaseModel(torch.nn.Module):
|
||||
dtype = self.manual_cast_dtype
|
||||
|
||||
xc = xc.to(dtype)
|
||||
device = xc.device
|
||||
t = self.model_sampling.timestep(t).float()
|
||||
if context is not None:
|
||||
context = context.to(dtype)
|
||||
context = comfy.model_management.cast_to_device(context, device, dtype)
|
||||
|
||||
extra_conds = {}
|
||||
for o in kwargs:
|
||||
extra = kwargs[o]
|
||||
|
||||
if hasattr(extra, "dtype"):
|
||||
extra = convert_tensor(extra, dtype)
|
||||
extra = convert_tensor(extra, dtype, device)
|
||||
elif isinstance(extra, list):
|
||||
ex = []
|
||||
for ext in extra:
|
||||
ex.append(convert_tensor(ext, dtype))
|
||||
ex.append(convert_tensor(ext, dtype, device))
|
||||
extra = ex
|
||||
extra_conds[o] = extra
|
||||
|
||||
@@ -346,8 +355,15 @@ class BaseModel(torch.nn.Module):
|
||||
input_shapes = [input_shape]
|
||||
for c in self.memory_usage_factor_conds:
|
||||
shape = cond_shapes.get(c, None)
|
||||
if shape is not None and len(shape) > 0:
|
||||
input_shapes += shape
|
||||
if shape is not None:
|
||||
if c in self.memory_usage_shape_process:
|
||||
out = []
|
||||
for s in shape:
|
||||
out.append(self.memory_usage_shape_process[c](s))
|
||||
shape = out
|
||||
|
||||
if len(shape) > 0:
|
||||
input_shapes += shape
|
||||
|
||||
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
|
||||
dtype = self.get_dtype()
|
||||
@@ -398,7 +414,7 @@ class SD21UNCLIP(BaseModel):
|
||||
unclip_conditioning = kwargs.get("unclip_conditioning", None)
|
||||
device = kwargs["device"]
|
||||
if unclip_conditioning is None:
|
||||
return torch.zeros((1, self.adm_channels))
|
||||
return torch.zeros((1, self.adm_channels), device=device)
|
||||
else:
|
||||
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10)
|
||||
|
||||
@@ -612,9 +628,11 @@ class IP2P:
|
||||
|
||||
if image is None:
|
||||
image = torch.zeros_like(noise)
|
||||
else:
|
||||
image = image.to(device=device)
|
||||
|
||||
if image.shape[1:] != noise.shape[1:]:
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
image = utils.common_upscale(image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
return self.process_ip2p_image_in(image)
|
||||
@@ -693,7 +711,7 @@ class StableCascade_B(BaseModel):
|
||||
#size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched
|
||||
prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device))
|
||||
|
||||
out["effnet"] = comfy.conds.CONDRegular(prior)
|
||||
out["effnet"] = comfy.conds.CONDRegular(prior.to(device=noise.device))
|
||||
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
|
||||
return out
|
||||
|
||||
@@ -884,6 +902,10 @@ class Flux(BaseModel):
|
||||
for lat in ref_latents:
|
||||
latents.append(self.process_latent_in(lat))
|
||||
out['ref_latents'] = comfy.conds.CONDList(latents)
|
||||
|
||||
ref_latents_method = kwargs.get("reference_latents_method", None)
|
||||
if ref_latents_method is not None:
|
||||
out['ref_latents_method'] = comfy.conds.CONDConstant(ref_latents_method)
|
||||
return out
|
||||
|
||||
def extra_conds_shapes(self, **kwargs):
|
||||
@@ -1092,13 +1114,15 @@ class WAN21(BaseModel):
|
||||
shape_image[1] = extra_channels
|
||||
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
|
||||
else:
|
||||
latent_dim = self.latent_format.latent_channels
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
for i in range(0, image.shape[1], 16):
|
||||
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
|
||||
for i in range(0, image.shape[1], latent_dim):
|
||||
image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim])
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
|
||||
if not self.image_to_video or extra_channels == image.shape[1]:
|
||||
return image
|
||||
if extra_channels != image.shape[1] + 4:
|
||||
if not self.image_to_video or extra_channels == image.shape[1]:
|
||||
return image
|
||||
|
||||
if image.shape[1] > (extra_channels - 4):
|
||||
image = image[:, :(extra_channels - 4)]
|
||||
@@ -1117,7 +1141,11 @@ class WAN21(BaseModel):
|
||||
mask = mask.repeat(1, 4, 1, 1, 1)
|
||||
mask = utils.resize_to_batch_size(mask, noise.shape[0])
|
||||
|
||||
return torch.cat((mask, image), dim=1)
|
||||
concat_mask_index = kwargs.get("concat_mask_index", 0)
|
||||
if concat_mask_index != 0:
|
||||
return torch.cat((image[:, :concat_mask_index], mask, image[:, concat_mask_index:]), dim=1)
|
||||
else:
|
||||
return torch.cat((mask, image), dim=1)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
@@ -1133,6 +1161,10 @@ class WAN21(BaseModel):
|
||||
if time_dim_concat is not None:
|
||||
out['time_dim_concat'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_concat))
|
||||
|
||||
reference_latents = kwargs.get("reference_latents", None)
|
||||
if reference_latents is not None:
|
||||
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1])[:, :, 0])
|
||||
|
||||
return out
|
||||
|
||||
|
||||
@@ -1157,10 +1189,10 @@ class WAN21_Vace(WAN21):
|
||||
|
||||
vace_frames_out = []
|
||||
for j in range(len(vace_frames)):
|
||||
vf = vace_frames[j].clone()
|
||||
vf = vace_frames[j].to(device=noise.device, dtype=noise.dtype, copy=True)
|
||||
for i in range(0, vf.shape[1], 16):
|
||||
vf[:, i:i + 16] = self.process_latent_in(vf[:, i:i + 16])
|
||||
vf = torch.cat([vf, mask[j]], dim=1)
|
||||
vf = torch.cat([vf, mask[j].to(device=noise.device, dtype=noise.dtype)], dim=1)
|
||||
vace_frames_out.append(vf)
|
||||
|
||||
vace_frames = torch.stack(vace_frames_out, dim=1)
|
||||
@@ -1182,6 +1214,120 @@ class WAN21_Camera(WAN21):
|
||||
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
|
||||
return out
|
||||
|
||||
class WAN21_HuMo(WAN21):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
|
||||
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.HumoWanModel)
|
||||
self.image_to_video = image_to_video
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
noise = kwargs.get("noise", None)
|
||||
|
||||
audio_embed = kwargs.get("audio_embed", None)
|
||||
if audio_embed is not None:
|
||||
out['audio_embed'] = comfy.conds.CONDRegular(audio_embed)
|
||||
|
||||
if "c_concat" not in out: # 1.7B model
|
||||
reference_latents = kwargs.get("reference_latents", None)
|
||||
if reference_latents is not None:
|
||||
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1]))
|
||||
else:
|
||||
noise_shape = list(noise.shape)
|
||||
noise_shape[1] += 4
|
||||
concat_latent = torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)
|
||||
zero_vae_values_first = torch.tensor([0.8660, -0.4326, -0.0017, -0.4884, -0.5283, 0.9207, -0.9896, 0.4433, -0.5543, -0.0113, 0.5753, -0.6000, -0.8346, -0.3497, -0.1926, -0.6938]).view(1, 16, 1, 1, 1)
|
||||
zero_vae_values_second = torch.tensor([1.0869, -1.2370, 0.0206, -0.4357, -0.6411, 2.0307, -1.5972, 1.2659, -0.8595, -0.4654, 0.9638, -1.6330, -1.4310, -0.1098, -0.3856, -1.4583]).view(1, 16, 1, 1, 1)
|
||||
zero_vae_values = torch.tensor([0.8642, -1.8583, 0.1577, 0.1350, -0.3641, 2.5863, -1.9670, 1.6065, -1.0475, -0.8678, 1.1734, -1.8138, -1.5933, -0.7721, -0.3289, -1.3745]).view(1, 16, 1, 1, 1)
|
||||
concat_latent[:, 4:] = zero_vae_values
|
||||
concat_latent[:, 4:, :1] = zero_vae_values_first
|
||||
concat_latent[:, 4:, 1:2] = zero_vae_values_second
|
||||
out['c_concat'] = comfy.conds.CONDNoiseShape(concat_latent)
|
||||
reference_latents = kwargs.get("reference_latents", None)
|
||||
if reference_latents is not None:
|
||||
ref_latent = self.process_latent_in(reference_latents[-1])
|
||||
ref_latent_shape = list(ref_latent.shape)
|
||||
ref_latent_shape[1] += 4 + ref_latent_shape[1]
|
||||
ref_latent_full = torch.zeros(ref_latent_shape, device=ref_latent.device, dtype=ref_latent.dtype)
|
||||
ref_latent_full[:, 20:] = ref_latent
|
||||
ref_latent_full[:, 16:20] = 1.0
|
||||
out['reference_latent'] = comfy.conds.CONDRegular(ref_latent_full)
|
||||
|
||||
return out
|
||||
|
||||
class WAN22_Animate(WAN21):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
|
||||
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model_animate.AnimateWanModel)
|
||||
self.image_to_video = image_to_video
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
|
||||
face_video_pixels = kwargs.get("face_video_pixels", None)
|
||||
if face_video_pixels is not None:
|
||||
out['face_pixel_values'] = comfy.conds.CONDRegular(face_video_pixels)
|
||||
|
||||
pose_latents = kwargs.get("pose_video_latent", None)
|
||||
if pose_latents is not None:
|
||||
out['pose_latents'] = comfy.conds.CONDRegular(self.process_latent_in(pose_latents))
|
||||
return out
|
||||
|
||||
class WAN22_S2V(WAN21):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel_S2V)
|
||||
self.memory_usage_factor_conds = ("reference_latent", "reference_motion")
|
||||
self.memory_usage_shape_process = {"reference_motion": lambda shape: [shape[0], shape[1], 1.5, shape[-2], shape[-1]]}
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
audio_embed = kwargs.get("audio_embed", None)
|
||||
if audio_embed is not None:
|
||||
out['audio_embed'] = comfy.conds.CONDRegular(audio_embed)
|
||||
|
||||
reference_latents = kwargs.get("reference_latents", None)
|
||||
if reference_latents is not None:
|
||||
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1]))
|
||||
|
||||
reference_motion = kwargs.get("reference_motion", None)
|
||||
if reference_motion is not None:
|
||||
out['reference_motion'] = comfy.conds.CONDRegular(self.process_latent_in(reference_motion))
|
||||
|
||||
control_video = kwargs.get("control_video", None)
|
||||
if control_video is not None:
|
||||
