Compare commits

..

1 Commits

Author SHA1 Message Date
Yoland Yan
3d5b5b2c95 Update pullrequest-ci-run.yml 2025-04-17 14:17:40 -07:00
212 changed files with 1023 additions and 201239 deletions

View File

@@ -63,12 +63,7 @@ except:
print("checking out master branch") # noqa: T201
branch = repo.lookup_branch('master')
if branch is None:
try:
ref = repo.lookup_reference('refs/remotes/origin/master')
except:
print("pulling.") # noqa: T201
pull(repo)
ref = repo.lookup_reference('refs/remotes/origin/master')
ref = repo.lookup_reference('refs/remotes/origin/master')
repo.checkout(ref)
branch = repo.lookup_branch('master')
if branch is None:

View File

@@ -15,14 +15,6 @@ body:
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: checkboxes
id: custom-nodes-test
attributes:
label: Custom Node Testing
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: true
- type: textarea
attributes:
label: Expected Behavior

View File

@@ -11,14 +11,6 @@ body:
**2:** You have made an effort to find public answers to your question before asking here. In other words, you googled it first, and scrolled through recent help topics.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: checkboxes
id: custom-nodes-test
attributes:
label: Custom Node Testing
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: true
- type: textarea
attributes:
label: Your question

View File

@@ -1,13 +1,13 @@
# This is the GitHub Workflow that drives full-GPU-enabled tests of pull requests to ComfyUI, when the 'Run-CI-Test' label is added
# This is the GitHub Workflow that drives full-GPU-enabled tests of pull requests to ComfyUI, when the 'important' label is added
# Results are reported as checkmarks on the commits, as well as onto https://ci.comfy.org/
name: Pull Request CI Workflow Runs
on:
pull_request_target:
types: [labeled]
pull_request_target:
types: [labeled]
jobs:
pr-test-stable:
if: ${{ github.event.label.name == 'Run-CI-Test' }}
if: ${{ github.event.label.name == 'important' }}
strategy:
fail-fast: false
matrix:
@@ -36,8 +36,9 @@ jobs:
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
comfyui_flags: ${{ matrix.flags }}
use_prior_commit: 'true'
comment:
if: ${{ github.event.label.name == 'Run-CI-Test' }}
if: ${{ github.event.label.name == 'important' }}
runs-on: ubuntu-latest
permissions:
pull-requests: write

View File

@@ -1,108 +0,0 @@
name: Release Webhook
on:
release:
types: [published]
jobs:
send-webhook:
runs-on: ubuntu-latest
steps:
- name: Send release webhook
env:
WEBHOOK_URL: ${{ secrets.RELEASE_GITHUB_WEBHOOK_URL }}
WEBHOOK_SECRET: ${{ secrets.RELEASE_GITHUB_WEBHOOK_SECRET }}
run: |
# Generate UUID for delivery ID
DELIVERY_ID=$(uuidgen)
HOOK_ID="release-webhook-$(date +%s)"
# Create webhook payload matching GitHub release webhook format
PAYLOAD=$(cat <<EOF
{
"action": "published",
"release": {
"id": ${{ github.event.release.id }},
"node_id": "${{ github.event.release.node_id }}",
"url": "${{ github.event.release.url }}",
"html_url": "${{ github.event.release.html_url }}",
"assets_url": "${{ github.event.release.assets_url }}",
"upload_url": "${{ github.event.release.upload_url }}",
"tag_name": "${{ github.event.release.tag_name }}",
"target_commitish": "${{ github.event.release.target_commitish }}",
"name": ${{ toJSON(github.event.release.name) }},
"body": ${{ toJSON(github.event.release.body) }},
"draft": ${{ github.event.release.draft }},
"prerelease": ${{ github.event.release.prerelease }},
"created_at": "${{ github.event.release.created_at }}",
"published_at": "${{ github.event.release.published_at }}",
"author": {
"login": "${{ github.event.release.author.login }}",
"id": ${{ github.event.release.author.id }},
"node_id": "${{ github.event.release.author.node_id }}",
"avatar_url": "${{ github.event.release.author.avatar_url }}",
"url": "${{ github.event.release.author.url }}",
"html_url": "${{ github.event.release.author.html_url }}",
"type": "${{ github.event.release.author.type }}",
"site_admin": ${{ github.event.release.author.site_admin }}
},
"tarball_url": "${{ github.event.release.tarball_url }}",
"zipball_url": "${{ github.event.release.zipball_url }}",
"assets": ${{ toJSON(github.event.release.assets) }}
},
"repository": {
"id": ${{ github.event.repository.id }},
"node_id": "${{ github.event.repository.node_id }}",
"name": "${{ github.event.repository.name }}",
"full_name": "${{ github.event.repository.full_name }}",
"private": ${{ github.event.repository.private }},
"owner": {
"login": "${{ github.event.repository.owner.login }}",
"id": ${{ github.event.repository.owner.id }},
"node_id": "${{ github.event.repository.owner.node_id }}",
"avatar_url": "${{ github.event.repository.owner.avatar_url }}",
"url": "${{ github.event.repository.owner.url }}",
"html_url": "${{ github.event.repository.owner.html_url }}",
"type": "${{ github.event.repository.owner.type }}",
"site_admin": ${{ github.event.repository.owner.site_admin }}
},
"html_url": "${{ github.event.repository.html_url }}",
"clone_url": "${{ github.event.repository.clone_url }}",
"git_url": "${{ github.event.repository.git_url }}",
"ssh_url": "${{ github.event.repository.ssh_url }}",
"url": "${{ github.event.repository.url }}",
"created_at": "${{ github.event.repository.created_at }}",
"updated_at": "${{ github.event.repository.updated_at }}",
"pushed_at": "${{ github.event.repository.pushed_at }}",
"default_branch": "${{ github.event.repository.default_branch }}",
"fork": ${{ github.event.repository.fork }}
},
"sender": {
"login": "${{ github.event.sender.login }}",
"id": ${{ github.event.sender.id }},
"node_id": "${{ github.event.sender.node_id }}",
"avatar_url": "${{ github.event.sender.avatar_url }}",
"url": "${{ github.event.sender.url }}",
"html_url": "${{ github.event.sender.html_url }}",
"type": "${{ github.event.sender.type }}",
"site_admin": ${{ github.event.sender.site_admin }}
}
}
EOF
)
# Generate HMAC-SHA256 signature
SIGNATURE=$(echo -n "$PAYLOAD" | openssl dgst -sha256 -hmac "$WEBHOOK_SECRET" -hex | cut -d' ' -f2)
# Send webhook with required headers
curl -X POST "$WEBHOOK_URL" \
-H "Content-Type: application/json" \
-H "X-GitHub-Event: release" \
-H "X-GitHub-Delivery: $DELIVERY_ID" \
-H "X-GitHub-Hook-ID: $HOOK_ID" \
-H "X-Hub-Signature-256: sha256=$SIGNATURE" \
-H "User-Agent: GitHub-Actions-Webhook/1.0" \
-d "$PAYLOAD" \
--fail --silent --show-error
echo "✅ Release webhook sent successfully"

View File

@@ -12,7 +12,7 @@ on:
description: 'CUDA version'
required: true
type: string
default: "128"
default: "126"
python_minor:
description: 'Python minor version'
required: true
@@ -22,7 +22,7 @@ on:
description: 'Python patch version'
required: true
type: string
default: "10"
default: "9"
jobs:
@@ -36,7 +36,7 @@ jobs:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.git_tag }}
fetch-depth: 150
fetch-depth: 0
persist-credentials: false
- uses: actions/cache/restore@v4
id: cache
@@ -70,7 +70,7 @@ jobs:
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable
mv python_embeded ComfyUI_windows_portable
@@ -85,14 +85,12 @@ jobs:
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
cd ComfyUI_windows_portable
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
python_embeded/python.exe -s ./update/update.py ComfyUI/
ls
- name: Upload binaries to release
@@ -102,4 +100,5 @@ jobs:
file: ComfyUI_windows_portable_nvidia.7z
tag: ${{ inputs.git_tag }}
overwrite: true
draft: true
prerelease: true
make_latest: false

View File

@@ -17,7 +17,7 @@ jobs:
path: "ComfyUI"
- uses: actions/setup-python@v4
with:
python-version: '3.10'
python-version: '3.9'
- name: Install requirements
run: |
python -m pip install --upgrade pip

View File

@@ -28,7 +28,3 @@ jobs:
run: |
pip install -r tests-unit/requirements.txt
python -m pytest tests-unit
- name: Run Execution Model Tests
run: |
python -m pytest tests/inference/test_execution.py

View File

@@ -1,56 +0,0 @@
name: Generate Pydantic Stubs from api.comfy.org
on:
schedule:
- cron: '0 0 * * 1'
workflow_dispatch:
jobs:
generate-models:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install 'datamodel-code-generator[http]'
npm install @redocly/cli
- name: Download OpenAPI spec
run: |
curl -o openapi.yaml https://api.comfy.org/openapi
- name: Filter OpenAPI spec with Redocly
run: |
npx @redocly/cli bundle openapi.yaml --output filtered-openapi.yaml --config comfy_api_nodes/redocly.yaml --remove-unused-components
- name: Generate API models
run: |
datamodel-codegen --use-subclass-enum --input filtered-openapi.yaml --output comfy_api_nodes/apis --output-model-type pydantic_v2.BaseModel
- name: Check for changes
id: git-check
run: |
git diff --exit-code comfy_api_nodes/apis || echo "changes=true" >> $GITHUB_OUTPUT
- name: Create Pull Request
if: steps.git-check.outputs.changes == 'true'
uses: peter-evans/create-pull-request@v5
with:
commit-message: 'chore: update API models from OpenAPI spec'
title: 'Update API models from api.comfy.org'
body: |
This PR updates the API models based on the latest api.comfy.org OpenAPI specification.
Generated automatically by the a Github workflow.
branch: update-api-stubs
delete-branch: true
base: master

View File

@@ -17,7 +17,7 @@ on:
description: 'cuda version'
required: true
type: string
default: "128"
default: "126"
python_minor:
description: 'python minor version'
@@ -29,7 +29,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "10"
default: "9"
# push:
# branches:
# - master

View File

@@ -56,7 +56,7 @@ jobs:
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable_nightly_pytorch
mv python_embeded ComfyUI_windows_portable_nightly_pytorch

View File

@@ -7,7 +7,7 @@ on:
description: 'cuda version'
required: true
type: string
default: "128"
default: "126"
python_minor:
description: 'python minor version'
@@ -19,7 +19,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "10"
default: "9"
# push:
# branches:
# - master
@@ -50,7 +50,7 @@ jobs:
- uses: actions/checkout@v4
with:
fetch-depth: 150
fetch-depth: 0
persist-credentials: false
- shell: bash
run: |
@@ -67,7 +67,7 @@ jobs:
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable
mv python_embeded ComfyUI_windows_portable
@@ -82,14 +82,12 @@ jobs:
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z
cd ComfyUI_windows_portable
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
python_embeded/python.exe -s ./update/update.py ComfyUI/
ls
- name: Upload binaries to release

3
.gitignore vendored
View File

@@ -21,6 +21,3 @@ venv/
*.log
web_custom_versions/
.DS_Store
openapi.yaml
filtered-openapi.yaml
uv.lock

View File

@@ -5,20 +5,20 @@
# Inlined the team members for now.
# Maintainers
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
*.md @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/tests/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/tests-unit/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/notebooks/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/script_examples/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/.github/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/requirements.txt @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/pyproject.toml @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
# Python web server
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/api_server/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
/utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
# Node developers
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered
/comfy/comfy_types/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered

