Compare commits

..

395 Commits

Author SHA1 Message Date
Jedrzej Kosinski
0f21df8051 Merge branch 'master' into portable-manager-update 2025-12-15 16:38:56 -08:00
comfyanonymous
70541d4e77 Support the new qwen edit 2511 reference method. (#11340)
index_timestep_zero can be selected in the
FluxKontextMultiReferenceLatentMethod now with the display name set to the
more generic "Edit Model Reference Method" node.
2025-12-15 19:20:34 -05:00
drozbay
77b2f7c228 Add context windows callback for custom cond handling (#11208)
Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com>
2025-12-15 16:06:32 -08:00
Alexander Piskun
43e0d4e3cc comfy_api: remove usage of "Type","List" and "Dict" types (#11238) 2025-12-15 16:01:10 -08:00
Dr.Lt.Data
dbd330454a feat(preview): add per-queue live preview method override (#11261)
- Add set_preview_method() to override live preview method per queue item
- Read extra_data.preview_method from /prompt request
- Support values: taesd, latent2rgb, none, auto, default
- "default" or unset uses server's CLI --preview-method setting
- Add 44 tests (37 unit + 7 E2E)
2025-12-15 15:57:39 -08:00
Alexander Piskun
33c7f1179d drop Pika API nodes (#11306) 2025-12-15 15:32:29 -08:00
Alexander Piskun
af91eb6c99 api-nodes: drop Kling v1 model (#11307) 2025-12-15 15:30:24 -08:00
comfyanonymous
5cb1e0c9a0 Disable guards on transformer_options when torch.compile (#11317) 2025-12-15 16:49:29 -05:00
ComfyUI Wiki
51347f9fb8 chore: update workflow templates to v0.7.59 (#11337) 2025-12-15 16:28:55 -05:00
Dr.Lt.Data
a5e85017d8 bump manager requirments to the 4.0.3b5 (#11324) 2025-12-15 14:24:01 -05:00
comfyanonymous
5ac3b26a7d Update warning for old pytorch version. (#11319)
Versions below 2.4 are no longer supported. We will not break support on purpose but will not fix it if we do.
2025-12-14 04:02:50 -05:00
chaObserv
6592bffc60 seeds_2: add phi_2 variant and sampler node (#11309)
* Add phi_2 solver type to seeds_2

* Add sampler node of seeds_2
2025-12-14 00:03:29 -05:00
comfyanonymous
971cefe7d4 Fix pytorch warnings. (#11314) 2025-12-13 18:45:23 -05:00
comfyanonymous
da2bfb5b0a Basic implementation of z image fun control union 2.0 (#11304)
The inpaint part is currently missing and will be implemented later.

I think they messed up this model pretty bad. They added some
control_noise_refiner blocks but don't actually use them. There is a typo
in their code so instead of doing control_noise_refiner -> control_layers
it runs the whole control_layers twice.

Unfortunately they trained with this typo so the model works but is kind
of slow and would probably perform a lot better if they corrected their
code and trained it again.
2025-12-13 01:39:11 -05:00
comfyanonymous
c5a47a1692 Fix bias dtype issue in mixed ops. (#11293) 2025-12-12 11:49:35 -05:00
Alexander Piskun
908fd7d749 feat(api-nodes): new TextToVideoWithAudio and ImageToVideoWithAudio nodes (#11267) 2025-12-12 00:18:31 -08:00
comfyanonymous
5495589db3 Respect the dtype the op was initialized in for non quant mixed op. (#11282) 2025-12-11 23:32:27 -05:00
Jukka Seppänen
982876d59a WanMove support (#11247) 2025-12-11 22:29:34 -05:00
comfyanonymous
338d9ae3bb Make portable updater work with repos in unmerged state. (#11281) 2025-12-11 18:56:33 -05:00
comfyanonymous
eeb020b9b7 Better chroma radiance and other models vram estimation. (#11278) 2025-12-11 17:33:09 -05:00
comfyanonymous
ae65433a60 This only works on radiance. (#11277) 2025-12-11 17:15:00 -05:00
comfyanonymous
fdebe18296 Fix regular chroma radiance (#11276) 2025-12-11 17:09:35 -05:00
comfyanonymous
f8321eb57b Adjust memory usage factor. (#11257) 2025-12-11 01:30:31 -05:00
Alexander Piskun
93948e3fc5 feat(api-nodes): enable Kling Omni O1 node (#11229) 2025-12-10 22:11:12 -08:00
Farshore
e711aaf1a7 Lower VAE loading requirements:Create a new branch for GPU memory calculations in qwen-image vae (#11199) 2025-12-10 22:02:26 -05:00
Johnpaul Chiwetelu
57ddb7fd13 Fix: filter hidden files from /internal/files endpoint (#11191) 2025-12-10 21:49:49 -05:00
comfyanonymous
17c92a9f28 Tweak Z Image memory estimation. (#11254) 2025-12-10 19:59:48 -05:00
Alexander Piskun
36357bbcc3 process the NodeV1 dict results correctly (#11237) 2025-12-10 11:55:09 -08:00
Benjamin Lu
f668c2e3c9 bump comfyui-frontend-package to 1.34.8 (#11220) 2025-12-09 22:27:07 -05:00
comfyanonymous
fc657f471a ComfyUI version v0.4.0
From now on ComfyUI will do version numbers a bit differently, every stable
off the master branch will increment the minor version. Anytime a fix needs
to be backported onto a stable version the patch version will be
incremented.

Example: We release v0.6.0 off the master branch then a day later a bug is
discovered and we decide to backport the fix onto the v0.6.0 stable, this
will be done in a separate branch in the main repository and this new
stable will be tagged v0.6.1
2025-12-09 18:26:49 -05:00
comfyanonymous
791e30ff50 Fix nan issue when quantizing fp16 tensor. (#11213) 2025-12-09 17:03:21 -05:00
Jukka Seppänen
e2a800e7ef Fix for HunyuanVideo1.5 meanflow distil (#11212) 2025-12-09 16:59:16 -05:00
rattus
9d252f3b70 ops: delete dead code (#11204)
This became dead code in https://github.com/comfyanonymous/ComfyUI/pull/11069
2025-12-09 00:55:13 -05:00
Lodestone
b9fb542703 add chroma-radiance-x0 mode (#11197) 2025-12-08 23:33:29 -05:00
Jedrzej Kosinski
334e74b938 Merge branch 'master' into portable-manager-update 2025-12-08 20:25:28 -08:00
Christian Byrne
cabc4d351f bump comfyui-frontend-package to 1.33.13 (patch) (#11200) 2025-12-08 23:22:02 -05:00
rattus
e136b6dbb0 dequantization offload accounting (fixes Flux2 OOMs - incl TEs) (#11171)
* make setattr safe for non existent attributes

Handle the case where the attribute doesnt exist by returning a static
sentinel (distinct from None). If the sentinel is passed in as the set
value, del the attr.

* Account for dequantization and type-casts in offload costs

When measuring the cost of offload, identify weights that need a type
change or dequantization and add the size of the conversion result
to the offload cost.

This is mutually exclusive with lowvram patches which already has
a large conservative estimate and wont overlap the dequant cost so\
dont double count.

* Set the compute type on CLIP MPs

So that the loader can know the size of weights for dequant accounting.
2025-12-08 23:21:31 -05:00
comfyanonymous
d50f342c90 Fix potential issue. (#11201) 2025-12-08 23:20:04 -05:00
comfyanonymous
3b0368aa34 Fix regression. (#11194) 2025-12-08 17:38:36 -05:00
ComfyUI Wiki
935493f6c1 chore: update workflow templates to v0.7.54 (#11192) 2025-12-08 15:18:53 -05:00
rattus
60ee574748 retune lowVramPatch VRAM accounting (#11173)
In the lowvram case, this now does its math in the model dtype in the
post de-quantization domain. Account for that. The patching was also
put back on the compute stream getting it off-peak so relax the
MATH_FACTOR to only x2 so get out of the worst-case assumption of
everything peaking at once.
2025-12-08 15:18:06 -05:00
dxqb
8e889c535d Support "transformer." LoRA prefix for Z-Image (#11135) 2025-12-08 15:17:26 -05:00
Alexander Piskun
fd271dedfd [API Nodes] add support for seedance-1-0-pro-fast model (#10947)
* feat(api-nodes): add support for seedance-1-0-pro-fast model

* feat(api-nodes): add support for seedream-4.5 model
2025-12-08 01:33:46 -08:00
Alexander Piskun
c3c6313fc7 Added "system_prompt" input to Gemini nodes (#11177) 2025-12-08 01:28:17 -08:00
Alexander Piskun
85c4b4ae26 chore: replace imports of deprecated V1 classes (#11127) 2025-12-08 01:27:02 -08:00
ComfyUI Wiki
058f084371 Update workflow templates to v0.7.51 (#11150)
* chore: update workflow templates to v0.7.50

* Update template to 0.7.51
2025-12-08 01:22:51 -08:00
Alexander Piskun
ec7f65187d chore(comfy_api): replace absolute imports with relative (#11145) 2025-12-08 01:21:41 -08:00
comfyanonymous
56fa7dbe38 Properly load the newbie diffusion model. (#11172)
There is still one of the text encoders missing and I didn't actually test it.
2025-12-07 07:44:55 -05:00
comfyanonymous
329480da5a Fix qwen scaled fp8 not working with kandinsky. Make basic t2i wf work. (#11162) 2025-12-06 17:50:10 -08:00
rattus
4086acf3c2 Fix on-load VRAM OOM (#11144)
slow down the CPU on model load to not run ahead. This fixes a VRAM on
flux 2 load.

I went to try and debug this with the memory trace pickles, which needs
--disable-cuda-malloc which made the bug go away. So I tried this
synchronize and it worked.

The has some very complex interactions with the cuda malloc async and
I dont have solid theory on this one yet.