out['control_video'] = comfy.conds.CONDRegular(self.process_latent_in(control_video))
|
||||
return out
|
||||
|
||||
def extra_conds_shapes(self, **kwargs):
|
||||
out = {}
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
out['reference_latent'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
|
||||
|
||||
reference_motion = kwargs.get("reference_motion", None)
|
||||
if reference_motion is not None:
|
||||
out['reference_motion'] = reference_motion.shape
|
||||
return out
|
||||
|
||||
class WAN22(WAN21):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
|
||||
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
|
||||
self.image_to_video = image_to_video
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
denoise_mask = kwargs.get("denoise_mask", None)
|
||||
if denoise_mask is not None:
|
||||
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
|
||||
return out
|
||||
|
||||
def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
|
||||
if denoise_mask is None:
|
||||
return timestep
|
||||
temp_ts = (torch.mean(denoise_mask[:, :, :, :, :], dim=(1, 3, 4), keepdim=True) * timestep.view([timestep.shape[0]] + [1] * (denoise_mask.ndim - 1))).reshape(timestep.shape[0], -1)
|
||||
return temp_ts
|
||||
|
||||
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
|
||||
return latent_image
|
||||
|
||||
class Hunyuan3Dv2(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan3d.model.Hunyuan3Dv2)
|
||||
@@ -1197,6 +1343,21 @@ class Hunyuan3Dv2(BaseModel):
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
return out
|
||||
|
||||
class Hunyuan3Dv2_1(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan3dv2_1.hunyuandit.HunYuanDiTPlain)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
guidance = kwargs.get("guidance", 5.0)
|
||||
if guidance is not None:
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
return out
|
||||
|
||||
class HiDream(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hidream.model.HiDreamImageTransformer2DModel)
|
||||
@@ -1218,8 +1379,8 @@ class HiDream(BaseModel):
|
||||
return out
|
||||
|
||||
class Chroma(Flux):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma.model.Chroma)
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.chroma.model.Chroma):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=unet_model)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
@@ -1229,6 +1390,10 @@ class Chroma(Flux):
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
return out
|
||||
|
||||
class ChromaRadiance(Chroma):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma_radiance.model.ChromaRadiance)
|
||||
|
||||
class ACEStep(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.ace.model.ACEStepTransformer2DModel)
|
||||
@@ -1277,3 +1442,84 @@ class Omnigen2(BaseModel):
|
||||
if ref_latents is not None:
|
||||
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
|
||||
return out
|
||||
|
||||
class QwenImage(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.qwen_image.model.QwenImageTransformer2DModel)
|
||||
self.memory_usage_factor_conds = ("ref_latents",)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
latents = []
|
||||
for lat in ref_latents:
|
||||
latents.append(self.process_latent_in(lat))
|
||||
out['ref_latents'] = comfy.conds.CONDList(latents)
|
||||
|
||||
ref_latents_method = kwargs.get("reference_latents_method", None)
|
||||
if ref_latents_method is not None:
|
||||
out['ref_latents_method'] = comfy.conds.CONDConstant(ref_latents_method)
|
||||
return out
|
||||
|
||||
def extra_conds_shapes(self, **kwargs):
|
||||
out = {}
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
|
||||
return out
|
||||
|
||||
class HunyuanImage21(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
if attention_mask is not None:
|
||||
if torch.numel(attention_mask) != attention_mask.sum():
|
||||
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
conditioning_byt5small = kwargs.get("conditioning_byt5small", None)
|
||||
if conditioning_byt5small is not None:
|
||||
out['txt_byt5'] = comfy.conds.CONDRegular(conditioning_byt5small)
|
||||
|
||||
guidance = kwargs.get("guidance", 6.0)
|
||||
if guidance is not None:
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
|
||||
return out
|
||||
|
||||
class HunyuanImage21Refiner(HunyuanImage21):
|
||||
def concat_cond(self, **kwargs):
|
||||
noise = kwargs.get("noise", None)
|
||||
image = kwargs.get("concat_latent_image", None)
|
||||
noise_augmentation = kwargs.get("noise_augmentation", 0.0)
|
||||
device = kwargs["device"]
|
||||
|
||||
if image is None:
|
||||
shape_image = list(noise.shape)
|
||||
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
|
||||
else:
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
image = self.process_latent_in(image)
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
if noise_augmentation > 0:
|
||||
generator = torch.Generator(device="cpu")
|
||||
generator.manual_seed(kwargs.get("seed", 0) - 10)
|
||||
noise = torch.randn(image.shape, generator=generator, dtype=image.dtype, device="cpu").to(image.device)
|
||||
image = noise_augmentation * noise + min(1.0 - noise_augmentation, 0.75) * image
|
||||
else:
|
||||
image = 0.75 * image
|
||||
return image
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
out['disable_time_r'] = comfy.conds.CONDConstant(True)
|
||||
return out
|
||||
|
||||
@@ -136,25 +136,45 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
|
||||
if '{}txt_in.individual_token_refiner.blocks.0.norm1.weight'.format(key_prefix) in state_dict_keys: #Hunyuan Video
|
||||
dit_config = {}
|
||||
in_w = state_dict['{}img_in.proj.weight'.format(key_prefix)]
|
||||
out_w = state_dict['{}final_layer.linear.weight'.format(key_prefix)]
|
||||
dit_config["image_model"] = "hunyuan_video"
|
||||
dit_config["in_channels"] = state_dict['{}img_in.proj.weight'.format(key_prefix)].shape[1] #SkyReels img2video has 32 input channels
|
||||
dit_config["patch_size"] = [1, 2, 2]
|
||||
dit_config["out_channels"] = 16
|
||||
dit_config["vec_in_dim"] = 768
|
||||
dit_config["context_in_dim"] = 4096
|
||||
dit_config["hidden_size"] = 3072
|
||||
dit_config["in_channels"] = in_w.shape[1] #SkyReels img2video has 32 input channels
|
||||
dit_config["patch_size"] = list(in_w.shape[2:])
|
||||
dit_config["out_channels"] = out_w.shape[0] // math.prod(dit_config["patch_size"])
|
||||
if any(s.startswith('{}vector_in.'.format(key_prefix)) for s in state_dict_keys):
|
||||
dit_config["vec_in_dim"] = 768
|
||||
else:
|
||||
dit_config["vec_in_dim"] = None
|
||||
|
||||
if len(dit_config["patch_size"]) == 2:
|
||||
dit_config["axes_dim"] = [64, 64]
|
||||
else:
|
||||
dit_config["axes_dim"] = [16, 56, 56]
|
||||
|
||||
if any(s.startswith('{}time_r_in.'.format(key_prefix)) for s in state_dict_keys):
|
||||
dit_config["meanflow"] = True
|
||||
else:
|
||||
dit_config["meanflow"] = False
|
||||
|
||||
dit_config["context_in_dim"] = state_dict['{}txt_in.input_embedder.weight'.format(key_prefix)].shape[1]
|
||||
dit_config["hidden_size"] = in_w.shape[0]
|
||||
dit_config["mlp_ratio"] = 4.0
|
||||
dit_config["num_heads"] = 24
|
||||
dit_config["num_heads"] = in_w.shape[0] // 128
|
||||
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["axes_dim"] = [16, 56, 56]
|
||||
dit_config["theta"] = 256
|
||||
dit_config["qkv_bias"] = True
|
||||
if '{}byt5_in.fc1.weight'.format(key_prefix) in state_dict:
|
||||
dit_config["byt5"] = True
|
||||
else:
|
||||
dit_config["byt5"] = False
|
||||
|
||||
guidance_keys = list(filter(lambda a: a.startswith("{}guidance_in.".format(key_prefix)), state_dict_keys))
|
||||
dit_config["guidance_embed"] = len(guidance_keys) > 0
|
||||
return dit_config
|
||||
|
||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and '{}img_in.weight'.format(key_prefix) in state_dict_keys: #Flux
|
||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "flux"
|
||||
dit_config["in_channels"] = 16
|
||||
@@ -184,6 +204,18 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["out_dim"] = 3072
|
||||
dit_config["hidden_dim"] = 5120
|
||||
dit_config["n_layers"] = 5
|
||||
if f"{key_prefix}nerf_blocks.0.norm.scale" in state_dict_keys: #Chroma Radiance
|
||||
dit_config["image_model"] = "chroma_radiance"
|
||||
dit_config["in_channels"] = 3
|
||||
dit_config["out_channels"] = 3
|
||||
dit_config["patch_size"] = 16
|
||||
dit_config["nerf_hidden_size"] = 64
|
||||
dit_config["nerf_mlp_ratio"] = 4
|
||||
dit_config["nerf_depth"] = 4
|
||||
dit_config["nerf_max_freqs"] = 8
|
||||
dit_config["nerf_tile_size"] = 32
|
||||
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
|
||||
dit_config["nerf_embedder_dtype"] = torch.float32
|
||||
else:
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
return dit_config
|
||||
@@ -346,7 +378,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "wan2.1"
|
||||
dim = state_dict['{}head.modulation'.format(key_prefix)].shape[-1]
|
||||
out_dim = state_dict['{}head.head.weight'.format(key_prefix)].shape[0] // 4
|
||||
dit_config["dim"] = dim
|
||||
dit_config["out_dim"] = out_dim
|
||||
dit_config["num_heads"] = dim // 128
|
||||
dit_config["ffn_dim"] = state_dict['{}blocks.0.ffn.0.weight'.format(key_prefix)].shape[0]
|
||||
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.')
|
||||
@@ -362,7 +396,16 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["vace_in_dim"] = state_dict['{}vace_patch_embedding.weight'.format(key_prefix)].shape[1]
|
||||
dit_config["vace_layers"] = count_blocks(state_dict_keys, '{}vace_blocks.'.format(key_prefix) + '{}.')