View File

@@ -6,7 +6,6 @@
[![Website][website-shield]][website-url]
[![Dynamic JSON Badge][discord-shield]][discord-url]
[![Twitter][twitter-shield]][twitter-url]
[![Matrix][matrix-shield]][matrix-url]
<br>
[![][github-release-shield]][github-release-link]
@@ -21,8 +20,6 @@
<!-- Workaround to display total user from https://github.com/badges/shields/issues/4500#issuecomment-2060079995 -->
[discord-shield]: https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fdiscord.com%2Fapi%2Finvites%2Fcomfyorg%3Fwith_counts%3Dtrue&query=%24.approximate_member_count&logo=discord&logoColor=white&label=Discord&color=green&suffix=%20total
[discord-url]: https://www.comfy.org/discord
[twitter-shield]: https://img.shields.io/twitter/follow/ComfyUI
[twitter-url]: https://x.com/ComfyUI
[github-release-shield]: https://img.shields.io/github/v/release/comfyanonymous/ComfyUI?style=flat&sort=semver
[github-release-link]: https://github.com/comfyanonymous/ComfyUI/releases
@@ -52,6 +49,7 @@ Supports all operating systems and GPU types (NVIDIA, AMD, Intel, Apple Silicon,
## [Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
See what ComfyUI can do with the [example workflows](https://comfyanonymous.github.io/ComfyUI_examples/).
## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Image Models
@@ -65,22 +63,16 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
- Image Editing Models
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
- Video Models
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/) and [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
- Audio Models
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- 3D Models
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- Asynchronous Queue system
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
@@ -102,28 +94,11 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
- Starts up very fast.
- Works fully offline: core will never download anything unless you want to.
- Optional API nodes to use paid models from external providers through the online [Comfy API](https://docs.comfy.org/tutorials/api-nodes/overview).
- Works fully offline: will never download anything.
- [Config file](extra_model_paths.yaml.example) to set the search paths for models.
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)
## Release Process
ComfyUI follows a weekly release cycle every Friday, with three interconnected repositories:
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
- Releases a new stable version (e.g., v0.7.0)
- Serves as the foundation for the desktop release
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
- Builds a new release using the latest stable core version
3. **[ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend)**
- Weekly frontend updates are merged into the core repository
- Features are frozen for the upcoming core release
- Development continues for the next release cycle
## Shortcuts
| Keybind | Explanation |
@@ -174,6 +149,8 @@ Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you
If you have trouble extracting it, right click the file -> properties -> unblock
If you have a 50 series Blackwell card like a 5090 or 5080 see [this discussion thread](https://github.com/comfyanonymous/ComfyUI/discussions/6643)
#### How do I share models between another UI and ComfyUI?
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
@@ -205,11 +182,11 @@ Put your VAE in: models/vae
### AMD GPUs (Linux only)
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.3```
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4```
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements:
This is the command to install the nightly with ROCm 6.3 which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.4```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.3```
### Intel GPUs (Windows and Linux)
@@ -239,9 +216,9 @@ Additional discussion and help can be found [here](https://github.com/comfyanony
Nvidia users should install stable pytorch using this command:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128```
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu126```
This is the command to install pytorch nightly instead which might have performance improvements.
This is the command to install pytorch nightly instead which supports the new blackwell 50xx series GPUs and might have performance improvements.
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128```
@@ -276,8 +253,6 @@ You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS ve
#### DirectML (AMD Cards on Windows)
This is very badly supported and is not recommended. There are some unofficial builds of pytorch ROCm on windows that exist that will give you a much better experience than this. This readme will be updated once official pytorch ROCm builds for windows come out.
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
#### Ascend NPUs
@@ -311,7 +286,7 @@ For AMD 7600 and maybe other RDNA3 cards: ```HSA_OVERRIDE_GFX_VERSION=11.0.0 pyt
### AMD ROCm Tips
You can enable experimental memory efficient attention on recent pytorch in ComfyUI on some AMD GPUs using this command, it should already be enabled by default on RDNA3. If this improves speed for you on latest pytorch on your GPU please report it so that I can enable it by default.
You can enable experimental memory efficient attention on pytorch 2.5 in ComfyUI on RDNA3 and potentially other AMD GPUs using this command:
```TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1 python main.py --use-pytorch-cross-attention```

View File

@@ -1,84 +0,0 @@
# A generic, single database configuration.
[alembic]
# path to migration scripts
# Use forward slashes (/) also on windows to provide an os agnostic path
script_location = alembic_db
# template used to generate migration file names; The default value is %%(rev)s_%%(slug)s
# Uncomment the line below if you want the files to be prepended with date and time
# see https://alembic.sqlalchemy.org/en/latest/tutorial.html#editing-the-ini-file
# for all available tokens
# file_template = %%(year)d_%%(month).2d_%%(day).2d_%%(hour).2d%%(minute).2d-%%(rev)s_%%(slug)s
# sys.path path, will be prepended to sys.path if present.
# defaults to the current working directory.
prepend_sys_path = .
# timezone to use when rendering the date within the migration file
# as well as the filename.
# If specified, requires the python>=3.9 or backports.zoneinfo library and tzdata library.
# Any required deps can installed by adding `alembic[tz]` to the pip requirements
# string value is passed to ZoneInfo()
# leave blank for localtime
# timezone =
# max length of characters to apply to the "slug" field
# truncate_slug_length = 40
# set to 'true' to run the environment during
# the 'revision' command, regardless of autogenerate
# revision_environment = false
# set to 'true' to allow .pyc and .pyo files without
# a source .py file to be detected as revisions in the
# versions/ directory
# sourceless = false
# version location specification; This defaults
# to alembic_db/versions. When using multiple version
# directories, initial revisions must be specified with --version-path.
# The path separator used here should be the separator specified by "version_path_separator" below.
# version_locations = %(here)s/bar:%(here)s/bat:alembic_db/versions
# version path separator; As mentioned above, this is the character used to split
# version_locations. The default within new alembic.ini files is "os", which uses os.pathsep.
# If this key is omitted entirely, it falls back to the legacy behavior of splitting on spaces and/or commas.
# Valid values for version_path_separator are:
#
# version_path_separator = :
# version_path_separator = ;
# version_path_separator = space
# version_path_separator = newline
#
# Use os.pathsep. Default configuration used for new projects.
version_path_separator = os
# set to 'true' to search source files recursively
# in each "version_locations" directory
# new in Alembic version 1.10
# recursive_version_locations = false
# the output encoding used when revision files
# are written from script.py.mako
# output_encoding = utf-8
sqlalchemy.url = sqlite:///user/comfyui.db
[post_write_hooks]
# post_write_hooks defines scripts or Python functions that are run
# on newly generated revision scripts. See the documentation for further
# detail and examples
# format using "black" - use the console_scripts runner, against the "black" entrypoint
# hooks = black
# black.type = console_scripts
# black.entrypoint = black
# black.options = -l 79 REVISION_SCRIPT_FILENAME
# lint with attempts to fix using "ruff" - use the exec runner, execute a binary
# hooks = ruff
# ruff.type = exec
# ruff.executable = %(here)s/.venv/bin/ruff
# ruff.options = check --fix REVISION_SCRIPT_FILENAME

View File

@@ -1,4 +0,0 @@
## Generate new revision
1. Update models in `/app/database/models.py`
2. Run `alembic revision --autogenerate -m "{your message}"`

View File

@@ -1,64 +0,0 @@
from sqlalchemy import engine_from_config
from sqlalchemy import pool
from alembic import context
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
config = context.config
from app.database.models import Base
target_metadata = Base.metadata
# other values from the config, defined by the needs of env.py,
# can be acquired:
# my_important_option = config.get_main_option("my_important_option")
# ... etc.
def run_migrations_offline() -> None:
"""Run migrations in 'offline' mode.
This configures the context with just a URL
and not an Engine, though an Engine is acceptable
here as well. By skipping the Engine creation
we don't even need a DBAPI to be available.
Calls to context.execute() here emit the given string to the
script output.
"""
url = config.get_main_option("sqlalchemy.url")
context.configure(
url=url,
target_metadata=target_metadata,
literal_binds=True,
dialect_opts={"paramstyle": "named"},
)
with context.begin_transaction():
context.run_migrations()
def run_migrations_online() -> None:
"""Run migrations in 'online' mode.
In this scenario we need to create an Engine
and associate a connection with the context.
"""
connectable = engine_from_config(
config.get_section(config.config_ini_section, {}),
prefix="sqlalchemy.",
poolclass=pool.NullPool,
)
with connectable.connect() as connection:
context.configure(
connection=connection, target_metadata=target_metadata
)
with context.begin_transaction():
context.run_migrations()
if context.is_offline_mode():
run_migrations_offline()
else:
run_migrations_online()

View File

@@ -1,28 +0,0 @@
"""${message}
Revision ID: ${up_revision}
Revises: ${down_revision | comma,n}
Create Date: ${create_date}
"""
from typing import Sequence, Union
from alembic import op
import sqlalchemy as sa
${imports if imports else ""}
# revision identifiers, used by Alembic.
revision: str = ${repr(up_revision)}
down_revision: Union[str, None] = ${repr(down_revision)}
branch_labels: Union[str, Sequence[str], None] = ${repr(branch_labels)}
depends_on: Union[str, Sequence[str], None] = ${repr(depends_on)}
def upgrade() -> None:
"""Upgrade schema."""
${upgrades if upgrades else "pass"}
def downgrade() -> None:
"""Downgrade schema."""
${downgrades if downgrades else "pass"}

View File

@@ -93,20 +93,16 @@ class CustomNodeManager:
def add_routes(self, routes, webapp, loadedModules):
example_workflow_folder_names = ["example_workflows", "example", "examples", "workflow", "workflows"]
@routes.get("/workflow_templates")
async def get_workflow_templates(request):
"""Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted."""
files = []
for folder in folder_paths.get_folder_paths("custom_nodes"):
for folder_name in example_workflow_folder_names:
pattern = os.path.join(folder, f"*/{folder_name}/*.json")
matched_files = glob.glob(pattern)
files.extend(matched_files)
files = [
file
for folder in folder_paths.get_folder_paths("custom_nodes")
for file in glob.glob(
os.path.join(folder, "*/example_workflows/*.json")
)
]
workflow_templates_dict = (
{}
) # custom_nodes folder name -> example workflow names
@@ -122,22 +118,15 @@ class CustomNodeManager:
# Serve workflow templates from custom nodes.
for module_name, module_dir in loadedModules:
for folder_name in example_workflow_folder_names:
workflows_dir = os.path.join(module_dir, folder_name)
if os.path.exists(workflows_dir):
if folder_name != "example_workflows":
logging.debug(
"Found example workflow folder '%s' for custom node '%s', consider renaming it to 'example_workflows'",
folder_name, module_name)
webapp.add_routes(
[
web.static(
"/api/workflow_templates/" + module_name, workflows_dir
)
]
)
workflows_dir = os.path.join(module_dir, "example_workflows")
if os.path.exists(workflows_dir):
webapp.add_routes(
[
web.static(
"/api/workflow_templates/" + module_name, workflows_dir
)
]
)
@routes.get("/i18n")
async def get_i18n(request):

View File

@@ -1,112 +0,0 @@
import logging
import os
import shutil
from app.logger import log_startup_warning
from utils.install_util import get_missing_requirements_message
from comfy.cli_args import args
_DB_AVAILABLE = False
Session = None
try:
from alembic import command
from alembic.config import Config
from alembic.runtime.migration import MigrationContext
from alembic.script import ScriptDirectory
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
_DB_AVAILABLE = True
except ImportError as e:
log_startup_warning(
f"""
------------------------------------------------------------------------
Error importing dependencies: {e}
{get_missing_requirements_message()}
This error is happening because ComfyUI now uses a local sqlite database.
------------------------------------------------------------------------
""".strip()
)
def dependencies_available():
"""
Temporary function to check if the dependencies are available
"""
return _DB_AVAILABLE
def can_create_session():
"""
Temporary function to check if the database is available to create a session
During initial release there may be environmental issues (or missing dependencies) that prevent the database from being created
"""
return dependencies_available() and Session is not None
def get_alembic_config():
root_path = os.path.join(os.path.dirname(__file__), "../..")
config_path = os.path.abspath(os.path.join(root_path, "alembic.ini"))
scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
config = Config(config_path)
config.set_main_option("script_location", scripts_path)
config.set_main_option("sqlalchemy.url", args.database_url)
return config
def get_db_path():
url = args.database_url
if url.startswith("sqlite:///"):
return url.split("///")[1]
else:
raise ValueError(f"Unsupported database URL '{url}'.")
def init_db():
db_url = args.database_url
logging.debug(f"Database URL: {db_url}")
db_path = get_db_path()
db_exists = os.path.exists(db_path)
config = get_alembic_config()
# Check if we need to upgrade
engine = create_engine(db_url)
conn = engine.connect()
context = MigrationContext.configure(conn)
current_rev = context.get_current_revision()
script = ScriptDirectory.from_config(config)
target_rev = script.get_current_head()
if target_rev is None:
logging.warning("No target revision found.")
elif current_rev != target_rev:
# Backup the database pre upgrade
backup_path = db_path + ".bkp"
if db_exists:
shutil.copy(db_path, backup_path)
else:
backup_path = None
try:
command.upgrade(config, target_rev)
logging.info(f"Database upgraded from {current_rev} to {target_rev}")
except Exception as e:
if backup_path:
# Restore the database from backup if upgrade fails
shutil.copy(backup_path, db_path)
os.remove(backup_path)
logging.exception("Error upgrading database: ")
raise e
global Session
Session = sessionmaker(bind=engine)
def create_session():
return Session()

View File

@@ -1,14 +0,0 @@
from sqlalchemy.orm import declarative_base
Base = declarative_base()
def to_dict(obj):
fields = obj.__table__.columns.keys()
return {
field: (val.to_dict() if hasattr(val, "to_dict") else val)
for field in fields
if (val := getattr(obj, field))
}
# TODO: Define models here

View File

@@ -16,17 +16,26 @@ from importlib.metadata import version
import requests
from typing_extensions import NotRequired
from utils.install_util import get_missing_requirements_message, requirements_path
from comfy.cli_args import DEFAULT_VERSION_STRING
import app.logger
# The path to the requirements.txt file
req_path = Path(__file__).parents[1] / "requirements.txt"
def frontend_install_warning_message():
"""The warning message to display when the frontend version is not up to date."""
extra = ""
if sys.flags.no_user_site:
extra = "-s "
return f"""
{get_missing_requirements_message()}
Please install the updated requirements.txt file by running:
{sys.executable} {extra}-m pip install -r {req_path}
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
If you are on the portable package you can run: update\\update_comfyui.bat to solve this problem
""".strip()
@@ -39,7 +48,7 @@ def check_frontend_version():
try:
frontend_version_str = version("comfyui-frontend-package")
frontend_version = parse_version(frontend_version_str)
with open(requirements_path, "r", encoding="utf-8") as f:
with open(req_path, "r", encoding="utf-8") as f:
required_frontend = parse_version(f.readline().split("=")[-1])
if frontend_version < required_frontend:
app.logger.log_startup_warning(
@@ -112,22 +121,9 @@ class FrontEndProvider:
response.raise_for_status() # Raises an HTTPError if the response was an error
return response.json()
@cached_property
def latest_prerelease(self) -> Release:
"""Get the latest pre-release version - even if it's older than the latest release"""
release = [release for release in self.all_releases if release["prerelease"]]
if not release:
raise ValueError("No pre-releases found")
# GitHub returns releases in reverse chronological order, so first is latest
return release[0]
def get_release(self, version: str) -> Release:
if version == "latest":
return self.latest_release
elif version == "prerelease":
return self.latest_prerelease
else:
for release in self.all_releases:
if release["tag_name"] in [version, f"v{version}"]:
@@ -209,19 +205,6 @@ comfyui-workflow-templates is not installed.
""".strip()
)
@classmethod
def embedded_docs_path(cls) -> str:
"""Get the path to embedded documentation"""
try:
import comfyui_embedded_docs
return str(
importlib.resources.files(comfyui_embedded_docs) / "docs"
)
except ImportError:
logging.info("comfyui-embedded-docs package not found")
return None
@classmethod
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
"""
@@ -234,7 +217,7 @@ comfyui-workflow-templates is not installed.
Raises:
argparse.ArgumentTypeError: If the version string is invalid.
"""
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+[-._a-zA-Z0-9]*|latest|prerelease)$"
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+|latest)$"
match_result = re.match(VERSION_PATTERN, value)
if match_result is None:
raise argparse.ArgumentTypeError(f"Invalid version string: {value}")

View File

@@ -197,112 +197,6 @@ class UserManager():
return web.json_response(results)
@routes.get("/v2/userdata")
async def list_userdata_v2(request):
"""
List files and directories in a user's data directory.
This endpoint provides a structured listing of contents within a specified
subdirectory of the user's data storage.
Query Parameters:
- path (optional): The relative path within the user's data directory
to list. Defaults to the root ('').
Returns:
- 400: If the requested path is invalid, outside the user's data directory, or is not a directory.
- 404: If the requested path does not exist.
- 403: If the user is invalid.
- 500: If there is an error reading the directory contents.
- 200: JSON response containing a list of file and directory objects.
Each object includes:
- name: The name of the file or directory.
- type: 'file' or 'directory'.
- path: The relative path from the user's data root.
- size (for files): The size in bytes.
- modified (for files): The last modified timestamp (Unix epoch).
"""
requested_rel_path = request.rel_url.query.get('path', '')
# URL-decode the path parameter
try:
requested_rel_path = parse.unquote(requested_rel_path)
except Exception as e:
logging.warning(f"Failed to decode path parameter: {requested_rel_path}, Error: {e}")
return web.Response(status=400, text="Invalid characters in path parameter")
# Check user validity and get the absolute path for the requested directory
try:
base_user_path = self.get_request_user_filepath(request, None, create_dir=False)
if requested_rel_path:
target_abs_path = self.get_request_user_filepath(request, requested_rel_path, create_dir=False)
else:
target_abs_path = base_user_path
except KeyError as e:
# Invalid user detected by get_request_user_id inside get_request_user_filepath
logging.warning(f"Access denied for user: {e}")
return web.Response(status=403, text="Invalid user specified in request")
if not target_abs_path:
# Path traversal or other issue detected by get_request_user_filepath
return web.Response(status=400, text="Invalid path requested")
# Handle cases where the user directory or target path doesn't exist
if not os.path.exists(target_abs_path):
# Check if it's the base user directory that's missing (new user case)
if target_abs_path == base_user_path:
# It's okay if the base user directory doesn't exist yet, return empty list
return web.json_response([])
else:
# A specific subdirectory was requested but doesn't exist
return web.Response(status=404, text="Requested path not found")
if not os.path.isdir(target_abs_path):
return web.Response(status=400, text="Requested path is not a directory")
results = []
try:
for root, dirs, files in os.walk(target_abs_path, topdown=True):
# Process directories
for dir_name in dirs:
dir_path = os.path.join(root, dir_name)
rel_path = os.path.relpath(dir_path, base_user_path).replace(os.sep, '/')
results.append({
"name": dir_name,
"path": rel_path,
"type": "directory"
})
# Process files
for file_name in files:
file_path = os.path.join(root, file_name)
rel_path = os.path.relpath(file_path, base_user_path).replace(os.sep, '/')
entry_info = {
"name": file_name,
"path": rel_path,
"type": "file"
}
try:
stats = os.stat(file_path) # Use os.stat for potentially better performance with os.walk
entry_info["size"] = stats.st_size
entry_info["modified"] = stats.st_mtime
except OSError as stat_error:
logging.warning(f"Could not stat file {file_path}: {stat_error}")
pass # Include file with available info
results.append(entry_info)
except OSError as e:
logging.error(f"Error listing directory {target_abs_path}: {e}")
return web.Response(status=500, text="Error reading directory contents")
# Sort results alphabetically, directories first then files
results.sort(key=lambda x: (x['type'] != 'directory', x['name'].lower()))
return web.json_response(results)
def get_user_data_path(request, check_exists = False, param = "file"):
file = request.match_info.get(param, None)
if not file:

View File

@@ -66,7 +66,6 @@ fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diff
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
fpunet_group.add_argument("--fp8_e8m0fnu-unet", action="store_true", help="Store unet weights in fp8_e8m0fnu.")
fpvae_group = parser.add_mutually_exclusive_group()
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
@@ -88,7 +87,6 @@ parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE"
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
parser.add_argument("--supports-fp8-compute", action="store_true", help="ComfyUI will act like if the device supports fp8 compute.")
class LatentPreviewMethod(enum.Enum):
NoPreviews = "none"
@@ -129,7 +127,6 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
@@ -143,16 +140,12 @@ class PerformanceFeature(enum.Enum):
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
@@ -197,18 +190,6 @@ parser.add_argument("--user-directory", type=is_valid_directory, default=None, h
parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.")
parser.add_argument(
"--comfy-api-base",
type=str,
default="https://api.comfy.org",
help="Set the base URL for the ComfyUI API. (default: https://api.comfy.org)",
)
database_default_path = os.path.abspath(
os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db")
)
parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.")
if comfy.options.args_parsing:
args = parser.parse_args()
else:

View File

@@ -18,7 +18,6 @@ class Output:
setattr(self, key, item)
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
image = image[:, :, :, :3] if image.shape[3] > 3 else image
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
std = torch.tensor(std, device=image.device, dtype=image.dtype)
image = image.movedim(-1, 1)

View File

@@ -1,7 +1,7 @@
"""Comfy-specific type hinting"""
from __future__ import annotations
from typing import Literal, TypedDict, Optional
from typing import Literal, TypedDict
from typing_extensions import NotRequired
from abc import ABC, abstractmethod
from enum import Enum
@@ -37,8 +37,6 @@ class IO(StrEnum):
CONTROL_NET = "CONTROL_NET"
VAE = "VAE"
MODEL = "MODEL"
LORA_MODEL = "LORA_MODEL"
LOSS_MAP = "LOSS_MAP"
CLIP_VISION = "CLIP_VISION"
CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
STYLE_MODEL = "STYLE_MODEL"
@@ -50,7 +48,6 @@ class IO(StrEnum):
FACE_ANALYSIS = "FACE_ANALYSIS"
BBOX = "BBOX"
SEGS = "SEGS"
VIDEO = "VIDEO"
ANY = "*"
"""Always matches any type, but at a price.
@@ -118,15 +115,6 @@ class InputTypeOptions(TypedDict):
"""When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
tooltip: NotRequired[str]
"""Tooltip for the input (or widget), shown on pointer hover"""
socketless: NotRequired[bool]
"""All inputs (including widgets) have an input socket to connect links. When ``true``, if there is a widget for this input, no socket will be created.
Available from frontend v1.17.5
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3548
"""
widgetType: NotRequired[str]
"""Specifies a type to be used for widget initialization if different from the input type.
Available from frontend v1.18.0
https://github.com/Comfy-Org/ComfyUI_frontend/pull/3550"""
# class InputTypeNumber(InputTypeOptions):
# default: float | int
min: NotRequired[float]
@@ -236,8 +224,6 @@ class ComfyNodeABC(ABC):
"""Flags a node as experimental, informing users that it may change or not work as expected."""
DEPRECATED: bool
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
API_NODE: Optional[bool]
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
@classmethod
@abstractmethod
@@ -276,7 +262,7 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
OUTPUT_IS_LIST: tuple[bool, ...]
OUTPUT_IS_LIST: tuple[bool]
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
@@ -295,7 +281,7 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
RETURN_TYPES: tuple[IO, ...]
RETURN_TYPES: tuple[IO]
"""A tuple representing the outputs of this node.
Usage::
@@ -304,12 +290,12 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types
"""
RETURN_NAMES: tuple[str, ...]
RETURN_NAMES: tuple[str]
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names
"""
OUTPUT_TOOLTIPS: tuple[str, ...]
OUTPUT_TOOLTIPS: tuple[str]
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
FUNCTION: str
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`

View File

@@ -24,10 +24,6 @@ class CONDRegular:
conds.append(x.cond)
return torch.cat(conds)
def size(self):
return list(self.cond.size())
class CONDNoiseShape(CONDRegular):
def process_cond(self, batch_size, device, area, **kwargs):
data = self.cond
@@ -68,7 +64,6 @@ class CONDCrossAttn(CONDRegular):
out.append(c)
return torch.cat(out)
class CONDConstant(CONDRegular):
def __init__(self, cond):
self.cond = cond
@@ -83,48 +78,3 @@ class CONDConstant(CONDRegular):
def concat(self, others):
return self.cond
def size(self):
return [1]
class CONDList(CONDRegular):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, device, **kwargs):
out = []
for c in self.cond:
out.append(comfy.utils.repeat_to_batch_size(c, batch_size).to(device))
return self._copy_with(out)
def can_concat(self, other):
if len(self.cond) != len(other.cond):
return False
for i in range(len(self.cond)):
if self.cond[i].shape != other.cond[i].shape:
return False
return True
def concat(self, others):
out = []
for i in range(len(self.cond)):
o = [self.cond[i]]
for x in others:
o.append(x.cond[i])
out.append(torch.cat(o))
return out
def size(self): # hackish implementation to make the mem estimation work
o = 0
c = 1
for c in self.cond:
size = c.size()
o += math.prod(size)
if len(size) > 1:
c = size[1]
return [1, c, o // c]

View File

@@ -390,9 +390,8 @@ class ControlLora(ControlNet):
pass
for k in self.control_weights:
if (k not in {"lora_controlnet"}):
if (k.endswith(".up") or k.endswith(".down") or k.endswith(".weight") or k.endswith(".bias")) and ("__" not in k):
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
if k not in {"lora_controlnet"}:
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
def copy(self):
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
@@ -737,7 +736,6 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
return control
def load_controlnet(ckpt_path, model=None, model_options={}):
model_options = model_options.copy()
if "global_average_pooling" not in model_options:
filename = os.path.splitext(ckpt_path)[0]
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling

View File

@@ -116,7 +116,7 @@ class Dino2Embeddings(torch.nn.Module):
def forward(self, pixel_values):
x = self.patch_embeddings(pixel_values)
# TODO: mask_token?
x = torch.cat((self.cls_token.to(device=x.device, dtype=x.dtype).expand(x.shape[0], -1, -1), x), dim=1)
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + comfy.model_management.cast_to_device(self.position_embeddings, x.device, x.dtype)
return x

View File

@@ -1,5 +1,4 @@
import math
from functools import partial
from scipy import integrate
import torch
@@ -143,33 +142,6 @@ class BrownianTreeNoiseSampler:
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
def sigma_to_half_log_snr(sigma, model_sampling):
"""Convert sigma to half-logSNR log(alpha_t / sigma_t)."""
if isinstance(model_sampling, comfy.model_sampling.CONST):
# log((1 - t) / t) = log((1 - sigma) / sigma)
return sigma.logit().neg()
return sigma.log().neg()
def half_log_snr_to_sigma(half_log_snr, model_sampling):
"""Convert half-logSNR log(alpha_t / sigma_t) to sigma."""
if isinstance(model_sampling, comfy.model_sampling.CONST):
# 1 / (1 + exp(half_log_snr))
return half_log_snr.neg().sigmoid()
return half_log_snr.neg().exp()
def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4):
"""Adjust the first sigma to avoid invalid logSNR."""
if len(sigmas) <= 1:
return sigmas
if isinstance(model_sampling, comfy.model_sampling.CONST):
if sigmas[0] >= 1:
sigmas = sigmas.clone()
sigmas[0] = model_sampling.percent_to_sigma(percent_offset)
return sigmas
@torch.no_grad()
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
@@ -710,7 +682,6 @@ def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=Non
# logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
return x
@torch.no_grad()
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
"""DPM-Solver++ (stochastic)."""
@@ -722,49 +693,38 @@ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=N
seed = extra_args.get("seed", None)
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
# Euler method
d = to_d(x, sigmas[i], denoised)
dt = sigmas[i + 1] - sigmas[i]
x = x + d * dt
else:
# DPM-Solver++
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
lambda_s_1 = lambda_s + r * h
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
s = t + h * r
fac = 1 / (2 * r)
sigma_s_1 = sigma_fn(lambda_s_1)
alpha_s = sigmas[i] * lambda_s.exp()
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 1
sd, su = get_ancestral_step(lambda_s.neg().exp(), lambda_s_1.neg().exp(), eta)
lambda_s_1_ = sd.log().neg()
h_ = lambda_s_1_ - lambda_s
x_2 = (alpha_s_1 / alpha_s) * (-h_).exp() * x - alpha_s_1 * (-h_).expm1() * denoised
if eta > 0 and s_noise > 0:
x_2 = x_2 + alpha_s_1 * noise_sampler(sigmas[i], sigma_s_1) * s_noise * su
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
s_ = t_fn(sd)
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
# Step 2
sd, su = get_ancestral_step(lambda_s.neg().exp(), lambda_t.neg().exp(), eta)
lambda_t_ = sd.log().neg()
h_ = lambda_t_ - lambda_s
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
t_next_ = t_fn(sd)
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = (alpha_t / alpha_s) * (-h_).exp() * x - alpha_t * (-h_).expm1() * denoised_d
if eta > 0 and s_noise > 0:
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * su
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
return x
@@ -793,7 +753,6 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
old_denoised = denoised
return x
@torch.no_grad()
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
"""DPM-Solver++(2M) SDE."""
@@ -809,12 +768,9 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
old_denoised = None
h, h_last = None, None
h_last = None
h = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
@@ -825,29 +781,26 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
x = denoised
else:
# DPM-Solver++(2M) SDE
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
alpha_t = sigmas[i + 1] * lambda_t.exp()
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == 'heun':
x = x + alpha_t * ((-h_eta).expm1().neg() / (-h_eta) + 1) * (1 / r) * (denoised - old_denoised)
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
elif solver_type == 'midpoint':
x = x + 0.5 * alpha_t * (-h_eta).expm1().neg() * (1 / r) * (denoised - old_denoised)
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
if eta > 0 and s_noise > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
if eta:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
old_denoised = denoised
h_last = h
return x
@torch.no_grad()
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""DPM-Solver++(3M) SDE."""
@@ -861,10 +814,6 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
denoised_1, denoised_2 = None, None
h, h_1, h_2 = None, None, None
@@ -876,16 +825,13 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
# Denoising step
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
h_eta = h * (eta + 1)
alpha_t = sigmas[i + 1] * lambda_t.exp()
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
if h_2 is not None:
# DPM-Solver++(3M) SDE
r0 = h_1 / h
r1 = h_2 / h
d1_0 = (denoised - denoised_1) / r0
@@ -894,22 +840,20 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
d2 = (d1_0 - d1_1) / (r0 + r1)
phi_2 = h_eta.neg().expm1() / h_eta + 1
phi_3 = phi_2 / h_eta - 0.5
x = x + (alpha_t * phi_2) * d1 - (alpha_t * phi_3) * d2
x = x + phi_2 * d1 - phi_3 * d2
elif h_1 is not None:
# DPM-Solver++(2M) SDE
r = h_1 / h
d = (denoised - denoised_1) / r
phi_2 = h_eta.neg().expm1() / h_eta + 1
x = x + (alpha_t * phi_2) * d
x = x + phi_2 * d
if eta > 0 and s_noise > 0:
if eta:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
denoised_1, denoised_2 = denoised, denoised_1
h_1, h_2 = h, h_1
return x
@torch.no_grad()
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if len(sigmas) <= 1:
@@ -919,7 +863,6 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
@torch.no_grad()
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
if len(sigmas) <= 1:
@@ -929,7 +872,6 @@ def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
if len(sigmas) <= 1:
@@ -1335,7 +1277,6 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
phi1_fn = lambda t: torch.expm1(t) / t
phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t
old_sigma_down = None
old_denoised = None
uncond_denoised = None
def post_cfg_function(args):
@@ -1363,9 +1304,9 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
x = x + d * dt
else:
# Second order multistep method in https://arxiv.org/pdf/2308.02157
t, t_old, t_next, t_prev = t_fn(sigmas[i]), t_fn(old_sigma_down), t_fn(sigma_down), t_fn(sigmas[i - 1])
t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigma_down), t_fn(sigmas[i - 1])
h = t_next - t
c2 = (t_prev - t_old) / h
c2 = (t_prev - t) / h
phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
b1 = torch.nan_to_num(phi1_val - phi2_val / c2, nan=0.0)
@@ -1385,7 +1326,6 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
old_denoised = uncond_denoised
else:
old_denoised = denoised
old_sigma_down = sigma_down
return x
@torch.no_grad()
@@ -1405,57 +1345,32 @@ def sample_res_multistep_ancestral_cfg_pp(model, x, sigmas, extra_args=None, cal
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True)
@torch.no_grad()
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2., cfg_pp=False):
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
"""Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK"""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_d = None
uncond_denoised = None
def post_cfg_function(args):
nonlocal uncond_denoised
uncond_denoised = args["uncond_denoised"]
return args["denoised"]
if cfg_pp:
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if cfg_pp:
d = to_d(x, sigmas[i], uncond_denoised)
else:
d = to_d(x, sigmas[i], denoised)
d = to_d(x, sigmas[i], denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
dt = sigmas[i + 1] - sigmas[i]
if i == 0:
# Euler method
if cfg_pp:
x = denoised + d * sigmas[i + 1]
else:
x = x + d * dt
x = x + d * dt
else:
# Gradient estimation
if cfg_pp:
d_bar = (ge_gamma - 1) * (d - old_d)
x = denoised + d * sigmas[i + 1] + d_bar * dt
else:
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
x = x + d_bar * dt
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
x = x + d_bar * dt
old_d = d
return x
@torch.no_grad()
def sample_gradient_estimation_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
return sample_gradient_estimation(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, ge_gamma=ge_gamma, cfg_pp=True)
@torch.no_grad()
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1.0, noise_sampler=None, noise_scaler=None, max_stage=3):
"""Extended Reverse-Time SDE solver (VP ER-SDE-Solver-3). arXiv: https://arxiv.org/abs/2309.06169.
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, noise_scaler=None, max_stage=3):
"""
Extended Reverse-Time SDE solver (VE ER-SDE-Solver-3). Arxiv: https://arxiv.org/abs/2309.06169.
Code reference: https://github.com/QinpengCui/ER-SDE-Solver/blob/main/er_sde_solver.py.
"""
extra_args = {} if extra_args is None else extra_args
@@ -1463,18 +1378,12 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
def default_er_sde_noise_scaler(x):
return x * ((x ** 0.3).exp() + 10.0)
noise_scaler = default_er_sde_noise_scaler if noise_scaler is None else noise_scaler
def default_noise_scaler(sigma):
return sigma * ((sigma ** 0.3).exp() + 10.0)
noise_scaler = default_noise_scaler if noise_scaler is None else noise_scaler
num_integration_points = 200.0
point_indice = torch.arange(0, num_integration_points, dtype=torch.float32, device=x.device)
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
half_log_snrs = sigma_to_half_log_snr(sigmas, model_sampling)
er_lambdas = half_log_snrs.neg().exp() # er_lambda_t = sigma_t / alpha_t
old_denoised = None
old_denoised_d = None
@@ -1485,45 +1394,41 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
stage_used = min(max_stage, i + 1)
if sigmas[i + 1] == 0:
x = denoised
elif stage_used == 1:
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
x = r * x + (1 - r) * denoised
else:
er_lambda_s, er_lambda_t = er_lambdas[i], er_lambdas[i + 1]
alpha_s = sigmas[i] / er_lambda_s
alpha_t = sigmas[i + 1] / er_lambda_t
r_alpha = alpha_t / alpha_s
r = noise_scaler(er_lambda_t) / noise_scaler(er_lambda_s)
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
x = r * x + (1 - r) * denoised
# Stage 1 Euler
x = r_alpha * r * x + alpha_t * (1 - r) * denoised
dt = sigmas[i + 1] - sigmas[i]
sigma_step_size = -dt / num_integration_points
sigma_pos = sigmas[i + 1] + point_indice * sigma_step_size
scaled_pos = noise_scaler(sigma_pos)
if stage_used >= 2:
dt = er_lambda_t - er_lambda_s
lambda_step_size = -dt / num_integration_points
lambda_pos = er_lambda_t + point_indice * lambda_step_size
scaled_pos = noise_scaler(lambda_pos)
# Stage 2
s = torch.sum(1 / scaled_pos) * sigma_step_size
denoised_d = (denoised - old_denoised) / (sigmas[i] - sigmas[i - 1])
x = x + (dt + s * noise_scaler(sigmas[i + 1])) * denoised_d
# Stage 2
s = torch.sum(1 / scaled_pos) * lambda_step_size
denoised_d = (denoised - old_denoised) / (er_lambda_s - er_lambdas[i - 1])
x = x + alpha_t * (dt + s * noise_scaler(er_lambda_t)) * denoised_d
if stage_used >= 3:
# Stage 3
s_u = torch.sum((sigma_pos - sigmas[i]) / scaled_pos) * sigma_step_size
denoised_u = (denoised_d - old_denoised_d) / ((sigmas[i] - sigmas[i - 2]) / 2)
x = x + ((dt ** 2) / 2 + s_u * noise_scaler(sigmas[i + 1])) * denoised_u
old_denoised_d = denoised_d
if stage_used >= 3:
# Stage 3
s_u = torch.sum((lambda_pos - er_lambda_s) / scaled_pos) * lambda_step_size
denoised_u = (denoised_d - old_denoised_d) / ((er_lambda_s - er_lambdas[i - 2]) / 2)
x = x + alpha_t * ((dt ** 2) / 2 + s_u * noise_scaler(er_lambda_t)) * denoised_u
old_denoised_d = denoised_d
if s_noise > 0:
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (er_lambda_t ** 2 - er_lambda_s ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
if s_noise != 0 and sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
old_denoised = denoised
return x
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267
"""
'''
SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 2
Arxiv: https://arxiv.org/abs/2305.14267
'''
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
@@ -1531,11 +1436,6 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
@@ -1543,43 +1443,38 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
h = t_next - t
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r * h
s = t + r * h
fac = 1 / (2 * r)
sigma_s_1 = sigma_fn(lambda_s_1)
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
sigma_s = s.neg().exp()
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r < 1
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r * h * eta).exp() * (-2 * (1 - r) * h * eta).expm1().neg().sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigmas[i + 1])
noise_coeff_2 = ((-2 * r * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s), noise_sampler(sigma_s, sigmas[i + 1])
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
x_2 = x_2 + sigma_s * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s * s_in, **extra_args)
# Step 2
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_2 * denoised_d
x = (coeff_2 + 1) * x - coeff_2 * denoised_d
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
return x
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
"""SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 3.
arXiv: https://arxiv.org/abs/2305.14267
"""
'''
SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 3
Arxiv: https://arxiv.org/abs/2305.14267
'''
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
@@ -1587,11 +1482,6 @@ def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=Non
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
@@ -1599,40 +1489,34 @@ def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=Non
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
h = t_next - t
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r_1 * h
lambda_s_2 = lambda_s + r_2 * h
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
s_1 = t + r_1 * h
s_2 = t + r_2 * h
sigma_s_1, sigma_s_2 = s_1.neg().exp(), s_2.neg().exp()
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r_1 < r_2 < 1
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r_1 * h * eta).exp() * (-2 * (r_2 - r_1) * h * eta).expm1().neg().sqrt()
noise_coeff_3 = (-r_2 * h * eta).exp() * (-2 * (1 - r_2) * h * eta).expm1().neg().sqrt()
noise_coeff_2 = ((-2 * r_1 * h * eta).expm1() - (-2 * r_2 * h * eta).expm1()).sqrt()
noise_coeff_3 = ((-2 * r_2 * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * coeff_2 * denoised + (r_2 / r_1) * alpha_s_2 * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
x_3 = (coeff_2 + 1) * x - coeff_2 * denoised + (r_2 / r_1) * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
if inject_noise:
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_3 * denoised + (1. / r_2) * alpha_t * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
x = (coeff_3 + 1) * x - coeff_3 * denoised + (1. / r_2) * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
return x

View File

@@ -466,7 +466,3 @@ class Hunyuan3Dv2mini(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 1.0188137142395404
class ACEAudio(LatentFormat):
latent_channels = 8
latent_dimensions = 2

View File

@@ -1,761 +0,0 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/attention.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple, Union, Optional
import torch
import torch.nn.functional as F
from torch import nn
import comfy.model_management
from comfy.ldm.modules.attention import optimized_attention
class Attention(nn.Module):
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
kv_heads: Optional[int] = None,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
qk_norm: Optional[str] = None,
added_kv_proj_dim: Optional[int] = None,
added_proj_bias: Optional[bool] = True,
out_bias: bool = True,
scale_qk: bool = True,
only_cross_attention: bool = False,
eps: float = 1e-5,
rescale_output_factor: float = 1.0,
residual_connection: bool = False,
processor=None,
out_dim: int = None,
out_context_dim: int = None,
context_pre_only=None,
pre_only=False,
elementwise_affine: bool = True,
is_causal: bool = False,
dtype=None, device=None, operations=None
):
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
self.query_dim = query_dim
self.use_bias = bias
self.is_cross_attention = cross_attention_dim is not None
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.rescale_output_factor = rescale_output_factor
self.residual_connection = residual_connection
self.dropout = dropout
self.fused_projections = False
self.out_dim = out_dim if out_dim is not None else query_dim
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
self.context_pre_only = context_pre_only
self.pre_only = pre_only
self.is_causal = is_causal
self.scale_qk = scale_qk
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
self.heads = out_dim // dim_head if out_dim is not None else heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self.added_kv_proj_dim = added_kv_proj_dim
self.only_cross_attention = only_cross_attention
if self.added_kv_proj_dim is None and self.only_cross_attention:
raise ValueError(
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
)
self.group_norm = None
self.spatial_norm = None
self.norm_q = None
self.norm_k = None
self.norm_cross = None
self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
if not self.only_cross_attention:
# only relevant for the `AddedKVProcessor` classes
self.to_k = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
self.to_v = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
else:
self.to_k = None
self.to_v = None
self.added_proj_bias = added_proj_bias
if self.added_kv_proj_dim is not None:
self.add_k_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
self.add_v_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
if self.context_pre_only is not None:
self.add_q_proj = operations.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias, dtype=dtype, device=device)
else:
self.add_q_proj = None
self.add_k_proj = None
self.add_v_proj = None
if not self.pre_only:
self.to_out = nn.ModuleList([])
self.to_out.append(operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device))
self.to_out.append(nn.Dropout(dropout))
else:
self.to_out = None
if self.context_pre_only is not None and not self.context_pre_only:
self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
else:
self.to_add_out = None
self.norm_added_q = None
self.norm_added_k = None
self.processor = processor
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**cross_attention_kwargs,
) -> torch.Tensor:
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
class CustomLiteLAProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections. add rms norm for query and key and apply RoPE"""
def __init__(self):
self.kernel_func = nn.ReLU(inplace=False)
self.eps = 1e-15
self.pad_val = 1.0
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
hidden_states_len = hidden_states.shape[1]
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
if encoder_hidden_states is not None:
context_input_ndim = encoder_hidden_states.ndim
if context_input_ndim == 4:
batch_size, channel, height, width = encoder_hidden_states.shape
encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size = hidden_states.shape[0]
# `sample` projections.
dtype = hidden_states.dtype
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
# `context` projections.
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
if encoder_hidden_states is not None and has_encoder_hidden_state_proj:
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
# attention
if not attn.is_cross_attention:
query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
else:
query = hidden_states
key = encoder_hidden_states
value = encoder_hidden_states
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
key = key.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1).transpose(-1, -2)
value = value.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
# RoPE需要 [B, H, S, D] 输入
# 此时 query是 [B, H, D, S], 需要转成 [B, H, S, D] 才能应用RoPE
query = query.permute(0, 1, 3, 2) # [B, H, S, D] (从 [B, H, D, S])
# Apply query and key normalization if needed
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if rotary_freqs_cis is not None:
query = self.apply_rotary_emb(query, rotary_freqs_cis)
if not attn.is_cross_attention:
key = self.apply_rotary_emb(key, rotary_freqs_cis)
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
# 此时 query是 [B, H, S, D],需要还原成 [B, H, D, S]
query = query.permute(0, 1, 3, 2) # [B, H, D, S]
if attention_mask is not None:
# attention_mask: [B, S] -> [B, 1, S, 1]
attention_mask = attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S, 1]
query = query * attention_mask.permute(0, 1, 3, 2) # [B, H, S, D] * [B, 1, S, 1]
if not attn.is_cross_attention:
key = key * attention_mask # key: [B, h, S, D] 与 mask [B, 1, S, 1] 相乘
value = value * attention_mask.permute(0, 1, 3, 2) # 如果 value 是 [B, h, D, S]那么需调整mask以匹配S维度
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
encoder_attention_mask = encoder_attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S_enc, 1]
# 此时 key: [B, h, S_enc, D], value: [B, h, D, S_enc]
key = key * encoder_attention_mask # [B, h, S_enc, D] * [B, 1, S_enc, 1]
value = value * encoder_attention_mask.permute(0, 1, 3, 2) # [B, h, D, S_enc] * [B, 1, 1, S_enc]
query = self.kernel_func(query)
key = self.kernel_func(key)
query, key, value = query.float(), key.float(), value.float()
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=self.pad_val)
vk = torch.matmul(value, key)
hidden_states = torch.matmul(vk, query)
if hidden_states.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.float()
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
hidden_states = hidden_states.view(batch_size, attn.heads * head_dim, -1).permute(0, 2, 1)
hidden_states = hidden_states.to(dtype)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.to(dtype)
# Split the attention outputs.
if encoder_hidden_states is not None and not attn.is_cross_attention and has_encoder_hidden_state_proj:
hidden_states, encoder_hidden_states = (
hidden_states[:, : hidden_states_len],
hidden_states[:, hidden_states_len:],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if encoder_hidden_states is not None and not attn.context_pre_only and not attn.is_cross_attention and hasattr(attn, "to_add_out"):
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if encoder_hidden_states is not None and context_input_ndim == 4:
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if torch.get_autocast_gpu_dtype() == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return hidden_states, encoder_hidden_states
class CustomerAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.Tensor:
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if rotary_freqs_cis is not None:
query = self.apply_rotary_emb(query, rotary_freqs_cis)
if not attn.is_cross_attention:
key = self.apply_rotary_emb(key, rotary_freqs_cis)
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
# attention_mask: N x S1
# encoder_attention_mask: N x S2
# cross attention 整合attention_mask和encoder_attention_mask
combined_mask = attention_mask[:, :, None] * encoder_attention_mask[:, None, :]
attention_mask = torch.where(combined_mask == 1, 0.0, -torch.inf)
attention_mask = attention_mask[:, None, :, :].expand(-1, attn.heads, -1, -1).to(query.dtype)
elif not attn.is_cross_attention and attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = optimized_attention(
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
).to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def val2list(x: list or tuple or any, repeat_time=1) -> list: # type: ignore
"""Repeat `val` for `repeat_time` times and return the list or val if list/tuple."""
if isinstance(x, (list, tuple)):
return list(x)
return [x for _ in range(repeat_time)]
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: # type: ignore
"""Return tuple with min_len by repeating element at idx_repeat."""
# convert to list first
x = val2list(x)
# repeat elements if necessary
if len(x) > 0:
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))]
return tuple(x)
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
def get_same_padding(kernel_size: Union[int, Tuple[int, ...]]) -> Union[int, Tuple[int, ...]]:
if isinstance(kernel_size, tuple):
return tuple([get_same_padding(ks) for ks in kernel_size])
else:
assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number"
return kernel_size // 2
class ConvLayer(nn.Module):
def __init__(
self,
in_dim: int,
out_dim: int,
kernel_size=3,
stride=1,
dilation=1,
groups=1,
padding: Union[int, None] = None,
use_bias=False,
norm=None,
act=None,
dtype=None, device=None, operations=None
):
super().__init__()
if padding is None:
padding = get_same_padding(kernel_size)
padding *= dilation
self.in_dim = in_dim
self.out_dim = out_dim
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.groups = groups
self.padding = padding
self.use_bias = use_bias
self.conv = operations.Conv1d(
in_dim,
out_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=use_bias,
device=device,
dtype=dtype
)
if norm is not None:
self.norm = operations.RMSNorm(out_dim, elementwise_affine=False, dtype=dtype, device=device)
else:
self.norm = None
if act is not None:
self.act = nn.SiLU(inplace=True)
else:
self.act = None
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv(x)
if self.norm:
x = self.norm(x)
if self.act:
x = self.act(x)
return x
class GLUMBConv(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int,
out_feature=None,
kernel_size=3,
stride=1,
padding: Union[int, None] = None,
use_bias=False,
norm=(None, None, None),
act=("silu", "silu", None),
dilation=1,
dtype=None, device=None, operations=None
):
out_feature = out_feature or in_features
super().__init__()
use_bias = val2tuple(use_bias, 3)
norm = val2tuple(norm, 3)
act = val2tuple(act, 3)
self.glu_act = nn.SiLU(inplace=False)
self.inverted_conv = ConvLayer(
in_features,
hidden_features * 2,
1,
use_bias=use_bias[0],
norm=norm[0],
act=act[0],
dtype=dtype,
device=device,
operations=operations,
)
self.depth_conv = ConvLayer(
hidden_features * 2,
hidden_features * 2,
kernel_size,
stride=stride,
groups=hidden_features * 2,
padding=padding,
use_bias=use_bias[1],
norm=norm[1],
act=None,
dilation=dilation,
dtype=dtype,
device=device,
operations=operations,
)
self.point_conv = ConvLayer(
hidden_features,
out_feature,
1,
use_bias=use_bias[2],
norm=norm[2],
act=act[2],
dtype=dtype,
device=device,
operations=operations,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.transpose(1, 2)
x = self.inverted_conv(x)
x = self.depth_conv(x)
x, gate = torch.chunk(x, 2, dim=1)
gate = self.glu_act(gate)
x = x * gate
x = self.point_conv(x)
x = x.transpose(1, 2)
return x
class LinearTransformerBlock(nn.Module):
"""
A Sana block with global shared adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
use_adaln_single=True,
cross_attention_dim=None,
added_kv_proj_dim=None,
context_pre_only=False,
mlp_ratio=4.0,
add_cross_attention=False,
add_cross_attention_dim=None,
qk_norm=None,
dtype=None, device=None, operations=None
):
super().__init__()
self.norm1 = operations.RMSNorm(dim, elementwise_affine=False, eps=1e-6)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
added_kv_proj_dim=added_kv_proj_dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
qk_norm=qk_norm,
processor=CustomLiteLAProcessor2_0(),
dtype=dtype,
device=device,
operations=operations,
)
self.add_cross_attention = add_cross_attention
self.context_pre_only = context_pre_only
if add_cross_attention and add_cross_attention_dim is not None:
self.cross_attn = Attention(
query_dim=dim,
cross_attention_dim=add_cross_attention_dim,
added_kv_proj_dim=add_cross_attention_dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=context_pre_only,
bias=True,
qk_norm=qk_norm,
processor=CustomerAttnProcessor2_0(),
dtype=dtype,
device=device,
operations=operations,
)
self.norm2 = operations.RMSNorm(dim, 1e-06, elementwise_affine=False)
self.ff = GLUMBConv(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
use_bias=(True, True, False),
norm=(None, None, None),
act=("silu", "silu", None),
dtype=dtype,
device=device,
operations=operations,
)
self.use_adaln_single = use_adaln_single
if use_adaln_single:
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, dtype=dtype, device=device))
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: torch.FloatTensor = None,
encoder_attention_mask: torch.FloatTensor = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
temb: torch.FloatTensor = None,
):
N = hidden_states.shape[0]
# step 1: AdaLN single
if self.use_adaln_single:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
comfy.model_management.cast_to(self.scale_shift_table[None], dtype=temb.dtype, device=temb.device) + temb.reshape(N, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
if self.use_adaln_single:
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
# step 2: attention
if not self.add_cross_attention:
attn_output, encoder_hidden_states = self.attn(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
)
else:
attn_output, _ = self.attn(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=None,
)
if self.use_adaln_single:
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if self.add_cross_attention:
attn_output = self.cross_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
)
hidden_states = attn_output + hidden_states
# step 3: add norm
norm_hidden_states = self.norm2(hidden_states)
if self.use_adaln_single:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
# step 4: feed forward
ff_output = self.ff(norm_hidden_states)
if self.use_adaln_single:
ff_output = gate_mlp * ff_output
hidden_states = hidden_states + ff_output
return hidden_states

File diff suppressed because it is too large Load Diff

View File

@@ -1,385 +0,0 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/ace_step_transformer.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, List, Union
import torch
from torch import nn
import comfy.model_management
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from .attention import LinearTransformerBlock, t2i_modulate
from .lyric_encoder import ConformerEncoder as LyricEncoder
def cross_norm(hidden_states, controlnet_input):
# input N x T x c
mean_hidden_states, std_hidden_states = hidden_states.mean(dim=(1,2), keepdim=True), hidden_states.std(dim=(1,2), keepdim=True)
mean_controlnet_input, std_controlnet_input = controlnet_input.mean(dim=(1,2), keepdim=True), controlnet_input.std(dim=(1,2), keepdim=True)
controlnet_input = (controlnet_input - mean_controlnet_input) * (std_hidden_states / (std_controlnet_input + 1e-12)) + mean_hidden_states
return controlnet_input
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2
class Qwen2RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, dtype=None, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=device).float() / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
class T2IFinalLayer(nn.Module):
"""
The final layer of Sana.
"""
def __init__(self, hidden_size, patch_size=[16, 1], out_channels=256, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True, dtype=dtype, device=device)
self.scale_shift_table = nn.Parameter(torch.empty(2, hidden_size, dtype=dtype, device=device))
self.out_channels = out_channels
self.patch_size = patch_size
def unpatchfy(
self,
hidden_states: torch.Tensor,
width: int,
):
# 4 unpatchify
new_height, new_width = 1, hidden_states.size(1)
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], new_height, new_width, self.patch_size[0], self.patch_size[1], self.out_channels)
).contiguous()
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], self.out_channels, new_height * self.patch_size[0], new_width * self.patch_size[1])
).contiguous()
if width > new_width:
output = torch.nn.functional.pad(output, (0, width - new_width, 0, 0), 'constant', 0)
elif width < new_width:
output = output[:, :, :, :width]
return output
def forward(self, x, t, output_length):
shift, scale = (comfy.model_management.cast_to(self.scale_shift_table[None], device=t.device, dtype=t.dtype) + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
# unpatchify
output = self.unpatchfy(x, output_length)
return output
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
height=16,
width=4096,
patch_size=(16, 1),
in_channels=8,
embed_dim=1152,
bias=True,
dtype=None, device=None, operations=None
):
super().__init__()
patch_size_h, patch_size_w = patch_size
self.early_conv_layers = nn.Sequential(
operations.Conv2d(in_channels, in_channels*256, kernel_size=patch_size, stride=patch_size, padding=0, bias=bias, dtype=dtype, device=device),
operations.GroupNorm(num_groups=32, num_channels=in_channels*256, eps=1e-6, affine=True, dtype=dtype, device=device),
operations.Conv2d(in_channels*256, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias, dtype=dtype, device=device)
)
self.patch_size = patch_size
self.height, self.width = height // patch_size_h, width // patch_size_w
self.base_size = self.width
def forward(self, latent):
# early convolutions, N x C x H x W -> N x 256 * sqrt(patch_size) x H/patch_size x W/patch_size
latent = self.early_conv_layers(latent)
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
return latent
class ACEStepTransformer2DModel(nn.Module):
# _supports_gradient_checkpointing = True
def __init__(
self,
in_channels: Optional[int] = 8,
num_layers: int = 28,
inner_dim: int = 1536,
attention_head_dim: int = 64,
num_attention_heads: int = 24,
mlp_ratio: float = 4.0,
out_channels: int = 8,
max_position: int = 32768,
rope_theta: float = 1000000.0,
speaker_embedding_dim: int = 512,
text_embedding_dim: int = 768,
ssl_encoder_depths: List[int] = [9, 9],
ssl_names: List[str] = ["mert", "m-hubert"],
ssl_latent_dims: List[int] = [1024, 768],
lyric_encoder_vocab_size: int = 6681,
lyric_hidden_size: int = 1024,
patch_size: List[int] = [16, 1],
max_height: int = 16,
max_width: int = 4096,
audio_model=None,
dtype=None, device=None, operations=None
):
super().__init__()
self.dtype = dtype
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.inner_dim = inner_dim
self.out_channels = out_channels
self.max_position = max_position
self.patch_size = patch_size
self.rope_theta = rope_theta
self.rotary_emb = Qwen2RotaryEmbedding(
dim=self.attention_head_dim,
max_position_embeddings=self.max_position,
base=self.rope_theta,
dtype=dtype,
device=device,
)
# 2. Define input layers
self.in_channels = in_channels
self.num_layers = num_layers
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
LinearTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_ratio=mlp_ratio,
add_cross_attention=True,
add_cross_attention_dim=self.inner_dim,
dtype=dtype,
device=device,
operations=operations,
)
for i in range(self.num_layers)
]
)
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim, dtype=dtype, device=device, operations=operations)
self.t_block = nn.Sequential(nn.SiLU(), operations.Linear(self.inner_dim, 6 * self.inner_dim, bias=True, dtype=dtype, device=device))
# speaker
self.speaker_embedder = operations.Linear(speaker_embedding_dim, self.inner_dim, dtype=dtype, device=device)
# genre
self.genre_embedder = operations.Linear(text_embedding_dim, self.inner_dim, dtype=dtype, device=device)
# lyric
self.lyric_embs = operations.Embedding(lyric_encoder_vocab_size, lyric_hidden_size, dtype=dtype, device=device)
self.lyric_encoder = LyricEncoder(input_size=lyric_hidden_size, static_chunk_size=0, dtype=dtype, device=device, operations=operations)
self.lyric_proj = operations.Linear(lyric_hidden_size, self.inner_dim, dtype=dtype, device=device)
projector_dim = 2 * self.inner_dim
self.projectors = nn.ModuleList([
nn.Sequential(
operations.Linear(self.inner_dim, projector_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(projector_dim, projector_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(projector_dim, ssl_dim, dtype=dtype, device=device),
) for ssl_dim in ssl_latent_dims
])
self.proj_in = PatchEmbed(
height=max_height,
width=max_width,
patch_size=patch_size,
embed_dim=self.inner_dim,
bias=True,
dtype=dtype,
device=device,
operations=operations,
)
self.final_layer = T2IFinalLayer(self.inner_dim, patch_size=patch_size, out_channels=out_channels, dtype=dtype, device=device, operations=operations)
def forward_lyric_encoder(
self,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
out_dtype=None,
):
# N x T x D
lyric_embs = self.lyric_embs(lyric_token_idx, out_dtype=out_dtype)
prompt_prenet_out, _mask = self.lyric_encoder(lyric_embs, lyric_mask, decoding_chunk_size=1, num_decoding_left_chunks=-1)
prompt_prenet_out = self.lyric_proj(prompt_prenet_out)
return prompt_prenet_out
def encode(
self,
encoder_text_hidden_states: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
lyrics_strength=1.0,
):
bs = encoder_text_hidden_states.shape[0]
device = encoder_text_hidden_states.device
# speaker embedding
encoder_spk_hidden_states = self.speaker_embedder(speaker_embeds).unsqueeze(1)
# genre embedding
encoder_text_hidden_states = self.genre_embedder(encoder_text_hidden_states)
# lyric
encoder_lyric_hidden_states = self.forward_lyric_encoder(
lyric_token_idx=lyric_token_idx,
lyric_mask=lyric_mask,
out_dtype=encoder_text_hidden_states.dtype,
)
encoder_lyric_hidden_states *= lyrics_strength
encoder_hidden_states = torch.cat([encoder_spk_hidden_states, encoder_text_hidden_states, encoder_lyric_hidden_states], dim=1)
encoder_hidden_mask = None
if text_attention_mask is not None:
speaker_mask = torch.ones(bs, 1, device=device)
encoder_hidden_mask = torch.cat([speaker_mask, text_attention_mask, lyric_mask], dim=1)
return encoder_hidden_states, encoder_hidden_mask
def decode(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_mask: torch.Tensor,
timestep: Optional[torch.Tensor],
output_length: int = 0,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
):
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
temb = self.t_block(embedded_timestep)
hidden_states = self.proj_in(hidden_states)
# controlnet logic
if block_controlnet_hidden_states is not None:
control_condi = cross_norm(hidden_states, block_controlnet_hidden_states)
hidden_states = hidden_states + control_condi * controlnet_scale
# inner_hidden_states = []
rotary_freqs_cis = self.rotary_emb(hidden_states, seq_len=hidden_states.shape[1])
encoder_rotary_freqs_cis = self.rotary_emb(encoder_hidden_states, seq_len=encoder_hidden_states.shape[1])
for index_block, block in enumerate(self.transformer_blocks):
hidden_states = block(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_hidden_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
temb=temb,
)
output = self.final_layer(hidden_states, embedded_timestep, output_length)
return output
def forward(
self,
x,
timestep,
attention_mask=None,
context: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
lyrics_strength=1.0,
**kwargs
):
hidden_states = x
encoder_text_hidden_states = context
encoder_hidden_states, encoder_hidden_mask = self.encode(
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embeds=speaker_embeds,
lyric_token_idx=lyric_token_idx,
lyric_mask=lyric_mask,
lyrics_strength=lyrics_strength,
)
output_length = hidden_states.shape[-1]
output = self.decode(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_mask=encoder_hidden_mask,
timestep=timestep,
output_length=output_length,
block_controlnet_hidden_states=block_controlnet_hidden_states,
controlnet_scale=controlnet_scale,
)
return output

View File

@@ -1,644 +0,0 @@
# Rewritten from diffusers
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple, Union
import comfy.model_management
import comfy.ops
ops = comfy.ops.disable_weight_init
class RMSNorm(ops.RMSNorm):
def __init__(self, dim, eps=1e-5, elementwise_affine=True, bias=False):
super().__init__(dim, eps=eps, elementwise_affine=elementwise_affine)
if elementwise_affine:
self.bias = nn.Parameter(torch.empty(dim)) if bias else None
def forward(self, x):
x = super().forward(x)
if self.elementwise_affine:
if self.bias is not None:
x = x + comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device)
return x
def get_normalization(norm_type, num_features, num_groups=32, eps=1e-5):
if norm_type == "batch_norm":
return nn.BatchNorm2d(num_features)
elif norm_type == "group_norm":
return ops.GroupNorm(num_groups, num_features)
elif norm_type == "layer_norm":
return ops.LayerNorm(num_features)
elif norm_type == "rms_norm":
return RMSNorm(num_features, eps=eps, elementwise_affine=True, bias=True)
else:
raise ValueError(f"Unknown normalization type: {norm_type}")
def get_activation(activation_type):
if activation_type == "relu":
return nn.ReLU()
elif activation_type == "relu6":
return nn.ReLU6()
elif activation_type == "silu":
return nn.SiLU()
elif activation_type == "leaky_relu":
return nn.LeakyReLU(0.2)
else:
raise ValueError(f"Unknown activation type: {activation_type}")
class ResBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
norm_type: str = "batch_norm",
act_fn: str = "relu6",
) -> None:
super().__init__()
self.norm_type = norm_type
self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity()
self.conv1 = ops.Conv2d(in_channels, in_channels, 3, 1, 1)
self.conv2 = ops.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False)
self.norm = get_normalization(norm_type, out_channels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
residual = hidden_states
hidden_states = self.conv1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.norm_type == "rms_norm":
# move channel to the last dimension so we apply RMSnorm across channel dimension
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
else:
hidden_states = self.norm(hidden_states)
return hidden_states + residual
class SanaMultiscaleAttentionProjection(nn.Module):
def __init__(
self,
in_channels: int,
num_attention_heads: int,
kernel_size: int,
) -> None:
super().__init__()
channels = 3 * in_channels
self.proj_in = ops.Conv2d(
channels,
channels,
kernel_size,
padding=kernel_size // 2,
groups=channels,
bias=False,
)
self.proj_out = ops.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.proj_in(hidden_states)
hidden_states = self.proj_out(hidden_states)
return hidden_states
class SanaMultiscaleLinearAttention(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_attention_heads: int = None,
attention_head_dim: int = 8,
mult: float = 1.0,
norm_type: str = "batch_norm",
kernel_sizes: tuple = (5,),
eps: float = 1e-15,
residual_connection: bool = False,
):
super().__init__()
self.eps = eps
self.attention_head_dim = attention_head_dim
self.norm_type = norm_type
self.residual_connection = residual_connection
num_attention_heads = (
int(in_channels // attention_head_dim * mult)
if num_attention_heads is None
else num_attention_heads
)
inner_dim = num_attention_heads * attention_head_dim
self.to_q = ops.Linear(in_channels, inner_dim, bias=False)
self.to_k = ops.Linear(in_channels, inner_dim, bias=False)
self.to_v = ops.Linear(in_channels, inner_dim, bias=False)
self.to_qkv_multiscale = nn.ModuleList()
for kernel_size in kernel_sizes:
self.to_qkv_multiscale.append(
SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size)
)
self.nonlinearity = nn.ReLU()
self.to_out = ops.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False)
self.norm_out = get_normalization(norm_type, out_channels)
def apply_linear_attention(self, query, key, value):
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1)
scores = torch.matmul(value, key.transpose(-1, -2))
hidden_states = torch.matmul(scores, query)
hidden_states = hidden_states.to(dtype=torch.float32)
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
return hidden_states
def apply_quadratic_attention(self, query, key, value):
scores = torch.matmul(key.transpose(-1, -2), query)
scores = scores.to(dtype=torch.float32)
scores = scores / (torch.sum(scores, dim=2, keepdim=True) + self.eps)
hidden_states = torch.matmul(value, scores.to(value.dtype))
return hidden_states
def forward(self, hidden_states):
height, width = hidden_states.shape[-2:]
if height * width > self.attention_head_dim:
use_linear_attention = True
else:
use_linear_attention = False
residual = hidden_states
batch_size, _, height, width = list(hidden_states.size())
original_dtype = hidden_states.dtype
hidden_states = hidden_states.movedim(1, -1)
query = self.to_q(hidden_states)
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
hidden_states = torch.cat([query, key, value], dim=3)