Still debugging but this gets us over the OOM for the moment.
2025-12-06 18:42:09 -05:00
comfyanonymous
50ca97e776 Speed up lora compute and lower memory usage by doing it in fp16. (#11161) 2025-12-06 18:36:20 -05:00
Jukka Seppänen
7ac7d69d94 Fix EmptyAudio node input types (#11149) 2025-12-06 10:09:44 -08:00
Alexander Piskun
76f18e955d marked all Pika API nodes a deprecated (#11146) 2025-12-06 03:28:08 -08:00
comfyanonymous
d7a0aef650 Set OCL_SET_SVM_SIZE on AMD. (#11139) 2025-12-06 00:15:21 -05:00
Alexander Piskun
913f86b727 [V3] convert nodes_mask.py to V3 schema (#10669)
* convert nodes_mask.py to V3 schema

* set "Preview Mask" as display name for MaskPreview
2025-12-05 20:24:10 -08:00
Alexander Piskun
117bf3f2bd convert nodes_freelunch.py to the V3 schema (#10904) 2025-12-05 20:22:02 -08:00
comfyanonymous
ae676ed105 Fix regression. (#11137) 2025-12-05 23:01:19 -05:00
Jukka Seppänen
fd109325db Kandinsky5 model support (#10988)
* Add Kandinsky5 model support

lite and pro T2V tested to work

* Update kandinsky5.py

* Fix fp8

* Fix fp8_scaled text encoder

* Add transformer_options for attention

* Code cleanup, optimizations, use fp32 for all layers originally at fp32

* ImageToVideo -node

* Fix I2V, add necessary latent post process nodes

* Support text to image model

* Support block replace patches (SLG mostly)

* Support official LoRAs

* Don't scale RoPE for lite model as that just doesn't work...

* Update supported_models.py

* Rever RoPE scaling to simpler one

* Fix typo

* Handle latent dim difference for image model in the VAE instead

* Add node to use different prompts for clip_l and qwen25_7b

* Reduce peak VRAM usage a bit

* Further reduce peak VRAM consumption by chunking ffn

* Update chunking

* Update memory_usage_factor

* Code cleanup, don't force the fp32 layers as it has minimal effect

* Allow for stronger changes with first frames normalization

Default values are too weak for any meaningful changes, these should probably be exposed as advanced node options when that's available.

* Add image model's own chat template, remove unused image2video template

* Remove hard error in ReplaceVideoLatentFrames -node

* Update kandinsky5.py

* Update supported_models.py

* Fix typos in prompt template

They were now fixed in the original repository as well

* Update ReplaceVideoLatentFrames

Add tooltips
Make source optional
Better handle negative index

* Rename NormalizeVideoLatentFrames -node

For bit better clarity what it does

* Fix NormalizeVideoLatentStart node out on non-op
2025-12-05 22:20:22 -05:00
Dr.Lt.Data
bed12674a1 docs: add ComfyUI-Manager documentation and update to v4.0.3b4 (#11133)
- Add manager setup instructions and command line options to README
- Document --enable-manager, --enable-manager-legacy-ui, and
  --disable-manager-ui flags
- Bump comfyui_manager version from 4.0.3b3 to 4.0.3b4
2025-12-05 15:45:38 -08:00
comfyanonymous
092ee8a500 Fix some custom nodes. (#11134) 2025-12-05 18:25:31 -05:00
Jukka Seppänen
79d17ba233 Context windows fixes and features (#10975)
* Apply cond slice fix

* Add FreeNoise

* Update context_windows.py

* Add option to retain condition by indexes for each window

This allows for example Wan/HunyuanVideo image to video to "work" by using the initial start frame for each window, otherwise windows beyond first will be pure T2V generations.

* Update context_windows.py

* Allow splitting multiple conds into different windows

* Add handling for audio_embed

* whitespace

* Allow freenoise to work on other dims, handle 4D batch timestep

Refactor Freenoise function. And fix batch handling as timesteps seem to be expanded to batch size now.

* Disable experimental options for now

So that  the Freenoise and bugfixes can be merged first

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com>
2025-12-05 12:42:46 -08:00
comfyanonymous
6fd463aec9 Fix regression when text encoder loaded directly on GPU. (#11129) 2025-12-05 15:33:16 -05:00
comfyanonymous
43071e3de3 Make old scaled fp8 format use the new mixed quant ops system. (#11000) 2025-12-05 14:35:42 -05:00
Jedrzej Kosinski
0ec05b1481 Remove line made unnecessary (and wrong) after transformer_options was added to NextDiT's _forward definition (#11118) 2025-12-05 14:05:38 -05:00
comfyanonymous
35fa091340 Forgot to put this in README. (#11112) 2025-12-04 22:52:09 -05:00
Alexander Piskun
3c8456223c [API Nodes]: fixes and refactor (#11104)
* chore(api-nodes): applied ruff's pyupgrade(python3.10) to api-nodes client's to folder

* chore(api-nodes): add validate_video_frame_count function from LTX PR

* chore(api-nodes): replace deprecated V1 imports

* fix(api-nodes): the types returned by the "poll_op" function are now correct.
2025-12-04 14:05:28 -08:00
rattus
9bc893c5bb sd: bump HY1.5 VAE estimate (#11107)
Im able to push vram above estimate on partial unload. Bump the
estimate. This is experimentally determined with a 720P and 480P
datapoint calibrating for 24GB VRAM total.
2025-12-04 09:50:36 -08:00
rattus
f4bdf5f830 sd: revise hy VAE VRAM (#11105)
This was recently collapsed down to rolling VAE through temporal. Clamp
The time dimension.
2025-12-04 09:50:04 -08:00
rattus
6be85c7920 mp: use look-ahead actuals for stream offload VRAM calculation (#11096)
TIL that the WAN TE has a 2GB weight followed by 16MB as the next size
down. This means that team 8GB VRAM would fully offload the TE in async
offload mode as it just multiplied this giant size my the num streams.

Do the more complex logic of summing up the upcoming to-load weight
sizes to avoid triple counting this massive weight.

partial unload does the converse of recording the NS most recent
unloads as they go.
2025-12-03 23:28:44 -05:00
comfyanonymous
ea17add3c6 Fix case where text encoders where running on the CPU instead of GPU. (#11095) 2025-12-03 23:15:15 -05:00
comfyanonymous
ecdc8697d5 Qwen Image Lora training fix from #11090 (#11094) 2025-12-03 22:49:28 -05:00
Alexander Piskun
dce518c2b4 convert nodes_audio.py to V3 schema (#10798) 2025-12-03 17:35:04 -08:00
Alexander Piskun
440268d394 convert nodes_load_3d.py to V3 schema (#10990) 2025-12-03 13:52:31 -08:00
Alexander Piskun
87c104bfc1 add support for "@image" reference format in Kling Omni API nodes (#11082) 2025-12-03 08:55:44 -08:00
Alexander Piskun
19f2192d69 fix(V3-Schema): use empty list defaults for Schema.inputs/outputs/hidden to avoid None issues (#11083) 2025-12-03 08:37:35 -08:00
rattus
519c941165 Prs/lora reservations (reduce massive Lora reservations especially on Flux2) (#11069)
* mp: only count the offload cost of math once

This was previously bundling the combined weight storage and computation
cost

* ops: put all post async transfer compute on the main stream

Some models have massive weights that need either complex
dequantization or lora patching. Don't do these patchings on the offload
stream, instead do them on the main stream to syncrhonize the
potentially large vram spikes for these compute processes. This avoids
having to assume a worst case scenario of multiple offload streams
all spiking VRAM is parallel with whatever the main stream is doing.
2025-12-03 02:28:45 -05:00
comfyanonymous
861817d22d Fix issue with portable updater. (#11070)
This should fix the problem with the portable updater not working with portables created from a separate branch on the repo.

This does not affect any current portables who were all created on the master branch.
2025-12-03 00:47:51 -05:00
Jedrzej Kosinski
c120eee5ba Add MatchType, DynamicCombo, and Autogrow support to V3 Schema (#10832)
* Added output_matchtypes to generated json for v3, initial backend support for MatchType, created nodes_logic.py and added SwitchNode

* Fixed providing list of allowed_types

* Add workaround in validation.py for V3 Combo outputs not working as Combo inputs

* Make match type receive_type pass validation

* Also add MatchType check to input_type in validation - will likely trigger when connecting to non-lazy stuff

* Make sure this PR only has MatchType stuff

* Initial work on DynamicCombo

* Add get_dynamic function, not yet filled out correctly

* Mark Switch node as Beta

* Make sure other unfinished dynamic types are not accidentally used

* Send DynamicCombo.Option inputs in the same format as normal v1 inputs

* add dynamic combo test node

* Support validation of inputs and outputs

* Add missing input params to DynamicCombo.Input

* Add get_all function to inputs for id validation purposes

* Fix imports for v3 returning everything when doing io/ui/IO/UI instead of what is in __all__ of _io.py and _ui.py

* Modifying behavior of get_dynamic in V3 + serialization so can be used in execution code

* Fix v3 schema validation code after changes

* Refactor hidden_values for v3 in execution.py to be more general v3_data, add helper functions for dynamic behavior, preparing for restructuring dynamic type into object (not finished yet)

* Add nesting of inputs on DynamicCombo during execution

* Work with latest frontend commits

* Fix cringe arrows

* frontend will no longer namespace dynamic inputs widgets so reflect that in code, refactor build_nested_inputs

* Prepare Autogrow support for the love of the game

* satisfy ruff

* Create test nodes for Autogrow to collab with frontend development

* Add nested combo to DCTestNode

* Remove array support from build_nested_inputs, properly handle missing expected values

* Make execution.validate_inputs properly validate required dynamic inputs, renamed dynamic_data to dynamic_paths for clarity

* MatchType does not need any DynamicInput/Output features on backend; will increase compatibility with  dynamic types

* Probably need this for ruff check

* Change MatchType to have template be the first and only required param; output id's do nothing right now, so no need

* Fix merge regression with LatentUpscaleModel type not being put in __all__ for _io.py, fix invalid type hint for validate_inputs

* Make Switch node inputs optional, disallow both inputs from being missing, and still work properly with lazy; when one input is missing, use the other no matter what the switch is set to

* Satisfy ruff

* Move MatchType code above the types that inherit from DynamicInput

* Add DynamicSlot type, awaiting frontend support

* Make curr_prefix creation happen in Autogrow, move curr_prefix in DynamicCombo to only be created if input exists in live_inputs

* I was confused, fixing accidentally redundant curr_prefix addition in Autogrow

* Make sure Autogrow inputs are force_input = True when WidgetInput, fix runtime validation by removing original input from expected inputs, fix min/max bounds, change test nodes slightly

* Remove unnecessary id usage in Autogrow test node outputs

* Commented out Switch node + test nodes

* Remove commented out code from Autogrow

* Make TemplatePrefix max more clear, allow max == 1

* Replace all dict[str] with dict[str, Any]

* Renamed add_to_dict_live_inputs to expand_schema_for_dynamic

* Fixed typo in DynamicSlot input code

* note about live_inputs not being present soon in get_v1_info (internal function anyway)

* For now, hide DynamicCombo and Autogrow from public interface

* Removed comment
2025-12-03 00:17:13 -05:00
rattus
73f5649196 Implement temporal rolling VAE (Major VRAM reductions in Hunyuan and Kandinsky) (#10995)
* hunyuan upsampler: rework imports

Remove the transitive import of VideoConv3d and Resnet and takes these
from actual implementation source.