|
||||
elif '{}control_adapter.conv.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "camera"
|
||||
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "camera"
|
||||
else:
|
||||
dit_config["model_type"] = "camera_2.2"
|
||||
elif '{}casual_audio_encoder.encoder.final_linear.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "s2v"
|
||||
elif '{}audio_proj.audio_proj_glob_1.layer.bias'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "humo"
|
||||
elif '{}face_adapter.fuser_blocks.0.k_norm.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "animate"
|
||||
else:
|
||||
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "i2v"
|
||||
@@ -371,6 +414,11 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
flf_weight = state_dict.get('{}img_emb.emb_pos'.format(key_prefix))
|
||||
if flf_weight is not None:
|
||||
dit_config["flf_pos_embed_token_number"] = flf_weight.shape[1]
|
||||
|
||||
ref_conv_weight = state_dict.get('{}ref_conv.weight'.format(key_prefix))
|
||||
if ref_conv_weight is not None:
|
||||
dit_config["in_dim_ref_conv"] = ref_conv_weight.shape[1]
|
||||
|
||||
return dit_config
|
||||
|
||||
if '{}latent_in.weight'.format(key_prefix) in state_dict_keys: # Hunyuan 3D
|
||||
@@ -388,6 +436,20 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
return dit_config
|
||||
|
||||
if f"{key_prefix}t_embedder.mlp.2.weight" in state_dict_keys: # Hunyuan 3D 2.1
|
||||
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "hunyuan3d2_1"
|
||||
dit_config["in_channels"] = state_dict[f"{key_prefix}x_embedder.weight"].shape[1]
|
||||
dit_config["context_dim"] = 1024
|
||||
dit_config["hidden_size"] = state_dict[f"{key_prefix}x_embedder.weight"].shape[0]
|
||||
dit_config["mlp_ratio"] = 4.0
|
||||
dit_config["num_heads"] = 16
|
||||
dit_config["depth"] = count_blocks(state_dict_keys, f"{key_prefix}blocks.{{}}")
|
||||
dit_config["qkv_bias"] = False
|
||||
dit_config["guidance_cond_proj_dim"] = None#f"{key_prefix}t_embedder.cond_proj.weight" in state_dict_keys
|
||||
return dit_config
|
||||
|
||||
if '{}caption_projection.0.linear.weight'.format(key_prefix) in state_dict_keys: # HiDream
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "hidream"
|
||||
@@ -479,6 +541,13 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["timestep_scale"] = 1000.0
|
||||
return dit_config
|
||||
|
||||
if '{}txt_norm.weight'.format(key_prefix) in state_dict_keys: # Qwen Image
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "qwen_image"
|
||||
dit_config["in_channels"] = state_dict['{}img_in.weight'.format(key_prefix)].shape[1]
|
||||
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
|
||||
return dit_config
|
||||
|
||||
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
||||
return None
|
||||
|
||||
@@ -865,7 +934,7 @@ def convert_diffusers_mmdit(state_dict, output_prefix=""):
|
||||
depth_single_blocks = count_blocks(state_dict, 'single_transformer_blocks.{}.')
|
||||
hidden_size = state_dict["x_embedder.bias"].shape[0]
|
||||
sd_map = comfy.utils.flux_to_diffusers({"depth": depth, "depth_single_blocks": depth_single_blocks, "hidden_size": hidden_size}, output_prefix=output_prefix)
|
||||
elif 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: #SD3
|
||||
elif 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict and 'pos_embed.proj.weight' in state_dict: #SD3
|
||||
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
|
||||
depth = state_dict["pos_embed.proj.weight"].shape[0] // 64
|
||||
sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix)
|
||||
|
||||
@@ -22,6 +22,7 @@ from enum import Enum
|
||||
from comfy.cli_args import args, PerformanceFeature
|
||||
import torch
|
||||
import sys
|
||||
import importlib
|
||||
import platform
|
||||
import weakref
|
||||
import gc
|
||||
@@ -78,7 +79,6 @@ try:
|
||||
torch_version = torch.version.__version__
|
||||
temp = torch_version.split(".")
|
||||
torch_version_numeric = (int(temp[0]), int(temp[1]))
|
||||
xpu_available = (torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] <= 4)) and torch.xpu.is_available()
|
||||
except:
|
||||
pass
|
||||
|
||||
@@ -101,11 +101,15 @@ if args.directml is not None:
|
||||
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
|
||||
|
||||
try:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
_ = torch.xpu.device_count()
|
||||
xpu_available = xpu_available or torch.xpu.is_available()
|
||||
import intel_extension_for_pytorch as ipex # noqa: F401
|
||||
except:
|
||||
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())
|
||||
pass
|
||||
|
||||
try:
|
||||
_ = torch.xpu.device_count()
|
||||
xpu_available = torch.xpu.is_available()
|
||||
except:
|
||||
xpu_available = False
|
||||
|
||||
try:
|
||||
if torch.backends.mps.is_available():
|
||||
@@ -128,6 +132,11 @@ try:
|
||||
except:
|
||||
mlu_available = False
|
||||
|
||||
try:
|
||||
ixuca_available = hasattr(torch, "corex")
|
||||
except:
|
||||
ixuca_available = False
|
||||
|
||||
if args.cpu:
|
||||
cpu_state = CPUState.CPU
|
||||
|
||||
@@ -151,6 +160,12 @@ def is_mlu():
|
||||
return True
|
||||
return False
|
||||
|
||||
def is_ixuca():
|
||||
global ixuca_available
|
||||
if ixuca_available:
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_torch_device():
|
||||
global directml_enabled
|
||||
global cpu_state
|
||||
@@ -186,8 +201,9 @@ def get_total_memory(dev=None, torch_total_too=False):
|
||||
elif is_intel_xpu():
|
||||
stats = torch.xpu.memory_stats(dev)
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_total_xpu = torch.xpu.get_device_properties(dev).total_memory
|
||||
mem_total_torch = mem_reserved
|
||||
mem_total = torch.xpu.get_device_properties(dev).total_memory
|
||||
mem_total = mem_total_xpu
|
||||
elif is_ascend_npu():
|
||||
stats = torch.npu.memory_stats(dev)
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
@@ -274,6 +290,24 @@ def is_amd():
|
||||
return True
|
||||
return False
|
||||
|
||||
def amd_min_version(device=None, min_rdna_version=0):
|
||||
if not is_amd():
|
||||
return False
|
||||
|
||||
if is_device_cpu(device):
|
||||
return False
|
||||
|
||||
arch = torch.cuda.get_device_properties(device).gcnArchName
|
||||
if arch.startswith('gfx') and len(arch) == 7:
|
||||
try:
|
||||
cmp_rdna_version = int(arch[4]) + 2
|
||||
except:
|
||||
cmp_rdna_version = 0
|
||||
if cmp_rdna_version >= min_rdna_version:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
MIN_WEIGHT_MEMORY_RATIO = 0.4
|
||||
if is_nvidia():
|
||||
MIN_WEIGHT_MEMORY_RATIO = 0.0
|
||||
@@ -288,7 +322,7 @@ try:
|
||||
if torch_version_numeric[0] >= 2:
|
||||
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
if is_intel_xpu() or is_ascend_npu() or is_mlu():
|
||||
if is_intel_xpu() or is_ascend_npu() or is_mlu() or is_ixuca():
|
||||
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
except:
|
||||
@@ -306,11 +340,15 @@ try:
|
||||
logging.info("AMD arch: {}".format(arch))
|
||||
logging.info("ROCm version: {}".format(rocm_version))
|
||||
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
|
||||
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx1201 and gfx950
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
if importlib.util.find_spec('triton') is not None: # AMD efficient attention implementation depends on triton. TODO: better way of detecting if it's compiled in or not.
|
||||
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
|
||||
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
# if torch_version_numeric >= (2, 8):
|
||||
# if any((a in arch) for a in ["gfx1201"]):
|
||||
# ENABLE_PYTORCH_ATTENTION = True
|
||||
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
|
||||
if any((a in arch) for a in ["gfx1201", "gfx942", "gfx950"]): # TODO: more arches
|
||||
if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx942", "gfx950"]): # TODO: more arches
|
||||
SUPPORT_FP8_OPS = True
|
||||
|
||||
except:
|
||||
@@ -325,7 +363,7 @@ if ENABLE_PYTORCH_ATTENTION:
|
||||
|
||||
PRIORITIZE_FP16 = False # TODO: remove and replace with something that shows exactly which dtype is faster than the other
|
||||
try:
|
||||
if is_nvidia() and PerformanceFeature.Fp16Accumulation in args.fast:
|
||||
if (is_nvidia() or is_amd()) and PerformanceFeature.Fp16Accumulation in args.fast:
|
||||
torch.backends.cuda.matmul.allow_fp16_accumulation = True
|
||||
PRIORITIZE_FP16 = True # TODO: limit to cards where it actually boosts performance
|
||||
logging.info("Enabled fp16 accumulation.")
|
||||
@@ -377,6 +415,8 @@ def get_torch_device_name(device):
|
||||
except:
|
||||
allocator_backend = ""
|
||||
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
|
||||
elif device.type == "xpu":
|
||||
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
||||
else:
|
||||
return "{}".format(device.type)
|
||||
elif is_intel_xpu():
|
||||
@@ -512,6 +552,8 @@ WINDOWS = any(platform.win32_ver())
|
||||
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
|
||||
if WINDOWS:
|
||||
EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue
|
||||
if total_vram > (15 * 1024): # more extra reserved vram on 16GB+ cards
|
||||
EXTRA_RESERVED_VRAM += 100 * 1024 * 1024
|
||||
|
||||
if args.reserve_vram is not None:
|
||||
EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024
|
||||
@@ -571,7 +613,13 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
|
||||
else:
|
||||
minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory())
|
||||
|
||||
models = set(models)
|
||||
models_temp = set()
|
||||
for m in models:
|
||||
models_temp.add(m)
|
||||
for mm in m.model_patches_models():
|
||||
models_temp.add(mm)
|
||||
|
||||
models = models_temp
|
||||
|
||||
models_to_load = []
|
||||
|
||||
@@ -597,7 +645,9 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
|
||||
if loaded_model.model.is_clone(current_loaded_models[i].model):
|
||||
to_unload = [i] + to_unload
|
||||
for i in to_unload:
|
||||
current_loaded_models.pop(i).model.detach(unpatch_all=False)
|
||||
model_to_unload = current_loaded_models.pop(i)
|
||||
model_to_unload.model.detach(unpatch_all=False)
|
||||
model_to_unload.model_finalizer.detach()
|
||||
|
||||
total_memory_required = {}
|
||||
for loaded_model in models_to_load:
|
||||
@@ -876,7 +926,10 @@ def vae_dtype(device=None, allowed_dtypes=[]):
|
||||
return d
|
||||
|
||||
# NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32
|
||||
if d == torch.bfloat16 and (not is_amd()) and should_use_bf16(device):