hidden_states = hidden_states.movedim(-1, 1)
multi_scale_qkv = [hidden_states]
for block in self.to_qkv_multiscale:
multi_scale_qkv.append(block(hidden_states))
hidden_states = torch.cat(multi_scale_qkv, dim=1)
if use_linear_attention:
# for linear attention upcast hidden_states to float32
hidden_states = hidden_states.to(dtype=torch.float32)
hidden_states = hidden_states.reshape(batch_size, -1, 3 * self.attention_head_dim, height * width)
query, key, value = hidden_states.chunk(3, dim=2)
query = self.nonlinearity(query)
key = self.nonlinearity(key)
if use_linear_attention:
hidden_states = self.apply_linear_attention(query, key, value)
hidden_states = hidden_states.to(dtype=original_dtype)
else:
hidden_states = self.apply_quadratic_attention(query, key, value)
hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width))
hidden_states = self.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.norm_type == "rms_norm":
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
else:
hidden_states = self.norm_out(hidden_states)
if self.residual_connection:
hidden_states = hidden_states + residual
return hidden_states
class EfficientViTBlock(nn.Module):
def __init__(
self,
in_channels: int,
mult: float = 1.0,
attention_head_dim: int = 32,
qkv_multiscales: tuple = (5,),
norm_type: str = "batch_norm",
) -> None:
super().__init__()
self.attn = SanaMultiscaleLinearAttention(
in_channels=in_channels,
out_channels=in_channels,
mult=mult,
attention_head_dim=attention_head_dim,
norm_type=norm_type,
kernel_sizes=qkv_multiscales,
residual_connection=True,
)
self.conv_out = GLUMBConv(
in_channels=in_channels,
out_channels=in_channels,
norm_type="rms_norm",
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.attn(x)
x = self.conv_out(x)
return x
class GLUMBConv(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
expand_ratio: float = 4,
norm_type: str = None,
residual_connection: bool = True,
) -> None:
super().__init__()
hidden_channels = int(expand_ratio * in_channels)
self.norm_type = norm_type
self.residual_connection = residual_connection
self.nonlinearity = nn.SiLU()
self.conv_inverted = ops.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0)
self.conv_depth = ops.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2)
self.conv_point = ops.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False)
self.norm = None
if norm_type == "rms_norm":
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.residual_connection:
residual = hidden_states
hidden_states = self.conv_inverted(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv_depth(hidden_states)
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1)
hidden_states = hidden_states * self.nonlinearity(gate)
hidden_states = self.conv_point(hidden_states)
if self.norm_type == "rms_norm":
# move channel to the last dimension so we apply RMSnorm across channel dimension
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.residual_connection:
hidden_states = hidden_states + residual
return hidden_states
def get_block(
block_type: str,
in_channels: int,
out_channels: int,
attention_head_dim: int,
norm_type: str,
act_fn: str,
qkv_mutliscales: tuple = (),
):
if block_type == "ResBlock":
block = ResBlock(in_channels, out_channels, norm_type, act_fn)
elif block_type == "EfficientViTBlock":
block = EfficientViTBlock(
in_channels,
attention_head_dim=attention_head_dim,
norm_type=norm_type,
qkv_multiscales=qkv_mutliscales
)
else:
raise ValueError(f"Block with {block_type=} is not supported.")
return block
class DCDownBlock2d(nn.Module):
def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None:
super().__init__()
self.downsample = downsample
self.factor = 2
self.stride = 1 if downsample else 2
self.group_size = in_channels * self.factor**2 // out_channels
self.shortcut = shortcut
out_ratio = self.factor**2
if downsample:
assert out_channels % out_ratio == 0
out_channels = out_channels // out_ratio
self.conv = ops.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=self.stride,
padding=1,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
x = self.conv(hidden_states)
if self.downsample:
x = F.pixel_unshuffle(x, self.factor)
if self.shortcut:
y = F.pixel_unshuffle(hidden_states, self.factor)
y = y.unflatten(1, (-1, self.group_size))
y = y.mean(dim=2)
hidden_states = x + y
else:
hidden_states = x
return hidden_states
class DCUpBlock2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
interpolate: bool = False,
shortcut: bool = True,
interpolation_mode: str = "nearest",
) -> None:
super().__init__()
self.interpolate = interpolate
self.interpolation_mode = interpolation_mode
self.shortcut = shortcut
self.factor = 2
self.repeats = out_channels * self.factor**2 // in_channels
out_ratio = self.factor**2
if not interpolate:
out_channels = out_channels * out_ratio
self.conv = ops.Conv2d(in_channels, out_channels, 3, 1, 1)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.interpolate:
x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode)
x = self.conv(x)
else:
x = self.conv(hidden_states)
x = F.pixel_shuffle(x, self.factor)
if self.shortcut:
y = hidden_states.repeat_interleave(self.repeats, dim=1, output_size=hidden_states.shape[1] * self.repeats)
y = F.pixel_shuffle(y, self.factor)
hidden_states = x + y
else:
hidden_states = x
return hidden_states
class Encoder(nn.Module):
def __init__(
self,
in_channels: int,
latent_channels: int,
attention_head_dim: int = 32,
block_type: str or tuple = "ResBlock",
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024),
layers_per_block: tuple = (2, 2, 2, 2, 2, 2),
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)),
downsample_block_type: str = "pixel_unshuffle",
out_shortcut: bool = True,
):
super().__init__()
num_blocks = len(block_out_channels)
if isinstance(block_type, str):
block_type = (block_type,) * num_blocks
if layers_per_block[0] > 0:
self.conv_in = ops.Conv2d(
in_channels,
block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
kernel_size=3,
stride=1,
padding=1,
)
else:
self.conv_in = DCDownBlock2d(
in_channels=in_channels,
out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
downsample=downsample_block_type == "pixel_unshuffle",
shortcut=False,
)
down_blocks = []
for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)):
down_block_list = []
for _ in range(num_layers):
block = get_block(
block_type[i],
out_channel,
out_channel,
attention_head_dim=attention_head_dim,
norm_type="rms_norm",
act_fn="silu",
qkv_mutliscales=qkv_multiscales[i],
)
down_block_list.append(block)
if i < num_blocks - 1 and num_layers > 0:
downsample_block = DCDownBlock2d(
in_channels=out_channel,
out_channels=block_out_channels[i + 1],
downsample=downsample_block_type == "pixel_unshuffle",
shortcut=True,
)
down_block_list.append(downsample_block)
down_blocks.append(nn.Sequential(*down_block_list))
self.down_blocks = nn.ModuleList(down_blocks)
self.conv_out = ops.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1)
self.out_shortcut = out_shortcut
if out_shortcut:
self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.conv_in(hidden_states)
for down_block in self.down_blocks:
hidden_states = down_block(hidden_states)
if self.out_shortcut:
x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size))
x = x.mean(dim=2)
hidden_states = self.conv_out(hidden_states) + x
else:
hidden_states = self.conv_out(hidden_states)
return hidden_states
class Decoder(nn.Module):
def __init__(
self,
in_channels: int,
latent_channels: int,
attention_head_dim: int = 32,
block_type: str or tuple = "ResBlock",
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024),
layers_per_block: tuple = (2, 2, 2, 2, 2, 2),
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)),
norm_type: str or tuple = "rms_norm",
act_fn: str or tuple = "silu",
upsample_block_type: str = "pixel_shuffle",
in_shortcut: bool = True,
):
super().__init__()
num_blocks = len(block_out_channels)
if isinstance(block_type, str):
block_type = (block_type,) * num_blocks
if isinstance(norm_type, str):
norm_type = (norm_type,) * num_blocks
if isinstance(act_fn, str):
act_fn = (act_fn,) * num_blocks
self.conv_in = ops.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1)
self.in_shortcut = in_shortcut
if in_shortcut:
self.in_shortcut_repeats = block_out_channels[-1] // latent_channels
up_blocks = []
for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))):
up_block_list = []
if i < num_blocks - 1 and num_layers > 0:
upsample_block = DCUpBlock2d(
block_out_channels[i + 1],
out_channel,
interpolate=upsample_block_type == "interpolate",
shortcut=True,
)
up_block_list.append(upsample_block)
for _ in range(num_layers):
block = get_block(
block_type[i],
out_channel,
out_channel,
attention_head_dim=attention_head_dim,
norm_type=norm_type[i],
act_fn=act_fn[i],
qkv_mutliscales=qkv_multiscales[i],
)
up_block_list.append(block)
up_blocks.insert(0, nn.Sequential(*up_block_list))
self.up_blocks = nn.ModuleList(up_blocks)
channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1]
self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True)
self.conv_act = nn.ReLU()
self.conv_out = None
if layers_per_block[0] > 0:
self.conv_out = ops.Conv2d(channels, in_channels, 3, 1, 1)
else:
self.conv_out = DCUpBlock2d(
channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.in_shortcut:
x = hidden_states.repeat_interleave(
self.in_shortcut_repeats, dim=1, output_size=hidden_states.shape[1] * self.in_shortcut_repeats
)
hidden_states = self.conv_in(hidden_states) + x
else:
hidden_states = self.conv_in(hidden_states)
for up_block in reversed(self.up_blocks):
hidden_states = up_block(hidden_states)
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class AutoencoderDC(nn.Module):
def __init__(
self,
in_channels: int = 2,
latent_channels: int = 8,
attention_head_dim: int = 32,
encoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"],
decoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"],
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024),
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024),
encoder_layers_per_block: Tuple[int] = (2, 2, 3, 3),
decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3),
encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)),
decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)),
upsample_block_type: str = "interpolate",
downsample_block_type: str = "Conv",
decoder_norm_types: Union[str, Tuple[str]] = "rms_norm",
decoder_act_fns: Union[str, Tuple[str]] = "silu",
scaling_factor: float = 0.41407,
) -> None:
super().__init__()
self.encoder = Encoder(
in_channels=in_channels,
latent_channels=latent_channels,
attention_head_dim=attention_head_dim,
block_type=encoder_block_types,
block_out_channels=encoder_block_out_channels,
layers_per_block=encoder_layers_per_block,
qkv_multiscales=encoder_qkv_multiscales,
downsample_block_type=downsample_block_type,
)
self.decoder = Decoder(
in_channels=in_channels,
latent_channels=latent_channels,
attention_head_dim=attention_head_dim,
block_type=decoder_block_types,
block_out_channels=decoder_block_out_channels,
layers_per_block=decoder_layers_per_block,
qkv_multiscales=decoder_qkv_multiscales,
norm_type=decoder_norm_types,
act_fn=decoder_act_fns,
upsample_block_type=upsample_block_type,
)
self.scaling_factor = scaling_factor
self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1)
def encode(self, x: torch.Tensor) -> torch.Tensor:
"""Internal encoding function."""
encoded = self.encoder(x)
return encoded * self.scaling_factor
def decode(self, z: torch.Tensor) -> torch.Tensor:
# Scale the latents back
z = z / self.scaling_factor
decoded = self.decoder(z)
return decoded
def forward(self, x: torch.Tensor) -> torch.Tensor:
z = self.encode(x)
return self.decode(z)

View File

@@ -1,109 +0,0 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_dcae_pipeline.py
import torch
from .autoencoder_dc import AutoencoderDC
import logging
try:
import torchaudio
except:
logging.warning("torchaudio missing, ACE model will be broken")
import torchvision.transforms as transforms
from .music_vocoder import ADaMoSHiFiGANV1
class MusicDCAE(torch.nn.Module):
def __init__(self, source_sample_rate=None, dcae_config={}, vocoder_config={}):
super(MusicDCAE, self).__init__()
self.dcae = AutoencoderDC(**dcae_config)
self.vocoder = ADaMoSHiFiGANV1(**vocoder_config)
if source_sample_rate is None:
self.source_sample_rate = 48000
else:
self.source_sample_rate = source_sample_rate
# self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100)
self.transform = transforms.Compose([
transforms.Normalize(0.5, 0.5),
])
self.min_mel_value = -11.0
self.max_mel_value = 3.0
self.audio_chunk_size = int(round((1024 * 512 / 44100 * 48000)))
self.mel_chunk_size = 1024
self.time_dimention_multiple = 8
self.latent_chunk_size = self.mel_chunk_size // self.time_dimention_multiple
self.scale_factor = 0.1786
self.shift_factor = -1.9091
def load_audio(self, audio_path):
audio, sr = torchaudio.load(audio_path)
return audio, sr
def forward_mel(self, audios):
mels = []
for i in range(len(audios)):
image = self.vocoder.mel_transform(audios[i])
mels.append(image)
mels = torch.stack(mels)
return mels
@torch.no_grad()
def encode(self, audios, audio_lengths=None, sr=None):
if audio_lengths is None:
audio_lengths = torch.tensor([audios.shape[2]] * audios.shape[0])
audio_lengths = audio_lengths.to(audios.device)
if sr is None:
sr = self.source_sample_rate
if sr != 44100:
audios = torchaudio.functional.resample(audios, sr, 44100)
max_audio_len = audios.shape[-1]
if max_audio_len % (8 * 512) != 0:
audios = torch.nn.functional.pad(audios, (0, 8 * 512 - max_audio_len % (8 * 512)))
mels = self.forward_mel(audios)
mels = (mels - self.min_mel_value) / (self.max_mel_value - self.min_mel_value)
mels = self.transform(mels)
latents = []
for mel in mels:
latent = self.dcae.encoder(mel.unsqueeze(0))
latents.append(latent)
latents = torch.cat(latents, dim=0)
# latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long()
latents = (latents - self.shift_factor) * self.scale_factor
return latents
# return latents, latent_lengths
@torch.no_grad()
def decode(self, latents, audio_lengths=None, sr=None):
latents = latents / self.scale_factor + self.shift_factor
pred_wavs = []
for latent in latents:
mels = self.dcae.decoder(latent.unsqueeze(0))
mels = mels * 0.5 + 0.5
mels = mels * (self.max_mel_value - self.min_mel_value) + self.min_mel_value
wav = self.vocoder.decode(mels[0]).squeeze(1)
if sr is not None:
# resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype)
wav = torchaudio.functional.resample(wav, 44100, sr)
# wav = resampler(wav)
else:
sr = 44100
pred_wavs.append(wav)
if audio_lengths is not None:
pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)]
return torch.stack(pred_wavs)
# return sr, pred_wavs
def forward(self, audios, audio_lengths=None, sr=None):
latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr)
sr, pred_wavs = self.decode(latents=latents, audio_lengths=audio_lengths, sr=sr)
return sr, pred_wavs, latents, latent_lengths

View File

@@ -1,113 +0,0 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_log_mel.py
import torch
import torch.nn as nn
from torch import Tensor
import logging
try:
from torchaudio.transforms import MelScale
except:
logging.warning("torchaudio missing, ACE model will be broken")
import comfy.model_management
class LinearSpectrogram(nn.Module):
def __init__(
self,
n_fft=2048,
win_length=2048,
hop_length=512,
center=False,
mode="pow2_sqrt",
):
super().__init__()
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.center = center
self.mode = mode
self.register_buffer("window", torch.hann_window(win_length))
def forward(self, y: Tensor) -> Tensor:
if y.ndim == 3:
y = y.squeeze(1)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(
(self.win_length - self.hop_length) // 2,
(self.win_length - self.hop_length + 1) // 2,
),
mode="reflect",
).squeeze(1)
dtype = y.dtype
spec = torch.stft(
y.float(),
self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=comfy.model_management.cast_to(self.window, dtype=torch.float32, device=y.device),
center=self.center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.view_as_real(spec)
if self.mode == "pow2_sqrt":
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
spec = spec.to(dtype)
return spec
class LogMelSpectrogram(nn.Module):
def __init__(
self,
sample_rate=44100,
n_fft=2048,
win_length=2048,
hop_length=512,
n_mels=128,
center=False,
f_min=0.0,
f_max=None,
):
super().__init__()
self.sample_rate = sample_rate
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.center = center
self.n_mels = n_mels
self.f_min = f_min
self.f_max = f_max or sample_rate // 2
self.spectrogram = LinearSpectrogram(n_fft, win_length, hop_length, center)
self.mel_scale = MelScale(
self.n_mels,
self.sample_rate,
self.f_min,
self.f_max,
self.n_fft // 2 + 1,
"slaney",
"slaney",
)
def compress(self, x: Tensor) -> Tensor:
return torch.log(torch.clamp(x, min=1e-5))
def decompress(self, x: Tensor) -> Tensor:
return torch.exp(x)
def forward(self, x: Tensor, return_linear: bool = False) -> Tensor:
linear = self.spectrogram(x)
x = self.mel_scale(linear)
x = self.compress(x)
# print(x.shape)
if return_linear:
return x, self.compress(linear)
return x

View File

@@ -1,538 +0,0 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_vocoder.py
import torch
from torch import nn
from functools import partial
from math import prod
from typing import Callable, Tuple, List
import numpy as np
import torch.nn.functional as F
from torch.nn.utils.parametrize import remove_parametrizations as remove_weight_norm
from .music_log_mel import LogMelSpectrogram
import comfy.model_management
import comfy.ops
ops = comfy.ops.disable_weight_init
def drop_path(
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
""" # noqa: E501
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
def extra_repr(self):
return f"drop_prob={round(self.drop_prob,3):0.3f}"
class LayerNorm(nn.Module):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
""" # noqa: E501
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(
x, self.normalized_shape, comfy.model_management.cast_to(self.weight, dtype=x.dtype, device=x.device), comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device), self.eps
)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = comfy.model_management.cast_to(self.weight[:, None], dtype=x.dtype, device=x.device) * x + comfy.model_management.cast_to(self.bias[:, None], dtype=x.dtype, device=x.device)
return x
class ConvNeXtBlock(nn.Module):
r"""ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
kernel_size (int): Kernel size for depthwise conv. Default: 7.
dilation (int): Dilation for depthwise conv. Default: 1.
""" # noqa: E501
def __init__(
self,
dim: int,
drop_path: float = 0.0,
layer_scale_init_value: float = 1e-6,
mlp_ratio: float = 4.0,
kernel_size: int = 7,
dilation: int = 1,
):
super().__init__()
self.dwconv = ops.Conv1d(
dim,
dim,
kernel_size=kernel_size,
padding=int(dilation * (kernel_size - 1) / 2),
groups=dim,
) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = ops.Linear(
dim, int(mlp_ratio * dim)
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = ops.Linear(int(mlp_ratio * dim), dim)
self.gamma = (
nn.Parameter(torch.empty((dim)), requires_grad=False)
if layer_scale_init_value > 0
else None
)
self.drop_path = DropPath(
drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x, apply_residual: bool = True):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device) * x
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L)
x = self.drop_path(x)
if apply_residual:
x = input + x
return x
class ParallelConvNeXtBlock(nn.Module):
def __init__(self, kernel_sizes: List[int], *args, **kwargs):
super().__init__()
self.blocks = nn.ModuleList(
[
ConvNeXtBlock(kernel_size=kernel_size, *args, **kwargs)
for kernel_size in kernel_sizes
]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.stack(
[block(x, apply_residual=False) for block in self.blocks] + [x],
dim=1,
).sum(dim=1)
class ConvNeXtEncoder(nn.Module):
def __init__(
self,
input_channels=3,
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 768],
drop_path_rate=0.0,
layer_scale_init_value=1e-6,
kernel_sizes: Tuple[int] = (7,),
):
super().__init__()
assert len(depths) == len(dims)
self.channel_layers = nn.ModuleList()
stem = nn.Sequential(
ops.Conv1d(
input_channels,
dims[0],
kernel_size=7,
padding=3,
padding_mode="replicate",
),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
)
self.channel_layers.append(stem)
for i in range(len(depths) - 1):
mid_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
ops.Conv1d(dims[i], dims[i + 1], kernel_size=1),
)
self.channel_layers.append(mid_layer)
block_fn = (
partial(ConvNeXtBlock, kernel_size=kernel_sizes[0])
if len(kernel_sizes) == 1
else partial(ParallelConvNeXtBlock, kernel_sizes=kernel_sizes)
)
self.stages = nn.ModuleList()
drop_path_rates = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
]
cur = 0
for i in range(len(depths)):
stage = nn.Sequential(
*[
block_fn(
dim=dims[i],
drop_path=drop_path_rates[cur + j],
layer_scale_init_value=layer_scale_init_value,
)
for j in range(depths[i])
]
)
self.stages.append(stage)
cur += depths[i]
self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first")
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
for channel_layer, stage in zip(self.channel_layers, self.stages):
x = channel_layer(x)
x = stage(x)
return self.norm(x)
def get_padding(kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super().__init__()
self.convs1 = nn.ModuleList(
[
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs2 = nn.ModuleList(
[
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
]
)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.silu(x)
xt = c1(xt)
xt = F.silu(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for conv in self.convs1:
remove_weight_norm(conv)
for conv in self.convs2:
remove_weight_norm(conv)
class HiFiGANGenerator(nn.Module):
def __init__(
self,
*,
hop_length: int = 512,
upsample_rates: Tuple[int] = (8, 8, 2, 2, 2),
upsample_kernel_sizes: Tuple[int] = (16, 16, 8, 2, 2),
resblock_kernel_sizes: Tuple[int] = (3, 7, 11),
resblock_dilation_sizes: Tuple[Tuple[int]] = (
(1, 3, 5), (1, 3, 5), (1, 3, 5)),
num_mels: int = 128,
upsample_initial_channel: int = 512,
use_template: bool = True,
pre_conv_kernel_size: int = 7,
post_conv_kernel_size: int = 7,
post_activation: Callable = partial(nn.SiLU, inplace=True),
):
super().__init__()
assert (
prod(upsample_rates) == hop_length
), f"hop_length must be {prod(upsample_rates)}"
self.conv_pre = torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
num_mels,
upsample_initial_channel,
pre_conv_kernel_size,
1,
padding=get_padding(pre_conv_kernel_size),
)
)
self.num_upsamples = len(upsample_rates)
self.num_kernels = len(resblock_kernel_sizes)
self.noise_convs = nn.ModuleList()
self.use_template = use_template
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
c_cur = upsample_initial_channel // (2 ** (i + 1))
self.ups.append(
torch.nn.utils.parametrizations.weight_norm(
ops.ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
if not use_template:
continue
if i + 1 < len(upsample_rates):
stride_f0 = np.prod(upsample_rates[i + 1:])
self.noise_convs.append(
ops.Conv1d(
1,
c_cur,
kernel_size=stride_f0 * 2,
stride=stride_f0,
padding=stride_f0 // 2,
)
)
else:
self.noise_convs.append(ops.Conv1d(1, c_cur, kernel_size=1))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes):
self.resblocks.append(ResBlock1(ch, k, d))
self.activation_post = post_activation()
self.conv_post = torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
ch,
1,
post_conv_kernel_size,
1,
padding=get_padding(post_conv_kernel_size),
)
)
def forward(self, x, template=None):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.silu(x, inplace=True)
x = self.ups[i](x)
if self.use_template:
x = x + self.noise_convs[i](template)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
for up in self.ups:
remove_weight_norm(up)
for block in self.resblocks:
block.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class ADaMoSHiFiGANV1(nn.Module):
def __init__(
self,
input_channels: int = 128,
depths: List[int] = [3, 3, 9, 3],
dims: List[int] = [128, 256, 384, 512],
drop_path_rate: float = 0.0,
kernel_sizes: Tuple[int] = (7,),
upsample_rates: Tuple[int] = (4, 4, 2, 2, 2, 2, 2),
upsample_kernel_sizes: Tuple[int] = (8, 8, 4, 4, 4, 4, 4),
resblock_kernel_sizes: Tuple[int] = (3, 7, 11, 13),
resblock_dilation_sizes: Tuple[Tuple[int]] = (
(1, 3, 5), (1, 3, 5), (1, 3, 5), (1, 3, 5)),
num_mels: int = 512,
upsample_initial_channel: int = 1024,
use_template: bool = False,
pre_conv_kernel_size: int = 13,
post_conv_kernel_size: int = 13,
sampling_rate: int = 44100,
n_fft: int = 2048,
win_length: int = 2048,
hop_length: int = 512,
f_min: int = 40,
f_max: int = 16000,
n_mels: int = 128,
):
super().__init__()
self.backbone = ConvNeXtEncoder(
input_channels=input_channels,
depths=depths,
dims=dims,
drop_path_rate=drop_path_rate,
kernel_sizes=kernel_sizes,
)
self.head = HiFiGANGenerator(
hop_length=hop_length,
upsample_rates=upsample_rates,
upsample_kernel_sizes=upsample_kernel_sizes,
resblock_kernel_sizes=resblock_kernel_sizes,
resblock_dilation_sizes=resblock_dilation_sizes,
num_mels=num_mels,
upsample_initial_channel=upsample_initial_channel,
use_template=use_template,
pre_conv_kernel_size=pre_conv_kernel_size,
post_conv_kernel_size=post_conv_kernel_size,
)
self.sampling_rate = sampling_rate
self.mel_transform = LogMelSpectrogram(
sample_rate=sampling_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
f_min=f_min,
f_max=f_max,
n_mels=n_mels,
)
self.eval()
@torch.no_grad()
def decode(self, mel):
y = self.backbone(mel)
y = self.head(y)
return y
@torch.no_grad()
def encode(self, x):
return self.mel_transform(x)
def forward(self, mel):
y = self.backbone(mel)
y = self.head(y)
return y

View File

@@ -75,10 +75,16 @@ class SnakeBeta(nn.Module):
return x
def WNConv1d(*args, **kwargs):
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
try:
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
except:
return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older
def WNConvTranspose1d(*args, **kwargs):
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
try:
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
except:
return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
if activation == "elu":

View File

@@ -1,181 +0,0 @@
import torch
from torch import Tensor, nn
from comfy.ldm.flux.math import attention
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
QKNorm,
SelfAttention,
ModulationOut,
)
class ChromaModulationOut(ModulationOut):
@classmethod
def from_offset(cls, tensor: torch.Tensor, offset: int = 0) -> ModulationOut:
return cls(
shift=tensor[:, offset : offset + 1, :],
scale=tensor[:, offset + 1 : offset + 2, :],
gate=tensor[:, offset + 2 : offset + 3, :],
)
class Approximator(nn.Module):
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers = 5, dtype=None, device=None, operations=None):
super().__init__()
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
@property
def device(self):
# Get the device of the module (assumes all parameters are on the same device)
return next(self.parameters()).device
def forward(self, x: Tensor) -> Tensor:
x = self.in_proj(x)
for layer, norms in zip(self.layers, self.norms):
x = x + layer(norms(x))
x = self.out_proj(x)
return x
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None):
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
# calculate the txt bloks
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
mod = vec
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x.addcmul_(mod.gate, output)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, out_channels, bias=True, dtype=dtype, device=device)
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = vec
shift = shift.squeeze(1)
scale = scale.squeeze(1)
x = torch.addcmul(shift[:, None, :], 1 + scale[:, None, :], self.norm_final(x))
x = self.linear(x)
return x

View File

@@ -1,271 +0,0 @@
#Original code can be found on: https://github.com/black-forest-labs/flux
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from einops import rearrange, repeat
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import (
EmbedND,
timestep_embedding,
)
from .layers import (
DoubleStreamBlock,
LastLayer,
SingleStreamBlock,
Approximator,
ChromaModulationOut,
)
@dataclass
class ChromaParams:
in_channels: int
out_channels: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list
theta: int
patch_size: int
qkv_bias: bool
in_dim: int
out_dim: int
hidden_dim: int
n_layers: int
class Chroma(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
super().__init__()
self.dtype = dtype
params = ChromaParams(**kwargs)
self.params = params
self.patch_size = params.patch_size
self.in_channels = params.in_channels
self.out_channels = params.out_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.in_dim = params.in_dim
self.out_dim = params.out_dim
self.hidden_dim = params.hidden_dim
self.n_layers = params.n_layers
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
# set as nn identity for now, will overwrite it later.
self.distilled_guidance_layer = Approximator(
in_dim=self.in_dim,
hidden_dim=self.hidden_dim,
out_dim=self.out_dim,
n_layers=self.n_layers,
dtype=dtype, device=device, operations=operations
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
if final_layer:
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
self.skip_mmdit = []
self.skip_dit = []
self.lite = False
def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
# This function slices up the modulations tensor which has the following layout:
# single : num_single_blocks * 3 elements
# double_img : num_double_blocks * 6 elements
# double_txt : num_double_blocks * 6 elements
# final : 2 elements
if block_type == "final":
return (tensor[:, -2:-1, :], tensor[:, -1:, :])
single_block_count = self.params.depth_single_blocks
double_block_count = self.params.depth
offset = 3 * idx
if block_type == "single":
return ChromaModulationOut.from_offset(tensor, offset)
# Double block modulations are 6 elements so we double 3 * idx.
offset *= 2
if block_type in {"double_img", "double_txt"}:
# Advance past the single block modulations.
offset += 3 * single_block_count
if block_type == "double_txt":
# Advance past the double block img modulations.
offset += 6 * double_block_count
return (
ChromaModulationOut.from_offset(tensor, offset),
ChromaModulationOut.from_offset(tensor, offset + 3),
)
raise ValueError("Bad block_type")
def forward_orig(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
guidance: Tensor = None,
control = None,
transformer_options={},
attn_mask: Tensor = None,
) -> Tensor:
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
# distilled vector guidance
mod_index_length = 344
distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype)
# guidance = guidance *
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
# get all modulation index
modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
# we need to broadcast the modulation index here so each batch has all of the index
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
# and we need to broadcast timestep and guidance along too
timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
# then and only then we could concatenate it together
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
mod_vectors = self.distilled_guidance_layer(input_vec)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.double_blocks):
if i not in self.skip_mmdit:
double_mod = (
self.get_modulations(mod_vectors, "double_img", idx=i),
self.get_modulations(mod_vectors, "double_txt", idx=i),
)
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"],
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": double_mod,
"pe": pe,
"attn_mask": attn_mask},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img,
txt=txt,
vec=double_mod,
pe=pe,
attn_mask=attn_mask)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
if i not in self.skip_dit:
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": single_mod,
"pe": pe,
"attn_mask": attn_mask},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] :, ...] += add
img = img[:, txt.shape[1] :, ...]
final_mod = self.get_modulations(mod_vectors, "final")
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
return img
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
bs, c, h, w = x.shape
patch_size = 2
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]

View File

@@ -23,14 +23,25 @@ from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from torch import nn
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
from comfy.ldm.modules.attention import optimized_attention
def get_normalization(name: str, channels: int, weight_args={}, operations=None):
def apply_rotary_pos_emb(
t: torch.Tensor,
freqs: torch.Tensor,
) -> torch.Tensor:
t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
return t_out
def get_normalization(name: str, channels: int, weight_args={}):
if name == "I":
return nn.Identity()
elif name == "R":
return operations.RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
return RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
else:
raise ValueError(f"Normalization {name} not found")
@@ -109,15 +120,15 @@ class Attention(nn.Module):
self.to_q = nn.Sequential(
operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[0], norm_dim, weight_args=weight_args, operations=operations),
get_normalization(qkv_norm[0], norm_dim),
)
self.to_k = nn.Sequential(
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[1], norm_dim, weight_args=weight_args, operations=operations),
get_normalization(qkv_norm[1], norm_dim),
)
self.to_v = nn.Sequential(
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[2], norm_dim, weight_args=weight_args, operations=operations),
get_normalization(qkv_norm[2], norm_dim),
)
self.to_out = nn.Sequential(

View File

@@ -27,6 +27,8 @@ from torchvision import transforms
from enum import Enum
import logging
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
from .blocks import (
FinalLayer,
GeneralDITTransformerBlock,
@@ -193,7 +195,7 @@ class GeneralDIT(nn.Module):
if self.affline_emb_norm:
logging.debug("Building affine embedding normalization layer")
self.affline_norm = operations.RMSNorm(model_channels, elementwise_affine=True, eps=1e-6, device=device, dtype=dtype)
self.affline_norm = RMSNorm(model_channels, elementwise_affine=True, eps=1e-6)
else:
self.affline_norm = nn.Identity()

View File

@@ -66,16 +66,15 @@ class VideoRopePosition3DEmb(VideoPositionEmb):
h_extrapolation_ratio: float = 1.0,
w_extrapolation_ratio: float = 1.0,
t_extrapolation_ratio: float = 1.0,
enable_fps_modulation: bool = True,
device=None,
**kwargs, # used for compatibility with other positional embeddings; unused in this class
):
del kwargs
super().__init__()
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float, device=device))
self.base_fps = base_fps
self.max_h = len_h
self.max_w = len_w
self.enable_fps_modulation = enable_fps_modulation
dim = head_dim
dim_h = dim // 6 * 2
@@ -133,19 +132,21 @@ class VideoRopePosition3DEmb(VideoPositionEmb):
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range.to(device=device))
B, T, H, W, _ = B_T_H_W_C
seq = torch.arange(max(H, W, T), dtype=torch.float, device=device)
uniform_fps = (fps is None) or isinstance(fps, (int, float)) or (fps.min() == fps.max())
assert (
uniform_fps or B == 1 or T == 1
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1"
half_emb_h = torch.outer(seq[:H].to(device=device), h_spatial_freqs)
half_emb_w = torch.outer(seq[:W].to(device=device), w_spatial_freqs)
assert (
H <= self.max_h and W <= self.max_w
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w})"
half_emb_h = torch.outer(self.seq[:H].to(device=device), h_spatial_freqs)
half_emb_w = torch.outer(self.seq[:W].to(device=device), w_spatial_freqs)
# apply sequence scaling in temporal dimension
if fps is None or self.enable_fps_modulation is False: # image case
half_emb_t = torch.outer(seq[:T].to(device=device), temporal_freqs)
if fps is None: # image case
half_emb_t = torch.outer(self.seq[:T].to(device=device), temporal_freqs)
else:
half_emb_t = torch.outer(seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs)
half_emb_t = torch.outer(self.seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs)
half_emb_h = torch.stack([torch.cos(half_emb_h), -torch.sin(half_emb_h), torch.sin(half_emb_h), torch.cos(half_emb_h)], dim=-1)
half_emb_w = torch.stack([torch.cos(half_emb_w), -torch.sin(half_emb_w), torch.sin(half_emb_w), torch.cos(half_emb_w)], dim=-1)

View File

@@ -1,864 +0,0 @@
# original code from: https://github.com/nvidia-cosmos/cosmos-predict2
import torch
from torch import nn
from einops import rearrange
from einops.layers.torch import Rearrange
import logging
from typing import Callable, Optional, Tuple
import math
from .position_embedding import VideoRopePosition3DEmb, LearnablePosEmbAxis