* model: remove unused give_pre_end

According to git grep, this is not used now, and was not used in the
initial commit that introduced it (see below).

This semantic is difficult to implement temporal roll VAE for (and would
defeat the purpose). Rather than implement the complex if, just delete
the unused feature.

(venv) rattus@rattus-box2:~/ComfyUI$ git log --oneline
220afe33 (HEAD) Initial commit.
(venv) rattus@rattus-box2:~/ComfyUI$ git grep give_pre
comfy/ldm/modules/diffusionmodules/model.py:                 resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
comfy/ldm/modules/diffusionmodules/model.py:        self.give_pre_end = give_pre_end
comfy/ldm/modules/diffusionmodules/model.py:        if self.give_pre_end:

(venv) rattus@rattus-box2:~/ComfyUI$ git co origin/master
Previous HEAD position was 220afe33 Initial commit.
HEAD is now at 9d8a8179 Enable async offloading by default on Nvidia. (#10953)
(venv) rattus@rattus-box2:~/ComfyUI$ git grep give_pre
comfy/ldm/modules/diffusionmodules/model.py:                 resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
comfy/ldm/modules/diffusionmodules/model.py:        self.give_pre_end = give_pre_end
comfy/ldm/modules/diffusionmodules/model.py:        if self.give_pre_end:

* move refiner VAE temporal roller to core

Move the carrying conv op to the common VAE code and give it a better
name. Roll the carry implementation logic for Resnet into the base
class and scrap the Hunyuan specific subclass.

* model: Add temporal roll to main VAE decoder

If there are no attention layers, its a standard resnet and VideoConv3d
is asked for, substitute in the temporal rolloing VAE algorithm. This
reduces VAE usage by the temporal dimension (can be huge VRAM savings).

* model: Add temporal roll to main VAE encoder

If there are no attention layers, its a standard resnet and VideoConv3d
is asked for, substitute in the temporal rolling VAE algorithm. This
reduces VAE usage by the temporal dimension (can be huge VRAM savings).
2025-12-02 22:49:29 -05:00
Jim Heising
3f512f5659 Added PATCH method to CORS headers (#11066)
Added PATCH http method to access-control-allow-header-methods header because there are now PATCH endpoints exposed in the API.

See 277237ccc1/api_server/routes/internal/internal_routes.py (L34) for an example of an API endpoint that uses the PATCH method.
2025-12-02 22:29:27 -05:00
comfyanonymous
b94d394a64 Support Z Image alibaba pai fun controlnets. (#11062)
These are not actual controlnets so put it in the models/model_patches
folder and use the ModelPatchLoader + QwenImageDiffsynthControlnet node to
use it.
2025-12-02 21:38:31 -05:00
rattus
277237ccc1 attention: use flag based OOM fallback (#11038)
Exception ref all local variables for the lifetime of exception
context. Just set a flag and then if to dump the exception before
falling back.
2025-12-02 17:24:19 -05:00
comfyanonymous
daaceac769 Hack to make zimage work in fp16. (#11057) 2025-12-02 17:11:58 -05:00
Alexander Piskun
33d6aec3b7 add check for the format arg type in VideoFromComponents.save_to function (#11046)
* add check for the format var type in VideoFromComponents.save_to function

* convert "format" to VideoContainer enum
2025-12-02 11:50:13 -08:00
Jedrzej Kosinski
44baa0b7f3 Fix CODEOWNERS formatting to have all on the same line, otherwise only last line applies (#11053) 2025-12-02 11:46:29 -08:00
Yoland Yan
a17cf1c387 Add @guill as a code owner (#11031) 2025-12-01 22:40:44 -05:00
Dr.Lt.Data
b4a20acc54 feat: Support ComfyUI-Manager for pip version (#7555) 2025-12-01 22:32:52 -05:00
Christian Byrne
c55dc857d5 bump comfyui-frontend-package to 1.33.10 (#11028) 2025-12-01 20:56:38 -05:00
comfyanonymous
878db3a727 Implement the Ovis image model. (#11030) 2025-12-01 20:56:17 -05:00
comfyanonymous
30c259cac8 ComfyUI version v0.3.76 2025-12-01 20:25:35 -05:00
Alexander Piskun
1cb7e22a95 [API Nodes] add Kling O1 model support (#11025)
* feat(api-nodes): add Kling O1 model support

* fix: increase max allowed duration to 10.05 seconds

* fix(VideoInput): respect "format" argument
2025-12-01 16:11:52 -08:00
comfyanonymous
2640acb31c Update qwen tokenizer to add qwen 3 tokens. (#11029)
Doesn't actually change anything for current workflows because none of the
current models have a template with the think tokens.
2025-12-01 17:13:48 -05:00
Christian Byrne
7dbd5dfe91 bump comfyui-frontend-package to 1.32.10 (#11018) 2025-12-01 13:27:17 -05:00
comfyanonymous
f8b981ae9a Next AMD portable will have pytorch with ROCm 7.1.1 (#11002) 2025-11-30 04:21:31 -05:00
ComfyUI Wiki
4967f81778 update template to 0.7.25 (#10996)
* update template to 0.7.24

* Update template to 0.7.25
2025-11-29 18:07:26 -08:00
comfyanonymous
0a6746898d Make the ScaleRope node work on Z Image and Lumina. (#10994) 2025-11-29 18:00:55 -05:00
comfyanonymous
5151cff293 Add some missing z image lora layers. (#10980) 2025-11-28 23:55:00 -05:00
Dr.Lt.Data
af96d9812d feat(security): add System User protection with __ prefix (#10966)
* feat(security): add System User protection with `__` prefix

Add protected namespace for custom nodes to store sensitive data
(API keys, licenses) that cannot be accessed via HTTP endpoints.

Key changes:
- New API: get_system_user_directory() for internal access
- New API: get_public_user_directory() with structural blocking
- 3-layer defense: header validation, path blocking, creation prevention
- 54 tests covering security, edge cases, and backward compatibility

System Users use `__` prefix (e.g., __system, __cache) following
Python's private member convention. They exist in user_directory/
but are completely blocked from /userdata HTTP endpoints.

* style: remove unused imports
2025-11-28 21:28:42 -05:00
comfyanonymous
52a32e2b32 Support some z image lora formats. (#10978) 2025-11-28 21:12:42 -05:00
Jukka Seppänen
b907085709 Support video tiny VAEs (#10884)
* Support video tiny VAEs

* lighttaew scaling fix

* Also support video taes in previews

Only first frame for now as live preview playback is currently only available through VHS custom nodes.

* Support Wan 2.1 lightVAE

* Relocate elif block and set Wan VAE dim directly without using pruning rate for lightvae
2025-11-28 19:40:19 -05:00
comfyanonymous
065a2fbbec Update driver link in AMD portable README (#10974) 2025-11-28 19:37:39 -05:00
rattus
0ff0457892 mm: wrap the raw stream in context manager (#10958)
The documentation of torch.foo.Stream being usable with with: suggests
it starts at version 2.7. Use the old API for backwards compatibility.
2025-11-28 16:38:12 -05:00
Urle Sistiana
6484ac89dc fix QuantizedTensor.is_contiguous (#10956) (#10959) 2025-11-28 16:33:07 -05:00
comfyanonymous
f55c98a89f Disable offload stream when torch compile. (#10961) 2025-11-28 16:16:46 -05:00
Dr.Lt.Data
ca7808f240 fix(user_manager): fix typo in move_userdata dest validation (#10967)
Check `dest` instead of `source` when validating destination path
in move_userdata endpoint.
2025-11-28 12:43:17 -08:00
Alexander Piskun
52e778fff3 feat(Kling-API-Nodes): add v2-5-turbo model to FirstLastFrame node (#10938) 2025-11-28 02:52:59 -08:00
comfyanonymous
9d8a817985 Enable async offloading by default on Nvidia. (#10953)
Add --disable-async-offload to disable it.

If this causes OOMs that go away when you --disable-async-offload please
report it.
2025-11-27 17:46:12 -05:00
ComfyUI Wiki
b59750a86a Update template to 0.7.23 (#10949) 2025-11-27 17:12:56 -05:00
rattus
3f382a4f98 quant ops: Dequantize weight in-place (#10935)
In flux2 these weights are huge (200MB). As plain_tensor is a throw-away
deep copy, do this multiplication in-place to save VRAM.
2025-11-27 08:06:30 -08:00
rattus
f17251bec6 Account for the VRAM cost of weight offloading (#10733)
* mm: default to 0 for NUM_STREAMS

Dont count the compute stream as an offload stream. This makes async
offload accounting easier.

* mm: remove 128MB minimum

This is from a previous offloading system requirement. Remove it to
make behaviour of the loader and partial unloader consistent.

* mp: order the module list by offload expense

Calculate an approximate offloading temporary VRAM cost to offload a
weight and primary order the module load list by that. In the simple
case this is just the same as the module weight, but with Loras, a
weight with a lora consumes considerably more VRAM to do the Lora
application on-the-fly.

This will slightly prioritize lora weights, but is really for
proper VRAM offload accounting.

* mp: Account for the VRAM cost of weight offloading

when checking the VRAM headroom, assume that the weight needs to be
offloaded, and only load if it has space for both the load and offload
 * the number of streams.