|
||||
# slowness still a problem on pytorch nightly 2.9.0.dev20250720+rocm6.4 tested on RDNA3
|
||||
# also a problem on RDNA4 except fp32 is also slow there.
|
||||
# This is due to large bf16 convolutions being extremely slow.
|
||||
if d == torch.bfloat16 and ((not is_amd()) or amd_min_version(device, min_rdna_version=4)) and should_use_bf16(device):
|
||||
return d
|
||||
|
||||
return torch.float32
|
||||
@@ -926,9 +979,11 @@ def pick_weight_dtype(dtype, fallback_dtype, device=None):
|
||||
return dtype
|
||||
|
||||
def device_supports_non_blocking(device):
|
||||
if args.force_non_blocking:
|
||||
return True
|
||||
if is_device_mps(device):
|
||||
return False #pytorch bug? mps doesn't support non blocking
|
||||
if is_intel_xpu():
|
||||
if is_intel_xpu(): #xpu does support non blocking but it is slower on iGPUs for some reason so disable by default until situation changes
|
||||
return False
|
||||
if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
|
||||
return False
|
||||
@@ -968,6 +1023,8 @@ def get_offload_stream(device):
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
if is_device_cuda(device):
|
||||
ss[stream_counter].wait_stream(torch.cuda.current_stream())
|
||||
elif is_device_xpu(device):
|
||||
ss[stream_counter].wait_stream(torch.xpu.current_stream())
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
elif is_device_cuda(device):
|
||||
@@ -979,6 +1036,15 @@ def get_offload_stream(device):
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
elif is_device_xpu(device):
|
||||
ss = []
|
||||
for k in range(NUM_STREAMS):
|
||||
ss.append(torch.xpu.Stream(device=device, priority=0))
|
||||
STREAMS[device] = ss
|
||||
s = ss[stream_counter]
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
return None
|
||||
|
||||
def sync_stream(device, stream):
|
||||
@@ -986,6 +1052,8 @@ def sync_stream(device, stream):
|
||||
return
|
||||
if is_device_cuda(device):
|
||||
torch.cuda.current_stream().wait_stream(stream)
|
||||
elif is_device_xpu(device):
|
||||
torch.xpu.current_stream().wait_stream(stream)
|
||||
|
||||
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
|
||||
if device is None or weight.device == device:
|
||||
@@ -1027,6 +1095,8 @@ def xformers_enabled():
|
||||
return False
|
||||
if is_mlu():
|
||||
return False
|
||||
if is_ixuca():
|
||||
return False
|
||||
if directml_enabled:
|
||||
return False
|
||||
return XFORMERS_IS_AVAILABLE
|
||||
@@ -1062,6 +1132,8 @@ def pytorch_attention_flash_attention():
|
||||
return True
|
||||
if is_amd():
|
||||
return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention
|
||||
if is_ixuca():
|
||||
return True
|
||||
return False
|
||||
|
||||
def force_upcast_attention_dtype():
|
||||
@@ -1092,8 +1164,8 @@ def get_free_memory(dev=None, torch_free_too=False):
|
||||
stats = torch.xpu.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_xpu + mem_free_torch
|
||||
elif is_ascend_npu():
|
||||
stats = torch.npu.memory_stats(dev)
|
||||
@@ -1142,6 +1214,9 @@ def is_device_cpu(device):
|
||||
def is_device_mps(device):
|
||||
return is_device_type(device, 'mps')
|
||||
|
||||
def is_device_xpu(device):
|
||||
return is_device_type(device, 'xpu')
|
||||
|
||||
def is_device_cuda(device):
|
||||
return is_device_type(device, 'cuda')
|
||||
|
||||
@@ -1173,7 +1248,10 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
return False
|
||||
|
||||
if is_intel_xpu():
|
||||
return True
|
||||
if torch_version_numeric < (2, 3):
|
||||
return True
|
||||
else:
|
||||
return torch.xpu.get_device_properties(device).has_fp16
|
||||
|
||||
if is_ascend_npu():
|
||||
return True
|
||||
@@ -1181,6 +1259,9 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
if is_mlu():
|
||||
return True
|
||||
|
||||
if is_ixuca():
|
||||
return True
|
||||
|
||||
if torch.version.hip:
|
||||
return True
|
||||
|
||||
@@ -1236,11 +1317,17 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
return False
|
||||
|
||||
if is_intel_xpu():
|
||||
return True
|
||||
if torch_version_numeric < (2, 3):
|
||||
return True
|
||||
else:
|
||||
return torch.xpu.is_bf16_supported()
|
||||
|
||||
if is_ascend_npu():
|
||||
return True
|
||||
|
||||
if is_ixuca():
|
||||
return True
|
||||
|
||||
if is_amd():
|
||||
arch = torch.cuda.get_device_properties(device).gcnArchName
|
||||
if any((a in arch) for a in ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]): # RDNA2 and older don't support bf16
|
||||
|
||||
@@ -379,6 +379,9 @@ class ModelPatcher:
|
||||
def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False):
|
||||
self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization)
|
||||
|
||||
def set_model_sampler_calc_cond_batch_function(self, sampler_calc_cond_batch_function):
|
||||
self.model_options["sampler_calc_cond_batch_function"] = sampler_calc_cond_batch_function
|
||||
|
||||
def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction):
|
||||
self.model_options["model_function_wrapper"] = unet_wrapper_function
|
||||
|
||||
@@ -427,6 +430,12 @@ class ModelPatcher:
|
||||
def set_model_forward_timestep_embed_patch(self, patch):
|
||||
self.set_model_patch(patch, "forward_timestep_embed_patch")
|
||||
|
||||
def set_model_double_block_patch(self, patch):
|
||||
self.set_model_patch(patch, "double_block")
|
||||
|
||||
def set_model_post_input_patch(self, patch):
|
||||
self.set_model_patch(patch, "post_input")
|
||||
|
||||
def add_object_patch(self, name, obj):
|
||||
self.object_patches[name] = obj
|
||||
|
||||
@@ -483,6 +492,30 @@ class ModelPatcher:
|
||||
if hasattr(wrap_func, "to"):
|
||||
self.model_options["model_function_wrapper"] = wrap_func.to(device)
|
||||
|
||||
def model_patches_models(self):
|
||||
to = self.model_options["transformer_options"]
|
||||
models = []
|
||||
if "patches" in to:
|
||||
patches = to["patches"]
|
||||
for name in patches:
|
||||
patch_list = patches[name]
|
||||
for i in range(len(patch_list)):
|
||||
if hasattr(patch_list[i], "models"):
|
||||
models += patch_list[i].models()
|
||||
if "patches_replace" in to:
|
||||
patches = to["patches_replace"]
|
||||
for name in patches:
|
||||
patch_list = patches[name]
|
||||
for k in patch_list:
|
||||
if hasattr(patch_list[k], "models"):
|
||||
models += patch_list[k].models()
|
||||
if "model_function_wrapper" in self.model_options:
|
||||
wrap_func = self.model_options["model_function_wrapper"]
|
||||
if hasattr(wrap_func, "models"):
|
||||
models += wrap_func.models()
|
||||
|
||||
return models
|
||||
|
||||
def model_dtype(self):
|
||||
if hasattr(self.model, "get_dtype"):
|
||||
return self.model.get_dtype()
|
||||
|
||||
39
comfy/ops.py
39
comfy/ops.py
@@ -24,8 +24,37 @@ import comfy.float
|
||||
import comfy.rmsnorm
|
||||
import contextlib
|
||||
|
||||
|
||||
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
|
||||
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
|
||||
|
||||
|
||||
try:
|
||||
if torch.cuda.is_available():
|
||||
from torch.nn.attention import SDPBackend, sdpa_kernel
|
||||
import inspect
|
||||
if "set_priority" in inspect.signature(sdpa_kernel).parameters:
|
||||
SDPA_BACKEND_PRIORITY = [
|
||||
SDPBackend.FLASH_ATTENTION,
|
||||
SDPBackend.EFFICIENT_ATTENTION,
|
||||
SDPBackend.MATH,
|
||||
]
|
||||
|
||||
SDPA_BACKEND_PRIORITY.insert(0, SDPBackend.CUDNN_ATTENTION)
|
||||
|
||||
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
|
||||
with sdpa_kernel(SDPA_BACKEND_PRIORITY, set_priority=True):
|
||||
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
|
||||
else:
|
||||
logging.warning("Torch version too old to set sdpa backend priority.")
|
||||
except (ModuleNotFoundError, TypeError):
|
||||
logging.warning("Could not set sdpa backend priority.")
|
||||
|
||||
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
||||
|
||||
if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast:
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
def cast_to_input(weight, input, non_blocking=False, copy=True):
|
||||
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
@@ -336,9 +365,13 @@ class fp8_ops(manual_cast):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
out = fp8_linear(self, input)
|
||||
if out is not None:
|
||||
return out
|
||||
if not self.training:
|
||||
try:
|
||||
out = fp8_linear(self, input)
|
||||
if out is not None:
|
||||
return out
|
||||
except Exception as e:
|
||||
logging.info("Exception during fp8 op: {}".format(e))
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
@@ -50,6 +50,7 @@ class WrappersMP:
|
||||
OUTER_SAMPLE = "outer_sample"
|
||||
PREPARE_SAMPLING = "prepare_sampling"
|
||||
SAMPLER_SAMPLE = "sampler_sample"
|
||||
PREDICT_NOISE = "predict_noise"
|
||||
CALC_COND_BATCH = "calc_cond_batch"
|
||||
APPLY_MODEL = "apply_model"
|
||||
DIFFUSION_MODEL = "diffusion_model"
|
||||
|
||||
16
comfy/pixel_space_convert.py
Normal file
16
comfy/pixel_space_convert.py
Normal file
@@ -0,0 +1,16 @@
|
||||
import torch
|
||||
|
||||
|
||||
# "Fake" VAE that converts from IMAGE B, H, W, C and values on the scale of 0..1
|
||||
# to LATENT B, C, H, W and values on the scale of -1..1.
|
||||
class PixelspaceConversionVAE(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.pixel_space_vae = torch.nn.Parameter(torch.tensor(1.0))
|
||||
|
||||
def encode(self, pixels: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
|
||||
return pixels
|
||||
|
||||
def decode(self, samples: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
|
||||
return samples
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import comfy.model_management
|
||||
import numbers
|
||||
import logging
|
||||
|
||||
RMSNorm = None
|
||||
|
||||
@@ -9,6 +10,7 @@ try:
|
||||
RMSNorm = torch.nn.RMSNorm
|
||||
except:
|
||||
rms_norm_torch = None
|
||||
logging.warning("Please update pytorch to use native RMSNorm")
|
||||
|
||||
|
||||
def rms_norm(x, weight=None, eps=1e-6):
|
||||
|
||||
@@ -149,7 +149,7 @@ def cleanup_models(conds, models):
|
||||
|
||||
cleanup_additional_models(set(control_cleanup))
|
||||
|
||||
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
|
||||
def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
|
||||
'''
|
||||
Registers hooks from conds.