from torchvision import transforms
from comfy.ldm.modules.attention import optimized_attention
def apply_rotary_pos_emb(
t: torch.Tensor,
freqs: torch.Tensor,
) -> torch.Tensor:
t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
return t_out
# ---------------------- Feed Forward Network -----------------------
class GPT2FeedForward(nn.Module):
def __init__(self, d_model: int, d_ff: int, device=None, dtype=None, operations=None) -> None:
super().__init__()
self.activation = nn.GELU()
self.layer1 = operations.Linear(d_model, d_ff, bias=False, device=device, dtype=dtype)
self.layer2 = operations.Linear(d_ff, d_model, bias=False, device=device, dtype=dtype)
self._layer_id = None
self._dim = d_model
self._hidden_dim = d_ff
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.layer1(x)
x = self.activation(x)
x = self.layer2(x)
return x
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor) -> torch.Tensor:
"""Computes multi-head attention using PyTorch's native implementation.
This function provides a PyTorch backend alternative to Transformer Engine's attention operation.
It rearranges the input tensors to match PyTorch's expected format, computes scaled dot-product
attention, and rearranges the output back to the original format.
The input tensor names use the following dimension conventions:
- B: batch size
- S: sequence length
- H: number of attention heads
- D: head dimension
Args:
q_B_S_H_D: Query tensor with shape (batch, seq_len, n_heads, head_dim)
k_B_S_H_D: Key tensor with shape (batch, seq_len, n_heads, head_dim)
v_B_S_H_D: Value tensor with shape (batch, seq_len, n_heads, head_dim)
Returns:
Attention output tensor with shape (batch, seq_len, n_heads * head_dim)
"""
in_q_shape = q_B_S_H_D.shape
in_k_shape = k_B_S_H_D.shape
q_B_H_S_D = rearrange(q_B_S_H_D, "b ... h k -> b h ... k").view(in_q_shape[0], in_q_shape[-2], -1, in_q_shape[-1])
k_B_H_S_D = rearrange(k_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
v_B_H_S_D = rearrange(v_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True)
class Attention(nn.Module):
"""
A flexible attention module supporting both self-attention and cross-attention mechanisms.
This module implements a multi-head attention layer that can operate in either self-attention
or cross-attention mode. The mode is determined by whether a context dimension is provided.
The implementation uses scaled dot-product attention and supports optional bias terms and
dropout regularization.
Args:
query_dim (int): The dimensionality of the query vectors.
context_dim (int, optional): The dimensionality of the context (key/value) vectors.
If None, the module operates in self-attention mode using query_dim. Default: None
n_heads (int, optional): Number of attention heads for multi-head attention. Default: 8
head_dim (int, optional): The dimension of each attention head. Default: 64
dropout (float, optional): Dropout probability applied to the output. Default: 0.0
qkv_format (str, optional): Format specification for QKV tensors. Default: "bshd"
backend (str, optional): Backend to use for the attention operation. Default: "transformer_engine"
Examples:
>>> # Self-attention with 512 dimensions and 8 heads
>>> self_attn = Attention(query_dim=512)
>>> x = torch.randn(32, 16, 512) # (batch_size, seq_len, dim)
>>> out = self_attn(x) # (32, 16, 512)
>>> # Cross-attention
>>> cross_attn = Attention(query_dim=512, context_dim=256)
>>> query = torch.randn(32, 16, 512)
>>> context = torch.randn(32, 8, 256)
>>> out = cross_attn(query, context) # (32, 16, 512)
"""
def __init__(
self,
query_dim: int,
context_dim: Optional[int] = None,
n_heads: int = 8,
head_dim: int = 64,
dropout: float = 0.0,
device=None,
dtype=None,
operations=None,
) -> None:
super().__init__()
logging.debug(
f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
f"{n_heads} heads with a dimension of {head_dim}."
)
self.is_selfattn = context_dim is None # self attention
context_dim = query_dim if context_dim is None else context_dim
inner_dim = head_dim * n_heads
self.n_heads = n_heads
self.head_dim = head_dim
self.query_dim = query_dim
self.context_dim = context_dim
self.q_proj = operations.Linear(query_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.q_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
self.k_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.k_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
self.v_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.v_norm = nn.Identity()
self.output_proj = operations.Linear(inner_dim, query_dim, bias=False, device=device, dtype=dtype)
self.output_dropout = nn.Dropout(dropout) if dropout > 1e-4 else nn.Identity()
self.attn_op = torch_attention_op
self._query_dim = query_dim
self._context_dim = context_dim
self._inner_dim = inner_dim
def compute_qkv(
self,
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
rope_emb: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
q = self.q_proj(x)
context = x if context is None else context
k = self.k_proj(context)
v = self.v_proj(context)
q, k, v = map(
lambda t: rearrange(t, "b ... (h d) -> b ... h d", h=self.n_heads, d=self.head_dim),
(q, k, v),
)
def apply_norm_and_rotary_pos_emb(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, rope_emb: Optional[torch.Tensor]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
q = self.q_norm(q)
k = self.k_norm(k)
v = self.v_norm(v)
if self.is_selfattn and rope_emb is not None: # only apply to self-attention!
q = apply_rotary_pos_emb(q, rope_emb)
k = apply_rotary_pos_emb(k, rope_emb)
return q, k, v
q, k, v = apply_norm_and_rotary_pos_emb(q, k, v, rope_emb)
return q, k, v
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
result = self.attn_op(q, k, v) # [B, S, H, D]
return self.output_dropout(self.output_proj(result))
def forward(
self,
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
rope_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Args:
x (Tensor): The query tensor of shape [B, Mq, K]
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
"""
q, k, v = self.compute_qkv(x, context, rope_emb=rope_emb)
return self.compute_attention(q, k, v)
class Timesteps(nn.Module):
def __init__(self, num_channels: int):
super().__init__()
self.num_channels = num_channels
def forward(self, timesteps_B_T: torch.Tensor) -> torch.Tensor:
assert timesteps_B_T.ndim == 2, f"Expected 2D input, got {timesteps_B_T.ndim}"
timesteps = timesteps_B_T.flatten().float()
half_dim = self.num_channels // 2
exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device)
exponent = exponent / (half_dim - 0.0)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
sin_emb = torch.sin(emb)
cos_emb = torch.cos(emb)
emb = torch.cat([cos_emb, sin_emb], dim=-1)
return rearrange(emb, "(b t) d -> b t d", b=timesteps_B_T.shape[0], t=timesteps_B_T.shape[1])
class TimestepEmbedding(nn.Module):
def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False, device=None, dtype=None, operations=None):
super().__init__()
logging.debug(
f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility."
)
self.in_dim = in_features
self.out_dim = out_features
self.linear_1 = operations.Linear(in_features, out_features, bias=not use_adaln_lora, device=device, dtype=dtype)
self.activation = nn.SiLU()
self.use_adaln_lora = use_adaln_lora
if use_adaln_lora:
self.linear_2 = operations.Linear(out_features, 3 * out_features, bias=False, device=device, dtype=dtype)
else:
self.linear_2 = operations.Linear(out_features, out_features, bias=False, device=device, dtype=dtype)
def forward(self, sample: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
emb = self.linear_1(sample)
emb = self.activation(emb)
emb = self.linear_2(emb)
if self.use_adaln_lora:
adaln_lora_B_T_3D = emb
emb_B_T_D = sample
else:
adaln_lora_B_T_3D = None
emb_B_T_D = emb
return emb_B_T_D, adaln_lora_B_T_3D
class PatchEmbed(nn.Module):
"""
PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers,
depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions,
making it suitable for video and image processing tasks. It supports dividing the input into patches
and embedding each patch into a vector of size `out_channels`.
Parameters:
- spatial_patch_size (int): The size of each spatial patch.
- temporal_patch_size (int): The size of each temporal patch.
- in_channels (int): Number of input channels. Default: 3.
- out_channels (int): The dimension of the embedding vector for each patch. Default: 768.
- bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True.
"""
def __init__(
self,
spatial_patch_size: int,
temporal_patch_size: int,
in_channels: int = 3,
out_channels: int = 768,
device=None, dtype=None, operations=None
):
super().__init__()
self.spatial_patch_size = spatial_patch_size
self.temporal_patch_size = temporal_patch_size
self.proj = nn.Sequential(
Rearrange(
"b c (t r) (h m) (w n) -> b t h w (c r m n)",
r=temporal_patch_size,
m=spatial_patch_size,
n=spatial_patch_size,
),
operations.Linear(
in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=False, device=device, dtype=dtype
),
)
self.dim = in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the PatchEmbed module.
Parameters:
- x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where
B is the batch size,
C is the number of channels,
T is the temporal dimension,
H is the height, and
W is the width of the input.
Returns:
- torch.Tensor: The embedded patches as a tensor, with shape b t h w c.
"""
assert x.dim() == 5
_, _, T, H, W = x.shape
assert (
H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0
), f"H,W {(H, W)} should be divisible by spatial_patch_size {self.spatial_patch_size}"
assert T % self.temporal_patch_size == 0
x = self.proj(x)
return x
class FinalLayer(nn.Module):
"""
The final layer of video DiT.
"""
def __init__(
self,
hidden_size: int,
spatial_patch_size: int,
temporal_patch_size: int,
out_channels: int,
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
device=None, dtype=None, operations=None
):
super().__init__()
self.layer_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = operations.Linear(
hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, device=device, dtype=dtype
)
self.hidden_size = hidden_size
self.n_adaln_chunks = 2
self.use_adaln_lora = use_adaln_lora
self.adaln_lora_dim = adaln_lora_dim
if use_adaln_lora:
self.adaln_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(hidden_size, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False, device=device, dtype=dtype),
)
else:
self.adaln_modulation = nn.Sequential(
nn.SiLU(), operations.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False, device=device, dtype=dtype)
)
def forward(
self,
x_B_T_H_W_D: torch.Tensor,
emb_B_T_D: torch.Tensor,
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
):
if self.use_adaln_lora:
assert adaln_lora_B_T_3D is not None
shift_B_T_D, scale_B_T_D = (
self.adaln_modulation(emb_B_T_D) + adaln_lora_B_T_3D[:, :, : 2 * self.hidden_size]
).chunk(2, dim=-1)
else:
shift_B_T_D, scale_B_T_D = self.adaln_modulation(emb_B_T_D).chunk(2, dim=-1)
shift_B_T_1_1_D, scale_B_T_1_1_D = rearrange(shift_B_T_D, "b t d -> b t 1 1 d"), rearrange(
scale_B_T_D, "b t d -> b t 1 1 d"
)
def _fn(
_x_B_T_H_W_D: torch.Tensor,
_norm_layer: nn.Module,
_scale_B_T_1_1_D: torch.Tensor,
_shift_B_T_1_1_D: torch.Tensor,
) -> torch.Tensor:
return _norm_layer(_x_B_T_H_W_D) * (1 + _scale_B_T_1_1_D) + _shift_B_T_1_1_D
x_B_T_H_W_D = _fn(x_B_T_H_W_D, self.layer_norm, scale_B_T_1_1_D, shift_B_T_1_1_D)
x_B_T_H_W_O = self.linear(x_B_T_H_W_D)
return x_B_T_H_W_O
class Block(nn.Module):
"""
A transformer block that combines self-attention, cross-attention and MLP layers with AdaLN modulation.
Each component (self-attention, cross-attention, MLP) has its own layer normalization and AdaLN modulation.
Parameters:
x_dim (int): Dimension of input features
context_dim (int): Dimension of context features for cross-attention
num_heads (int): Number of attention heads
mlp_ratio (float): Multiplier for MLP hidden dimension. Default: 4.0
use_adaln_lora (bool): Whether to use AdaLN-LoRA modulation. Default: False
adaln_lora_dim (int): Hidden dimension for AdaLN-LoRA layers. Default: 256
The block applies the following sequence:
1. Self-attention with AdaLN modulation
2. Cross-attention with AdaLN modulation
3. MLP with AdaLN modulation
Each component uses skip connections and layer normalization.
"""
def __init__(
self,
x_dim: int,
context_dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
device=None,
dtype=None,
operations=None,
):
super().__init__()
self.x_dim = x_dim
self.layer_norm_self_attn = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
self.self_attn = Attention(x_dim, None, num_heads, x_dim // num_heads, device=device, dtype=dtype, operations=operations)
self.layer_norm_cross_attn = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
self.cross_attn = Attention(
x_dim, context_dim, num_heads, x_dim // num_heads, device=device, dtype=dtype, operations=operations
)
self.layer_norm_mlp = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
self.mlp = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), device=device, dtype=dtype, operations=operations)
self.use_adaln_lora = use_adaln_lora
if self.use_adaln_lora:
self.adaln_modulation_self_attn = nn.Sequential(
nn.SiLU(),
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
)
self.adaln_modulation_cross_attn = nn.Sequential(
nn.SiLU(),
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
)
self.adaln_modulation_mlp = nn.Sequential(
nn.SiLU(),
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
)
else:
self.adaln_modulation_self_attn = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
self.adaln_modulation_cross_attn = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
self.adaln_modulation_mlp = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
def forward(
self,
x_B_T_H_W_D: torch.Tensor,
emb_B_T_D: torch.Tensor,
crossattn_emb: torch.Tensor,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
extra_per_block_pos_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if extra_per_block_pos_emb is not None:
x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb
if self.use_adaln_lora:
shift_self_attn_B_T_D, scale_self_attn_B_T_D, gate_self_attn_B_T_D = (
self.adaln_modulation_self_attn(emb_B_T_D) + adaln_lora_B_T_3D
).chunk(3, dim=-1)
shift_cross_attn_B_T_D, scale_cross_attn_B_T_D, gate_cross_attn_B_T_D = (
self.adaln_modulation_cross_attn(emb_B_T_D) + adaln_lora_B_T_3D
).chunk(3, dim=-1)
shift_mlp_B_T_D, scale_mlp_B_T_D, gate_mlp_B_T_D = (
self.adaln_modulation_mlp(emb_B_T_D) + adaln_lora_B_T_3D
).chunk(3, dim=-1)
else:
shift_self_attn_B_T_D, scale_self_attn_B_T_D, gate_self_attn_B_T_D = self.adaln_modulation_self_attn(
emb_B_T_D
).chunk(3, dim=-1)
shift_cross_attn_B_T_D, scale_cross_attn_B_T_D, gate_cross_attn_B_T_D = self.adaln_modulation_cross_attn(
emb_B_T_D
).chunk(3, dim=-1)
shift_mlp_B_T_D, scale_mlp_B_T_D, gate_mlp_B_T_D = self.adaln_modulation_mlp(emb_B_T_D).chunk(3, dim=-1)
# Reshape tensors from (B, T, D) to (B, T, 1, 1, D) for broadcasting
shift_self_attn_B_T_1_1_D = rearrange(shift_self_attn_B_T_D, "b t d -> b t 1 1 d")
scale_self_attn_B_T_1_1_D = rearrange(scale_self_attn_B_T_D, "b t d -> b t 1 1 d")
gate_self_attn_B_T_1_1_D = rearrange(gate_self_attn_B_T_D, "b t d -> b t 1 1 d")
shift_cross_attn_B_T_1_1_D = rearrange(shift_cross_attn_B_T_D, "b t d -> b t 1 1 d")
scale_cross_attn_B_T_1_1_D = rearrange(scale_cross_attn_B_T_D, "b t d -> b t 1 1 d")
gate_cross_attn_B_T_1_1_D = rearrange(gate_cross_attn_B_T_D, "b t d -> b t 1 1 d")
shift_mlp_B_T_1_1_D = rearrange(shift_mlp_B_T_D, "b t d -> b t 1 1 d")
scale_mlp_B_T_1_1_D = rearrange(scale_mlp_B_T_D, "b t d -> b t 1 1 d")
gate_mlp_B_T_1_1_D = rearrange(gate_mlp_B_T_D, "b t d -> b t 1 1 d")
B, T, H, W, D = x_B_T_H_W_D.shape
def _fn(_x_B_T_H_W_D, _norm_layer, _scale_B_T_1_1_D, _shift_B_T_1_1_D):
return _norm_layer(_x_B_T_H_W_D) * (1 + _scale_B_T_1_1_D) + _shift_B_T_1_1_D
normalized_x_B_T_H_W_D = _fn(
x_B_T_H_W_D,
self.layer_norm_self_attn,
scale_self_attn_B_T_1_1_D,
shift_self_attn_B_T_1_1_D,
)
result_B_T_H_W_D = rearrange(
self.self_attn(
# normalized_x_B_T_HW_D,
rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
None,
rope_emb=rope_emb_L_1_1_D,
),
"b (t h w) d -> b t h w d",
t=T,
h=H,
w=W,
)
x_B_T_H_W_D = x_B_T_H_W_D + gate_self_attn_B_T_1_1_D * result_B_T_H_W_D
def _x_fn(
_x_B_T_H_W_D: torch.Tensor,
layer_norm_cross_attn: Callable,
_scale_cross_attn_B_T_1_1_D: torch.Tensor,
_shift_cross_attn_B_T_1_1_D: torch.Tensor,
) -> torch.Tensor:
_normalized_x_B_T_H_W_D = _fn(
_x_B_T_H_W_D, layer_norm_cross_attn, _scale_cross_attn_B_T_1_1_D, _shift_cross_attn_B_T_1_1_D
)
_result_B_T_H_W_D = rearrange(
self.cross_attn(
rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
crossattn_emb,
rope_emb=rope_emb_L_1_1_D,
),
"b (t h w) d -> b t h w d",
t=T,
h=H,
w=W,
)
return _result_B_T_H_W_D
result_B_T_H_W_D = _x_fn(
x_B_T_H_W_D,
self.layer_norm_cross_attn,
scale_cross_attn_B_T_1_1_D,
shift_cross_attn_B_T_1_1_D,
)
x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D
normalized_x_B_T_H_W_D = _fn(
x_B_T_H_W_D,
self.layer_norm_mlp,
scale_mlp_B_T_1_1_D,
shift_mlp_B_T_1_1_D,
)
result_B_T_H_W_D = self.mlp(normalized_x_B_T_H_W_D)
x_B_T_H_W_D = x_B_T_H_W_D + gate_mlp_B_T_1_1_D * result_B_T_H_W_D
return x_B_T_H_W_D
class MiniTrainDIT(nn.Module):
"""
A clean impl of DIT that can load and reproduce the training results of the original DIT model in~(cosmos 1)
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
Args:
max_img_h (int): Maximum height of the input images.
max_img_w (int): Maximum width of the input images.
max_frames (int): Maximum number of frames in the video sequence.
in_channels (int): Number of input channels (e.g., RGB channels for color images).
out_channels (int): Number of output channels.
patch_spatial (tuple): Spatial resolution of patches for input processing.
patch_temporal (int): Temporal resolution of patches for input processing.
concat_padding_mask (bool): If True, includes a mask channel in the input to handle padding.
model_channels (int): Base number of channels used throughout the model.
num_blocks (int): Number of transformer blocks.
num_heads (int): Number of heads in the multi-head attention layers.
mlp_ratio (float): Expansion ratio for MLP blocks.
crossattn_emb_channels (int): Number of embedding channels for cross-attention.
pos_emb_cls (str): Type of positional embeddings.
pos_emb_learnable (bool): Whether positional embeddings are learnable.
pos_emb_interpolation (str): Method for interpolating positional embeddings.
min_fps (int): Minimum frames per second.
max_fps (int): Maximum frames per second.
use_adaln_lora (bool): Whether to use AdaLN-LoRA.
adaln_lora_dim (int): Dimension for AdaLN-LoRA.
rope_h_extrapolation_ratio (float): Height extrapolation ratio for RoPE.
rope_w_extrapolation_ratio (float): Width extrapolation ratio for RoPE.
rope_t_extrapolation_ratio (float): Temporal extrapolation ratio for RoPE.
extra_per_block_abs_pos_emb (bool): Whether to use extra per-block absolute positional embeddings.
extra_h_extrapolation_ratio (float): Height extrapolation ratio for extra embeddings.
extra_w_extrapolation_ratio (float): Width extrapolation ratio for extra embeddings.
extra_t_extrapolation_ratio (float): Temporal extrapolation ratio for extra embeddings.
"""
def __init__(
self,
max_img_h: int,
max_img_w: int,
max_frames: int,
in_channels: int,
out_channels: int,
patch_spatial: int, # tuple,
patch_temporal: int,
concat_padding_mask: bool = True,
# attention settings
model_channels: int = 768,
num_blocks: int = 10,
num_heads: int = 16,
mlp_ratio: float = 4.0,
# cross attention settings
crossattn_emb_channels: int = 1024,
# positional embedding settings
pos_emb_cls: str = "sincos",
pos_emb_learnable: bool = False,
pos_emb_interpolation: str = "crop",
min_fps: int = 1,
max_fps: int = 30,
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
rope_h_extrapolation_ratio: float = 1.0,
rope_w_extrapolation_ratio: float = 1.0,
rope_t_extrapolation_ratio: float = 1.0,
extra_per_block_abs_pos_emb: bool = False,
extra_h_extrapolation_ratio: float = 1.0,
extra_w_extrapolation_ratio: float = 1.0,
extra_t_extrapolation_ratio: float = 1.0,
rope_enable_fps_modulation: bool = True,
image_model=None,
device=None,
dtype=None,
operations=None,
) -> None:
super().__init__()
self.dtype = dtype
self.max_img_h = max_img_h
self.max_img_w = max_img_w
self.max_frames = max_frames
self.in_channels = in_channels
self.out_channels = out_channels
self.patch_spatial = patch_spatial
self.patch_temporal = patch_temporal
self.num_heads = num_heads
self.num_blocks = num_blocks
self.model_channels = model_channels
self.concat_padding_mask = concat_padding_mask
# positional embedding settings
self.pos_emb_cls = pos_emb_cls
self.pos_emb_learnable = pos_emb_learnable
self.pos_emb_interpolation = pos_emb_interpolation
self.min_fps = min_fps
self.max_fps = max_fps
self.rope_h_extrapolation_ratio = rope_h_extrapolation_ratio
self.rope_w_extrapolation_ratio = rope_w_extrapolation_ratio
self.rope_t_extrapolation_ratio = rope_t_extrapolation_ratio
self.extra_per_block_abs_pos_emb = extra_per_block_abs_pos_emb
self.extra_h_extrapolation_ratio = extra_h_extrapolation_ratio
self.extra_w_extrapolation_ratio = extra_w_extrapolation_ratio
self.extra_t_extrapolation_ratio = extra_t_extrapolation_ratio
self.rope_enable_fps_modulation = rope_enable_fps_modulation
self.build_pos_embed(device=device, dtype=dtype)
self.use_adaln_lora = use_adaln_lora
self.adaln_lora_dim = adaln_lora_dim
self.t_embedder = nn.Sequential(
Timesteps(model_channels),
TimestepEmbedding(model_channels, model_channels, use_adaln_lora=use_adaln_lora, device=device, dtype=dtype, operations=operations,),
)
in_channels = in_channels + 1 if concat_padding_mask else in_channels
self.x_embedder = PatchEmbed(
spatial_patch_size=patch_spatial,
temporal_patch_size=patch_temporal,
in_channels=in_channels,
out_channels=model_channels,
device=device, dtype=dtype, operations=operations,
)
self.blocks = nn.ModuleList(
[
Block(
x_dim=model_channels,
context_dim=crossattn_emb_channels,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
use_adaln_lora=use_adaln_lora,
adaln_lora_dim=adaln_lora_dim,
device=device, dtype=dtype, operations=operations,
)
for _ in range(num_blocks)
]
)
self.final_layer = FinalLayer(
hidden_size=self.model_channels,
spatial_patch_size=self.patch_spatial,
temporal_patch_size=self.patch_temporal,
out_channels=self.out_channels,
use_adaln_lora=self.use_adaln_lora,
adaln_lora_dim=self.adaln_lora_dim,
device=device, dtype=dtype, operations=operations,
)
self.t_embedding_norm = operations.RMSNorm(model_channels, eps=1e-6, device=device, dtype=dtype)
def build_pos_embed(self, device=None, dtype=None) -> None:
if self.pos_emb_cls == "rope3d":
cls_type = VideoRopePosition3DEmb
else:
raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")
logging.debug(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
kwargs = dict(
model_channels=self.model_channels,
len_h=self.max_img_h // self.patch_spatial,
len_w=self.max_img_w // self.patch_spatial,
len_t=self.max_frames // self.patch_temporal,
max_fps=self.max_fps,
min_fps=self.min_fps,
is_learnable=self.pos_emb_learnable,
interpolation=self.pos_emb_interpolation,
head_dim=self.model_channels // self.num_heads,
h_extrapolation_ratio=self.rope_h_extrapolation_ratio,
w_extrapolation_ratio=self.rope_w_extrapolation_ratio,
t_extrapolation_ratio=self.rope_t_extrapolation_ratio,
enable_fps_modulation=self.rope_enable_fps_modulation,
device=device,
)
self.pos_embedder = cls_type(
**kwargs, # type: ignore
)
if self.extra_per_block_abs_pos_emb:
kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio
kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio
kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio
kwargs["device"] = device
kwargs["dtype"] = dtype
self.extra_pos_embedder = LearnablePosEmbAxis(
**kwargs, # type: ignore
)
def prepare_embedded_sequence(
self,
x_B_C_T_H_W: torch.Tensor,
fps: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
"""
Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks.
Args:
x_B_C_T_H_W (torch.Tensor): video
fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required.
If None, a default value (`self.base_fps`) will be used.
padding_mask (Optional[torch.Tensor]): current it is not used
Returns:
Tuple[torch.Tensor, Optional[torch.Tensor]]:
- A tensor of shape (B, T, H, W, D) with the embedded sequence.
- An optional positional embedding tensor, returned only if the positional embedding class
(`self.pos_emb_cls`) includes 'rope'. Otherwise, None.
Notes:
- If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor.
- The method of applying positional embeddings depends on the value of `self.pos_emb_cls`.
- If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using
the `self.pos_embedder` with the shape [T, H, W].
- If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the
`self.pos_embedder` with the fps tensor.
- Otherwise, the positional embeddings are generated without considering fps.
"""
if self.concat_padding_mask:
if padding_mask is None:
padding_mask = torch.zeros(x_B_C_T_H_W.shape[0], 1, x_B_C_T_H_W.shape[3], x_B_C_T_H_W.shape[4], dtype=x_B_C_T_H_W.dtype, device=x_B_C_T_H_W.device)
else:
padding_mask = transforms.functional.resize(
padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
)
x_B_C_T_H_W = torch.cat(
[x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1
)
x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W)
if self.extra_per_block_abs_pos_emb:
extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device, dtype=x_B_C_T_H_W.dtype)
else:
extra_pos_emb = None
if "rope" in self.pos_emb_cls.lower():
return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device), extra_pos_emb
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, device=x_B_C_T_H_W.device) # [B, T, H, W, D]
return x_B_T_H_W_D, None, extra_pos_emb
def unpatchify(self, x_B_T_H_W_M: torch.Tensor) -> torch.Tensor:
x_B_C_Tt_Hp_Wp = rearrange(
x_B_T_H_W_M,
"B T H W (p1 p2 t C) -> B C (T t) (H p1) (W p2)",
p1=self.patch_spatial,
p2=self.patch_spatial,
t=self.patch_temporal,
)
return x_B_C_Tt_Hp_Wp
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
context: torch.Tensor,
fps: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
**kwargs,
):
x_B_C_T_H_W = x
timesteps_B_T = timesteps
crossattn_emb = context
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
"""
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x_B_C_T_H_W,
fps=fps,
padding_mask=padding_mask,
)
if timesteps_B_T.ndim == 1:
timesteps_B_T = timesteps_B_T.unsqueeze(1)
t_embedding_B_T_D, adaln_lora_B_T_3D = self.t_embedder[1](self.t_embedder[0](timesteps_B_T).to(x_B_T_H_W_D.dtype))
t_embedding_B_T_D = self.t_embedding_norm(t_embedding_B_T_D)
# for logging purpose
affline_scale_log_info = {}
affline_scale_log_info["t_embedding_B_T_D"] = t_embedding_B_T_D.detach()
self.affline_scale_log_info = affline_scale_log_info
self.affline_emb = t_embedding_B_T_D
self.crossattn_emb = crossattn_emb
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
assert (
x_B_T_H_W_D.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
), f"{x_B_T_H_W_D.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape}"
block_kwargs = {
"rope_emb_L_1_1_D": rope_emb_L_1_1_D.unsqueeze(1).unsqueeze(0),
"adaln_lora_B_T_3D": adaln_lora_B_T_3D,
"extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
for block in self.blocks:
x_B_T_H_W_D = block(
x_B_T_H_W_D,
t_embedding_B_T_D,
crossattn_emb,
**block_kwargs,
)
x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D, t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D)
x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)
return x_B_C_Tt_Hp_Wp

View File

@@ -121,11 +121,6 @@ class ControlNetFlux(Flux):
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
else:
y = y[:, :self.params.vec_in_dim]
# running on sequences img
img = self.img_in(img)
@@ -179,7 +174,7 @@ class ControlNetFlux(Flux):
out["output"] = out_output[:self.main_model_single]
return out
def forward(self, x, timesteps, context, y=None, guidance=None, hint=None, **kwargs):
def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
patch_size = 2
if self.latent_input:
hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size))

View File

@@ -118,7 +118,7 @@ class Modulation(nn.Module):
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
if modulation_dims is None:
if m_add is not None:
return torch.addcmul(m_add, tensor, m_mult)
return tensor * m_mult + m_add
else:
return tensor * m_mult
else:

View File

@@ -101,10 +101,6 @@ class Flux(nn.Module):
transformer_options={},
attn_mask: Tensor = None,
) -> Tensor:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@@ -159,9 +155,6 @@ class Flux(nn.Module):
if add is not None:
img += add
if img.dtype == torch.float16:
img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504)
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
@@ -195,50 +188,20 @@ class Flux(nn.Module):
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
def process_img(self, x, index=0, h_offset=0, w_offset=0):
def forward(self, x, timestep, context, y, guidance=None, control=None, transformer_options={}, **kwargs):
bs, c, h, w = x.shape
patch_size = self.patch_size
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
bs, c, h_orig, w_orig = x.shape
patch_size = self.patch_size
h_len = ((h_orig + (patch_size // 2)) // patch_size)
w_len = ((w_orig + (patch_size // 2)) // patch_size)
img, img_ids = self.process_img(x)
img_tokens = img.shape[1]
if ref_latents is not None:
h = 0
w = 0
for ref in ref_latents:
h_offset = 0
w_offset = 0
if ref.shape[-2] + h > ref.shape[-1] + w:
w_offset = w
else:
h_offset = h
kontext, kontext_ids = self.process_img(ref, index=1, h_offset=h_offset, w_offset=w_offset)
img = torch.cat([img, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
h = max(h, ref.shape[-2] + h_offset)
w = max(w, ref.shape[-1] + w_offset)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
out = out[:, :img_tokens]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]

View File

@@ -13,6 +13,7 @@ from comfy.ldm.modules.attention import optimized_attention
from .layers import (
FeedForward,
PatchEmbed,
RMSNorm,
TimestepEmbedder,
)
@@ -89,10 +90,10 @@ class AsymmetricAttention(nn.Module):
# Query and key normalization for stability.
assert qk_norm
self.q_norm_x = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
self.k_norm_x = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
self.q_norm_y = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
self.k_norm_y = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
# Output layers. y features go back down from dim_x -> dim_y.
self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype)

View File

@@ -151,3 +151,14 @@ class PatchEmbed(nn.Module):
x = self.norm(x)
return x
class RMSNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.empty(hidden_size, device=device, dtype=dtype))
self.register_parameter("bias", None)
def forward(self, x):
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)

View File

@@ -699,13 +699,10 @@ class HiDreamImageTransformer2DModel(nn.Module):
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
encoder_hidden_states_llama3=None,
image_cond=None,
control = None,
transformer_options = {},
) -> torch.Tensor:
bs, c, h, w = x.shape
if image_cond is not None:
x = torch.cat([x, image_cond], dim=-1)
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
timesteps = t
pooled_embeds = y

View File

@@ -228,7 +228,6 @@ class HunyuanVideo(nn.Module):
y: Tensor,
guidance: Tensor = None,
guiding_frame_index=None,
ref_latent=None,
control=None,
transformer_options={},
) -> Tensor:
@@ -239,14 +238,6 @@ class HunyuanVideo(nn.Module):
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
if ref_latent is not None:
ref_latent_ids = self.img_ids(ref_latent)
ref_latent = self.img_in(ref_latent)
img = torch.cat([ref_latent, img], dim=-2)
ref_latent_ids[..., 0] = -1
ref_latent_ids[..., 2] += (initial_shape[-1] // self.patch_size[-1])
img_ids = torch.cat([ref_latent_ids, img_ids], dim=-2)
if guiding_frame_index is not None:
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
@@ -322,8 +313,6 @@ class HunyuanVideo(nn.Module):
img[:, : img_len] += add
img = img[:, : img_len]
if ref_latent is not None:
img = img[:, ref_latent.shape[1]:]
img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels)
@@ -335,7 +324,7 @@ class HunyuanVideo(nn.Module):
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
return img
def img_ids(self, x):
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, control=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
@@ -345,11 +334,7 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
return repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
img_ids = self.img_ids(x)
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, ref_latent, control=control, transformer_options=transformer_options)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, control, transformer_options)
return out

View File

@@ -3,7 +3,7 @@ import torch
import torch.nn as nn
import comfy.ops
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
from torch.utils import checkpoint
@@ -51,7 +51,7 @@ class HunYuanDiTBlock(nn.Module):
if norm_type == "layer":
norm_layer = operations.LayerNorm
elif norm_type == "rms":
norm_layer = operations.RMSNorm
norm_layer = RMSNorm
else:
raise ValueError(f"Unknown norm_type: {norm_type}")

View File

@@ -1,6 +1,7 @@
import torch
from torch import nn
import comfy.ldm.modules.attention
from comfy.ldm.genmo.joint_model.layers import RMSNorm
import comfy.ldm.common_dit
from einops import rearrange
import math
@@ -261,8 +262,8 @@ class CrossAttention(nn.Module):
self.heads = heads
self.dim_head = dim_head
self.q_norm = operations.RMSNorm(inner_dim, eps=1e-5, dtype=dtype, device=device)
self.k_norm = operations.RMSNorm(inner_dim, eps=1e-5, dtype=dtype, device=device)
self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)

View File

@@ -8,7 +8,7 @@ import torch.nn as nn
import torch.nn.functional as F
import comfy.ldm.common_dit
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, RMSNorm
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
@@ -64,8 +64,8 @@ class JointAttention(nn.Module):
)
if qk_norm:
self.q_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.k_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.q_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
self.k_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
else:
self.q_norm = self.k_norm = nn.Identity()
@@ -242,11 +242,11 @@ class JointTransformerBlock(nn.Module):
operation_settings=operation_settings,
)
self.layer_id = layer_id
self.attention_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.ffn_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.attention_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.attention_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.ffn_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.attention_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.modulation = modulation
if modulation:
@@ -431,7 +431,7 @@ class NextDiT(nn.Module):
self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
self.cap_embedder = nn.Sequential(
operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, **operation_settings),
operation_settings.get("operations").Linear(
cap_feat_dim,
dim,
@@ -457,7 +457,7 @@ class NextDiT(nn.Module):
for layer_id in range(n_layers)
]
)
self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.norm_final = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)
assert (dim // n_heads) == sum(axes_dims)

View File

@@ -11,7 +11,7 @@ from comfy.ldm.modules.ema import LitEma
import comfy.ops
class DiagonalGaussianRegularizer(torch.nn.Module):
def __init__(self, sample: bool = False):
def __init__(self, sample: bool = True):
super().__init__()
self.sample = sample
@@ -19,12 +19,16 @@ class DiagonalGaussianRegularizer(torch.nn.Module):
yield from ()
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
log = dict()
posterior = DiagonalGaussianDistribution(z)
if self.sample:
z = posterior.sample()
else:
z = posterior.mode()
return z, None
kl_loss = posterior.kl()
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
log["kl_loss"] = kl_loss
return z, log
class AbstractAutoencoder(torch.nn.Module):

View File

@@ -20,11 +20,8 @@ if model_management.xformers_enabled():
if model_management.sage_attention_enabled():
try:
from sageattention import sageattn
except ModuleNotFoundError as e:
if e.name == "sageattention":
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
else:
raise e
except ModuleNotFoundError:
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
exit(-1)
if model_management.flash_attention_enabled():
@@ -753,7 +750,7 @@ class BasicTransformerBlock(nn.Module):
for p in patch:
n = p(n, extra_options)