As the weights are ordered from largest to smallest by offload cost
this is guaranteed to fit in VRAM (tm), as all weights that follow
will be smaller.

Make the partial unload aware of this system as well by saving the
budget for offload VRAM to the model state and accounting accordingly.
Its possible that partial unload increases the size of the largest
offloaded weights, and thus needs to unload a little bit more than
asked to accomodate the bigger temp buffers.

Honor the existing codes floor on model weight loading of 128MB by
having the patcher honor this separately withough regard to offloading.
Otherwise when MM specifies its 128MB minimum, MP will see the biggest
weights, and budget that 128MB to only offload buffer and load nothing
which isnt the intent of these minimums. The same clamp applies in
case of partial offload of the currently loading model.
2025-11-27 01:03:03 -05:00
Haoming
c38e7d6599 block info (#10841) 2025-11-26 20:28:44 -08:00
Jedrzej Kosinski
f19a2b53f4 Create install_manager scripts, make update.py attempt to update comfyui_manager package if already installed, add --enable-manager startup arg to all run scripts 2025-11-26 16:42:29 -08:00
Jedrzej Kosinski
7cf52dd51e Make manager warning for --enable-manager not appear if is windows_standalone_build 2025-11-26 16:32:23 -08:00
comfyanonymous
eaf68c9b5b Make lora training work on Z Image and remove some redundant nodes. (#10927) 2025-11-26 19:25:32 -05:00
Kohaku-Blueleaf
cc6a8dcd1a Dataset Processing Nodes and Improved LoRA Trainer Nodes with multi resolution supports. (#10708)
* Create nodes_dataset.py

* Add encoded dataset caching mechanism

* make training node to work with our dataset system

* allow trainer node to get different resolution dataset

* move all dataset related implementation to nodes_dataset

* Rewrite dataset system with new io schema

* Rewrite training system with new io schema

* add ui pbar

* Add outputs' id/name

* Fix bad id/naming

* use single process instead of input list when no need

* fix wrong output_list flag

* use torch.load/save and fix bad behaviors
2025-11-26 19:18:08 -05:00
Alexander Piskun
a2d60aad0f convert nodes_customer_sampler.py to V3 schema (#10206) 2025-11-26 14:55:31 -08:00
Alexander Piskun
d8433c63fd chore(api-nodes): remove chat widgets from OpenAI/Gemini nodes (#10861) 2025-11-26 14:42:01 -08:00
comfyanonymous
dd41b74549 Add Z Image to readme. (#10924) 2025-11-26 15:36:38 -05:00
comfyanonymous
55f654db3d Fix the CSP offline feature. (#10923) 2025-11-26 15:16:40 -05:00
Terry Jia
58c6ed541d Merge 3d animation node (#10025) 2025-11-26 14:58:27 -05:00
Christian Byrne
234c3dc85f Bump frontend to 1.32.9 (#10867) 2025-11-26 14:58:08 -05:00
Alexander Piskun
8908ee2628 fix(gemini): use first 10 images as fileData (URLs) and remaining images as inline base64 (#10918) 2025-11-26 10:38:30 -08:00
Alexander Piskun
1105e0d139 improve UX for batch uploads in upload_images_to_comfyapi (#10913) 2025-11-26 09:23:14 -08:00
Alexander Piskun
8938aa3f30 add Veo3 First-Last-Frame node (#10878) 2025-11-26 09:14:02 -08:00
Dr.Lt.Data
4061eaa469 updated: manager_requirements.txt 2025-11-26 22:39:19 +09:00
Dr.Lt.Data
d69c8b3ac2 updated: manager_requirements.txt 2025-11-26 22:16:40 +09:00
Dr.Lt.Data
a5e0674474 Merge branch 'master' into dr-support-pip-cm 2025-11-26 21:44:25 +09:00
comfyanonymous
f16219e3aa Add cheap latent preview for flux 2. (#10907)
Thank you to the person who calculated them. You saved me a percent of my
time.
2025-11-26 04:00:43 -05:00
comfyanonymous
8402c8700a ComfyUI version v0.3.75 2025-11-26 02:41:13 -05:00
comfyanonymous
58b8574661 Fix Flux2 reference image mem estimation. (#10905) 2025-11-26 02:36:19 -05:00
comfyanonymous
90b3995ec8 ComfyUI v0.3.74 2025-11-26 00:34:15 -05:00
comfyanonymous
bdb10a583f Fix loras not working on mixed fp8. (#10899) 2025-11-26 00:07:58 -05:00
Jedrzej Kosinski
79fb96488a Move manager requirement into its own file 2025-11-25 20:43:23 -08:00
Jedrzej Kosinski
aa878cc193 Merge branch 'master' into dr-support-pip-cm 2025-11-25 20:41:19 -08:00
comfyanonymous
0e24dbb19f Adjustments to Z Image. (#10893) 2025-11-25 19:02:51 -05:00
comfyanonymous
e9aae31fa2 Z Image model. (#10892) 2025-11-25 18:41:45 -05:00
comfyanonymous
0c18842acb ComfyUI v0.3.73 2025-11-25 14:59:37 -05:00
comfyanonymous
d196a905bb Lower vram usage for flux 2 text encoder. (#10887) 2025-11-25 14:58:39 -05:00
ComfyUI Wiki
18b79acba9 Update workflow templates to v0.7.20 (#10883) 2025-11-25 14:58:21 -05:00
comfyanonymous
dff996ca39 Fix crash. (#10885) 2025-11-25 14:30:24 -05:00
comfyanonymous
828b1b9953 ComfyUI version v0.3.72 2025-11-25 12:40:58 -05:00
comfyanonymous
af81cb962d Add Flux 2 support to README. (#10882) 2025-11-25 11:40:32 -05:00
Alexander Piskun
5c7b08ca58 [API Nodes] add Flux.2 Pro node (#10880) 2025-11-25 11:09:07 -05:00
comfyanonymous
6b573ae0cb Flux 2 (#10879) 2025-11-25 10:50:19 -05:00
comfyanonymous
015a0599d0 I found a case where this is needed (#10875) 2025-11-25 03:23:19 -05:00
comfyanonymous
acfaa5c4a1 Don't try fp8 matrix mult in quantized ops if not supported by hardware. (#10874) 2025-11-25 02:55:49 -05:00
comfyanonymous
b6805429b9 Allow pinning quantized tensors. (#10873) 2025-11-25 02:48:20 -05:00
comfyanonymous
25022e0b09 Cleanup and fix issues with text encoder quants. (#10872) 2025-11-25 01:48:53 -05:00
comfyanonymous
22a2644e57 Bump transformers version in requirements.txt (#10869) 2025-11-24 19:45:54 -05:00
Haoming
b2ef58e2b1 block info (#10844) 2025-11-24 10:40:09 -08:00
Haoming
6a6d456c88 block info (#10842) 2025-11-24 10:38:38 -08:00
Haoming
3d1fdaf9f4 block info (#10843) 2025-11-24 10:30:40 -08:00
Alexander Piskun
1286fcfe40 add get_frame_count and get_frame_rate methods to VideoInput class (#10851) 2025-11-24 10:24:29 -08:00
Alexander Piskun
3bd71554a2 fix(api-nodes): edge cases in responses for Gemini models (#10860) 2025-11-24 09:48:37 -08:00
Dr.Lt.Data
1abf69ea27 Merge branch 'master' into dr-support-pip-cm 2025-11-24 23:34:42 +09:00
guill
f66183a541 [fix] Fixes non-async public API access (#10857)
It looks like the synchronous version of the public API broke due to an
addition of `from __future__ import annotations`. This change updates
the async-to-sync adapter to work with both types of type annotations.
2025-11-23 22:56:20 -08:00
comfyanonymous
cbd68e3d58 Add better error message for common error. (#10846) 2025-11-23 04:55:22 -05:00
comfyanonymous
d89c29f259 Add display names to Hunyuan latent video nodes. (#10837) 2025-11-22 22:51:53 -05:00
Christian Byrne
a9c35256bc Update requirements.txt (#10834) 2025-11-22 02:28:29 -08:00
comfyanonymous
532938b16b --disable-api-nodes now sets CSP header to force frontend offline. (#10829) 2025-11-21 17:51:55 -05:00
Christian Byrne
ecb683b057 update frontend to 1.30 (#10793) 2025-11-21 16:34:47 -05:00
comfyanonymous
c55fd74816 ComfyUI 0.3.71 2025-11-21 00:49:13 -05:00
comfyanonymous
3398123752 Fix wrong path. (#10821) 2025-11-20 23:39:37 -05:00
comfyanonymous
943b3b615d HunyuanVideo 1.5 (#10819)
* init

* update

* Update model.py

* Update model.py

* remove print

* Fix text encoding

* Prevent empty negative prompt

Really doesn't work otherwise

* fp16 works

* I2V

* Update model_base.py

* Update nodes_hunyuan.py

* Better latent rgb factors

* Use the correct sigclip output...

* Support HunyuanVideo1.5 SR model

* whitespaces...

* Proper latent channel count

* SR model fixes

This also still needs timesteps scheduling based on the noise scale, can be used with two samplers too already

* vae_refiner: roll the convolution through temporal

Work in progress.

Roll the convolution through time using 2-latent-frame chunks and a
FIFO queue for the convolution seams.

* Support HunyuanVideo15 latent resampler

* fix

* Some cleanup

Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>

* Proper hyvid15 I2V channels

Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>

* Fix TokenRefiner for fp16

Otherwise x.sum has infs, just in case only casting if input is fp16, I don't know if necessary.

* Bugfix for the HunyuanVideo15 SR model

* vae_refiner: roll the convolution through temporal II

Roll the convolution through time using 2-latent-frame chunks and a
FIFO queue for the convolution seams.

Added support for encoder, lowered to 1 latent frame to save more
VRAM, made work for Hunyuan Image 3.0 (as code shared).

Fixed names, cleaned up code.

* Allow any number of input frames in VAE.

* Better VAE encode mem estimation.

* Lowvram fix.

* Fix hunyuan image 2.1 refiner.

* Fix mistake.

* Name changes.

* Rename.