|
||||
'''
|
||||
@@ -158,8 +158,8 @@ def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
|
||||
for k in conds:
|
||||
get_hooks_from_cond(conds[k], hooks)
|
||||
# add wrappers and callbacks from ModelPatcher to transformer_options
|
||||
model_options["transformer_options"]["wrappers"] = comfy.patcher_extension.copy_nested_dicts(model.wrappers)
|
||||
model_options["transformer_options"]["callbacks"] = comfy.patcher_extension.copy_nested_dicts(model.callbacks)
|
||||
comfy.patcher_extension.merge_nested_dicts(model_options["transformer_options"].setdefault("wrappers", {}), model.wrappers, copy_dict1=False)
|
||||
comfy.patcher_extension.merge_nested_dicts(model_options["transformer_options"].setdefault("callbacks", {}), model.callbacks, copy_dict1=False)
|
||||
# begin registering hooks
|
||||
registered = comfy.hooks.HookGroup()
|
||||
target_dict = comfy.hooks.create_target_dict(comfy.hooks.EnumWeightTarget.Model)
|
||||
|
||||
46
comfy/samplers.py
Normal file → Executable file
46
comfy/samplers.py
Normal file → Executable file
@@ -16,6 +16,8 @@ import comfy.sampler_helpers
|
||||
import comfy.model_patcher
|
||||
import comfy.patcher_extension
|
||||
import comfy.hooks
|
||||
import comfy.context_windows
|
||||
import comfy.utils
|
||||
import scipy.stats
|
||||
import numpy
|
||||
|
||||
@@ -60,7 +62,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
|
||||
if "mask_strength" in conds:
|
||||
mask_strength = conds["mask_strength"]
|
||||
mask = conds['mask']
|
||||
assert (mask.shape[1:] == x_in.shape[2:])
|
||||
# assert (mask.shape[1:] == x_in.shape[2:])
|
||||
|
||||
mask = mask[:input_x.shape[0]]
|
||||
if area is not None:
|
||||
@@ -68,7 +70,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
|
||||
mask = mask.narrow(i + 1, area[len(dims) + i], area[i])
|
||||
|
||||
mask = mask * mask_strength
|
||||
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
|
||||
mask = mask.unsqueeze(1).repeat((input_x.shape[0] // mask.shape[0], input_x.shape[1]) + (1, ) * (mask.ndim - 1))
|
||||
else:
|
||||
mask = torch.ones_like(input_x)
|
||||
mult = mask * strength
|
||||
@@ -89,7 +91,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
|
||||
conditioning = {}
|
||||
model_conds = conds["model_conds"]
|
||||
for c in model_conds:
|
||||
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
|
||||
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], area=area)
|
||||
|
||||
hooks = conds.get('hooks', None)
|
||||
control = conds.get('control', None)
|
||||
@@ -198,14 +200,20 @@ def finalize_default_conds(model: 'BaseModel', hooked_to_run: dict[comfy.hooks.H
|
||||
hooked_to_run.setdefault(p.hooks, list())
|
||||
hooked_to_run[p.hooks] += [(p, i)]
|
||||
|
||||
def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
|
||||
def calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options: dict[str]):
|
||||
handler: comfy.context_windows.ContextHandlerABC = model_options.get("context_handler", None)
|
||||
if handler is None or not handler.should_use_context(model, conds, x_in, timestep, model_options):
|
||||
return _calc_cond_batch_outer(model, conds, x_in, timestep, model_options)
|
||||
return handler.execute(_calc_cond_batch_outer, model, conds, x_in, timestep, model_options)
|
||||
|
||||
def _calc_cond_batch_outer(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
|
||||
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
|
||||
_calc_cond_batch,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.CALC_COND_BATCH, model_options, is_model_options=True)
|
||||
)
|
||||
return executor.execute(model, conds, x_in, timestep, model_options)
|
||||
|
||||
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
|
||||
def _calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
|
||||
out_conds = []
|
||||
out_counts = []
|
||||
# separate conds by matching hooks
|
||||
@@ -352,7 +360,7 @@ def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
|
||||
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None):
|
||||
if "sampler_cfg_function" in model_options:
|
||||
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
|
||||
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
|
||||
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options, "input_cond": cond, "input_uncond": uncond}
|
||||
cfg_result = x - model_options["sampler_cfg_function"](args)
|
||||
else:
|
||||
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
|
||||
@@ -373,12 +381,16 @@ def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_option
|
||||
uncond_ = uncond
|
||||
|
||||
conds = [cond, uncond_]
|
||||
out = calc_cond_batch(model, conds, x, timestep, model_options)
|
||||
if "sampler_calc_cond_batch_function" in model_options:
|
||||
args = {"conds": conds, "input": x, "sigma": timestep, "model": model, "model_options": model_options}
|
||||
out = model_options["sampler_calc_cond_batch_function"](args)
|
||||
else:
|
||||
out = calc_cond_batch(model, conds, x, timestep, model_options)
|
||||
|
||||
for fn in model_options.get("sampler_pre_cfg_function", []):
|
||||
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
|
||||
"input": x, "sigma": timestep, "model": model, "model_options": model_options}
|
||||
out = fn(args)
|
||||
out = fn(args)
|
||||
|
||||
return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)
|
||||
|
||||
@@ -542,7 +554,10 @@ def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
|
||||
if len(mask.shape) == len(dims):
|
||||
mask = mask.unsqueeze(0)
|
||||
if mask.shape[1:] != dims:
|
||||
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1)
|
||||
if mask.ndim < 4:
|
||||
mask = comfy.utils.common_upscale(mask.unsqueeze(1), dims[-1], dims[-2], 'bilinear', 'none').squeeze(1)
|
||||
else:
|
||||
mask = comfy.utils.common_upscale(mask, dims[-1], dims[-2], 'bilinear', 'none')
|
||||
|
||||
if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2
|
||||
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
|
||||
@@ -714,9 +729,9 @@ class Sampler:
|
||||
|
||||
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_2m_sde_heun", "dpmpp_2m_sde_heun_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
|
||||
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3"]
|
||||
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3", "sa_solver", "sa_solver_pece"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
@@ -942,7 +957,14 @@ class CFGGuider:
|
||||
self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k])
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.predict_noise(*args, **kwargs)
|
||||
return self.outer_predict_noise(*args, **kwargs)
|
||||
|
||||
def outer_predict_noise(self, x, timestep, model_options={}, seed=None):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self.predict_noise,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREDICT_NOISE, self.model_options, is_model_options=True)
|
||||
).execute(x, timestep, model_options, seed)
|
||||
|
||||
def predict_noise(self, x, timestep, model_options={}, seed=None):
|
||||
return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)
|
||||
|
||||
153
comfy/sd.py
153
comfy/sd.py
@@ -14,10 +14,14 @@ import comfy.ldm.genmo.vae.model
|
||||
import comfy.ldm.lightricks.vae.causal_video_autoencoder
|
||||
import comfy.ldm.cosmos.vae
|
||||
import comfy.ldm.wan.vae
|
||||
import comfy.ldm.wan.vae2_2
|
||||
import comfy.ldm.hunyuan3d.vae
|
||||
import comfy.ldm.ace.vae.music_dcae_pipeline
|
||||
import comfy.ldm.hunyuan_video.vae
|
||||
import comfy.pixel_space_convert
|
||||
import yaml
|
||||
import math
|
||||
import os
|
||||
|
||||
import comfy.utils
|
||||
|
||||
@@ -45,6 +49,8 @@ import comfy.text_encoders.wan
|
||||
import comfy.text_encoders.hidream
|
||||
import comfy.text_encoders.ace
|
||||
import comfy.text_encoders.omnigen2
|
||||
import comfy.text_encoders.qwen_image
|
||||
import comfy.text_encoders.hunyuan_image
|
||||
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
@@ -280,6 +286,7 @@ class VAE:
|
||||
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float32]
|
||||
self.disable_offload = False
|
||||
self.not_video = False
|
||||
|
||||
self.downscale_index_formula = None
|
||||
self.upscale_index_formula = None
|
||||
@@ -325,6 +332,19 @@ class VAE:
|
||||
self.first_stage_model = StageC_coder()
|
||||
self.downscale_ratio = 32
|
||||
self.latent_channels = 16
|
||||
elif "decoder.conv_in.weight" in sd and sd['decoder.conv_in.weight'].shape[1] == 64:
|
||||
ddconfig = {"block_out_channels": [128, 256, 512, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 32, "downsample_match_channel": True, "upsample_match_channel": True}
|
||||
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
||||
self.downscale_ratio = 32
|
||||
self.upscale_ratio = 32
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
||||
encoder_config={'target': "comfy.ldm.hunyuan_video.vae.Encoder", 'params': ddconfig},
|
||||
decoder_config={'target': "comfy.ldm.hunyuan_video.vae.Decoder", 'params': ddconfig})
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype)
|
||||
|
||||
elif "decoder.conv_in.weight" in sd:
|
||||
#default SD1.x/SD2.x VAE parameters
|
||||
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
||||
@@ -391,6 +411,23 @@ class VAE:
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32)
|
||||
self.downscale_index_formula = (8, 32, 32)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float32]