x = n + x
x += n
if "middle_patch" in transformer_patches:
patch = transformer_patches["middle_patch"]
for p in patch:
@@ -793,12 +790,12 @@ class BasicTransformerBlock(nn.Module):
for p in patch:
n = p(n, extra_options)
x = n + x
x += n
if self.is_res:
x_skip = x
x = self.ff(self.norm3(x))
if self.is_res:
x = x_skip + x
x += x_skip
return x

View File

@@ -31,7 +31,7 @@ def dynamic_slice(
starts: List[int],
sizes: List[int],
) -> Tensor:
slicing = tuple(slice(start, start + size) for start, size in zip(starts, sizes))
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
return x[slicing]
class AttnChunk(NamedTuple):

View File

@@ -1,469 +0,0 @@
# Original code: https://github.com/VectorSpaceLab/OmniGen2
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from comfy.ldm.lightricks.model import Timesteps
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.modules.attention import optimized_attention_masked
import comfy.model_management
import comfy.ldm.common_dit
def apply_rotary_emb(x, freqs_cis):
if x.shape[1] == 0:
return x
t_ = x.reshape(*x.shape[:-1], -1, 1, 2)
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
return t_out.reshape(*x.shape).to(dtype=x.dtype)
def swiglu(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return F.silu(x) * y
class TimestepEmbedding(nn.Module):
def __init__(self, in_channels: int, time_embed_dim: int, dtype=None, device=None, operations=None):
super().__init__()
self.linear_1 = operations.Linear(in_channels, time_embed_dim, dtype=dtype, device=device)
self.act = nn.SiLU()
self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim, dtype=dtype, device=device)
def forward(self, sample: torch.Tensor) -> torch.Tensor:
sample = self.linear_1(sample)
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class LuminaRMSNormZero(nn.Module):
def __init__(self, embedding_dim: int, norm_eps: float = 1e-5, dtype=None, device=None, operations=None):
super().__init__()
self.silu = nn.SiLU()
self.linear = operations.Linear(min(embedding_dim, 1024), 4 * embedding_dim, dtype=dtype, device=device)
self.norm = operations.RMSNorm(embedding_dim, eps=norm_eps, dtype=dtype, device=device)
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
emb = self.linear(self.silu(emb))
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None])
return x, gate_msa, scale_mlp, gate_mlp
class LuminaLayerNormContinuous(nn.Module):
def __init__(self, embedding_dim: int, conditioning_embedding_dim: int, elementwise_affine: bool = False, eps: float = 1e-6, out_dim: Optional[int] = None, dtype=None, device=None, operations=None):
super().__init__()
self.silu = nn.SiLU()
self.linear_1 = operations.Linear(conditioning_embedding_dim, embedding_dim, dtype=dtype, device=device)
self.norm = operations.LayerNorm(embedding_dim, eps, elementwise_affine, dtype=dtype, device=device)
self.linear_2 = operations.Linear(embedding_dim, out_dim, bias=True, dtype=dtype, device=device) if out_dim is not None else None
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
x = self.norm(x) * (1 + emb)[:, None, :]
if self.linear_2 is not None:
x = self.linear_2(x)
return x
class LuminaFeedForward(nn.Module):
def __init__(self, dim: int, inner_dim: int, multiple_of: int = 256, dtype=None, device=None, operations=None):
super().__init__()
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)
self.linear_1 = operations.Linear(dim, inner_dim, bias=False, dtype=dtype, device=device)
self.linear_2 = operations.Linear(inner_dim, dim, bias=False, dtype=dtype, device=device)
self.linear_3 = operations.Linear(dim, inner_dim, bias=False, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
h1, h2 = self.linear_1(x), self.linear_3(x)
return self.linear_2(swiglu(h1, h2))
class Lumina2CombinedTimestepCaptionEmbedding(nn.Module):
def __init__(self, hidden_size: int = 4096, text_feat_dim: int = 2048, frequency_embedding_size: int = 256, norm_eps: float = 1e-5, timestep_scale: float = 1.0, dtype=None, device=None, operations=None):
super().__init__()
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=timestep_scale)
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=min(hidden_size, 1024), dtype=dtype, device=device, operations=operations)
self.caption_embedder = nn.Sequential(
operations.RMSNorm(text_feat_dim, eps=norm_eps, dtype=dtype, device=device),
operations.Linear(text_feat_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, timestep: torch.Tensor, text_hidden_states: torch.Tensor, dtype: torch.dtype) -> Tuple[torch.Tensor, torch.Tensor]:
timestep_proj = self.time_proj(timestep).to(dtype=dtype)
time_embed = self.timestep_embedder(timestep_proj)
caption_embed = self.caption_embedder(text_hidden_states)
return time_embed, caption_embed
class Attention(nn.Module):
def __init__(self, query_dim: int, dim_head: int, heads: int, kv_heads: int, eps: float = 1e-5, bias: bool = False, dtype=None, device=None, operations=None):
super().__init__()
self.heads = heads
self.kv_heads = kv_heads
self.dim_head = dim_head
self.scale = dim_head ** -0.5
self.to_q = operations.Linear(query_dim, heads * dim_head, bias=bias, dtype=dtype, device=device)
self.to_k = operations.Linear(query_dim, kv_heads * dim_head, bias=bias, dtype=dtype, device=device)
self.to_v = operations.Linear(query_dim, kv_heads * dim_head, bias=bias, dtype=dtype, device=device)
self.norm_q = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
self.norm_k = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
self.to_out = nn.Sequential(
operations.Linear(heads * dim_head, query_dim, bias=bias, dtype=dtype, device=device),
nn.Dropout(0.0)
)
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
query = self.to_q(hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
query = query.view(batch_size, -1, self.heads, self.dim_head)
key = key.view(batch_size, -1, self.kv_heads, self.dim_head)
value = value.view(batch_size, -1, self.kv_heads, self.dim_head)
query = self.norm_q(query)
key = self.norm_k(key)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
if self.kv_heads < self.heads:
key = key.repeat_interleave(self.heads // self.kv_heads, dim=1)
value = value.repeat_interleave(self.heads // self.kv_heads, dim=1)
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True)
hidden_states = self.to_out[0](hidden_states)
return hidden_states
class OmniGen2TransformerBlock(nn.Module):
def __init__(self, dim: int, num_attention_heads: int, num_kv_heads: int, multiple_of: int, ffn_dim_multiplier: float, norm_eps: float, modulation: bool = True, dtype=None, device=None, operations=None):
super().__init__()
self.modulation = modulation
self.attn = Attention(
query_dim=dim,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
kv_heads=num_kv_heads,
eps=1e-5,
bias=False,
dtype=dtype, device=device, operations=operations,
)
self.feed_forward = LuminaFeedForward(
dim=dim,
inner_dim=4 * dim,
multiple_of=multiple_of,
dtype=dtype, device=device, operations=operations
)
if modulation:
self.norm1 = LuminaRMSNormZero(embedding_dim=dim, norm_eps=norm_eps, dtype=dtype, device=device, operations=operations)
else:
self.norm1 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.ffn_norm1 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.ffn_norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
if self.modulation:
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
else:
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
hidden_states = hidden_states + self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
hidden_states = hidden_states + self.ffn_norm2(mlp_output)
return hidden_states
class OmniGen2RotaryPosEmbed(nn.Module):
def __init__(self, theta: int, axes_dim: Tuple[int, int, int], axes_lens: Tuple[int, int, int] = (300, 512, 512), patch_size: int = 2):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
self.axes_lens = axes_lens
self.patch_size = patch_size
self.rope_embedder = EmbedND(dim=sum(axes_dim), theta=self.theta, axes_dim=axes_dim)
def forward(self, batch_size, encoder_seq_len, l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, ref_img_sizes, img_sizes, device):
p = self.patch_size
seq_lengths = [cap_len + sum(ref_img_len) + img_len for cap_len, ref_img_len, img_len in zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len)]
max_seq_len = max(seq_lengths)
max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len])
max_img_len = max(l_effective_img_len)
position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device)
for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)):
position_ids[i, :cap_seq_len] = repeat(torch.arange(cap_seq_len, dtype=torch.int32, device=device), "l -> l 3")
pe_shift = cap_seq_len
pe_shift_len = cap_seq_len
if ref_img_sizes[i] is not None:
for ref_img_size, ref_img_len in zip(ref_img_sizes[i], l_effective_ref_img_len[i]):
H, W = ref_img_size
ref_H_tokens, ref_W_tokens = H // p, W // p
row_ids = repeat(torch.arange(ref_H_tokens, dtype=torch.int32, device=device), "h -> h w", w=ref_W_tokens).flatten()
col_ids = repeat(torch.arange(ref_W_tokens, dtype=torch.int32, device=device), "w -> h w", h=ref_H_tokens).flatten()
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 0] = pe_shift
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 1] = row_ids
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 2] = col_ids
pe_shift += max(ref_H_tokens, ref_W_tokens)
pe_shift_len += ref_img_len
H, W = img_sizes[i]
H_tokens, W_tokens = H // p, W // p
row_ids = repeat(torch.arange(H_tokens, dtype=torch.int32, device=device), "h -> h w", w=W_tokens).flatten()
col_ids = repeat(torch.arange(W_tokens, dtype=torch.int32, device=device), "w -> h w", h=H_tokens).flatten()
position_ids[i, pe_shift_len: seq_len, 0] = pe_shift
position_ids[i, pe_shift_len: seq_len, 1] = row_ids
position_ids[i, pe_shift_len: seq_len, 2] = col_ids
freqs_cis = self.rope_embedder(position_ids).movedim(1, 2)
cap_freqs_cis_shape = list(freqs_cis.shape)
cap_freqs_cis_shape[1] = encoder_seq_len
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
ref_img_freqs_cis_shape = list(freqs_cis.shape)
ref_img_freqs_cis_shape[1] = max_ref_img_len
ref_img_freqs_cis = torch.zeros(*ref_img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
img_freqs_cis_shape = list(freqs_cis.shape)
img_freqs_cis_shape[1] = max_img_len
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
for i, (cap_seq_len, ref_img_len, img_len, seq_len) in enumerate(zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, seq_lengths)):
cap_freqs_cis[i, :cap_seq_len] = freqs_cis[i, :cap_seq_len]
ref_img_freqs_cis[i, :sum(ref_img_len)] = freqs_cis[i, cap_seq_len:cap_seq_len + sum(ref_img_len)]
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_seq_len + sum(ref_img_len):cap_seq_len + sum(ref_img_len) + img_len]
return cap_freqs_cis, ref_img_freqs_cis, img_freqs_cis, freqs_cis, l_effective_cap_len, seq_lengths
class OmniGen2Transformer2DModel(nn.Module):
def __init__(
self,
patch_size: int = 2,
in_channels: int = 16,
out_channels: Optional[int] = None,
hidden_size: int = 2304,
num_layers: int = 26,
num_refiner_layers: int = 2,
num_attention_heads: int = 24,
num_kv_heads: int = 8,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps: float = 1e-5,
axes_dim_rope: Tuple[int, int, int] = (32, 32, 32),
axes_lens: Tuple[int, int, int] = (300, 512, 512),
text_feat_dim: int = 1024,
timestep_scale: float = 1.0,
image_model=None,
device=None,
dtype=None,
operations=None,
):
super().__init__()
self.patch_size = patch_size
self.out_channels = out_channels or in_channels
self.hidden_size = hidden_size
self.dtype = dtype
self.rope_embedder = OmniGen2RotaryPosEmbed(
theta=10000,
axes_dim=axes_dim_rope,
axes_lens=axes_lens,
patch_size=patch_size,
)
self.x_embedder = operations.Linear(patch_size * patch_size * in_channels, hidden_size, dtype=dtype, device=device)
self.ref_image_patch_embedder = operations.Linear(patch_size * patch_size * in_channels, hidden_size, dtype=dtype, device=device)
self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding(
hidden_size=hidden_size,
text_feat_dim=text_feat_dim,
norm_eps=norm_eps,
timestep_scale=timestep_scale, dtype=dtype, device=device, operations=operations
)
self.noise_refiner = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
) for _ in range(num_refiner_layers)
])
self.ref_image_refiner = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
) for _ in range(num_refiner_layers)
])
self.context_refiner = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=False, dtype=dtype, device=device, operations=operations
) for _ in range(num_refiner_layers)
])
self.layers = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
) for _ in range(num_layers)
])
self.norm_out = LuminaLayerNormContinuous(
embedding_dim=hidden_size,
conditioning_embedding_dim=min(hidden_size, 1024),
elementwise_affine=False,
eps=1e-6,
out_dim=patch_size * patch_size * self.out_channels, dtype=dtype, device=device, operations=operations
)
self.image_index_embedding = nn.Parameter(torch.empty(5, hidden_size, device=device, dtype=dtype))
def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states):
batch_size = len(hidden_states)
p = self.patch_size
img_sizes = [(img.size(1), img.size(2)) for img in hidden_states]
l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes]
if ref_image_hidden_states is not None:
ref_image_hidden_states = list(map(lambda ref: comfy.ldm.common_dit.pad_to_patch_size(ref, (p, p)), ref_image_hidden_states))
ref_img_sizes = [[(imgs.size(2), imgs.size(3)) if imgs is not None else None for imgs in ref_image_hidden_states]] * batch_size
l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes]
else:
ref_img_sizes = [None for _ in range(batch_size)]
l_effective_ref_img_len = [[0] for _ in range(batch_size)]
flat_ref_img_hidden_states = None
if ref_image_hidden_states is not None:
imgs = []
for ref_img in ref_image_hidden_states:
B, C, H, W = ref_img.size()
ref_img = rearrange(ref_img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
imgs.append(ref_img)
flat_ref_img_hidden_states = torch.cat(imgs, dim=1)
img = hidden_states
B, C, H, W = img.size()
flat_hidden_states = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
return (
flat_hidden_states, flat_ref_img_hidden_states,
None, None,
l_effective_ref_img_len, l_effective_img_len,
ref_img_sizes, img_sizes,
)
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb):
batch_size = len(hidden_states)
hidden_states = self.x_embedder(hidden_states)
if ref_image_hidden_states is not None:
ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states)
image_index_embedding = comfy.model_management.cast_to(self.image_index_embedding, dtype=hidden_states.dtype, device=hidden_states.device)
for i in range(batch_size):
shift = 0
for j, ref_img_len in enumerate(l_effective_ref_img_len[i]):
ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + image_index_embedding[j]
shift += ref_img_len
for layer in self.noise_refiner:
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)
if ref_image_hidden_states is not None:
for layer in self.ref_image_refiner:
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb)
hidden_states = torch.cat([ref_image_hidden_states, hidden_states], dim=1)
return hidden_states
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, **kwargs):
B, C, H, W = x.shape
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
_, _, H_padded, W_padded = hidden_states.shape
timestep = 1.0 - timesteps
text_hidden_states = context
text_attention_mask = attention_mask
ref_image_hidden_states = ref_latents
device = hidden_states.device
temb, text_hidden_states = self.time_caption_embed(timestep, text_hidden_states, hidden_states[0].dtype)
(
hidden_states, ref_image_hidden_states,
img_mask, ref_img_mask,
l_effective_ref_img_len, l_effective_img_len,
ref_img_sizes, img_sizes,
) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states)
(
context_rotary_emb, ref_img_rotary_emb, noise_rotary_emb,
rotary_emb, encoder_seq_lengths, seq_lengths,
) = self.rope_embedder(
hidden_states.shape[0], text_hidden_states.shape[1], [num_tokens] * text_hidden_states.shape[0],
l_effective_ref_img_len, l_effective_img_len,
ref_img_sizes, img_sizes, device,
)
for layer in self.context_refiner:
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
img_len = hidden_states.shape[1]
combined_img_hidden_states = self.img_patch_embed_and_refine(
hidden_states, ref_image_hidden_states,
img_mask, ref_img_mask,
noise_rotary_emb, ref_img_rotary_emb,
l_effective_ref_img_len, l_effective_img_len,
temb,
)
hidden_states = torch.cat([text_hidden_states, combined_img_hidden_states], dim=1)
attention_mask = None
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)
hidden_states = self.norm_out(hidden_states, temb)
p = self.patch_size
output = rearrange(hidden_states[:, -img_len:], 'b (h w) (p1 p2 c) -> b c (h p1) (w p2)', h=H_padded // p, w=W_padded// p, p1=p, p2=p)[:, :, :H, :W]
return -output

View File

@@ -9,6 +9,7 @@ from einops import repeat
from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
import comfy.ldm.common_dit
import comfy.model_management
@@ -48,8 +49,8 @@ class WanSelfAttention(nn.Module):
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.norm_q = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_q = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, freqs):
r"""
@@ -113,7 +114,7 @@ class WanI2VCrossAttention(WanSelfAttention):
self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k_img = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, context, context_img_len):
r"""
@@ -219,88 +220,6 @@ class WanAttentionBlock(nn.Module):
return x
class VaceWanAttentionBlock(WanAttentionBlock):
def __init__(
self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6,
block_id=0,
operation_settings={}
):
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
self.block_id = block_id
if block_id == 0:
self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, c, x, **kwargs):
if self.block_id == 0:
c = self.before_proj(c) + x
c = super().forward(c, **kwargs)
c_skip = self.after_proj(c)
return c_skip, c
class WanCamAdapter(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size, stride, num_residual_blocks=1, operation_settings={}):
super(WanCamAdapter, self).__init__()
# Pixel Unshuffle: reduce spatial dimensions by a factor of 8
self.pixel_unshuffle = nn.PixelUnshuffle(downscale_factor=8)
# Convolution: reduce spatial dimensions by a factor
# of 2 (without overlap)
self.conv = operation_settings.get("operations").Conv2d(in_dim * 64, out_dim, kernel_size=kernel_size, stride=stride, padding=0, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
# Residual blocks for feature extraction
self.residual_blocks = nn.Sequential(
*[WanCamResidualBlock(out_dim, operation_settings = operation_settings) for _ in range(num_residual_blocks)]
)
def forward(self, x):
# Reshape to merge the frame dimension into batch
bs, c, f, h, w = x.size()
x = x.permute(0, 2, 1, 3, 4).contiguous().view(bs * f, c, h, w)
# Pixel Unshuffle operation
x_unshuffled = self.pixel_unshuffle(x)
# Convolution operation
x_conv = self.conv(x_unshuffled)
# Feature extraction with residual blocks
out = self.residual_blocks(x_conv)
# Reshape to restore original bf dimension
out = out.view(bs, f, out.size(1), out.size(2), out.size(3))
# Permute dimensions to reorder (if needed), e.g., swap channels and feature frames
out = out.permute(0, 2, 1, 3, 4)
return out
class WanCamResidualBlock(nn.Module):
def __init__(self, dim, operation_settings={}):
super(WanCamResidualBlock, self).__init__()
self.conv1 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.relu = nn.ReLU(inplace=True)
self.conv2 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, x):
residual = x
out = self.relu(self.conv1(x))
out = self.conv2(out)
out += residual
return out
class Head(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}):
@@ -476,7 +395,6 @@ class WanModel(torch.nn.Module):
clip_fea=None,
freqs=None,
transformer_options={},
**kwargs,
):
r"""
Forward pass through the diffusion model
@@ -539,20 +457,13 @@ class WanModel(torch.nn.Module):
x = self.unpatchify(x, grid_sizes)
return x
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
def forward(self, x, timestep, context, clip_fea=None, transformer_options={},**kwargs):
bs, c, t, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
if time_dim_concat is not None:
time_dim_concat = comfy.ldm.common_dit.pad_to_patch_size(time_dim_concat, self.patch_size)
x = torch.cat([x, time_dim_concat], dim=2)
t_len = ((x.shape[2] + (patch_size[0] // 2)) // patch_size[0])
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
@@ -560,7 +471,7 @@ class WanModel(torch.nn.Module):
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
freqs = self.rope_embedder(img_ids).movedim(1, 2)
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options)[:, :, :t, :h, :w]
def unpatchify(self, x, grid_sizes):
r"""
@@ -585,209 +496,3 @@ class WanModel(torch.nn.Module):
u = torch.einsum('bfhwpqrc->bcfphqwr', u)
u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
return u
class VaceWanModel(WanModel):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='vace',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
image_model=None,
vace_layers=None,
vace_in_dim=None,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
# Vace
if vace_layers is not None:
self.vace_layers = vace_layers
self.vace_in_dim = vace_in_dim
# vace blocks
self.vace_blocks = nn.ModuleList([
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm, self.cross_attn_norm, self.eps, block_id=i, operation_settings=operation_settings)
for i in range(self.vace_layers)
])
self.vace_layers_mapping = {i: n for n, i in enumerate(range(0, self.num_layers, self.num_layers // self.vace_layers))}
# vace patch embeddings
self.vace_patch_embedding = operations.Conv3d(
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size, device=device, dtype=torch.float32
)
def forward_orig(
self,
x,
t,
context,
vace_context,
vace_strength,
clip_fea=None,
freqs=None,
transformer_options={},
**kwargs,
):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
orig_shape = list(vace_context.shape)
vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:])
c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype)
c = c.flatten(2).transpose(1, 2)
c = list(c.split(orig_shape[0], dim=0))
# arguments
x_orig = x
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
ii = self.vace_layers_mapping.get(i, None)
if ii is not None:
for iii in range(len(c)):
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x += c_skip * vace_strength[iii]
del c_skip
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
class CameraWanModel(WanModel):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='camera',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
image_model=None,
in_dim_control_adapter=24,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings)
def forward_orig(
self,
x,
t,
context,
clip_fea=None,
freqs=None,
camera_conditions = None,
transformer_options={},
**kwargs,
):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
if self.control_adapter is not None and camera_conditions is not None:
x_camera = self.control_adapter(camera_conditions).to(x.dtype)
x = x + x_camera
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x

View File

@@ -20,7 +20,6 @@ from __future__ import annotations
import comfy.utils
import comfy.model_management
import comfy.model_base
import comfy.weight_adapter as weight_adapter
import logging
import torch
@@ -50,12 +49,139 @@ def load_lora(lora, to_load, log_missing=True):
dora_scale = lora[dora_scale_name]
loaded_keys.add(dora_scale_name)
for adapter_cls in weight_adapter.adapters:
adapter = adapter_cls.load(x, lora, alpha, dora_scale, loaded_keys)
if adapter is not None:
patch_dict[to_load[x]] = adapter
loaded_keys.update(adapter.loaded_keys)
continue
reshape_name = "{}.reshape_weight".format(x)
reshape = None
if reshape_name in lora.keys():
try:
reshape = lora[reshape_name].tolist()
loaded_keys.add(reshape_name)
except:
pass
regular_lora = "{}.lora_up.weight".format(x)
diffusers_lora = "{}_lora.up.weight".format(x)
diffusers2_lora = "{}.lora_B.weight".format(x)
diffusers3_lora = "{}.lora.up.weight".format(x)
mochi_lora = "{}.lora_B".format(x)
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
A_name = None
if regular_lora in lora.keys():
A_name = regular_lora
B_name = "{}.lora_down.weight".format(x)
mid_name = "{}.lora_mid.weight".format(x)
elif diffusers_lora in lora.keys():
A_name = diffusers_lora
B_name = "{}_lora.down.weight".format(x)
mid_name = None
elif diffusers2_lora in lora.keys():
A_name = diffusers2_lora
B_name = "{}.lora_A.weight".format(x)
mid_name = None
elif diffusers3_lora in lora.keys():
A_name = diffusers3_lora
B_name = "{}.lora.down.weight".format(x)
mid_name = None
elif mochi_lora in lora.keys():
A_name = mochi_lora
B_name = "{}.lora_A".format(x)
mid_name = None
elif transformers_lora in lora.keys():
A_name = transformers_lora
B_name ="{}.lora_linear_layer.down.weight".format(x)
mid_name = None
if A_name is not None:
mid = None
if mid_name is not None and mid_name in lora.keys():
mid = lora[mid_name]
loaded_keys.add(mid_name)
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape))
loaded_keys.add(A_name)
loaded_keys.add(B_name)
######## loha
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
hada_w2_b_name = "{}.hada_w2_b".format(x)
hada_t1_name = "{}.hada_t1".format(x)
hada_t2_name = "{}.hada_t2".format(x)
if hada_w1_a_name in lora.keys():
hada_t1 = None
hada_t2 = None
if hada_t1_name in lora.keys():
hada_t1 = lora[hada_t1_name]
hada_t2 = lora[hada_t2_name]
loaded_keys.add(hada_t1_name)
loaded_keys.add(hada_t2_name)
patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
loaded_keys.add(hada_w1_a_name)
loaded_keys.add(hada_w1_b_name)
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
######## lokr
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))
#glora
a1_name = "{}.a1.weight".format(x)
a2_name = "{}.a2.weight".format(x)
b1_name = "{}.b1.weight".format(x)
b2_name = "{}.b2.weight".format(x)
if a1_name in lora:
patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
loaded_keys.add(a1_name)
loaded_keys.add(a2_name)
loaded_keys.add(b1_name)
loaded_keys.add(b2_name)
w_norm_name = "{}.w_norm".format(x)
b_norm_name = "{}.b_norm".format(x)
@@ -279,23 +405,29 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(key_lora)] = k
key_map["diffusion_model.{}".format(key_lora)] = k # Old loras
if isinstance(model, comfy.model_base.HiDream):
for k in sdk:
if k.startswith("diffusion_model."):
if k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
key_map["transformer.{}".format(key_lora)] = k #SimpleTuner regular format
if isinstance(model, comfy.model_base.ACEStep):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official ACE step lora format
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
return key_map
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
lora_diff *= alpha
weight_calc = weight + function(lora_diff).type(weight.dtype)
weight_norm = (
weight_calc.transpose(0, 1)
.reshape(weight_calc.shape[1], -1)
.norm(dim=1, keepdim=True)
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
.transpose(0, 1)
)
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
if strength != 1.0:
weight_calc -= weight
weight += strength * (weight_calc)
else:
weight[:] = weight_calc
return weight
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
"""
Pad a tensor to a new shape with zeros.
@@ -350,16 +482,6 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
if isinstance(v, list):
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
if isinstance(v, weight_adapter.WeightAdapterBase):
output = v.calculate_weight(weight, key, strength, strength_model, offset, function, intermediate_dtype, original_weights)
if output is None:
logging.warning("Calculate Weight Failed: {} {}".format(v.name, key))
else:
weight = output
if old_weight is not None:
weight = old_weight
continue
if len(v) == 1:
patch_type = "diff"
elif len(v) == 2:
@@ -386,6 +508,157 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \
comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype)
weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype))
elif patch_type == "lora": #lora/locon
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
dora_scale = v[4]
reshape = v[5]
if reshape is not None:
weight = pad_tensor_to_shape(weight, reshape)
if v[2] is not None:
alpha = v[2] / mat2.shape[0]
else:
alpha = 1.0
if v[3] is not None:
#locon mid weights, hopefully the math is fine because I didn't properly test it
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "lokr":
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dora_scale = v[8]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
else:
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
else:
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha = v[2] / dim
else:
alpha = 1.0
try:
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "loha":
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha = v[2] / w1b.shape[0]
else:
alpha = 1.0
w2a = v[3]
w2b = v[4]
dora_scale = v[7]
if v[5] is not None: #cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
else:
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
try:
lora_diff = (m1 * m2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "glora":
dora_scale = v[5]
old_glora = False
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
rank = v[0].shape[0]
old_glora = True
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
pass
else:
old_glora = False
rank = v[1].shape[0]
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
if v[4] is not None:
alpha = v[4] / rank
else:
alpha = 1.0
try:
if old_glora:
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
else:
if weight.dim() > 2:
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
else:
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
else:
logging.warning("patch type not recognized {} {}".format(patch_type, key))

View File

@@ -34,14 +34,10 @@ import comfy.ldm.flux.model
import comfy.ldm.lightricks.model
import comfy.ldm.hunyuan_video.model
import comfy.ldm.cosmos.model
import comfy.ldm.cosmos.predict2
import comfy.ldm.lumina.model
import comfy.ldm.wan.model
import comfy.ldm.hunyuan3d.model
import comfy.ldm.hidream.model
import comfy.ldm.chroma.model
import comfy.ldm.ace.model
import comfy.ldm.omnigen.omnigen2
import comfy.model_management
import comfy.patcher_extension
@@ -50,7 +46,6 @@ import comfy.ops
from enum import Enum
from . import utils
import comfy.latent_formats
import comfy.model_sampling
import math
from typing import TYPE_CHECKING
if TYPE_CHECKING:
@@ -66,39 +61,38 @@ class ModelType(Enum):
V_PREDICTION_CONTINUOUS = 7
FLUX = 8
IMG_TO_IMG = 9
FLOW_COSMOS = 10
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV
def model_sampling(model_config, model_type):
s = comfy.model_sampling.ModelSamplingDiscrete
s = ModelSamplingDiscrete
if model_type == ModelType.EPS:
c = comfy.model_sampling.EPS
c = EPS
elif model_type == ModelType.V_PREDICTION:
c = comfy.model_sampling.V_PREDICTION
c = V_PREDICTION
elif model_type == ModelType.V_PREDICTION_EDM:
c = comfy.model_sampling.V_PREDICTION
s = comfy.model_sampling.ModelSamplingContinuousEDM
c = V_PREDICTION
s = ModelSamplingContinuousEDM
elif model_type == ModelType.FLOW:
c = comfy.model_sampling.CONST
s = comfy.model_sampling.ModelSamplingDiscreteFlow
elif model_type == ModelType.STABLE_CASCADE:
c = comfy.model_sampling.EPS
s = comfy.model_sampling.StableCascadeSampling
c = EPS
s = StableCascadeSampling
elif model_type == ModelType.EDM:
c = comfy.model_sampling.EDM
s = comfy.model_sampling.ModelSamplingContinuousEDM
c = EDM
s = ModelSamplingContinuousEDM
elif model_type == ModelType.V_PREDICTION_CONTINUOUS:
c = comfy.model_sampling.V_PREDICTION
s = comfy.model_sampling.ModelSamplingContinuousV
c = V_PREDICTION
s = ModelSamplingContinuousV
elif model_type == ModelType.FLUX:
c = comfy.model_sampling.CONST
s = comfy.model_sampling.ModelSamplingFlux
elif model_type == ModelType.IMG_TO_IMG:
c = comfy.model_sampling.IMG_TO_IMG
elif model_type == ModelType.FLOW_COSMOS:
c = comfy.model_sampling.COSMOS_RFLOW
s = comfy.model_sampling.ModelSamplingCosmosRFlow
class ModelSampling(s, c):
pass
@@ -106,13 +100,6 @@ def model_sampling(model_config, model_type):
return ModelSampling(model_config)
def convert_tensor(extra, dtype):
if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype)
return extra
class BaseModel(torch.nn.Module):
def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel):
super().__init__()
@@ -146,7 +133,6 @@ class BaseModel(torch.nn.Module):
logging.info("model_type {}".format(model_type.name))
logging.debug("adm {}".format(self.adm_channels))
self.memory_usage_factor = model_config.memory_usage_factor
self.memory_usage_factor_conds = ()
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
@@ -176,14 +162,9 @@ class BaseModel(torch.nn.Module):
extra_conds = {}
for o in kwargs:
extra = kwargs[o]
if hasattr(extra, "dtype"):
extra = convert_tensor(extra, dtype)
elif isinstance(extra, list):
ex = []
for ext in extra:
ex.append(convert_tensor(ext, dtype))
extra = ex
if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype)
extra_conds[o] = extra
t = self.process_timestep(t, x=x, **extra_conds)
@@ -342,28 +323,19 @@ class BaseModel(torch.nn.Module):
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return self.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1)), noise, latent_image)
def memory_required(self, input_shape, cond_shapes={}):
input_shapes = [input_shape]
for c in self.memory_usage_factor_conds:
shape = cond_shapes.get(c, None)
if shape is not None and len(shape) > 0:
input_shapes += shape
def memory_required(self, input_shape):
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
#TODO: this needs to be tweaked
area = sum(map(lambda input_shape: input_shape[0] * math.prod(input_shape[2:]), input_shapes))
area = input_shape[0] * math.prod(input_shape[2:])
return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024)
else:
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
area = sum(map(lambda input_shape: input_shape[0] * math.prod(input_shape[2:]), input_shapes))
area = input_shape[0] * math.prod(input_shape[2:])
return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024)
def extra_conds_shapes(self, **kwargs):
return {}
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
adm_inputs = []
@@ -814,9 +786,8 @@ class PixArt(BaseModel):
return out
class Flux(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.flux.model.Flux):
super().__init__(model_config, model_type, device=device, unet_model=unet_model)
self.memory_usage_factor_conds = ("ref_latents",)
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux)
def concat_cond(self, **kwargs):
try:
@@ -877,23 +848,8 @@ class Flux(BaseModel):
guidance = kwargs.get("guidance", 3.5)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
latents = []
for lat in ref_latents:
latents.append(self.process_latent_in(lat))
out['ref_latents'] = comfy.conds.CONDList(latents)
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out
class GenmoMochi(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.genmo.joint_model.asymm_models_joint.AsymmDiTJoint)
@@ -966,10 +922,6 @@ class HunyuanVideo(BaseModel):
if guiding_frame_index is not None:
out['guiding_frame_index'] = comfy.conds.CONDRegular(torch.FloatTensor([guiding_frame_index]))
ref_latent = kwargs.get("ref_latent", None)
if ref_latent is not None:
out['ref_latent'] = comfy.conds.CONDRegular(self.process_latent_in(ref_latent))
return out
def scale_latent_inpaint(self, latent_image, **kwargs):
@@ -1018,45 +970,6 @@ class CosmosVideo(BaseModel):
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image)
return latent_image * ((sigma ** 2 + self.model_sampling.sigma_data ** 2) ** 0.5)
class CosmosPredict2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW_COSMOS, image_to_video=False, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.predict2.MiniTrainDIT)
self.image_to_video = image_to_video
if self.image_to_video:
self.concat_keys = ("mask_inverted",)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
out['fps'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", None))
return out
def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
if denoise_mask is None:
return timestep
if denoise_mask.ndim <= 4:
return timestep
condition_video_mask_B_1_T_1_1 = denoise_mask.mean(dim=[1, 3, 4], keepdim=True)
c_noise_B_1_T_1_1 = 0.0 * (1.0 - condition_video_mask_B_1_T_1_1) + timestep.reshape(timestep.shape[0], 1, 1, 1, 1) * condition_video_mask_B_1_T_1_1
out = c_noise_B_1_T_1_1.squeeze(dim=[1, 3, 4])
return out
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1))
sigma_noise_augmentation = 0 #TODO
if sigma_noise_augmentation != 0:
latent_image = latent_image + noise
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image)
sigma = (sigma / (sigma + 1))
return latent_image / (1.0 - sigma)