* Whitespace.

* Fix.

* Fix.

---------

Co-authored-by: kijai <40791699+kijai@users.noreply.github.com>
Co-authored-by: Rattus <rattus128@gmail.com>
2025-11-20 22:44:43 -05:00
Christian Byrne
10e90a5757 bump comfyui-workflow-templates for nano banana 2 (#10818)
* bump templates

* bump templates
2025-11-20 18:20:52 -08:00
Alexander Piskun
b75d349f25 fix(KlingLipSyncAudioToVideoNode): convert audio to mp3 format (#10811) 2025-11-20 16:33:54 -08:00
Alexander Piskun
7b8389578e feat(api-nodes): add Nano Banana Pro (#10814)
* feat(api-nodes): add Nano Banana Pro

* frontend bump to 1.28.9
2025-11-20 16:17:47 -08:00
Jedrzej Kosinski
9e00ce5b76 Make Batch Images node add alpha channel when one of the inputs has it (#10816)
* When one Batch Image input has alpha and one does not, add empty alpha channel

* Use torch.nn.functional.pad
2025-11-20 17:42:46 -05:00
comfyanonymous
f5e66d5e47 Fix ImageBatch with different channel count. (#10815) 2025-11-20 15:08:03 -05:00
Christian Byrne
87b0359392 Update server templates handler to use new multi-package distribution (comfyui-workflow-templates versions >=0.3) (#10791)
* update templates for monorepo

* refactor
2025-11-19 22:36:56 -08:00
comfyanonymous
cb96d4d18c Disable workaround on newer cudnn. (#10807) 2025-11-19 23:56:23 -05:00
Alexander Piskun
394348f5ca feat(api-nodes): add Topaz API nodes (#10755) 2025-11-19 17:44:04 -08:00
comfyanonymous
7601e89255 Fix workflow name. (#10806) 2025-11-19 20:17:15 -05:00
Alexander Piskun
6a1d3a1ae1 convert hunyuan3d.py to V3 schema (#10664) 2025-11-19 14:49:01 -08:00
Alexander Piskun
65ee24c978 change display name of PreviewAny node to "Preview as Text" (#10796) 2025-11-19 01:25:28 -08:00
comfyanonymous
17027f2a6a Add a way to disable the final norm in the llama based TE models. (#10794) 2025-11-18 22:36:03 -05:00
comfyanonymous
b5c8be8b1d ComfyUI 0.3.70 2025-11-18 19:37:20 -05:00
Alexander Piskun
24fdb92edf feat(api-nodes): add new Gemini model (#10789) 2025-11-18 14:26:44 -08:00
comfyanonymous
d526974576 Fix hunyuan 3d 2.0 (#10792) 2025-11-18 16:46:19 -05:00
Jukka Seppänen
e1ab6bb394 EasyCache: Fix for mismatch in input/output channels with some models (#10788)
Slices model input with output channels so the caching tracks only the noise channels, resolves channel mismatch with models like WanVideo I2V

Also fix for slicing deprecation in pytorch 2.9
2025-11-18 07:00:21 -08:00
Dr.Lt.Data
6206a6d3d2 Merge branch 'master' into dr-support-pip-cm 2025-11-18 23:08:08 +09:00
Alexander Piskun
048f49adbd chore(api-nodes): adjusted PR template; set min python version for pylint to 3.10 (#10787) 2025-11-18 03:59:27 -08:00
comfyanonymous
47bfd5a33f Native block swap custom nodes considered harmful. (#10783) 2025-11-18 00:26:44 -05:00
ComfyUI Wiki
fdf49a2861 Fix the portable download link for CUDA 12.6 (#10780) 2025-11-17 22:04:06 -05:00
comfyanonymous
f41e5f398d Update README with new portable download link (#10778) 2025-11-17 19:59:19 -05:00
comfyanonymous
27cbac865e Add release workflow for NVIDIA cu126 (#10777) 2025-11-17 19:04:04 -05:00
comfyanonymous
3d0003c24c ComfyUI version 0.3.69 2025-11-17 17:17:24 -05:00
Dr.Lt.Data
7b9ad5208e Merge branch 'master' into dr-support-pip-cm 2025-11-17 00:56:17 +09:00
comfyanonymous
7d6103325e Change ROCm nightly install command to 7.1 (#10764) 2025-11-16 03:01:14 -05:00
Alexander Piskun
2d4a08b717 Revert "chore(api-nodes): mark OpenAIDalle2 and OpenAIDalle3 nodes as deprecated (#10757)" (#10759)
This reverts commit 9a02382568.
2025-11-15 12:37:34 -08:00
Alexander Piskun
9a02382568 chore(api-nodes): mark OpenAIDalle2 and OpenAIDalle3 nodes as deprecated (#10757) 2025-11-15 11:18:49 -08:00
comfyanonymous
bd01d9f7fd Add left padding support to tokenizers. (#10753) 2025-11-15 06:54:40 -05:00
Dr.Lt.Data
a58c4fbf68 Merge branch 'master' into dr-support-pip-cm 2025-11-15 08:33:49 +09:00
comfyanonymous
443056c401 Fix custom nodes import error. (#10747)
This should fix the import errors but will break if the custom nodes actually try to use the class.
2025-11-14 03:26:05 -05:00
comfyanonymous
f60923590c Use same code for chroma and flux blocks so that optimizations are shared. (#10746) 2025-11-14 01:28:05 -05:00
comfyanonymous
1ef328c007 Better instructions for the portable. (#10743) 2025-11-13 21:32:39 -05:00
rattus
94c298f962 flux: reduce VRAM usage (#10737)
Cleanup a bunch of stack tensors on Flux. This take me from B=19 to B=22
for 1600x1600 on RTX5090.
2025-11-13 16:02:03 -08:00
ric-yu
2fde9597f4 feat: add create_time dict to prompt field in /history and /queue (#10741) 2025-11-13 15:11:52 -08:00
Alexander Piskun
f91078b1ff add PR template for API-Nodes (#10736) 2025-11-13 10:05:26 -08:00
contentis
3b3ef9a77a Quantized Ops fixes (#10715)
* offload support, bug fixes, remove mixins

* add readme
2025-11-12 18:26:52 -05:00
comfyanonymous
8b0b93df51 Update Python 3.14 compatibility notes in README (#10730) 2025-11-12 17:04:41 -05:00
rattus
1c7eaeca10 qwen: reduce VRAM usage (#10725)
Clean up a bunch of stacked and no-longer-needed tensors on the QWEN
VRAM peak (currently FFN).

With this I go from OOMing at B=37x1328x1328 to being able to
succesfully run B=47 (RTX5090).
2025-11-12 16:20:53 -05:00
rattus
18e7d6dba5 mm/mp: always unload re-used but modified models (#10724)
The partial unloader path in model re-use flow skips straight to the
actual unload without any check of the patching UUID. This means that
if you do an upscale flow with a model patch on an existing model, it
will not apply your patchings.

Fix by delaying the partial_unload until after the uuid checks. This
is done by making partial_unload a model of partial_load where extra_mem
is -ve.
2025-11-12 16:19:53 -05:00
Qiacheng Li
e1d85e7577 Update README.md for Intel Arc GPU installation, remove IPEX (#10729)
IPEX is no longer needed for Intel Arc GPUs.  Removing instruction to setup ipex.
2025-11-12 15:21:05 -05:00
comfyanonymous
1199411747 Don't pin tensor if not a torch.nn.parameter.Parameter (#10718) 2025-11-11 19:33:30 -05:00
comfyanonymous
5ebcab3c7d Update CI workflow to remove dead macOS runner. (#10704)
* Update CI workflow to remove dead macOS runner.