|
||||
elif "decoder.conv_in.conv.weight" in sd and sd['decoder.conv_in.conv.weight'].shape[1] == 32:
|
||||
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True}
|
||||
ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
|
||||
self.latent_channels = 64
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
|
||||
self.upscale_index_formula = (4, 16, 16)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
|
||||
self.downscale_index_formula = (4, 16, 16)
|
||||
self.latent_dim = 3
|
||||
self.not_video = True
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.EmptyRegularizer"},
|
||||
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
|
||||
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (1400 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (1400 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
|
||||
elif "decoder.conv_in.conv.weight" in sd:
|
||||
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
||||
ddconfig["conv3d"] = True
|
||||
@@ -419,28 +456,53 @@ class VAE:
|
||||
self.memory_used_encode = lambda shape, dtype: (50 * (round((shape[2] + 7) / 8) * 8) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float32]
|
||||
elif "decoder.middle.0.residual.0.gamma" in sd:
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
|
||||
self.upscale_index_formula = (4, 8, 8)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
|
||||
self.downscale_index_formula = (4, 8, 8)
|
||||
self.latent_dim = 3
|
||||
self.latent_channels = 16
|
||||
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
|
||||
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
|
||||
if "decoder.upsamples.0.upsamples.0.residual.2.weight" in sd: # Wan 2.2 VAE
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
|
||||
self.upscale_index_formula = (4, 16, 16)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
|
||||
self.downscale_index_formula = (4, 16, 16)
|
||||
self.latent_dim = 3
|
||||
self.latent_channels = 48
|
||||
ddconfig = {"dim": 160, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
|
||||
self.first_stage_model = comfy.ldm.wan.vae2_2.WanVAE(**ddconfig)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.memory_used_encode = lambda shape, dtype: 3300 * shape[3] * shape[4] * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: 8000 * shape[3] * shape[4] * (16 * 16) * model_management.dtype_size(dtype)
|
||||
else: # Wan 2.1 VAE
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
|
||||
self.upscale_index_formula = (4, 8, 8)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
|
||||
self.downscale_index_formula = (4, 8, 8)
|
||||
self.latent_dim = 3
|
||||
self.latent_channels = 16
|
||||
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
|
||||
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
|
||||
# Hunyuan 3d v2 2.0 & 2.1
|
||||
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
|
||||
|
||||
self.latent_dim = 1
|
||||
ln_post = "geo_decoder.ln_post.weight" in sd
|
||||
inner_size = sd["geo_decoder.output_proj.weight"].shape[1]
|
||||
downsample_ratio = sd["post_kl.weight"].shape[0] // inner_size
|
||||
mlp_expand = sd["geo_decoder.cross_attn_decoder.mlp.c_fc.weight"].shape[0] // inner_size
|
||||
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) # TODO
|
||||
self.memory_used_decode = lambda shape, dtype: (1024 * 1024 * 1024 * 2.0) * model_management.dtype_size(dtype) # TODO
|
||||
ddconfig = {"embed_dim": 64, "num_freqs": 8, "include_pi": False, "heads": 16, "width": 1024, "num_decoder_layers": 16, "qkv_bias": False, "qk_norm": True, "geo_decoder_mlp_expand_ratio": mlp_expand, "geo_decoder_downsample_ratio": downsample_ratio, "geo_decoder_ln_post": ln_post}
|
||||
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE(**ddconfig)
|
||||
|
||||
def estimate_memory(shape, dtype, num_layers = 16, kv_cache_multiplier = 2):
|
||||
batch, num_tokens, hidden_dim = shape
|
||||
dtype_size = model_management.dtype_size(dtype)
|
||||
|
||||
total_mem = batch * num_tokens * hidden_dim * dtype_size * (1 + kv_cache_multiplier * num_layers)
|
||||
return total_mem
|
||||
|
||||
# better memory estimations
|
||||
self.memory_used_encode = lambda shape, dtype, num_layers = 8, kv_cache_multiplier = 0:\
|
||||
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
|
||||
|
||||
self.memory_used_decode = lambda shape, dtype, num_layers = 16, kv_cache_multiplier = 2: \
|
||||
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
|
||||
|
||||
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE()
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
|
||||
|
||||
elif "vocoder.backbone.channel_layers.0.0.bias" in sd: #Ace Step Audio
|
||||
self.first_stage_model = comfy.ldm.ace.vae.music_dcae_pipeline.MusicDCAE(source_sample_rate=44100)
|
||||
self.memory_used_encode = lambda shape, dtype: (shape[2] * 330) * model_management.dtype_size(dtype)
|
||||
@@ -455,6 +517,15 @@ class VAE:
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.disable_offload = True
|
||||
self.extra_1d_channel = 16
|
||||
elif "pixel_space_vae" in sd:
|
||||
self.first_stage_model = comfy.pixel_space_convert.PixelspaceConversionVAE()
|
||||
self.memory_used_encode = lambda shape, dtype: (1 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (1 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
|
||||
self.downscale_ratio = 1
|
||||
self.upscale_ratio = 1
|
||||
self.latent_channels = 3
|
||||
self.latent_dim = 2
|
||||
self.output_channels = 3
|
||||
else:
|
||||
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
|
||||
self.first_stage_model = None
|
||||
@@ -627,7 +698,10 @@ class VAE:
|
||||
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
||||
pixel_samples = pixel_samples.movedim(-1, 1)
|
||||
if self.latent_dim == 3 and pixel_samples.ndim < 5:
|
||||
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
||||
if not self.not_video:
|
||||
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
||||
else:
|
||||
pixel_samples = pixel_samples.unsqueeze(2)
|
||||
try:
|
||||
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
@@ -661,7 +735,10 @@ class VAE:
|
||||
dims = self.latent_dim
|
||||
pixel_samples = pixel_samples.movedim(-1, 1)
|
||||
if dims == 3:
|
||||
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
||||
if not self.not_video:
|
||||
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
||||
else:
|
||||
pixel_samples = pixel_samples.unsqueeze(2)
|
||||
|
||||
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
@@ -718,6 +795,7 @@ class VAE:
|
||||
except:
|
||||
return None
|
||||
|
||||
|
||||
class StyleModel:
|
||||
def __init__(self, model, device="cpu"):
|
||||
self.model = model
|
||||
@@ -756,6 +834,8 @@ class CLIPType(Enum):
|
||||
CHROMA = 15
|
||||
ACE = 16
|
||||
OMNIGEN2 = 17
|
||||
QWEN_IMAGE = 18
|
||||
HUNYUAN_IMAGE = 19
|
||||
|
||||
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
@@ -776,6 +856,8 @@ class TEModel(Enum):
|
||||
T5_XXL_OLD = 8
|
||||
GEMMA_2_2B = 9
|
||||
QWEN25_3B = 10
|
||||
QWEN25_7B = 11
|
||||
BYT5_SMALL_GLYPH = 12
|
||||
|
||||
def detect_te_model(sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
@@ -793,11 +875,18 @@ def detect_te_model(sd):
|
||||
if 'encoder.block.23.layer.1.DenseReluDense.wi.weight' in sd:
|
||||
return TEModel.T5_XXL_OLD
|
||||
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
|
||||
weight = sd['encoder.block.0.layer.0.SelfAttention.k.weight']
|
||||
if weight.shape[0] == 384:
|
||||
return TEModel.BYT5_SMALL_GLYPH
|
||||
return TEModel.T5_BASE
|
||||
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
|
||||
return TEModel.GEMMA_2_2B
|
||||
if 'model.layers.0.self_attn.k_proj.bias' in sd:
|
||||
return TEModel.QWEN25_3B
|
||||
weight = sd['model.layers.0.self_attn.k_proj.bias']
|
||||
if weight.shape[0] == 256:
|
||||
return TEModel.QWEN25_3B
|
||||
if weight.shape[0] == 512:
|
||||
return TEModel.QWEN25_7B
|
||||
if "model.layers.0.post_attention_layernorm.weight" in sd:
|
||||
return TEModel.LLAMA3_8
|
||||
return None
|
||||
@@ -902,6 +991,13 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif te_model == TEModel.QWEN25_3B:
|
||||
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.omnigen2.Omnigen2Tokenizer
|
||||
elif te_model == TEModel.QWEN25_7B:
|
||||
if clip_type == CLIPType.HUNYUAN_IMAGE:
|
||||
clip_target.clip = comfy.text_encoders.hunyuan_image.te(byt5=False, **llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
|
||||
else:
|
||||
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
|
||||
else:
|
||||
# clip_l
|
||||
if clip_type == CLIPType.SD3:
|
||||
@@ -945,6 +1041,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, **t5_kwargs, **llama_kwargs)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
elif clip_type == CLIPType.HUNYUAN_IMAGE:
|
||||
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
@@ -977,6 +1076,12 @@ def load_gligen(ckpt_path):
|
||||
model = model.half()
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
|
||||
def model_detection_error_hint(path, state_dict):
|
||||
filename = os.path.basename(path)
|
||||
if 'lora' in filename.lower():
|
||||
return "\nHINT: This seems to be a Lora file and Lora files should be put in the lora folder and loaded with a lora loader node.."
|
||||
return ""
|
||||
|
||||
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
|
||||
logging.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.")