class Lumina2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lumina.model.NextDiT)
@@ -1128,58 +1041,6 @@ class WAN21(BaseModel):
clip_vision_output = kwargs.get("clip_vision_output", None)
if clip_vision_output is not None:
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.penultimate_hidden_states)
time_dim_concat = kwargs.get("time_dim_concat", None)
if time_dim_concat is not None:
out['time_dim_concat'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_concat))
return out
class WAN21_Vace(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.VaceWanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
noise = kwargs.get("noise", None)
noise_shape = list(noise.shape)
vace_frames = kwargs.get("vace_frames", None)
if vace_frames is None:
noise_shape[1] = 32
vace_frames = [torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)]
mask = kwargs.get("vace_mask", None)
if mask is None:
noise_shape[1] = 64
mask = [torch.ones(noise_shape, device=noise.device, dtype=noise.dtype)] * len(vace_frames)
vace_frames_out = []
for j in range(len(vace_frames)):
vf = vace_frames[j].clone()
for i in range(0, vf.shape[1], 16):
vf[:, i:i + 16] = self.process_latent_in(vf[:, i:i + 16])
vf = torch.cat([vf, mask[j]], dim=1)
vace_frames_out.append(vf)
vace_frames = torch.stack(vace_frames_out, dim=1)
out['vace_context'] = comfy.conds.CONDRegular(vace_frames)
vace_strength = kwargs.get("vace_strength", [1.0] * len(vace_frames_out))
out['vace_strength'] = comfy.conds.CONDConstant(vace_strength)
return out
class WAN21_Camera(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.CameraWanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
camera_conditions = kwargs.get("camera_conditions", None)
if camera_conditions is not None:
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
return out
class Hunyuan3Dv2(BaseModel):
@@ -1212,68 +1073,4 @@ class HiDream(BaseModel):
conditioning_llama3 = kwargs.get("conditioning_llama3", None)
if conditioning_llama3 is not None:
out['encoder_hidden_states_llama3'] = comfy.conds.CONDRegular(conditioning_llama3)
image_cond = kwargs.get("concat_latent_image", None)
if image_cond is not None:
out['image_cond'] = comfy.conds.CONDNoiseShape(self.process_latent_in(image_cond))
return out
class Chroma(Flux):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma.model.Chroma)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
guidance = kwargs.get("guidance", 0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class ACEStep(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.ace.model.ACEStepTransformer2DModel)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
noise = kwargs.get("noise", None)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_lyrics = kwargs.get("conditioning_lyrics", None)
if cross_attn is not None:
out['lyric_token_idx'] = comfy.conds.CONDRegular(conditioning_lyrics)
out['speaker_embeds'] = comfy.conds.CONDRegular(torch.zeros(noise.shape[0], 512, device=noise.device, dtype=noise.dtype))
out['lyrics_strength'] = comfy.conds.CONDConstant(kwargs.get("lyrics_strength", 1.0))
return out
class Omnigen2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.omnigen.omnigen2.OmniGen2Transformer2DModel)
self.memory_usage_factor_conds = ("ref_latents",)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item()))
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
latents = []
for lat in ref_latents:
latents.append(self.process_latent_in(lat))
out['ref_latents'] = comfy.conds.CONDList(latents)
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out

View File

@@ -164,9 +164,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if in_key in state_dict_keys:
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size)
dit_config["out_channels"] = 16
vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix)
if vec_in_key in state_dict_keys:
dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1]
dit_config["vec_in_dim"] = 768
dit_config["context_in_dim"] = 4096
dit_config["hidden_size"] = 3072
dit_config["mlp_ratio"] = 4.0
@@ -176,16 +174,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["axes_dim"] = [16, 56, 56]
dit_config["theta"] = 10000
dit_config["qkv_bias"] = True
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
dit_config["image_model"] = "chroma"
dit_config["in_channels"] = 64
dit_config["out_channels"] = 64
dit_config["in_dim"] = 64
dit_config["out_dim"] = 3072
dit_config["hidden_dim"] = 5120
dit_config["n_layers"] = 5
else:
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview
@@ -222,39 +211,10 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv
dit_config = {}
dit_config["image_model"] = "ltxv"
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
shape = state_dict['{}transformer_blocks.0.attn2.to_k.weight'.format(key_prefix)].shape
dit_config["attention_head_dim"] = shape[0] // 32
dit_config["cross_attention_dim"] = shape[1]
if metadata is not None and "config" in metadata:
dit_config.update(json.loads(metadata["config"]).get("transformer", {}))
return dit_config
if '{}genre_embedder.weight'.format(key_prefix) in state_dict_keys: #ACE-Step model
dit_config = {}
dit_config["audio_model"] = "ace"
dit_config["attention_head_dim"] = 128
dit_config["in_channels"] = 8
dit_config["inner_dim"] = 2560
dit_config["max_height"] = 16
dit_config["max_position"] = 32768
dit_config["max_width"] = 32768
dit_config["mlp_ratio"] = 2.5
dit_config["num_attention_heads"] = 20
dit_config["num_layers"] = 24
dit_config["out_channels"] = 8
dit_config["patch_size"] = [16, 1]
dit_config["rope_theta"] = 1000000.0
dit_config["speaker_embedding_dim"] = 512
dit_config["text_embedding_dim"] = 768
dit_config["ssl_encoder_depths"] = [8, 8]
dit_config["ssl_latent_dims"] = [1024, 768]
dit_config["ssl_names"] = ["mert", "m-hubert"]
dit_config["lyric_encoder_vocab_size"] = 6693
dit_config["lyric_hidden_size"] = 1024
return dit_config
if '{}t_block.1.weight'.format(key_prefix) in state_dict_keys: # PixArt
patch_size = 2
dit_config = {}
@@ -357,17 +317,10 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["cross_attn_norm"] = True
dit_config["eps"] = 1e-6
dit_config["in_dim"] = state_dict['{}patch_embedding.weight'.format(key_prefix)].shape[1]
if '{}vace_patch_embedding.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "vace"
dit_config["vace_in_dim"] = state_dict['{}vace_patch_embedding.weight'.format(key_prefix)].shape[1]
dit_config["vace_layers"] = count_blocks(state_dict_keys, '{}vace_blocks.'.format(key_prefix) + '{}.')
elif '{}control_adapter.conv.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "camera"
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"
else:
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"
else:
dit_config["model_type"] = "t2v"
dit_config["model_type"] = "t2v"
flf_weight = state_dict.get('{}img_emb.emb_pos'.format(key_prefix))
if flf_weight is not None:
dit_config["flf_pos_embed_token_number"] = flf_weight.shape[1]
@@ -407,78 +360,6 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["text_emb_dim"] = 2048
return dit_config
if '{}blocks.0.mlp.layer1.weight'.format(key_prefix) in state_dict_keys: # Cosmos predict2
dit_config = {}
dit_config["image_model"] = "cosmos_predict2"
dit_config["max_img_h"] = 240
dit_config["max_img_w"] = 240
dit_config["max_frames"] = 128
concat_padding_mask = True
dit_config["in_channels"] = (state_dict['{}x_embedder.proj.1.weight'.format(key_prefix)].shape[1] // 4) - int(concat_padding_mask)
dit_config["out_channels"] = 16
dit_config["patch_spatial"] = 2
dit_config["patch_temporal"] = 1
dit_config["model_channels"] = state_dict['{}x_embedder.proj.1.weight'.format(key_prefix)].shape[0]
dit_config["concat_padding_mask"] = concat_padding_mask
dit_config["crossattn_emb_channels"] = 1024
dit_config["pos_emb_cls"] = "rope3d"
dit_config["pos_emb_learnable"] = True
dit_config["pos_emb_interpolation"] = "crop"
dit_config["min_fps"] = 1
dit_config["max_fps"] = 30
dit_config["use_adaln_lora"] = True
dit_config["adaln_lora_dim"] = 256
if dit_config["model_channels"] == 2048:
dit_config["num_blocks"] = 28
dit_config["num_heads"] = 16
elif dit_config["model_channels"] == 5120:
dit_config["num_blocks"] = 36
dit_config["num_heads"] = 40
if dit_config["in_channels"] == 16:
dit_config["extra_per_block_abs_pos_emb"] = False
dit_config["rope_h_extrapolation_ratio"] = 4.0
dit_config["rope_w_extrapolation_ratio"] = 4.0
dit_config["rope_t_extrapolation_ratio"] = 1.0
elif dit_config["in_channels"] == 17: # img to video
if dit_config["model_channels"] == 2048:
dit_config["extra_per_block_abs_pos_emb"] = False
dit_config["rope_h_extrapolation_ratio"] = 3.0
dit_config["rope_w_extrapolation_ratio"] = 3.0
dit_config["rope_t_extrapolation_ratio"] = 1.0
elif dit_config["model_channels"] == 5120:
dit_config["rope_h_extrapolation_ratio"] = 2.0
dit_config["rope_w_extrapolation_ratio"] = 2.0
dit_config["rope_t_extrapolation_ratio"] = 0.8333333333333334
dit_config["extra_h_extrapolation_ratio"] = 1.0
dit_config["extra_w_extrapolation_ratio"] = 1.0
dit_config["extra_t_extrapolation_ratio"] = 1.0
dit_config["rope_enable_fps_modulation"] = False
return dit_config
if '{}time_caption_embed.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: # Omnigen2
dit_config = {}
dit_config["image_model"] = "omnigen2"
dit_config["axes_dim_rope"] = [40, 40, 40]
dit_config["axes_lens"] = [1024, 1664, 1664]
dit_config["ffn_dim_multiplier"] = None
dit_config["hidden_size"] = 2520
dit_config["in_channels"] = 16
dit_config["multiple_of"] = 256
dit_config["norm_eps"] = 1e-05
dit_config["num_attention_heads"] = 21
dit_config["num_kv_heads"] = 7
dit_config["num_layers"] = 32
dit_config["num_refiner_layers"] = 2
dit_config["out_channels"] = None
dit_config["patch_size"] = 2
dit_config["text_feat_dim"] = 2048
dit_config["timestep_scale"] = 1000.0
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None
@@ -692,9 +573,6 @@ def convert_config(unet_config):
def unet_config_from_diffusers_unet(state_dict, dtype=None):
if "conv_in.weight" not in state_dict:
return None
match = {}
transformer_depth = []

View File

@@ -295,24 +295,14 @@ except:
pass
SUPPORT_FP8_OPS = args.supports_fp8_compute
try:
if is_amd():
try:
rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2]))
except:
rocm_version = (6, -1)
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
logging.info("AMD arch: {}".format(arch))
logging.info("ROCm version: {}".format(rocm_version))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx1201 and gfx950
if torch_version_numeric[0] >= 2 and torch_version_numeric[1] >= 7: # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx1100", "gfx1101"]): # TODO: more arches
ENABLE_PYTORCH_ATTENTION = True
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
if any((a in arch) for a in ["gfx1201", "gfx942", "gfx950"]): # TODO: more arches
SUPPORT_FP8_OPS = True
except:
pass
@@ -333,7 +323,7 @@ except:
pass
try:
if torch_version_numeric >= (2, 5):
if torch_version_numeric[0] == 2 and torch_version_numeric[1] >= 5:
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
except:
logging.warning("Warning, could not set allow_fp16_bf16_reduction_math_sdp")
@@ -705,7 +695,7 @@ def unet_inital_load_device(parameters, dtype):
return torch_dev
cpu_dev = torch.device("cpu")
if DISABLE_SMART_MEMORY or vram_state == VRAMState.NO_VRAM:
if DISABLE_SMART_MEMORY:
return cpu_dev
model_size = dtype_size(dtype) * parameters
@@ -735,8 +725,6 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
return torch.float8_e4m3fn
if args.fp8_e5m2_unet:
return torch.float8_e5m2
if args.fp8_e8m0fnu_unet:
return torch.float8_e8m0fnu
fp8_dtype = None
if weight_dtype in FLOAT8_TYPES:
@@ -949,61 +937,15 @@ def force_channels_last():
#TODO
return False
STREAMS = {}
NUM_STREAMS = 1
if args.async_offload:
NUM_STREAMS = 2
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
stream_counters = {}
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
if NUM_STREAMS <= 1:
return None
if device in STREAMS:
ss = STREAMS[device]
s = ss[stream_counter]
stream_counter = (stream_counter + 1) % len(ss)
if is_device_cuda(device):
ss[stream_counter].wait_stream(torch.cuda.current_stream())
stream_counters[device] = stream_counter
return s
elif is_device_cuda(device):
ss = []
for k in range(NUM_STREAMS):
ss.append(torch.cuda.Stream(device=device, priority=0))
STREAMS[device] = ss
s = ss[stream_counter]
stream_counter = (stream_counter + 1) % len(ss)
stream_counters[device] = stream_counter
return s
return None
def sync_stream(device, stream):
if stream is None:
return
if is_device_cuda(device):
torch.cuda.current_stream().wait_stream(stream)
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
return weight
if stream is not None:
with stream:
return weight.to(dtype=dtype, copy=copy)
return weight.to(dtype=dtype, copy=copy)
if stream is not None:
with stream:
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
else:
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
return r
def cast_to_device(tensor, device, dtype, copy=False):
@@ -1052,7 +994,7 @@ def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
#TODO: more reliable way of checking for flash attention?
if is_nvidia():
if is_nvidia(): #pytorch flash attention only works on Nvidia
return True
if is_intel_xpu():
return True
@@ -1068,7 +1010,7 @@ def force_upcast_attention_dtype():
upcast = args.force_upcast_attention
macos_version = mac_version()
if macos_version is not None and ((14, 5) <= macos_version): # black image bug on recent versions of macOS, I don't think it's ever getting fixed
if macos_version is not None and ((14, 5) <= macos_version < (16,)): # black image bug on recent versions of macOS
upcast = True
if upcast:
@@ -1267,9 +1209,6 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
return False
def supports_fp8_compute(device=None):
if SUPPORT_FP8_OPS:
return True
if not is_nvidia():
return False
@@ -1281,22 +1220,15 @@ def supports_fp8_compute(device=None):
if props.minor < 9:
return False
if torch_version_numeric < (2, 3):
if torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 3):
return False
if WINDOWS:
if torch_version_numeric < (2, 4):
if (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 4):
return False
return True
def extended_fp16_support():
# TODO: check why some models work with fp16 on newer torch versions but not on older
if torch_version_numeric < (2, 7):
return False
return True
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:

View File

@@ -17,26 +17,23 @@
"""
from __future__ import annotations
import collections
from typing import Optional, Callable
import torch
import copy
import inspect
import logging
import math
import uuid
from typing import Callable, Optional
import collections
import math
import torch
import comfy.float
import comfy.hooks
import comfy.lora
import comfy.model_management
import comfy.patcher_extension
import comfy.utils
import comfy.float
import comfy.model_management
import comfy.lora
import comfy.hooks
import comfy.patcher_extension
from comfy.patcher_extension import CallbacksMP, WrappersMP, PatcherInjection
from comfy.comfy_types import UnetWrapperFunction
from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP
def string_to_seed(data):
crc = 0xFFFFFFFF

View File

@@ -77,25 +77,6 @@ class IMG_TO_IMG(X0):
def calculate_input(self, sigma, noise):
return noise
class COSMOS_RFLOW:
def calculate_input(self, sigma, noise):
sigma = (sigma / (sigma + 1))
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
return noise * (1.0 - sigma)
def calculate_denoised(self, sigma, model_output, model_input):
sigma = (sigma / (sigma + 1))
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input * (1.0 - sigma) - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
noise = noise * sigma
noise += latent_image
return noise
def inverse_noise_scaling(self, sigma, latent):
return latent
class ModelSamplingDiscrete(torch.nn.Module):
def __init__(self, model_config=None, zsnr=None):
@@ -130,14 +111,13 @@ class ModelSamplingDiscrete(torch.nn.Module):
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
self.zsnr = zsnr
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
if self.zsnr:
if zsnr:
sigmas = rescale_zero_terminal_snr_sigmas(sigmas)
self.set_sigmas(sigmas)
@@ -369,15 +349,3 @@ class ModelSamplingFlux(torch.nn.Module):
if percent >= 1.0:
return 0.0
return flux_time_shift(self.shift, 1.0, 1.0 - percent)
class ModelSamplingCosmosRFlow(ModelSamplingContinuousEDM):
def timestep(self, sigma):
return sigma / (sigma + 1)
def sigma(self, timestep):
sigma_max = self.sigma_max
if timestep >= (sigma_max / (sigma_max + 1)):
return sigma_max
return timestep / (1 - timestep)

View File

@@ -22,7 +22,6 @@ import comfy.model_management
from comfy.cli_args import args, PerformanceFeature
import comfy.float
import comfy.rmsnorm
import contextlib
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
@@ -38,31 +37,20 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if device is None:
device = input.device
offload_stream = comfy.model_management.get_offload_stream(device)
if offload_stream is not None:
wf_context = offload_stream
else:
wf_context = contextlib.nullcontext()
bias = None
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if s.bias is not None:
has_function = len(s.bias_function) > 0
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function:
with wf_context:
for f in s.bias_function:
bias = f(bias)
for f in s.bias_function:
bias = f(bias)
has_function = len(s.weight_function) > 0
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function:
with wf_context:
for f in s.weight_function:
weight = f(weight)
comfy.model_management.sync_stream(device, offload_stream)
for f in s.weight_function:
weight = f(weight)
return weight, bias
class CastWeightBiasOp:
@@ -308,10 +296,10 @@ def fp8_linear(self, input):
if scale_input is None:
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
input = torch.clamp(input, min=-448, max=448, out=input)
input = input.reshape(-1, input_shape[2]).to(dtype).contiguous()
input = input.reshape(-1, input_shape[2]).to(dtype)
else:
scale_input = scale_input.to(input.device)
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype).contiguous()
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype)
if bias is not None:
o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)

View File

@@ -30,7 +30,7 @@ if RMSNorm is None:
def __init__(
self,
normalized_shape,
eps=1e-6,
eps=None,
elementwise_affine=True,
device=None,
dtype=None,

View File

@@ -1,7 +1,5 @@
from __future__ import annotations
import uuid
import math
import collections
import comfy.model_management
import comfy.conds
import comfy.utils
@@ -106,21 +104,6 @@ def cleanup_additional_models(models):
if hasattr(m, 'cleanup'):
m.cleanup()
def estimate_memory(model, noise_shape, conds):
cond_shapes = collections.defaultdict(list)
cond_shapes_min = {}
for _, cs in conds.items():
for cond in cs:
for k, v in model.model.extra_conds_shapes(**cond).items():
cond_shapes[k].append(v)
if cond_shapes_min.get(k, None) is None:
cond_shapes_min[k] = [v]
elif math.prod(v) > math.prod(cond_shapes_min[k][0]):
cond_shapes_min[k] = [v]
memory_required = model.model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:]), cond_shapes=cond_shapes)
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
return memory_required, minimum_memory_required
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
@@ -134,8 +117,9 @@ def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=Non
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory)
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
real_model = model.model
return real_model, conds, models

View File

@@ -256,13 +256,7 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
cond_shapes = collections.defaultdict(list)
for tt in batch_amount:
cond = {k: v.size() for k, v in to_run[tt][0].conditioning.items()}
for k, v in to_run[tt][0].conditioning.items():
cond_shapes[k].append(v.size())
if model.memory_required(input_shape, cond_shapes=cond_shapes) * 1.5 < free_memory:
if model.memory_required(input_shape) * 1.5 < free_memory:
to_batch = batch_amount
break
@@ -716,7 +710,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3"]
"gradient_estimation", "er_sde", "seeds_2", "seeds_3"]
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
@@ -1039,13 +1033,13 @@ class SchedulerHandler(NamedTuple):
use_ms: bool = True
SCHEDULER_HANDLERS = {
"simple": SchedulerHandler(simple_scheduler),
"sgm_uniform": SchedulerHandler(partial(normal_scheduler, sgm=True)),
"normal": SchedulerHandler(normal_scheduler),
"karras": SchedulerHandler(k_diffusion_sampling.get_sigmas_karras, use_ms=False),
"exponential": SchedulerHandler(k_diffusion_sampling.get_sigmas_exponential, use_ms=False),
"sgm_uniform": SchedulerHandler(partial(normal_scheduler, sgm=True)),
"simple": SchedulerHandler(simple_scheduler),
"ddim_uniform": SchedulerHandler(ddim_scheduler),
"beta": SchedulerHandler(beta_scheduler),
"normal": SchedulerHandler(normal_scheduler),
"linear_quadratic": SchedulerHandler(linear_quadratic_schedule),
"kl_optimal": SchedulerHandler(kl_optimal_scheduler, use_ms=False),
}

View File

@@ -15,7 +15,6 @@ import comfy.ldm.lightricks.vae.causal_video_autoencoder
import comfy.ldm.cosmos.vae
import comfy.ldm.wan.vae
import comfy.ldm.hunyuan3d.vae
import comfy.ldm.ace.vae.music_dcae_pipeline
import yaml
import math
@@ -43,8 +42,6 @@ import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2
import comfy.text_encoders.wan
import comfy.text_encoders.hidream
import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.model_patcher
import comfy.lora
@@ -123,7 +120,6 @@ class CLIP:
self.layer_idx = None
self.use_clip_schedule = False
logging.info("CLIP/text encoder model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
self.tokenizer_options = {}
def clone(self):
n = CLIP(no_init=True)
@@ -131,7 +127,6 @@ class CLIP:
n.cond_stage_model = self.cond_stage_model
n.tokenizer = self.tokenizer
n.layer_idx = self.layer_idx
n.tokenizer_options = self.tokenizer_options.copy()
n.use_clip_schedule = self.use_clip_schedule
n.apply_hooks_to_conds = self.apply_hooks_to_conds
return n
@@ -139,18 +134,10 @@ class CLIP:
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
return self.patcher.add_patches(patches, strength_patch, strength_model)
def set_tokenizer_option(self, option_name, value):
self.tokenizer_options[option_name] = value
def clip_layer(self, layer_idx):
self.layer_idx = layer_idx
def tokenize(self, text, return_word_ids=False, **kwargs):
tokenizer_options = kwargs.get("tokenizer_options", {})
if len(self.tokenizer_options) > 0:
tokenizer_options = {**self.tokenizer_options, **tokenizer_options}
if len(tokenizer_options) > 0:
kwargs["tokenizer_options"] = tokenizer_options
return self.tokenizer.tokenize_with_weights(text, return_word_ids, **kwargs)
def add_hooks_to_dict(self, pooled_dict: dict[str]):
@@ -283,7 +270,6 @@ class VAE:
self.downscale_index_formula = None
self.upscale_index_formula = None
self.extra_1d_channel = None
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
@@ -441,20 +427,6 @@ class VAE:
ddconfig = {"embed_dim": 64, "num_freqs": 8, "include_pi": False, "heads": 16, "width": 1024, "num_decoder_layers": 16, "qkv_bias": False, "qk_norm": True, "geo_decoder_mlp_expand_ratio": mlp_expand, "geo_decoder_downsample_ratio": downsample_ratio, "geo_decoder_ln_post": ln_post}
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE(**ddconfig)
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
elif "vocoder.backbone.channel_layers.0.0.bias" in sd: #Ace Step Audio
self.first_stage_model = comfy.ldm.ace.vae.music_dcae_pipeline.MusicDCAE(source_sample_rate=44100)
self.memory_used_encode = lambda shape, dtype: (shape[2] * 330) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (shape[2] * shape[3] * 87000) * model_management.dtype_size(dtype)
self.latent_channels = 8
self.output_channels = 2
self.upscale_ratio = 4096
self.downscale_ratio = 4096
self.latent_dim = 2
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.disable_offload = True
self.extra_1d_channel = 16
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@@ -513,13 +485,7 @@ class VAE:
return output
def decode_tiled_1d(self, samples, tile_x=128, overlap=32):
if samples.ndim == 3:
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
else:
og_shape = samples.shape
samples = samples.reshape((og_shape[0], og_shape[1] * og_shape[2], -1))
decode_fn = lambda a: self.first_stage_model.decode(a.reshape((-1, og_shape[1], og_shape[2], a.shape[-1])).to(self.vae_dtype).to(self.device)).float()
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device))
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)):
@@ -539,24 +505,9 @@ class VAE:
samples /= 3.0
return samples
def encode_tiled_1d(self, samples, tile_x=256 * 2048, overlap=64 * 2048):
if self.latent_dim == 1:
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
out_channels = self.latent_channels
upscale_amount = 1 / self.downscale_ratio
else:
extra_channel_size = self.extra_1d_channel
out_channels = self.latent_channels * extra_channel_size
tile_x = tile_x // extra_channel_size
overlap = overlap // extra_channel_size
upscale_amount = 1 / self.downscale_ratio
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).reshape(1, out_channels, -1).float()
out = comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=self.output_device)
if self.latent_dim == 1:
return out
else:
return out.reshape(samples.shape[0], self.latent_channels, extra_channel_size, -1)
def encode_tiled_1d(self, samples, tile_x=128 * 2048, overlap=32 * 2048):
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=(1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)
def encode_tiled_3d(self, samples, tile_t=9999, tile_x=512, tile_y=512, overlap=(1, 64, 64)):
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
@@ -581,7 +532,7 @@ class VAE:
except model_management.OOM_EXCEPTION:
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
dims = samples_in.ndim - 2
if dims == 1 or self.extra_1d_channel is not None:
if dims == 1:
pixel_samples = self.decode_tiled_1d(samples_in)
elif dims == 2:
pixel_samples = self.decode_tiled_(samples_in)
@@ -648,7 +599,7 @@ class VAE:
tile = 256
overlap = tile // 4
samples = self.encode_tiled_3d(pixel_samples, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap))
elif self.latent_dim == 1 or self.extra_1d_channel is not None:
elif self.latent_dim == 1:
samples = self.encode_tiled_1d(pixel_samples)
else:
samples = self.encode_tiled_(pixel_samples)
@@ -752,10 +703,6 @@ class CLIPType(Enum):
COSMOS = 11
LUMINA2 = 12
WAN = 13
HIDREAM = 14
CHROMA = 15
ACE = 16
OMNIGEN2 = 17
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@@ -775,7 +722,6 @@ class TEModel(Enum):
LLAMA3_8 = 7
T5_XXL_OLD = 8
GEMMA_2_2B = 9
QWEN25_3B = 10
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@@ -796,8 +742,6 @@ def detect_te_model(sd):
return TEModel.T5_BASE
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
return TEModel.GEMMA_2_2B
if 'model.layers.0.self_attn.k_proj.bias' in sd:
return TEModel.QWEN25_3B
if "model.layers.0.post_attention_layernorm.weight" in sd:
return TEModel.LLAMA3_8
return None
@@ -847,9 +791,6 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
@@ -863,17 +804,13 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.LTXV:
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
elif clip_type == CLIPType.PIXART or clip_type == CLIPType.CHROMA:
elif clip_type == CLIPType.PIXART:
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
elif clip_type == CLIPType.WAN:
clip_target.clip = comfy.text_encoders.wan.te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.wan.WanT5Tokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data),
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
@@ -884,32 +821,16 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
elif te_model == TEModel.T5_BASE:
if clip_type == CLIPType.ACE or "spiece_model" in clip_data[0]:
clip_target.clip = comfy.text_encoders.ace.AceT5Model
clip_target.tokenizer = comfy.text_encoders.ace.AceT5Tokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
else:
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
elif te_model == TEModel.GEMMA_2_2B:
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lumina2.LuminaTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.LLAMA3_8:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
elif te_model == TEModel.QWEN25_3B:
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.omnigen2.Omnigen2Tokenizer
else:
# clip_l
if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer
@@ -927,24 +848,6 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.HUNYUAN_VIDEO:
clip_target.clip = comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer
elif clip_type == CLIPType.HIDREAM:
# Detect
hidream_dualclip_classes = []
for hidream_te in clip_data:
te_model = detect_te_model(hidream_te)
hidream_dualclip_classes.append(te_model)
clip_l = TEModel.CLIP_L in hidream_dualclip_classes
clip_g = TEModel.CLIP_G in hidream_dualclip_classes
t5 = TEModel.T5_XXL in hidream_dualclip_classes
llama = TEModel.LLAMA3_8 in hidream_dualclip_classes
# Initialize t5xxl_detect and llama_detect kwargs if needed
t5_kwargs = t5xxl_detect(clip_data) if t5 else {}
llama_kwargs = llama_detect(clip_data) if llama else {}
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, **t5_kwargs, **llama_kwargs)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
@@ -1089,28 +992,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
return (model_patcher, clip, vae, clipvision)
def load_diffusion_model_state_dict(sd, model_options={}):
"""
Loads a UNet diffusion model from a state dictionary, supporting both diffusers and regular formats.
Args:
sd (dict): State dictionary containing model weights and configuration
model_options (dict, optional): Additional options for model loading. Supports:
- dtype: Override model data type
- custom_operations: Custom model operations
- fp8_optimizations: Enable FP8 optimizations
Returns:
ModelPatcher: A wrapped model instance that handles device management and weight loading.
Returns None if the model configuration cannot be detected.
The function:
1. Detects and handles different model formats (regular, diffusers, mmdit)
2. Configures model dtype based on parameters and device capabilities
3. Handles weight conversion and device placement
4. Manages model optimization settings
5. Loads weights and returns a device-managed model instance
"""
def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffusers or regular format
dtype = model_options.get("dtype", None)
#Allow loading unets from checkpoint files
@@ -1168,7 +1050,7 @@ def load_diffusion_model_state_dict(sd, model_options={}):
model.load_model_weights(new_sd, "")
left_over = sd.keys()
if len(left_over) > 0:
logging.info("left over keys in diffusion model: {}".format(left_over))
logging.info("left over keys in unet: {}".format(left_over))
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
@@ -1176,7 +1058,7 @@ def load_diffusion_model(unet_path, model_options={}):
sd = comfy.utils.load_torch_file(unet_path)
model = load_diffusion_model_state_dict(sd, model_options=model_options)
if model is None:
logging.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path))
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
return model

View File

@@ -457,14 +457,13 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
return embed_out
class SDTokenizer:
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}):
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, tokenizer_data={}, tokenizer_args={}):
if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length)
self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length)
self.min_length = min_length
self.end_token = None
self.min_padding = min_padding
empty = self.tokenizer('')["input_ids"]
self.tokenizer_adds_end_token = has_end_token
@@ -482,8 +481,7 @@ class SDTokenizer:
if end_token is not None:
self.end_token = end_token
else:
if has_end_token:
self.end_token = empty[0]
self.end_token = empty[0]
if pad_token is not None:
self.pad_token = pad_token
@@ -520,15 +518,13 @@ class SDTokenizer:
return (embed, leftover)
def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs):
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
'''
Takes a prompt and converts it to a list of (token, weight, word id) elements.
Tokens can both be integer tokens and pre computed CLIP tensors.
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
Returned list has the dimensions NxM where M is the input size of CLIP
'''
min_length = tokenizer_options.get("{}_min_length".format(self.embedding_key), self.min_length)
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
@@ -607,12 +603,10 @@ class SDTokenizer:
#fill last batch
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if min_padding is not None:
batch.extend([(self.pad_token, 1.0, 0)] * min_padding)
if self.pad_to_max_length and len(batch) < self.max_length:
if self.pad_to_max_length:
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if min_length is not None and len(batch) < min_length:
batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch)))
if self.min_length is not None and len(batch) < self.min_length:
batch.extend([(self.pad_token, 1.0, 0)] * (self.min_length - len(batch)))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
@@ -640,7 +634,7 @@ class SD1Tokenizer:
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids, **kwargs)
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):

View File

@@ -28,8 +28,8 @@ class SDXLTokenizer:
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):

View File

@@ -17,8 +17,6 @@ import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2
import comfy.text_encoders.wan
import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
from . import supported_models_base
from . import latent_formats
@@ -787,10 +785,6 @@ class LTXV(supported_models_base.BASE):
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = (unet_config.get("cross_attention_dim", 2048) / 2048) * 5.5
def get_model(self, state_dict, prefix="", device=None):
out = model_base.LTXV(self, device=device)
return out
@@ -909,48 +903,6 @@ class CosmosI2V(CosmosT2V):
out = model_base.CosmosVideo(self, image_to_video=True, device=device)
return out
class CosmosT2IPredict2(supported_models_base.BASE):
unet_config = {
"image_model": "cosmos_predict2",
"in_channels": 16,
}
sampling_settings = {
"sigma_data": 1.0,
"sigma_max": 80.0,
"sigma_min": 0.002,
}
unet_extra_config = {}
latent_format = latent_formats.Wan21
memory_usage_factor = 1.0
supported_inference_dtypes = [torch.bfloat16, torch.float32]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.9
def get_model(self, state_dict, prefix="", device=None):
out = model_base.CosmosPredict2(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.cosmos.CosmosT5Tokenizer, comfy.text_encoders.cosmos.te(**t5_detect))
class CosmosI2VPredict2(CosmosT2IPredict2):
unet_config = {
"image_model": "cosmos_predict2",
"in_channels": 17,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.CosmosPredict2(self, image_to_video=True, device=device)
return out
class Lumina2(supported_models_base.BASE):
unet_config = {
"image_model": "lumina2",
@@ -1035,30 +987,6 @@ class WAN21_FunControl2V(WAN21_T2V):
out = model_base.WAN21(self, image_to_video=False, device=device)
return out
class WAN21_Camera(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "camera",
"in_dim": 32,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21_Camera(self, image_to_video=False, device=device)
return out
class WAN21_Vace(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "vace",
}
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = 1.2 * self.memory_usage_factor
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
return out
class Hunyuan3Dv2(supported_models_base.BASE):
unet_config = {
"image_model": "hunyuan3d2",
@@ -1126,97 +1054,7 @@ class HiDream(supported_models_base.BASE):
def clip_target(self, state_dict={}):
return None # TODO
class Chroma(supported_models_base.BASE):
unet_config = {
"image_model": "chroma",
}
unet_extra_config = {
}
sampling_settings = {
"multiplier": 1.0,
}
latent_format = comfy.latent_formats.Flux
memory_usage_factor = 3.2
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Chroma(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.pixart_t5.PixArtTokenizer, comfy.text_encoders.pixart_t5.pixart_te(**t5_detect))
class ACEStep(supported_models_base.BASE):
unet_config = {
"audio_model": "ace",
}
unet_extra_config = {
}
sampling_settings = {
"shift": 3.0,
}
latent_format = comfy.latent_formats.ACEAudio
memory_usage_factor = 0.5
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.ACEStep(self, device=device)
return out
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(comfy.text_encoders.ace.AceT5Tokenizer, comfy.text_encoders.ace.AceT5Model)
class Omnigen2(supported_models_base.BASE):
unet_config = {