* revert

* revert
2025-11-10 15:35:29 -05:00
Dr.Lt.Data
b15ef9917b Merge branch 'master' into dr-support-pip-cm 2025-11-11 01:58:42 +09:00
rattus
c350009236 ops: Put weight cast on the offload stream (#10697)
This needs to be on the offload stream. This reproduced a black screen
with low resolution images on a slow bus when using FP8.
2025-11-09 22:52:11 -05:00
Dr.Lt.Data
2d4dd3972c Merge branch 'master' into dr-support-pip-cm 2025-11-10 12:48:44 +09:00
comfyanonymous
dea899f221 Unload weights if vram usage goes up between runs. (#10690) 2025-11-09 18:51:33 -05:00
comfyanonymous
e632e5de28 Add logging for model unloading. (#10692) 2025-11-09 18:06:39 -05:00
comfyanonymous
2abd2b5c20 Make ScaleROPE node work on Flux. (#10686) 2025-11-08 15:52:02 -05:00
Dr.Lt.Data
5cb77fbb18 Merge branch 'master' into dr-support-pip-cm 2025-11-06 00:55:10 +09:00
Dr.Lt.Data
32bd55779a Merge branch 'master' into dr-support-pip-cm 2025-11-05 07:42:29 +09:00
Dr.Lt.Data
671a769dc6 Merge branch 'master' into dr-support-pip-cm 2025-11-04 23:25:51 +09:00
Dr.Lt.Data
d8b821e47b Merge branch 'master' into dr-support-pip-cm 2025-11-03 07:12:55 +09:00
Dr.Lt.Data
16359abbbc Merge branch 'master' into dr-support-pip-cm 2025-11-01 06:27:21 +09:00
Dr.Lt.Data
8f492d8f34 Merge branch 'master' into dr-support-pip-cm 2025-10-31 12:55:36 +09:00
Dr.Lt.Data
ad4b959d7e Merge branch 'master' into dr-support-pip-cm 2025-10-31 07:31:50 +09:00
Dr.Lt.Data
b88c66bfa1 Merge branch 'master' into dr-support-pip-cm 2025-10-30 07:30:50 +09:00
Dr.Lt.Data
de357a01f8 Merge branch 'master' into dr-support-pip-cm 2025-10-28 19:01:11 +09:00
Dr.Lt.Data
c07908a37e Merge branch 'master' into dr-support-pip-cm 2025-10-27 12:50:24 +09:00
Dr.Lt.Data
fe26f30cb6 Merge branch 'master' into dr-support-pip-cm 2025-10-26 12:52:08 +09:00
Dr.Lt.Data
3c4b429251 Merge branch 'master' into dr-support-pip-cm 2025-10-25 10:42:34 +09:00
Dr.Lt.Data
0432bccbcf Merge branch 'master' into dr-support-pip-cm 2025-10-24 12:17:46 +09:00
Dr.Lt.Data
aaf06ace12 Merge branch 'master' into dr-support-pip-cm 2025-10-23 06:54:58 +09:00
Dr.Lt.Data
f46771bd97 update requirements.txt 2025-10-21 12:35:02 +09:00
Dr.Lt.Data
8e1b1b722b Merge branch 'master' into dr-support-pip-cm 2025-10-21 12:34:57 +09:00
Dr.Lt.Data
a1a6f4d7fe Merge branch 'master' into dr-support-pip-cm 2025-10-21 07:26:53 +09:00
Dr.Lt.Data
ee54914a52 Merge branch 'master' into dr-support-pip-cm 2025-10-20 06:35:52 +09:00
Dr.Lt.Data
8f59e2a341 Merge branch 'master' into dr-support-pip-cm 2025-10-19 11:39:42 +09:00
Dr.Lt.Data
7d5e73ea94 Merge branch 'master' into dr-support-pip-cm 2025-10-19 09:37:12 +09:00
Dr.Lt.Data
9dd26b0349 Merge branch 'master' into dr-support-pip-cm 2025-10-18 07:22:23 +09:00
Dr.Lt.Data
c9c68ed78d Merge branch 'master' into dr-support-pip-cm 2025-10-17 22:37:13 +09:00
Dr.Lt.Data
6626f7c5c4 Merge branch 'master' into dr-support-pip-cm 2025-10-17 12:42:54 +09:00
Dr.Lt.Data
0802f3a635 Merge branch 'master' into dr-support-pip-cm 2025-10-16 12:06:19 +09:00
Dr.Lt.Data
19ad129d37 Merge branch 'master' into dr-support-pip-cm 2025-10-16 06:40:04 +09:00
Dr.Lt.Data
db61dc3481 Merge branch 'master' into dr-support-pip-cm 2025-10-15 12:34:12 +09:00
Dr.Lt.Data
5fbc8a1b80 Merge branch 'master' into dr-support-pip-cm 2025-10-15 06:43:20 +09:00
Dr.Lt.Data
b180f47d0e Merge branch 'master' into dr-support-pip-cm 2025-10-14 12:34:58 +09:00
Dr.Lt.Data
2b47f4a38e Merge branch 'master' into dr-support-pip-cm 2025-10-14 07:36:42 +09:00
Dr.Lt.Data
a3af8f35c2 Merge branch 'master' into dr-support-pip-cm 2025-10-13 12:50:41 +09:00
Dr.Lt.Data
5f50b86114 Merge branch 'master' into dr-support-pip-cm 2025-10-13 06:42:04 +09:00
Dr.Lt.Data
4e7f2eeae2 Merge branch 'master' into dr-support-pip-cm 2025-10-10 08:15:03 +09:00
Dr.Lt.Data
fc5703c468 Merge branch 'master' into dr-support-pip-cm 2025-10-09 23:57:10 +09:00
Dr.Lt.Data
05cd5348b6 Merge branch 'master' into dr-support-pip-cm 2025-10-09 10:49:23 +09:00
Dr.Lt.Data
3c000c1de4 Merge branch 'master' into dr-support-pip-cm 2025-10-08 11:04:18 +09:00
Dr.Lt.Data
6b20418ad1 Merge branch 'master' into dr-support-pip-cm 2025-10-07 14:30:16 +09:00
Dr.Lt.Data
2dc24f9870 Merge branch 'master' into dr-support-pip-cm 2025-10-05 07:36:33 +09:00
Dr.Lt.Data
8634b19bc7 Merge branch 'master' into dr-support-pip-cm 2025-10-04 07:09:43 +09:00
Dr.Lt.Data
47436c59d7 Merge branch 'master' into dr-support-pip-cm 2025-10-03 10:23:40 +09:00
Dr.Lt.Data
28092933c1 Merge branch 'master' into dr-support-pip-cm 2025-10-02 12:49:48 +09:00
Dr.Lt.Data
17064a993c Merge branch 'master' into dr-support-pip-cm 2025-10-02 07:31:37 +09:00
Dr.Lt.Data
12f2b59284 Merge branch 'master' into dr-support-pip-cm 2025-10-01 07:17:25 +09:00
Dr.Lt.Data
8cbdaa8855 Merge branch 'master' into dr-support-pip-cm 2025-09-30 12:46:12 +09:00
Dr.Lt.Data
976cee95f8 Merge branch 'master' into dr-support-pip-cm 2025-09-30 06:54:59 +09:00
Dr.Lt.Data
20ac0052f8 Merge branch 'master' into dr-support-pip-cm 2025-09-29 06:58:35 +09:00
Dr.Lt.Data
bc8418f55a Merge branch 'master' into dr-support-pip-cm 2025-09-26 07:00:43 +09:00
Dr.Lt.Data
42f69b1ffd Merge branch 'master' into dr-support-pip-cm 2025-09-25 07:25:27 +09:00
Dr.Lt.Data
581059a83d Merge branch 'master' into dr-support-pip-cm 2025-09-24 07:24:19 +09:00
Dr.Lt.Data
74c1a58566 Merge branch 'master' into dr-support-pip-cm 2025-09-23 07:28:52 +09:00
Dr.Lt.Data
316aa125c9 Merge branch 'master' into dr-support-pip-cm 2025-09-22 12:33:09 +09:00
Dr.Lt.Data
7b1ed9b2b8 Merge branch 'master' into dr-support-pip-cm 2025-09-21 11:24:37 +09:00
Dr.Lt.Data
4ea946778b Merge branch 'master' into dr-support-pip-cm 2025-09-21 10:45:28 +09:00
Dr.Lt.Data
309c92d6c9 Merge branch 'master' into dr-support-pip-cm 2025-09-21 09:33:38 +09:00
Dr.Lt.Data
ca7492c9d4 Merge branch 'master' into dr-support-pip-cm 2025-09-20 07:13:36 +09:00
Dr.Lt.Data
267c54eaae Updated comfyui_manager to version 4.0.2 in requirements.txt 2025-09-19 12:00:17 +09:00
Dr.Lt.Data
fa51f0c60a Merge branch 'master' into dr-support-pip-cm 2025-09-19 12:00:10 +09:00
Dr.Lt.Data
0a084a88a2 Merge branch 'master' into dr-support-pip-cm 2025-09-19 08:16:58 +09:00
Dr.Lt.Data
036aa3efa8 fixed: Even if --enable-manager is applied, it should switch to a disabled state if comfyui_manager is not installed. 2025-09-19 07:38:10 +09:00
comfyanonymous
e7ff647d02 --disable-manager -> --enable-manager 2025-09-17 20:58:42 -04:00
Dr.Lt.Data
77e10752fe Merge branch 'master' into dr-support-pip-cm 2025-09-18 07:32:23 +09:00
Dr.Lt.Data
2c30881d9c Merge branch 'master' into dr-support-pip-cm 2025-09-17 11:56:35 +09:00
Dr.Lt.Data
7fa5990dbc Merge branch 'master' into dr-support-pip-cm 2025-09-17 06:09:40 +09:00
Dr.Lt.Data
07212a2466 Merge branch 'master' into dr-support-pip-cm 2025-09-16 12:39:43 +09:00
Dr.Lt.Data
f4d7a32cd8 Merge branch 'master' into dr-support-pip-cm 2025-09-15 12:16:00 +09:00
Dr.Lt.Data
ce1df28bef Merge branch 'master' into dr-support-pip-cm 2025-09-13 15:41:22 +09:00
Dr.Lt.Data
0f8d57206c Update comfyui_manager dependency in requirements 2025-09-13 08:18:31 +09:00
Dr.Lt.Data
9d70d75f20 Merge branch 'master' into dr-support-pip-cm 2025-09-13 07:30:55 +09:00
Dr.Lt.Data
ff5e92abdb Merge branch 'master' into dr-support-pip-cm 2025-09-12 12:32:12 +09:00
Dr.Lt.Data
033e725b8e Merge branch 'master' into dr-support-pip-cm 2025-09-12 07:53:36 +09:00
Dr.Lt.Data
cc8a026671 Merge branch 'master' into dr-support-pip-cm 2025-09-11 12:28:47 +09:00
Dr.Lt.Data
f9cfea0f2e Merge branch 'master' into dr-support-pip-cm 2025-09-11 06:51:11 +09:00
Dr.Lt.Data
b5745ae0a7 Merge branch 'master' into dr-support-pip-cm 2025-09-10 18:37:03 +09:00
Dr.Lt.Data
2a30a19df7 Merge branch 'master' into dr-support-pip-cm 2025-09-10 11:51:21 +09:00
Dr.Lt.Data
c7f04234c6 Merge branch 'master' into dr-support-pip-cm 2025-09-10 07:11:31 +09:00
Dr.Lt.Data
0e31eca087 Merge branch 'master' into dr-support-pip-cm 2025-09-09 07:42:02 +09:00
Dr.Lt.Data
1c8c9f7f4d Merge branch 'master' into dr-support-pip-cm 2025-09-08 12:33:17 +09:00
Dr.Lt.Data
d4cb177414 Merge pull request #2 from viva-jinyi/fix/system-os
Fix OS reporting in /system_stats API to use sys.platform
2025-09-08 07:50:53 +09:00
Dr.Lt.Data
8a2f805233 Merge branch 'master' into dr-support-pip-cm 2025-09-08 07:44:18 +09:00
Jin Yi
c97f6aa0b2 Fix OS reporting in /system_stats API to use sys.platform
Replace os.name with sys.platform for more detailed OS identification.
This change provides better OS differentiation:
- Windows: "nt" -> "win32"
- macOS: "posix" -> "darwin"
- Linux: "posix" -> "linux"