|
||||
model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True)
|
||||
@@ -1005,7 +1110,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True)
|
||||
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options, metadata=metadata)
|
||||
if out is None:
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(ckpt_path, model_detection_error_hint(ckpt_path, sd)))
|
||||
return out
|
||||
|
||||
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None):
|
||||
@@ -1177,7 +1282,7 @@ def load_diffusion_model(unet_path, model_options={}):
|
||||
model = load_diffusion_model_state_dict(sd, model_options=model_options)
|
||||
if model is None:
|
||||
logging.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(unet_path, model_detection_error_hint(unet_path, sd)))
|
||||
return model
|
||||
|
||||
def load_unet(unet_path, dtype=None):
|
||||
|
||||
@@ -204,17 +204,19 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
tokens_embed = self.transformer.get_input_embeddings()(tokens_embed, out_dtype=torch.float32)
|
||||
index = 0
|
||||
pad_extra = 0
|
||||
embeds_info = []
|
||||
for o in other_embeds:
|
||||
emb = o[1]
|
||||
if torch.is_tensor(emb):
|
||||
emb = {"type": "embedding", "data": emb}
|
||||
|
||||
extra = None
|
||||
emb_type = emb.get("type", None)
|
||||
if emb_type == "embedding":
|
||||
emb = emb.get("data", None)
|
||||
else:
|
||||
if hasattr(self.transformer, "preprocess_embed"):
|
||||
emb = self.transformer.preprocess_embed(emb, device=device)
|
||||
emb, extra = self.transformer.preprocess_embed(emb, device=device)
|
||||
else:
|
||||
emb = None
|
||||
|
||||
@@ -229,6 +231,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
tokens_embed = torch.cat([tokens_embed[:, :ind], emb, tokens_embed[:, ind:]], dim=1)
|
||||
attention_mask = attention_mask[:ind] + [1] * emb_shape + attention_mask[ind:]
|
||||
index += emb_shape - 1
|
||||
embeds_info.append({"type": emb_type, "index": ind, "size": emb_shape, "extra": extra})
|
||||
else:
|
||||
index += -1
|
||||
pad_extra += emb_shape
|
||||
@@ -243,11 +246,11 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
attention_masks.append(attention_mask)
|
||||
num_tokens.append(sum(attention_mask))
|
||||
|
||||
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens
|
||||
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info
|
||||
|
||||
def forward(self, tokens):
|
||||
device = self.transformer.get_input_embeddings().weight.device
|
||||
embeds, attention_mask, num_tokens = self.process_tokens(tokens, device)
|
||||
embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device)
|
||||
|
||||
attention_mask_model = None
|
||||
if self.enable_attention_masks:
|
||||
@@ -258,7 +261,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
else:
|
||||
intermediate_output = self.layer_idx
|
||||
|
||||
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
|
||||
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32, embeds_info=embeds_info)
|
||||
|
||||
if self.layer == "last":
|
||||
z = outputs[0].float()
|
||||
@@ -531,7 +534,10 @@ class SDTokenizer:
|
||||
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
|
||||
|
||||
text = escape_important(text)
|
||||
parsed_weights = token_weights(text, 1.0)
|
||||
if kwargs.get("disable_weights", False):
|
||||
parsed_weights = [(text, 1.0)]
|
||||
else:
|
||||
parsed_weights = token_weights(text, 1.0)
|
||||
|
||||
# tokenize words
|
||||
tokens = []
|
||||
|
||||
@@ -18,7 +18,7 @@
|
||||
"single_word": false
|
||||
},
|
||||
"errors": "replace",
|
||||
"model_max_length": 77,
|
||||
"model_max_length": 8192,
|
||||
"name_or_path": "openai/clip-vit-large-patch14",
|
||||
"pad_token": "<|endoftext|>",
|
||||
"special_tokens_map_file": "./special_tokens_map.json",
|
||||
|
||||
@@ -19,6 +19,8 @@ import comfy.text_encoders.lumina2
|
||||
import comfy.text_encoders.wan
|
||||
import comfy.text_encoders.ace
|
||||
import comfy.text_encoders.omnigen2
|
||||
import comfy.text_encoders.qwen_image
|
||||
import comfy.text_encoders.hunyuan_image
|
||||
|
||||
from . import supported_models_base
|
||||
from . import latent_formats
|
||||
@@ -699,7 +701,7 @@ class Flux(supported_models_base.BASE):
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Flux
|
||||
|
||||
memory_usage_factor = 2.8
|
||||
memory_usage_factor = 3.1 # TODO: debug why flux mem usage is so weird on windows.
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
@@ -993,7 +995,7 @@ class WAN21_T2V(supported_models_base.BASE):
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Wan21
|
||||
|
||||
memory_usage_factor = 1.0
|
||||
memory_usage_factor = 0.9
|
||||
|
||||
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
|
||||
@@ -1002,7 +1004,7 @@ class WAN21_T2V(supported_models_base.BASE):
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = self.unet_config.get("dim", 2000) / 2000
|
||||
self.memory_usage_factor = self.unet_config.get("dim", 2000) / 2222
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21(self, device=device)
|
||||
@@ -1045,6 +1047,18 @@ class WAN21_Camera(WAN21_T2V):
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21_Camera(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class WAN22_Camera(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "camera_2.2",
|
||||
"in_dim": 36,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21_Camera(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class WAN21_Vace(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
@@ -1059,6 +1073,55 @@ class WAN21_Vace(WAN21_T2V):
|
||||
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class WAN21_HuMo(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "humo",
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21_HuMo(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class WAN22_S2V(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "s2v",
|
||||
}
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN22_S2V(self, device=device)
|
||||
return out
|
||||
|
||||
class WAN22_Animate(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "animate",
|
||||
}
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN22_Animate(self, device=device)
|
||||
return out
|
||||
|
||||
class WAN22_T2V(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "t2v",
|
||||
"out_dim": 48,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.Wan22
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN22(self, image_to_video=True, device=device)
|
||||
return out
|
||||
|
||||
class Hunyuan3Dv2(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "hunyuan3d2",
|
||||
@@ -1089,6 +1152,17 @@ class Hunyuan3Dv2(supported_models_base.BASE):
|
||||
def clip_target(self, state_dict={}):
|
||||
return None
|
||||
|
||||
class Hunyuan3Dv2_1(Hunyuan3Dv2):
|
||||
unet_config = {
|
||||
"image_model": "hunyuan3d2_1",
|
||||
}
|
||||
|
||||
latent_format = latent_formats.Hunyuan3Dv2_1
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Hunyuan3Dv2_1(self, device = device)
|
||||
return out
|
||||
|
||||
class Hunyuan3Dv2mini(Hunyuan3Dv2):
|
||||
unet_config = {
|
||||
"image_model": "hunyuan3d2",
|
||||
@@ -1154,6 +1228,19 @@ class Chroma(supported_models_base.BASE):
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.pixart_t5.PixArtTokenizer, comfy.text_encoders.pixart_t5.pixart_te(**t5_detect))
|
||||
|
||||
class ChromaRadiance(Chroma):
|
||||
unet_config = {
|
||||
"image_model": "chroma_radiance",
|
||||
}
|
||||
|
||||
latent_format = comfy.latent_formats.ChromaRadiance
|
||||
|
||||
# Pixel-space model, no spatial compression for model input.
|
||||
memory_usage_factor = 0.038
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
return model_base.ChromaRadiance(self, device=device)
|
||||
|
||||
class ACEStep(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"audio_model": "ace",
|
||||
@@ -1214,9 +1301,79 @@ class Omnigen2(supported_models_base.BASE):
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_3b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.omnigen2.LuminaTokenizer, comfy.text_encoders.omnigen2.te(**hunyuan_detect))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.omnigen2.Omnigen2Tokenizer, comfy.text_encoders.omnigen2.te(**hunyuan_detect))
|
||||
|
||||
class QwenImage(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "qwen_image",
|
||||
}
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2]
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
"shift": 1.15,
|
||||
}
|
||||
|
||||
memory_usage_factor = 1.8 #TODO
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Wan21
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.QwenImage(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.qwen_image.QwenImageTokenizer, comfy.text_encoders.qwen_image.te(**hunyuan_detect))
|
||||
|
||||
class HunyuanImage21(HunyuanVideo):
|
||||
unet_config = {
|
||||
"image_model": "hunyuan_video",
|
||||
"vec_in_dim": None,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 5.0,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.HunyuanImage21
|
||||
|
||||
memory_usage_factor = 7.7
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.HunyuanImage21(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