"image_model": "omnigen2",
}
sampling_settings = {
"multiplier": 1.0,
"shift": 2.6,
}
memory_usage_factor = 1.65 #TODO
unet_extra_config = {}
latent_format = latent_formats.Flux
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def __init__(self, unet_config):
super().__init__(unet_config)
if comfy.model_management.extended_fp16_support():
self.supported_inference_dtypes = [torch.float16] + self.supported_inference_dtypes
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Omnigen2(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_3b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.omnigen2.LuminaTokenizer, comfy.text_encoders.omnigen2.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2]
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream]
models += [SVD_img2vid]

View File

@@ -1,153 +0,0 @@
from comfy import sd1_clip
from .spiece_tokenizer import SPieceTokenizer
import comfy.text_encoders.t5
import os
import re
import torch
import logging
from tokenizers import Tokenizer
from .ace_text_cleaners import multilingual_cleaners, japanese_to_romaji
SUPPORT_LANGUAGES = {
"en": 259, "de": 260, "fr": 262, "es": 284, "it": 285,
"pt": 286, "pl": 294, "tr": 295, "ru": 267, "cs": 293,
"nl": 297, "ar": 5022, "zh": 5023, "ja": 5412, "hu": 5753,
"ko": 6152, "hi": 6680
}
structure_pattern = re.compile(r"\[.*?\]")
DEFAULT_VOCAB_FILE = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ace_lyrics_tokenizer"), "vocab.json")
class VoiceBpeTokenizer:
def __init__(self, vocab_file=DEFAULT_VOCAB_FILE):
self.tokenizer = None
if vocab_file is not None:
self.tokenizer = Tokenizer.from_file(vocab_file)
def preprocess_text(self, txt, lang):
txt = multilingual_cleaners(txt, lang)
return txt
def encode(self, txt, lang='en'):
# lang = lang.split("-")[0] # remove the region
# self.check_input_length(txt, lang)
txt = self.preprocess_text(txt, lang)
lang = "zh-cn" if lang == "zh" else lang
txt = f"[{lang}]{txt}"
txt = txt.replace(" ", "[SPACE]")
return self.tokenizer.encode(txt).ids
def get_lang(self, line):
if line.startswith("[") and line[3:4] == ']':
lang = line[1:3].lower()
if lang in SUPPORT_LANGUAGES:
return lang, line[4:]
return "en", line
def __call__(self, string):
lines = string.split("\n")
lyric_token_idx = [261]
for line in lines:
line = line.strip()
if not line:
lyric_token_idx += [2]
continue
lang, line = self.get_lang(line)
if lang not in SUPPORT_LANGUAGES:
lang = "en"
if "zh" in lang:
lang = "zh"
if "spa" in lang:
lang = "es"
try:
line_out = japanese_to_romaji(line)
if line_out != line:
lang = "ja"
line = line_out
except:
pass
try:
if structure_pattern.match(line):
token_idx = self.encode(line, "en")
else:
token_idx = self.encode(line, lang)
lyric_token_idx = lyric_token_idx + token_idx + [2]
except Exception as e:
logging.warning("tokenize error {} for line {} major_language {}".format(e, line, lang))
return {"input_ids": lyric_token_idx}
@staticmethod
def from_pretrained(path, **kwargs):
return VoiceBpeTokenizer(path, **kwargs)
def get_vocab(self):
return {}
class UMT5BaseModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "umt5_config_base.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=False, model_options=model_options)
class UMT5BaseTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=768, embedding_key='umt5base', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=0, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
class LyricsTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ace_lyrics_tokenizer"), "vocab.json")
super().__init__(tokenizer, pad_with_end=False, embedding_size=1024, embedding_key='lyrics', tokenizer_class=VoiceBpeTokenizer, has_start_token=True, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=2, has_end_token=False, tokenizer_data=tokenizer_data)
class AceT5Tokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.voicebpe = LyricsTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.umt5base = UMT5BaseTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["lyrics"] = self.voicebpe.tokenize_with_weights(kwargs.get("lyrics", ""), return_word_ids, **kwargs)
out["umt5base"] = self.umt5base.tokenize_with_weights(text, return_word_ids, **kwargs)
return out
def untokenize(self, token_weight_pair):
return self.umt5base.untokenize(token_weight_pair)
def state_dict(self):
return self.umt5base.state_dict()
class AceT5Model(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
super().__init__()
self.umt5base = UMT5BaseModel(device=device, dtype=dtype, model_options=model_options)
self.dtypes = set()
if dtype is not None:
self.dtypes.add(dtype)
def set_clip_options(self, options):
self.umt5base.set_clip_options(options)
def reset_clip_options(self):
self.umt5base.reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_umt5base = token_weight_pairs["umt5base"]
token_weight_pairs_lyrics = token_weight_pairs["lyrics"]
t5_out, t5_pooled = self.umt5base.encode_token_weights(token_weight_pairs_umt5base)
lyrics_embeds = torch.tensor(list(map(lambda a: a[0], token_weight_pairs_lyrics[0]))).unsqueeze(0)
return t5_out, None, {"conditioning_lyrics": lyrics_embeds}
def load_sd(self, sd):
return self.umt5base.load_sd(sd)

File diff suppressed because it is too large Load Diff

View File

@@ -1,395 +0,0 @@
# basic text cleaners for the ACE step model
# I didn't copy the ones from the reference code because I didn't want to deal with the dependencies
# TODO: more languages than english?
import re
def japanese_to_romaji(japanese_text):
"""
Convert Japanese hiragana and katakana to romaji (Latin alphabet representation).
Args:
japanese_text (str): Text containing hiragana and/or katakana characters
Returns:
str: The romaji (Latin alphabet) equivalent
"""
# Dictionary mapping kana characters to their romaji equivalents
kana_map = {
# Katakana characters
'': 'a', '': 'i', '': 'u', '': 'e', '': 'o',
'': 'ka', '': 'ki', '': 'ku', '': 'ke', '': 'ko',
'': 'sa', '': 'shi', '': 'su', '': 'se', '': 'so',
'': 'ta', '': 'chi', '': 'tsu', '': 'te', '': 'to',
'': 'na', '': 'ni', '': 'nu', '': 'ne', '': 'no',
'': 'ha', '': 'hi', '': 'fu', '': 'he', '': 'ho',
'': 'ma', '': 'mi', '': 'mu', '': 'me', '': 'mo',
'': 'ya', '': 'yu', '': 'yo',
'': 'ra', '': 'ri', '': 'ru', '': 're', '': 'ro',
'': 'wa', '': 'wo', '': 'n',
# Katakana voiced consonants
'': 'ga', '': 'gi', '': 'gu', '': 'ge', '': 'go',
'': 'za', '': 'ji', '': 'zu', '': 'ze', '': 'zo',
'': 'da', '': 'ji', '': 'zu', '': 'de', '': 'do',
'': 'ba', '': 'bi', '': 'bu', '': 'be', '': 'bo',
'': 'pa', '': 'pi', '': 'pu', '': 'pe', '': 'po',
# Katakana combinations
'キャ': 'kya', 'キュ': 'kyu', 'キョ': 'kyo',
'シャ': 'sha', 'シュ': 'shu', 'ショ': 'sho',
'チャ': 'cha', 'チュ': 'chu', 'チョ': 'cho',
'ニャ': 'nya', 'ニュ': 'nyu', 'ニョ': 'nyo',
'ヒャ': 'hya', 'ヒュ': 'hyu', 'ヒョ': 'hyo',
'ミャ': 'mya', 'ミュ': 'myu', 'ミョ': 'myo',
'リャ': 'rya', 'リュ': 'ryu', 'リョ': 'ryo',
'ギャ': 'gya', 'ギュ': 'gyu', 'ギョ': 'gyo',
'ジャ': 'ja', 'ジュ': 'ju', 'ジョ': 'jo',
'ビャ': 'bya', 'ビュ': 'byu', 'ビョ': 'byo',
'ピャ': 'pya', 'ピュ': 'pyu', 'ピョ': 'pyo',
# Katakana small characters and special cases
'': '', # Small tsu (doubles the following consonant)
'': 'ya', '': 'yu', '': 'yo',
# Katakana extras
'': 'vu', 'ファ': 'fa', 'フィ': 'fi', 'フェ': 'fe', 'フォ': 'fo',
'ウィ': 'wi', 'ウェ': 'we', 'ウォ': 'wo',
# Hiragana characters
'': 'a', '': 'i', '': 'u', '': 'e', '': 'o',
'': 'ka', '': 'ki', '': 'ku', '': 'ke', '': 'ko',
'': 'sa', '': 'shi', '': 'su', '': 'se', '': 'so',
'': 'ta', '': 'chi', '': 'tsu', '': 'te', '': 'to',
'': 'na', '': 'ni', '': 'nu', '': 'ne', '': 'no',
'': 'ha', '': 'hi', '': 'fu', '': 'he', '': 'ho',
'': 'ma', '': 'mi', '': 'mu', '': 'me', '': 'mo',
'': 'ya', '': 'yu', '': 'yo',
'': 'ra', '': 'ri', '': 'ru', '': 're', '': 'ro',
'': 'wa', '': 'wo', '': 'n',
# Hiragana voiced consonants
'': 'ga', '': 'gi', '': 'gu', '': 'ge', '': 'go',
'': 'za', '': 'ji', '': 'zu', '': 'ze', '': 'zo',
'': 'da', '': 'ji', '': 'zu', '': 'de', '': 'do',
'': 'ba', '': 'bi', '': 'bu', '': 'be', '': 'bo',
'': 'pa', '': 'pi', '': 'pu', '': 'pe', '': 'po',
# Hiragana combinations
'きゃ': 'kya', 'きゅ': 'kyu', 'きょ': 'kyo',
'しゃ': 'sha', 'しゅ': 'shu', 'しょ': 'sho',
'ちゃ': 'cha', 'ちゅ': 'chu', 'ちょ': 'cho',
'にゃ': 'nya', 'にゅ': 'nyu', 'にょ': 'nyo',
'ひゃ': 'hya', 'ひゅ': 'hyu', 'ひょ': 'hyo',
'みゃ': 'mya', 'みゅ': 'myu', 'みょ': 'myo',
'りゃ': 'rya', 'りゅ': 'ryu', 'りょ': 'ryo',
'ぎゃ': 'gya', 'ぎゅ': 'gyu', 'ぎょ': 'gyo',
'じゃ': 'ja', 'じゅ': 'ju', 'じょ': 'jo',
'びゃ': 'bya', 'びゅ': 'byu', 'びょ': 'byo',
'ぴゃ': 'pya', 'ぴゅ': 'pyu', 'ぴょ': 'pyo',
# Hiragana small characters and special cases
'': '', # Small tsu (doubles the following consonant)
'': 'ya', '': 'yu', '': 'yo',
# Common punctuation and spaces
' ': ' ', # Japanese space
'': ', ', '': '. ',
}
result = []
i = 0
while i < len(japanese_text):
# Check for small tsu (doubling the following consonant)
if i < len(japanese_text) - 1 and (japanese_text[i] == '' or japanese_text[i] == ''):
if i < len(japanese_text) - 1 and japanese_text[i+1] in kana_map:
next_romaji = kana_map[japanese_text[i+1]]
if next_romaji and next_romaji[0] not in 'aiueon':
result.append(next_romaji[0]) # Double the consonant
i += 1
continue
# Check for combinations with small ya, yu, yo
if i < len(japanese_text) - 1 and japanese_text[i+1] in ('', '', '', '', '', ''):
combo = japanese_text[i:i+2]
if combo in kana_map:
result.append(kana_map[combo])
i += 2
continue
# Regular character
if japanese_text[i] in kana_map:
result.append(kana_map[japanese_text[i]])
else:
# If it's not in our map, keep it as is (might be kanji, romaji, etc.)
result.append(japanese_text[i])
i += 1
return ''.join(result)
def number_to_text(num, ordinal=False):
"""
Convert a number (int or float) to its text representation.
Args:
num: The number to convert
Returns:
str: Text representation of the number
"""
if not isinstance(num, (int, float)):
return "Input must be a number"
# Handle special case of zero
if num == 0:
return "zero"
# Handle negative numbers
negative = num < 0
num = abs(num)
# Handle floats
if isinstance(num, float):
# Split into integer and decimal parts
int_part = int(num)
# Convert both parts
int_text = _int_to_text(int_part)
# Handle decimal part (convert to string and remove '0.')
decimal_str = str(num).split('.')[1]
decimal_text = " point " + " ".join(_digit_to_text(int(digit)) for digit in decimal_str)
result = int_text + decimal_text
else:
# Handle integers
result = _int_to_text(num)
# Add 'negative' prefix for negative numbers
if negative:
result = "negative " + result
return result
def _int_to_text(num):
"""Helper function to convert an integer to text"""
ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine",
"ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen",
"seventeen", "eighteen", "nineteen"]
tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
if num < 20:
return ones[num]
if num < 100:
return tens[num // 10] + (" " + ones[num % 10] if num % 10 != 0 else "")
if num < 1000:
return ones[num // 100] + " hundred" + (" " + _int_to_text(num % 100) if num % 100 != 0 else "")
if num < 1000000:
return _int_to_text(num // 1000) + " thousand" + (" " + _int_to_text(num % 1000) if num % 1000 != 0 else "")
if num < 1000000000:
return _int_to_text(num // 1000000) + " million" + (" " + _int_to_text(num % 1000000) if num % 1000000 != 0 else "")
return _int_to_text(num // 1000000000) + " billion" + (" " + _int_to_text(num % 1000000000) if num % 1000000000 != 0 else "")
def _digit_to_text(digit):
"""Convert a single digit to text"""
digits = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
return digits[digit]
_whitespace_re = re.compile(r"\s+")
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = {
"en": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
],
}
def expand_abbreviations_multilingual(text, lang="en"):
for regex, replacement in _abbreviations[lang]:
text = re.sub(regex, replacement, text)
return text
_symbols_multilingual = {
"en": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " and "),
("@", " at "),
("%", " percent "),
("#", " hash "),
("$", " dollar "),
("£", " pound "),
("°", " degree "),
]
],
}
def expand_symbols_multilingual(text, lang="en"):
for regex, replacement in _symbols_multilingual[lang]:
text = re.sub(regex, replacement, text)
text = text.replace(" ", " ") # Ensure there are no double spaces
return text.strip()
_ordinal_re = {
"en": re.compile(r"([0-9]+)(st|nd|rd|th)"),
}
_number_re = re.compile(r"[0-9]+")
_currency_re = {
"USD": re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"),
"GBP": re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"),
"EUR": re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))"),
}
_comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b")
_dot_number_re = re.compile(r"\b\d{1,3}(.\d{3})*(\,\d+)?\b")
_decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)")
def _remove_commas(m):
text = m.group(0)
if "," in text:
text = text.replace(",", "")
return text
def _remove_dots(m):
text = m.group(0)
if "." in text:
text = text.replace(".", "")
return text
def _expand_decimal_point(m, lang="en"):
amount = m.group(1).replace(",", ".")
return number_to_text(float(amount))
def _expand_currency(m, lang="en", currency="USD"):
amount = float((re.sub(r"[^\d.]", "", m.group(0).replace(",", "."))))
full_amount = number_to_text(amount)
and_equivalents = {
"en": ", ",
"es": " con ",
"fr": " et ",
"de": " und ",
"pt": " e ",
"it": " e ",
"pl": ", ",
"cs": ", ",
"ru": ", ",
"nl": ", ",
"ar": ", ",
"tr": ", ",
"hu": ", ",
"ko": ", ",
}
if amount.is_integer():
last_and = full_amount.rfind(and_equivalents[lang])
if last_and != -1:
full_amount = full_amount[:last_and]
return full_amount
def _expand_ordinal(m, lang="en"):
return number_to_text(int(m.group(1)), ordinal=True)
def _expand_number(m, lang="en"):
return number_to_text(int(m.group(0)))
def expand_numbers_multilingual(text, lang="en"):
if lang in ["en", "ru"]:
text = re.sub(_comma_number_re, _remove_commas, text)
else:
text = re.sub(_dot_number_re, _remove_dots, text)
try:
text = re.sub(_currency_re["GBP"], lambda m: _expand_currency(m, lang, "GBP"), text)
text = re.sub(_currency_re["USD"], lambda m: _expand_currency(m, lang, "USD"), text)
text = re.sub(_currency_re["EUR"], lambda m: _expand_currency(m, lang, "EUR"), text)
except:
pass
text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text)
text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text)
text = re.sub(_number_re, lambda m: _expand_number(m, lang), text)
return text
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text)
def multilingual_cleaners(text, lang):
text = text.replace('"', "")
if lang == "tr":
text = text.replace("İ", "i")
text = text.replace("Ö", "ö")
text = text.replace("Ü", "ü")
text = lowercase(text)
try:
text = expand_numbers_multilingual(text, lang)
except:
pass
try:
text = expand_abbreviations_multilingual(text, lang)
except:
pass
try:
text = expand_symbols_multilingual(text, lang=lang)
except:
pass
text = collapse_whitespace(text)
return text
def basic_cleaners(text):
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
text = lowercase(text)
text = collapse_whitespace(text)
return text

View File

@@ -19,8 +19,8 @@ class FluxTokenizer:
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):

View File

@@ -16,11 +16,11 @@ class HiDreamTokenizer:
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
t5xxl = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
t5xxl = self.t5xxl.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = [t5xxl[0]] # Use only first 128 tokens
out["llama"] = self.llama.tokenize_with_weights(text, return_word_ids, **kwargs)
out["llama"] = self.llama.tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):
@@ -109,18 +109,14 @@ class HiDreamTEModel(torch.nn.Module):
if self.t5xxl is not None:
t5_output = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
t5_out, t5_pooled = t5_output[:2]
else:
t5_out = None
if self.llama is not None:
ll_output = self.llama.encode_token_weights(token_weight_pairs_llama)
ll_out, ll_pooled = ll_output[:2]
ll_out = ll_out[:, 1:]
else:
ll_out = None
if t5_out is None:
t5_out = torch.zeros((1, 128, 4096), device=comfy.model_management.intermediate_device())
t5_out = torch.zeros((1, 1, 4096), device=comfy.model_management.intermediate_device())
if ll_out is None:
ll_out = torch.zeros((1, 32, 1, 4096), device=comfy.model_management.intermediate_device())

View File

@@ -49,13 +49,13 @@ class HunyuanVideoTokenizer:
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs):
out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids, **kwargs)
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids)
embed_count = 0
for r in llama_text_tokens:
for i in range(len(r)):

View File

@@ -41,8 +41,8 @@ class HyditTokenizer:
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids, **kwargs)
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids, **kwargs)
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids)
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):

View File

@@ -24,24 +24,6 @@ class Llama2Config:
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
@dataclass
class Qwen25_3BConfig:
vocab_size: int = 151936
hidden_size: int = 2048
intermediate_size: int = 11008
num_hidden_layers: int = 36
num_attention_heads: int = 16
num_key_value_heads: int = 2
max_position_embeddings: int = 128000
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = True
@dataclass
class Gemma2_2B_Config:
@@ -58,7 +40,6 @@ class Gemma2_2B_Config:
head_dim = 256
rms_norm_add = True
mlp_activation = "gelu_pytorch_tanh"
qkv_bias = False
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None):
@@ -117,9 +98,9 @@ class Attention(nn.Module):
self.inner_size = self.num_heads * self.head_dim
ops = ops or nn
self.q_proj = ops.Linear(config.hidden_size, self.inner_size, bias=config.qkv_bias, device=device, dtype=dtype)
self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=config.qkv_bias, device=device, dtype=dtype)
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=config.qkv_bias, device=device, dtype=dtype)
self.q_proj = ops.Linear(config.hidden_size, self.inner_size, bias=False, device=device, dtype=dtype)
self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
self.o_proj = ops.Linear(self.inner_size, config.hidden_size, bias=False, device=device, dtype=dtype)
def forward(
@@ -339,14 +320,6 @@ class Llama2(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen25_3B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen25_3BConfig(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Gemma2_2B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):

View File

@@ -0,0 +1,25 @@
{
"_name_or_path": "openai/clip-vit-large-patch14",
"architectures": [
"CLIPTextModel"
],
"attention_dropout": 0.0,
"bos_token_id": 0,
"dropout": 0.0,
"eos_token_id": 49407,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 248,
"model_type": "clip_text_model",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"projection_dim": 768,
"torch_dtype": "float32",
"transformers_version": "4.24.0",
"vocab_size": 49408
}

View File

@@ -1,44 +0,0 @@
from transformers import Qwen2Tokenizer
from comfy import sd1_clip
import comfy.text_encoders.llama
import os
class Qwen25_3BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='qwen25_3b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class Omnigen2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen25_3b", tokenizer=Qwen25_3BTokenizer)
self.llama_template = '<|im_start|>system\nYou are a helpful assistant that generates high-quality images based on user instructions.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n'
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None,**kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
return super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, **kwargs)
class Qwen25_3BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_3B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Omnigen2Model(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="qwen25_3b", clip_model=Qwen25_3BModel, model_options=model_options)
def te(dtype_llama=None, llama_scaled_fp8=None):
class Omnigen2TEModel_(Omnigen2Model):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)
return Omnigen2TEModel_

File diff suppressed because it is too large Load Diff

View File

@@ -1,241 +0,0 @@
{
"add_bos_token": false,
"add_prefix_space": false,
"added_tokens_decoder": {
"151643": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151644": {
"content": "<|im_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151645": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151646": {
"content": "<|object_ref_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151647": {
"content": "<|object_ref_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151648": {
"content": "<|box_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151649": {
"content": "<|box_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151650": {
"content": "<|quad_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151651": {
"content": "<|quad_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151652": {
"content": "<|vision_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151653": {
"content": "<|vision_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151654": {
"content": "<|vision_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151655": {
"content": "<|image_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151656": {
"content": "<|video_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151657": {
"content": "<tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151658": {
"content": "</tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151659": {
"content": "<|fim_prefix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151660": {
"content": "<|fim_middle|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151661": {
"content": "<|fim_suffix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151662": {
"content": "<|fim_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151663": {
"content": "<|repo_name|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151664": {
"content": "<|file_sep|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151665": {
"content": "<|img|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151666": {
"content": "<|endofimg|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151667": {
"content": "<|meta|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151668": {
"content": "<|endofmeta|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|object_ref_start|>",
"<|object_ref_end|>",
"<|box_start|>",
"<|box_end|>",
"<|quad_start|>",
"<|quad_end|>",
"<|vision_start|>",
"<|vision_end|>",
"<|vision_pad|>",
"<|image_pad|>",
"<|video_pad|>"
],
"bos_token": null,
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
"clean_up_tokenization_spaces": false,
"eos_token": "<|im_end|>",
"errors": "replace",
"extra_special_tokens": {},
"model_max_length": 131072,
"pad_token": "<|endoftext|>",
"processor_class": "Qwen2_5_VLProcessor",
"split_special_tokens": false,
"tokenizer_class": "Qwen2Tokenizer",
"unk_token": null
}

File diff suppressed because one or more lines are too long

View File

@@ -45,9 +45,9 @@ class SD3Tokenizer:
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):

View File

@@ -1,5 +1,4 @@
import torch
import os
class SPieceTokenizer:
@staticmethod
@@ -16,8 +15,6 @@ class SPieceTokenizer:
if isinstance(tokenizer_path, bytes):
self.tokenizer = sentencepiece.SentencePieceProcessor(model_proto=tokenizer_path, add_bos=self.add_bos, add_eos=self.add_eos)
else:
if not os.path.isfile(tokenizer_path):
raise ValueError("invalid tokenizer")
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=tokenizer_path, add_bos=self.add_bos, add_eos=self.add_eos)
def get_vocab(self):

View File

@@ -146,7 +146,7 @@ class T5Attention(torch.nn.Module):
)
values = self.relative_attention_bias(relative_position_bucket, out_dtype=dtype) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values.contiguous()
return values
def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
q = self.q(x)

View File

@@ -1,22 +0,0 @@
{
"d_ff": 2048,
"d_kv": 64,
"d_model": 768,
"decoder_start_token_id": 0,
"dropout_rate": 0.1,
"eos_token_id": 1,
"dense_act_fn": "gelu_pytorch_tanh",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": true,
"layer_norm_epsilon": 1e-06,
"model_type": "umt5",
"num_decoder_layers": 12,
"num_heads": 12,
"num_layers": 12,
"output_past": true,
"pad_token_id": 0,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"vocab_size": 256384
}

View File

@@ -28,9 +28,6 @@ import logging
import itertools
from torch.nn.functional import interpolate
from einops import rearrange
from comfy.cli_args import args
MMAP_TORCH_FILES = args.mmap_torch_files
ALWAYS_SAFE_LOAD = False
if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in pytorch 2.4, the unsafe path should be removed once earlier versions are deprecated
@@ -70,14 +67,12 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
raise ValueError("{}\n\nFile path: {}\n\nThe safetensors file is corrupt/incomplete. Check the file size and make sure you have copied/downloaded it correctly.".format(message, ckpt))
raise e
else:
torch_args = {}
if MMAP_TORCH_FILES:
torch_args["mmap"] = True
if safe_load or ALWAYS_SAFE_LOAD:
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
else:
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
if "global_step" in pl_sd:
logging.debug(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
@@ -997,12 +992,11 @@ def set_progress_bar_global_hook(function):
PROGRESS_BAR_HOOK = function
class ProgressBar:
def __init__(self, total, node_id=None):
def __init__(self, total):
global PROGRESS_BAR_HOOK
self.total = total
self.current = 0
self.hook = PROGRESS_BAR_HOOK
self.node_id = node_id
def update_absolute(self, value, total=None, preview=None):
if total is not None:
@@ -1011,7 +1005,7 @@ class ProgressBar:
value = self.total
self.current = value
if self.hook is not None:
self.hook(self.current, self.total, preview, node_id=self.node_id)
self.hook(self.current, self.total, preview)
def update(self, value):
self.update_absolute(self.current + value)

View File

@@ -1,23 +0,0 @@
from .base import WeightAdapterBase, WeightAdapterTrainBase
from .lora import LoRAAdapter
from .loha import LoHaAdapter
from .lokr import LoKrAdapter
from .glora import GLoRAAdapter
from .oft import OFTAdapter
from .boft import BOFTAdapter
adapters: list[type[WeightAdapterBase]] = [
LoRAAdapter,
LoHaAdapter,
LoKrAdapter,
GLoRAAdapter,
OFTAdapter,
BOFTAdapter,
]
__all__ = [
"WeightAdapterBase",
"WeightAdapterTrainBase",
"adapters"
] + [a.__name__ for a in adapters]

View File

@@ -1,135 +0,0 @@
from typing import Optional
import torch
import torch.nn as nn
import comfy.model_management
class WeightAdapterBase:
name: str
loaded_keys: set[str]
weights: list[torch.Tensor]
@classmethod
def load(cls, x: str, lora: dict[str, torch.Tensor], alpha: float, dora_scale: torch.Tensor) -> Optional["WeightAdapterBase"]:
raise NotImplementedError
def to_train(self) -> "WeightAdapterTrainBase":
raise NotImplementedError
@classmethod
def create_train(cls, weight, *args) -> "WeightAdapterTrainBase":
"""
weight: The original weight tensor to be modified.
*args: Additional arguments for configuration, such as rank, alpha etc.
"""
raise NotImplementedError
def calculate_weight(
self,
weight,
key,
strength,
strength_model,
offset,
function,
intermediate_dtype=torch.float32,
original_weight=None,
):
raise NotImplementedError
class WeightAdapterTrainBase(nn.Module):
# We follow the scheme of PR #7032
def __init__(self):
super().__init__()
def __call__(self, w):
"""
w: The original weight tensor to be modified.
"""
raise NotImplementedError
def passive_memory_usage(self):
raise NotImplementedError("passive_memory_usage is not implemented")
def move_to(self, device):
self.to(device)
return self.passive_memory_usage()
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
lora_diff *= alpha
weight_calc = weight + function(lora_diff).type(weight.dtype)
wd_on_output_axis = dora_scale.shape[0] == weight_calc.shape[0]
if wd_on_output_axis:
weight_norm = (
weight.reshape(weight.shape[0], -1)
.norm(dim=1, keepdim=True)
.reshape(weight.shape[0], *[1] * (weight.dim() - 1))
)
else:
weight_norm = (
weight_calc.transpose(0, 1)
.reshape(weight_calc.shape[1], -1)
.norm(dim=1, keepdim=True)
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
.transpose(0, 1)
)
weight_norm = weight_norm + torch.finfo(weight.dtype).eps
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
if strength != 1.0:
weight_calc -= weight
weight += strength * (weight_calc)
else:
weight[:] = weight_calc
return weight
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
"""
Pad a tensor to a new shape with zeros.
Args:
tensor (torch.Tensor): The original tensor to be padded.
new_shape (List[int]): The desired shape of the padded tensor.
Returns:
torch.Tensor: A new tensor padded with zeros to the specified shape.
Note:
If the new shape is smaller than the original tensor in any dimension,
the original tensor will be truncated in that dimension.
"""
if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]):
raise ValueError("The new shape must be larger than the original tensor in all dimensions")
if len(new_shape) != len(tensor.shape):
raise ValueError("The new shape must have the same number of dimensions as the original tensor")
# Create a new tensor filled with zeros
padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device)
# Create slicing tuples for both tensors
orig_slices = tuple(slice(0, dim) for dim in tensor.shape)
new_slices = tuple(slice(0, dim) for dim in tensor.shape)
# Copy the original tensor into the new tensor
padded_tensor[new_slices] = tensor[orig_slices]
return padded_tensor
def tucker_weight_from_conv(up, down, mid):
up = up.reshape(up.size(0), up.size(1))
down = down.reshape(down.size(0), down.size(1))
return torch.einsum("m n ..., i m, n j -> i j ...", mid, up, down)
def tucker_weight(wa, wb, t):
temp = torch.einsum("i j ..., j r -> i r ...", t, wb)
return torch.einsum("i j ..., i r -> r j ...", temp, wa)

View File

@@ -1,115 +0,0 @@
import logging
from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose
class BOFTAdapter(WeightAdapterBase):
name = "boft"
def __init__(self, loaded_keys, weights):
self.loaded_keys = loaded_keys
self.weights = weights
@classmethod
def load(
cls,
x: str,
lora: dict[str, torch.Tensor],
alpha: float,
dora_scale: torch.Tensor,
loaded_keys: set[str] = None,
) -> Optional["BOFTAdapter"]:
if loaded_keys is None:
loaded_keys = set()
blocks_name = "{}.oft_blocks".format(x)
rescale_name = "{}.rescale".format(x)
blocks = None
if blocks_name in lora.keys():
blocks = lora[blocks_name]
if blocks.ndim == 4:
loaded_keys.add(blocks_name)
else:
blocks = None
if blocks is None:
return None
rescale = None
if rescale_name in lora.keys():
rescale = lora[rescale_name]
loaded_keys.add(rescale_name)
weights = (blocks, rescale, alpha, dora_scale)
return cls(loaded_keys, weights)
def calculate_weight(
self,
weight,
key,
strength,
strength_model,
offset,
function,
intermediate_dtype=torch.float32,
original_weight=None,
):
v = self.weights
blocks = v[0]
rescale = v[1]
alpha = v[2]
dora_scale = v[3]
blocks = comfy.model_management.cast_to_device(blocks, weight.device, intermediate_dtype)
if rescale is not None:
rescale = comfy.model_management.cast_to_device(rescale, weight.device, intermediate_dtype)
boft_m, block_num, boft_b, *_ = blocks.shape
try:
# Get r
I = torch.eye(boft_b, device=blocks.device, dtype=blocks.dtype)
# for Q = -Q^T
q = blocks - blocks.transpose(-1, -2)
normed_q = q
if alpha > 0: # alpha in boft/bboft is for constraint
q_norm = torch.norm(q) + 1e-8
if q_norm > alpha:
normed_q = q * alpha / q_norm
# use float() to prevent unsupported type in .inverse()
r = (I + normed_q) @ (I - normed_q).float().inverse()
r = r.to(weight)
inp = org = weight
r_b = boft_b//2
for i in range(boft_m):
bi = r[i]
g = 2
k = 2**i * r_b
if strength != 1:
bi = bi * strength + (1-strength) * I
inp = (
inp.unflatten(0, (-1, g, k))
.transpose(1, 2)
.flatten(0, 2)
.unflatten(0, (-1, boft_b))
)
inp = torch.einsum("b i j, b j ...-> b i ...", bi, inp)
inp = (
inp.flatten(0, 1).unflatten(0, (-1, k, g)).transpose(1, 2).flatten(0, 2)
)
if rescale is not None:
inp = inp * rescale
lora_diff = inp - org
lora_diff = comfy.model_management.cast_to_device(lora_diff, weight.device, intermediate_dtype)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function((strength * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight

View File

@@ -1,93 +0,0 @@
import logging
from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose
class GLoRAAdapter(WeightAdapterBase):
name = "glora"
def __init__(self, loaded_keys, weights):
self.loaded_keys = loaded_keys
self.weights = weights
@classmethod
def load(
cls,
x: str,
lora: dict[str, torch.Tensor],
alpha: float,
dora_scale: torch.Tensor,
loaded_keys: set[str] = None,
) -> Optional["GLoRAAdapter"]:
if loaded_keys is None:
loaded_keys = set()
a1_name = "{}.a1.weight".format(x)
a2_name = "{}.a2.weight".format(x)
b1_name = "{}.b1.weight".format(x)
b2_name = "{}.b2.weight".format(x)
if a1_name in lora:
weights = (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale)
loaded_keys.add(a1_name)
loaded_keys.add(a2_name)
loaded_keys.add(b1_name)
loaded_keys.add(b2_name)
return cls(loaded_keys, weights)
else:
return None
def calculate_weight(
self,
weight,
key,
strength,
strength_model,
offset,
function,
intermediate_dtype=torch.float32,
original_weight=None,
):
v = self.weights
dora_scale = v[5]
old_glora = False
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
rank = v[0].shape[0]
old_glora = True
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
pass
else:
old_glora = False
rank = v[1].shape[0]
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
if v[4] is not None:
alpha = v[4] / rank
else:
alpha = 1.0
try:
if old_glora:
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
else:
if weight.dim() > 2:
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
else:
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight

View File

@@ -1,100 +0,0 @@
import logging
from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose
class LoHaAdapter(WeightAdapterBase):
name = "loha"
def __init__(self, loaded_keys, weights):
self.loaded_keys = loaded_keys
self.weights = weights
@classmethod
def load(
cls,
x: str,
lora: dict[str, torch.Tensor],
alpha: float,
dora_scale: torch.Tensor,
loaded_keys: set[str] = None,
) -> Optional["LoHaAdapter"]:
if loaded_keys is None:
loaded_keys = set()
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
hada_w2_b_name = "{}.hada_w2_b".format(x)
hada_t1_name = "{}.hada_t1".format(x)
hada_t2_name = "{}.hada_t2".format(x)
if hada_w1_a_name in lora.keys():
hada_t1 = None
hada_t2 = None
if hada_t1_name in lora.keys():
hada_t1 = lora[hada_t1_name]
hada_t2 = lora[hada_t2_name]
loaded_keys.add(hada_t1_name)
loaded_keys.add(hada_t2_name)
weights = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)
loaded_keys.add(hada_w1_a_name)
loaded_keys.add(hada_w1_b_name)
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
return cls(loaded_keys, weights)
else:
return None
def calculate_weight(
self,
weight,
key,
strength,
strength_model,
offset,
function,
intermediate_dtype=torch.float32,
original_weight=None,
):
v = self.weights
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha = v[2] / w1b.shape[0]
else:
alpha = 1.0
w2a = v[3]
w2b = v[4]
dora_scale = v[7]
if v[5] is not None: #cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
else:
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
try:
lora_diff = (m1 * m2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight

View File

@@ -1,133 +0,0 @@
import logging
from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose
class LoKrAdapter(WeightAdapterBase):
name = "lokr"
def __init__(self, loaded_keys, weights):
self.loaded_keys = loaded_keys
self.weights = weights
@classmethod
def load(
cls,
x: str,
lora: dict[str, torch.Tensor],
alpha: float,
dora_scale: torch.Tensor,
loaded_keys: set[str] = None,
) -> Optional["LoKrAdapter"]:
if loaded_keys is None:
loaded_keys = set()
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
weights = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale)
return cls(loaded_keys, weights)
else:
return None
def calculate_weight(
self,
weight,
key,
strength,
strength_model,
offset,
function,
intermediate_dtype=torch.float32,
original_weight=None,
):
v = self.weights
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dora_scale = v[8]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
else:
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
else:
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha = v[2] / dim
else:
alpha = 1.0
try:
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight

Some files were not shown because too many files have changed in this diff Show More