Previously, both macOS and Linux returned "posix", making them
indistinguishable. Now each OS has a unique identifier, aligning
with the Registry Specifications for proper compatibility checks.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-07 14:29:45 +09:00
Dr.Lt.Data
ba3c8e3dbe Merge branch 'master' into dr-support-pip-cm 2025-09-06 04:05:01 +09:00
Dr.Lt.Data
3b65618d13 update requirements 2025-09-06 03:40:20 +09:00
Dr.Lt.Data
fc88b4f939 Merge branch 'master' into dr-support-pip-cm 2025-09-05 18:49:55 +09:00
Dr.Lt.Data
6a1f95caa0 Merge branch 'master' into dr-support-pip-cm 2025-09-05 08:14:53 +09:00
Dr.Lt.Data
2ade597d02 Merge branch 'master' into dr-support-pip-cm 2025-09-04 11:55:51 +09:00
Dr.Lt.Data
08e9c3ddf0 fixed: more robust detection of missing comfyui_manager 2025-09-04 11:51:11 +09:00
Dr.Lt.Data
f8aab7cab0 fixed: more robust detection of missing comfyui_manager 2025-09-04 11:49:48 +09:00
Dr.Lt.Data
561eaf6ccf fixed: Robust detection of missing comfyui_manager 2025-09-04 11:44:53 +09:00
Dr.Lt.Data
31469f962f fixed: issue of not properly detecting the removal of the comfyui_manager package in a conda environment. 2025-09-04 11:31:37 +09:00
Dr.Lt.Data
e0f111c6eb Merge branch 'master' into dr-support-pip-cm 2025-09-04 08:30:56 +09:00
Dr.Lt.Data
74a027f589 Merge branch 'master' into dr-support-pip-cm 2025-09-03 12:01:02 +09:00
Dr.Lt.Data
cc21e84115 Merge branch 'master' into dr-support-pip-cm 2025-09-03 00:07:37 +09:00
Dr.Lt.Data
69bbe1d5a9 modified: SERVER_FEATURE_FLAGS - manager extension is added 2025-09-02 07:44:17 +09:00
Dr.Lt.Data
7fd87423b3 Merge branch 'master' into dr-support-pip-cm 2025-08-31 17:16:00 +09:00
Dr.Lt.Data
1224d58a17 Merge branch 'master' into dr-support-pip-cm 2025-08-30 06:12:16 +09:00
Dr.Lt.Data
2cc7bafb52 Merge branch 'master' into dr-support-pip-cm 2025-08-29 07:36:57 +09:00
Dr.Lt.Data
523b54b9b4 update requirements.txt 2025-08-28 00:29:56 +09:00
Dr.Lt.Data
5c8f724c9a Merge branch 'master' into dr-support-pip-cm 2025-08-28 00:28:43 +09:00
Dr.Lt.Data
eda556d7b4 Merge branch 'dr-support-pip-cm' 2025-08-26 19:45:36 +09:00
Dr.Lt.Data
b7faa5fe3d Merge branch 'master' into dr-support-pip-cm 2025-08-25 06:08:20 +09:00
Dr.Lt.Data
6087e0210c modified: Changed behavior so that if comfyui-manager is not installed, it provides an installation guide message instead of raising an exception. 2025-08-24 16:05:10 +09:00
Dr.Lt.Data
6728792589 Merge branch 'master' into dr-support-pip-cm 2025-08-24 15:43:42 +09:00
Dr.Lt.Data
881db45147 Merge branch 'master' into dr-support-pip-cm 2025-08-23 17:46:43 +09:00
Dr.Lt.Data
26cac3c053 restore custom_nodes dir 2025-08-23 08:47:27 +09:00
Dr.Lt.Data
47350d323a Merge branch 'master' into dr-support-pip-cm 2025-08-23 06:46:25 +09:00
Dr.Lt.Data
117d8ae992 update requirments.txt 2025-08-23 06:45:52 +09:00
Dr.Lt.Data
844e5e7abb Merge branch 'master' into dr-support-pip-cm 2025-08-22 20:00:27 +09:00
Dr.Lt.Data
20953cbfd4 Merge branch 'master' into dr-support-pip-cm 2025-08-22 12:41:27 +09:00
Dr.Lt.Data
7c36368b14 Merge branch 'master' into dr-support-pip-cm 2025-08-22 05:16:03 +09:00
Dr.Lt.Data
d7b4f45c5b Merge branch 'master' into dr-support-pip-cm 2025-08-21 06:44:35 +09:00
Dr.Lt.Data
4b1aac74bb Merge branch 'master' into dr-support-pip-cm 2025-08-20 12:25:03 +09:00
Dr.Lt.Data
be456cb37a Merge branch 'master' into dr-support-pip-cm 2025-08-20 04:02:37 +09:00
Dr.Lt.Data
3dfecd541b Merge branch 'master' into dr-support-pip-cm 2025-08-19 06:24:55 +09:00
Dr.Lt.Data
ca04f8f401 Merge branch 'master' into dr-support-pip-cm 2025-08-18 12:23:05 +09:00
Dr.Lt.Data
8b44e58e6c Merge branch 'master' into dr-support-pip-cm 2025-08-18 07:35:15 +09:00
Dr.Lt.Data
37aa552602 Merge branch 'master' into dr-support-pip-cm 2025-08-15 10:10:54 +09:00
Dr.Lt.Data
91555acf2c Merge branch 'master' into dr-support-pip-cm 2025-08-14 12:01:56 +09:00
Dr.Lt.Data
d7777dc83a Merge branch 'master' into dr-support-pip-cm 2025-08-14 02:36:19 +09:00
Dr.Lt.Data
1c66507261 Merge branch 'master' into dr-support-pip-cm 2025-08-13 12:12:22 +09:00
Dr.Lt.Data
264116dc4d Merge branch 'master' into dr-support-pip-cm 2025-08-12 10:13:31 +09:00
Dr.Lt.Data
d750aa0847 Merge branch 'master' into dr-support-pip-cm 2025-08-11 22:22:29 +09:00
Dr.Lt.Data
37277e4188 Merge branch 'master' into dr-support-pip-cm 2025-08-10 20:57:20 +09:00
Dr.Lt.Data
106510197a Merge branch 'master' into dr-support-pip-cm 2025-08-08 23:48:53 +09:00
Dr.Lt.Data
bf01579b87 Merge branch 'master' into dr-support-pip-cm 2025-08-08 12:07:08 +09:00
Dr.Lt.Data
ab1a79ad74 Merge branch 'master' into dr-support-pip-cm 2025-08-07 12:20:12 +09:00
Dr.Lt.Data
2fe58571e2 Merge branch 'master' into dr-support-pip-cm 2025-08-07 07:45:14 +09:00
Dr.Lt.Data
46209599ff Merge branch 'master' into dr-support-pip-cm 2025-08-05 12:24:25 +09:00
Dr.Lt.Data
02317a1f71 Merge branch 'master' into dr-support-pip-cm 2025-08-05 06:21:27 +09:00
Dr.Lt.Data
ac7e83448e Merge branch 'master' into dr-support-pip-cm 2025-08-04 07:25:20 +09:00
Dr.Lt.Data
56cff964f2 Merge branch 'master' into dr-support-pip-cm 2025-08-01 12:40:30 +09:00
Dr.Lt.Data
5582e2a0f3 Merge branch 'master' into dr-support-pip-cm 2025-07-31 12:33:38 +09:00
Dr.Lt.Data
3c8196a170 Merge branch 'master' into dr-support-pip-cm 2025-07-30 12:14:34 +09:00
Dr.Lt.Data
62c08e4659 Merge branch 'master' into dr-support-pip-cm 2025-07-29 23:44:44 +09:00
Dr.Lt.Data
ac7bde1d03 Merge branch 'master' into dr-support-pip-cm 2025-07-29 12:13:25 +09:00
Dr.Lt.Data
6909638a42 Merge branch 'master' into dr-support-pip-cm 2025-07-27 15:01:02 +09:00
Dr.Lt.Data
d0625d7f7c Merge branch 'master' into dr-support-pip-cm 2025-07-26 09:35:21 +09:00
Dr.Lt.Data
6b19857c93 Merge branch 'master' into dr-support-pip-cm 2025-07-25 12:21:17 +09:00
Dr.Lt.Data
4e904305ce Merge branch 'dr-support-pip-cm' 2025-07-24 12:22:50 +09:00
Dr.Lt.Data
726aa75126 Merge branch 'master' into dr-support-pip-cm 2025-07-23 12:57:43 +09:00
Dr.Lt.Data
74087e26da Merge branch 'master' into dr-support-pip-cm 2025-07-22 07:41:54 +09:00
Dr.Lt.Data
51bf04c5ae Merge branch 'master' into dr-support-pip-cm 2025-07-21 12:15:35 +09:00
Dr.Lt.Data
b603e034e5 Merge branch 'master' into dr-support-pip-cm 2025-07-20 16:31:14 +09:00
Dr.Lt.Data
3c9a0fcf8a Merge branch 'master' into dr-support-pip-cm 2025-07-17 12:23:03 +09:00
Dr.Lt.Data
0adeb9b135 Merge branch 'master' into dr-support-pip-cm 2025-07-15 12:02:07 +09:00
Dr.Lt.Data
98b5183ed8 Merge branch 'master' into dr-support-pip-cm 2025-07-15 06:46:20 +09:00
Dr.Lt.Data
16a0b24da4 Merge branch 'master' into dr-support-pip-cm 2025-07-12 09:19:32 +09:00
Dr.Lt.Data
552fe9df02 Merge branch 'master' into dr-support-pip-cm 2025-07-08 12:34:29 +09:00
Dr.Lt.Data
2ce64b131c Merge branch 'master' into dr-support-pip-cm 2025-07-04 06:35:21 +09:00
Dr.Lt.Data
d6fa7a7c84 Merge branch 'master' into dr-support-pip-cm 2025-07-02 12:03:03 +09:00
Dr.Lt.Data
17cfabec7d added: Apply manager middleware 2025-07-01 12:55:53 +09:00
Dr.Lt.Data
ad633b2953 Merge branch 'master' into dr-support-pip-cm 2025-07-01 12:55:47 +09:00
Dr.Lt.Data
9eba1547f4 Merge branch 'master' into dr-support-pip-cm 2025-06-29 15:31:19 +09:00
Dr.Lt.Data
f398256d11 Merge branch 'master' into dr-support-pip-cm 2025-06-28 10:53:05 +09:00
Dr.Lt.Data
8744ebb4a1 Merge branch 'master' into dr-support-pip-cm 2025-06-27 07:34:33 +09:00
Dr.Lt.Data
d5167d2ded Merge branch 'master' into dr-support-pip-cm 2025-06-26 08:59:09 +09:00
Dr.Lt.Data
364e07d145 Merge branch 'master' into dr-support-pip-cm 2025-06-25 00:26:24 +09:00
Dr.Lt.Data
5a0ec182ec Merge branch 'master' into dr-support-pip-cm 2025-06-23 07:08:23 +09:00
Dr.Lt.Data
39f39c3aa9 Merge branch 'master' into dr-support-pip-cm 2025-06-21 23:51:13 +09:00
Dr.Lt.Data
4e95c0c104 Merge branch 'master' into dr-support-pip-cm 2025-06-20 22:12:07 +09:00
Dr.Lt.Data
d1ab6adc3a Merge branch 'master' into dr-support-pip-cm 2025-06-16 06:38:35 +09:00
Dr.Lt.Data
35a294431f Merge branch 'master' into dr-support-pip-cm 2025-06-09 12:34:23 +09:00
Dr.Lt.Data
baeeeb02b9 Merge branch 'master' into dr-support-pip-cm 2025-06-01 04:34:00 +09:00
Dr.Lt.Data
ef641f3e4b Merge branch 'master' into dr-support-pip-cm 2025-05-26 02:23:34 +09:00
Dr.Lt.Data
9ac185456f Merge branch 'master' into dr-support-pip-cm 2025-05-19 06:04:10 +09:00
Dr.Lt.Data
b69ef5f869 Merge branch 'master' into dr-support-pip-cm 2025-05-10 18:46:26 +09:00
Dr.Lt.Data
31aecbe1ad Merge branch 'master' into dr-support-pip-cm 2025-05-09 06:38:49 +09:00
Dr.Lt.Data
28d23a7813 Merge branch 'master' into dr-support-pip-cm 2025-05-03 22:38:35 +09:00
Dr.Lt.Data
f51047abd3 Merge branch 'master' into dr-support-pip-cm 2025-05-01 02:09:54 +09:00
Dr.Lt.Data
14598c1104 Merge branch 'master' into dr-support-pip-cm 2025-04-28 23:22:56 +09:00
Dr.Lt.Data
57dae1469f modified: --disable-manager will prevent importing comfyui-manager
feat: --disable-manager-ui will disable the endpoints and ui of comfyui-manager
2025-04-28 17:56:50 +09:00
Dr.Lt.Data
ea3d3cc6a4 Merge branch 'master' into dr-support-pip-cm 2025-04-24 08:45:22 +09:00
Dr.Lt.Data
9c2eb2c1dd Merge branch 'master' into dr-support-pip-cm 2025-04-22 02:24:26 +09:00
Dr.Lt.Data
ec82eea1f1 Merge branch 'master' into dr-support-pip-cm 2025-04-21 12:06:29 +09:00
Dr.Lt.Data
4fafc0c58d Merge branch 'master' into dr-support-pip-cm 2025-04-20 19:08:51 +09:00
Dr.Lt.Data
d2ed1dcb9a Merge branch 'master' into dr-support-pip-cm 2025-04-15 23:04:27 +09:00
Dr.Lt.Data
94f61c6378 add --enable-manager-legacy-ui 2025-04-15 01:36:17 +09:00
Dr.Lt.Data
418eaed42c fixed: Ensure that comfyui_manager's prestartup always runs, even when --disable-all-custom-nodes is used.
feat: Disable specific custom nodes according to the policy of `comfyui_manager`.
2025-04-12 21:53:57 +09:00
Dr.Lt.Data
cc975e5f0b add comfyui_manager to requirements.txt
It's still in the development stage, so the version is not pinned yet.
2025-04-12 19:11:02 +09:00
Dr.Lt.Data
311f64ac83 Merge branch 'master' into dr-support-pip-cm 2025-04-12 19:08:15 +09:00
Dr.Lt.Data
8b9f31abdf fixed: ruff check 2025-04-10 12:10:24 +09:00
Dr.Lt.Data
fb1b9c76b0 added: --disable-manager option 2025-04-10 08:40:53 +09:00
Dr.Lt.Data
545d96c12d Merge branch 'master' into dr-support-pip-cm 2025-04-10 08:34:54 +09:00
Dr.Lt.Data
1855efe1c3 Merge branch 'comfyanonymous:master' into dr-support-pip-cm 2025-04-05 15:21:55 +09:00
Dr.Lt.Data
6897a1d077 support pip comfyui-manager 2025-03-19 22:24:04 +09:00
158 changed files with 14022 additions and 4746 deletions