|
||||
|
||||
class HunyuanImage21Refiner(HunyuanVideo):
|
||||
unet_config = {
|
||||
"image_model": "hunyuan_video",
|
||||
"patch_size": [1, 1, 1],
|
||||
"vec_in_dim": None,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 4.0,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.HunyuanImage21Refiner
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.HunyuanImage21Refiner(self, device=device)
|
||||
return out
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
||||
@@ -116,7 +116,7 @@ class BertModel_(torch.nn.Module):
|
||||
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
|
||||
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
|
||||
x = self.embeddings(input_tokens, embeds=embeds, dtype=dtype)
|
||||
mask = None
|
||||
if attention_mask is not None:
|
||||
|
||||
22
comfy/text_encoders/byt5_config_small_glyph.json
Normal file
22
comfy/text_encoders/byt5_config_small_glyph.json
Normal file
@@ -0,0 +1,22 @@
|
||||
{
|
||||
"d_ff": 3584,
|
||||
"d_kv": 64,
|
||||
"d_model": 1472,
|
||||
"decoder_start_token_id": 0,
|
||||
"dropout_rate": 0.1,
|
||||
"eos_token_id": 1,
|
||||
"dense_act_fn": "gelu_pytorch_tanh",
|
||||
"initializer_factor": 1.0,
|
||||
"is_encoder_decoder": true,
|
||||
"is_gated_act": true,
|
||||
"layer_norm_epsilon": 1e-06,
|
||||
"model_type": "t5",
|
||||
"num_decoder_layers": 4,
|
||||
"num_heads": 6,
|
||||
"num_layers": 12,
|
||||
"output_past": true,
|
||||
"pad_token_id": 0,
|
||||
"relative_attention_num_buckets": 32,
|
||||
"tie_word_embeddings": false,
|
||||
"vocab_size": 1510
|
||||
}
|
||||
127
comfy/text_encoders/byt5_tokenizer/added_tokens.json
Normal file
127
comfy/text_encoders/byt5_tokenizer/added_tokens.json
Normal file
@@ -0,0 +1,127 @@
|
||||
{
|
||||
"<extra_id_0>": 259,
|
||||
"<extra_id_100>": 359,
|
||||
"<extra_id_101>": 360,
|
||||
"<extra_id_102>": 361,
|
||||
"<extra_id_103>": 362,
|
||||
"<extra_id_104>": 363,
|
||||
"<extra_id_105>": 364,
|
||||
"<extra_id_106>": 365,
|
||||
"<extra_id_107>": 366,
|
||||
"<extra_id_108>": 367,
|
||||
"<extra_id_109>": 368,
|
||||
"<extra_id_10>": 269,
|
||||
"<extra_id_110>": 369,
|
||||
"<extra_id_111>": 370,
|
||||
"<extra_id_112>": 371,
|
||||
"<extra_id_113>": 372,
|
||||
"<extra_id_114>": 373,
|
||||
"<extra_id_115>": 374,
|
||||
"<extra_id_116>": 375,
|
||||
"<extra_id_117>": 376,
|
||||
"<extra_id_118>": 377,
|
||||
"<extra_id_119>": 378,
|
||||
"<extra_id_11>": 270,
|
||||
"<extra_id_120>": 379,
|
||||
"<extra_id_121>": 380,
|
||||
"<extra_id_122>": 381,
|
||||
"<extra_id_123>": 382,
|
||||
"<extra_id_124>": 383,
|
||||
"<extra_id_12>": 271,
|
||||
"<extra_id_13>": 272,
|
||||
"<extra_id_14>": 273,
|
||||
"<extra_id_15>": 274,
|
||||
"<extra_id_16>": 275,
|
||||
"<extra_id_17>": 276,
|
||||
"<extra_id_18>": 277,
|
||||
"<extra_id_19>": 278,
|
||||
"<extra_id_1>": 260,
|
||||
"<extra_id_20>": 279,
|
||||
"<extra_id_21>": 280,
|
||||
"<extra_id_22>": 281,
|
||||
"<extra_id_23>": 282,
|
||||
"<extra_id_24>": 283,
|
||||
"<extra_id_25>": 284,
|
||||
"<extra_id_26>": 285,
|
||||
"<extra_id_27>": 286,
|
||||
"<extra_id_28>": 287,
|
||||
"<extra_id_29>": 288,
|
||||
"<extra_id_2>": 261,
|
||||
"<extra_id_30>": 289,
|
||||
"<extra_id_31>": 290,
|
||||
"<extra_id_32>": 291,
|
||||
"<extra_id_33>": 292,
|
||||
"<extra_id_34>": 293,
|
||||
"<extra_id_35>": 294,
|
||||
"<extra_id_36>": 295,
|
||||
"<extra_id_37>": 296,
|
||||
"<extra_id_38>": 297,
|
||||
"<extra_id_39>": 298,
|
||||
"<extra_id_3>": 262,
|
||||
"<extra_id_40>": 299,
|
||||
"<extra_id_41>": 300,
|
||||
"<extra_id_42>": 301,
|
||||
"<extra_id_43>": 302,
|
||||
"<extra_id_44>": 303,
|
||||
"<extra_id_45>": 304,
|
||||
"<extra_id_46>": 305,
|
||||
"<extra_id_47>": 306,
|
||||
"<extra_id_48>": 307,
|
||||
"<extra_id_49>": 308,
|
||||
"<extra_id_4>": 263,
|
||||
"<extra_id_50>": 309,
|
||||
"<extra_id_51>": 310,
|
||||
"<extra_id_52>": 311,
|
||||
"<extra_id_53>": 312,
|
||||
"<extra_id_54>": 313,
|
||||
"<extra_id_55>": 314,
|
||||
"<extra_id_56>": 315,
|
||||
"<extra_id_57>": 316,
|
||||
"<extra_id_58>": 317,
|
||||
"<extra_id_59>": 318,
|
||||
"<extra_id_5>": 264,
|
||||
"<extra_id_60>": 319,
|
||||
"<extra_id_61>": 320,
|
||||
"<extra_id_62>": 321,
|
||||
"<extra_id_63>": 322,
|
||||
"<extra_id_64>": 323,
|
||||
"<extra_id_65>": 324,
|
||||
"<extra_id_66>": 325,
|
||||
"<extra_id_67>": 326,
|
||||
"<extra_id_68>": 327,
|
||||
"<extra_id_69>": 328,
|
||||
"<extra_id_6>": 265,
|
||||
"<extra_id_70>": 329,
|
||||
"<extra_id_71>": 330,
|
||||
"<extra_id_72>": 331,
|
||||
"<extra_id_73>": 332,
|
||||
"<extra_id_74>": 333,
|
||||
"<extra_id_75>": 334,
|
||||
"<extra_id_76>": 335,
|
||||
"<extra_id_77>": 336,
|
||||
"<extra_id_78>": 337,
|
||||
"<extra_id_79>": 338,
|
||||
"<extra_id_7>": 266,
|
||||
"<extra_id_80>": 339,
|
||||
"<extra_id_81>": 340,
|
||||
"<extra_id_82>": 341,
|
||||
"<extra_id_83>": 342,
|
||||
"<extra_id_84>": 343,
|
||||
"<extra_id_85>": 344,
|
||||
"<extra_id_86>": 345,
|
||||
"<extra_id_87>": 346,
|
||||
"<extra_id_88>": 347,
|
||||
"<extra_id_89>": 348,
|
||||
"<extra_id_8>": 267,
|
||||
"<extra_id_90>": 349,
|
||||
"<extra_id_91>": 350,
|
||||
"<extra_id_92>": 351,
|
||||
"<extra_id_93>": 352,
|
||||
"<extra_id_94>": 353,
|
||||
"<extra_id_95>": 354,
|
||||
"<extra_id_96>": 355,
|
||||
"<extra_id_97>": 356,
|
||||
"<extra_id_98>": 357,
|
||||
"<extra_id_99>": 358,
|
||||
"<extra_id_9>": 268
|
||||
}
|
||||
150
comfy/text_encoders/byt5_tokenizer/special_tokens_map.json
Normal file
150
comfy/text_encoders/byt5_tokenizer/special_tokens_map.json
Normal file
@@ -0,0 +1,150 @@
|
||||
{
|
||||
"additional_special_tokens": [
|
||||
"<extra_id_0>",
|
||||
"<extra_id_1>",
|
||||
"<extra_id_2>",
|
||||
"<extra_id_3>",
|
||||
"<extra_id_4>",
|
||||
"<extra_id_5>",
|
||||
"<extra_id_6>",
|
||||
"<extra_id_7>",
|
||||
"<extra_id_8>",
|
||||
"<extra_id_9>",
|
||||
"<extra_id_10>",
|
||||
"<extra_id_11>",
|
||||
"<extra_id_12>",
|
||||
"<extra_id_13>",
|
||||
"<extra_id_14>",
|
||||
"<extra_id_15>",
|
||||
"<extra_id_16>",
|
||||
"<extra_id_17>",
|
||||
"<extra_id_18>",
|
||||
"<extra_id_19>",
|
||||
"<extra_id_20>",
|
||||
"<extra_id_21>",
|
||||
"<extra_id_22>",
|
||||
"<extra_id_23>",
|
||||
"<extra_id_24>",
|
||||
"<extra_id_25>",
|
||||
"<extra_id_26>",
|
||||
"<extra_id_27>",
|
||||
"<extra_id_28>",
|
||||
"<extra_id_29>",
|
||||
"<extra_id_30>",
|
||||
"<extra_id_31>",
|
||||
"<extra_id_32>",
|
||||
"<extra_id_33>",
|
||||
"<extra_id_34>",
|
||||
"<extra_id_35>",
|
||||
"<extra_id_36>",
|
||||
"<extra_id_37>",
|
||||
"<extra_id_38>",
|
||||
"<extra_id_39>",
|
||||
"<extra_id_40>",
|
||||
"<extra_id_41>",
|
||||
"<extra_id_42>",
|
||||
"<extra_id_43>",
|
||||
"<extra_id_44>",
|
||||
"<extra_id_45>",
|
||||
"<extra_id_46>",
|
||||
"<extra_id_47>",
|
||||
"<extra_id_48>",
|
||||
"<extra_id_49>",
|
||||
"<extra_id_50>",
|
||||
"<extra_id_51>",
|
||||
"<extra_id_52>",
|
||||
"<extra_id_53>",
|
||||
"<extra_id_54>",
|
||||
"<extra_id_55>",
|
||||
"<extra_id_56>",
|
||||
"<extra_id_57>",
|
||||
"<extra_id_58>",
|
||||
"<extra_id_59>",
|
||||
"<extra_id_60>",
|
||||
"<extra_id_61>",
|
||||
"<extra_id_62>",
|
||||
"<extra_id_63>",
|
||||
"<extra_id_64>",
|
||||
"<extra_id_65>",
|
||||
"<extra_id_66>",
|
||||
"<extra_id_67>",
|
||||
"<extra_id_68>",
|
||||
"<extra_id_69>",
|
||||
"<extra_id_70>",
|
||||
"<extra_id_71>",
|
||||
"<extra_id_72>",
|
||||
"<extra_id_73>",
|
||||
"<extra_id_74>",
|
||||
"<extra_id_75>",
|
||||
"<extra_id_76>",
|
||||
"<extra_id_77>",
|
||||
"<extra_id_78>",
|
||||
"<extra_id_79>",
|
||||
"<extra_id_80>",
|
||||
"<extra_id_81>",
|
||||
"<extra_id_82>",
|
||||
"<extra_id_83>",
|
||||
"<extra_id_84>",
|
||||
"<extra_id_85>",
|
||||
"<extra_id_86>",
|
||||
"<extra_id_87>",
|
||||
"<extra_id_88>",
|
||||
"<extra_id_89>",
|
||||
"<extra_id_90>",
|
||||
"<extra_id_91>",
|
||||
"<extra_id_92>",
|
||||
"<extra_id_93>",
|
||||
"<extra_id_94>",
|
||||
"<extra_id_95>",
|
||||
"<extra_id_96>",
|
||||
"<extra_id_97>",
|
||||
"<extra_id_98>",
|
||||
"<extra_id_99>",
|
||||
"<extra_id_100>",
|
||||
"<extra_id_101>",
|
||||
"<extra_id_102>",
|
||||
"<extra_id_103>",
|
||||
"<extra_id_104>",
|
||||
"<extra_id_105>",
|
||||
"<extra_id_106>",
|
||||
"<extra_id_107>",
|
||||
"<extra_id_108>",
|
||||
"<extra_id_109>",
|
||||
"<extra_id_110>",
|
||||
"<extra_id_111>",
|
||||
"<extra_id_112>",
|
||||
"<extra_id_113>",
|
||||
"<extra_id_114>",
|
||||
"<extra_id_115>",
|
||||
"<extra_id_116>",
|
||||
"<extra_id_117>",
|
||||
"<extra_id_118>",
|
||||
"<extra_id_119>",
|
||||
"<extra_id_120>",
|
||||
"<extra_id_121>",
|
||||
"<extra_id_122>",
|
||||
"<extra_id_123>",
|
||||
"<extra_id_124>"
|
||||
],
|
||||
"eos_token": {
|
||||
"content": "</s>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": {
|
||||
"content": "<pad>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"unk_token": {
|
||||
"content": "<unk>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
1163
comfy/text_encoders/byt5_tokenizer/tokenizer_config.json
Normal file
1163
comfy/text_encoders/byt5_tokenizer/tokenizer_config.json
Normal file
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user