View File

@@ -0,0 +1,4 @@
@echo off
..\python_embeded\python.exe .\install_manager.py ..\ComfyUI\
echo Installed manager through pip package, if not already installed.
pause

View File

@@ -0,0 +1,24 @@
import sys
import os
repo_path = str(sys.argv[1])
repo_manager_req_path = os.path.join(repo_path, "manager_requirements.txt")
if os.path.exists(repo_manager_req_path):
import subprocess
# if not installed, we get 'WARNING: Package(s) not found: comfyui_manager'
# if installed, there will be a line like 'Version: 0.1.0' = False
try:
output = subprocess.check_output([sys.executable, '-s', '-m', 'pip', 'show', 'comfyui_manager'])
if 'Version:' in output.decode('utf-8'):
print("comfyui_manager is already installed, will attempt to update to matching version of ComfyUI.") # noqa: T201
else:
print("comfyui_manager is not installed, will install it now.") # noqa: T201
except:
pass
try:
subprocess.check_call([sys.executable, '-s', '-m', 'pip', 'install', '-r', repo_manager_req_path])
print("comfyui_manager installed successfully.") # noqa: T201
except:
print("Failed to install comfyui_manager, please install it manually.") # noqa: T201

View File

@@ -53,6 +53,16 @@ try:
repo.stash(ident)
except KeyError:
print("nothing to stash") # noqa: T201
except:
print("Could not stash, cleaning index and trying again.") # noqa: T201
repo.state_cleanup()
repo.index.read_tree(repo.head.peel().tree)
repo.index.write()
try:
repo.stash(ident)
except KeyError:
print("nothing to stash.") # noqa: T201
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
print("creating backup branch: {}".format(backup_branch_name)) # noqa: T201
try:
@@ -66,8 +76,10 @@ if branch is None:
try:
ref = repo.lookup_reference('refs/remotes/origin/master')
except:
print("pulling.") # noqa: T201
pull(repo)
print("fetching.") # noqa: T201
for remote in repo.remotes:
if remote.name == "origin":
remote.fetch()
ref = repo.lookup_reference('refs/remotes/origin/master')
repo.checkout(ref)
branch = repo.lookup_branch('master')
@@ -114,6 +126,8 @@ cur_path = os.path.dirname(update_py_path)
req_path = os.path.join(cur_path, "current_requirements.txt")
repo_req_path = os.path.join(repo_path, "requirements.txt")
manager_req_path = os.path.join(cur_path, "current_manager_requirements.txt")
repo_manager_req_path = os.path.join(repo_path, "manager_requirements.txt")
def files_equal(file1, file2):
try:
@@ -140,6 +154,25 @@ if not os.path.exists(req_path) or not files_equal(repo_req_path, req_path):
except:
pass
if os.path.exists(repo_manager_req_path) and (not os.path.exists(manager_req_path) or not files_equal(repo_manager_req_path, manager_req_path)):
import subprocess
# first, confirm that comfyui_manager package is installed; only update it if it is
# if not installed, we get 'WARNING: Package(s) not found: comfyui_manager'
# if installed, there will be a line like 'Version: 0.1.0'
update_manager = False
try:
output = subprocess.check_output([sys.executable, '-s', '-m', 'pip', 'show', 'comfyui_manager'])
if 'Version:' in output.decode('utf-8'):
update_manager = True
except:
pass
if update_manager:
try:
subprocess.check_call([sys.executable, '-s', '-m', 'pip', 'install', '-r', repo_manager_req_path])
shutil.copy(repo_manager_req_path, manager_req_path)
except:
pass
stable_update_script = os.path.join(repo_path, ".ci/update_windows/update_comfyui_stable.bat")
stable_update_script_to = os.path.join(cur_path, "update_comfyui_stable.bat")
@@ -149,3 +182,4 @@ try:
shutil.copy(stable_update_script, stable_update_script_to)
except:
pass

View File

@@ -1,5 +1,5 @@
As of the time of writing this you need this preview driver for best results:
https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-PREVIEW.html
As of the time of writing this you need this driver for best results:
https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-7-1-1.html
HOW TO RUN:
@@ -25,3 +25,4 @@ In the ComfyUI directory you will find a file: extra_model_paths.yaml.example
Rename this file to: extra_model_paths.yaml and edit it with your favorite text editor.

View File

@@ -1,2 +1,2 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --enable-manager
pause

View File

@@ -1,2 +1,2 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --disable-smart-memory
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --enable-manager --disable-smart-memory
pause

View File

@@ -1,2 +1,2 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --enable-manager --fast
pause

View File

@@ -1,3 +1,3 @@
..\python_embeded\python.exe -s ..\ComfyUI\main.py --windows-standalone-build --disable-api-nodes
..\python_embeded\python.exe -s ..\ComfyUI\main.py --windows-standalone-build --enable-manager --disable-api-nodes
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@@ -1,2 +1,2 @@
.\python_embeded\python.exe -s ComfyUI\main.py --cpu --windows-standalone-build
.\python_embeded\python.exe -s ComfyUI\main.py --cpu --windows-standalone-build --enable-manager
pause

View File

@@ -1,3 +1,3 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --enable-manager
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@@ -1,3 +1,3 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --enable-manager --fast fp16_accumulation
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@@ -0,0 +1,21 @@
<!-- API_NODE_PR_CHECKLIST: do not remove -->
## API Node PR Checklist
### Scope
- [ ] **Is API Node Change**
### Pricing & Billing
- [ ] **Need pricing update**
- [ ] **No pricing update**
If **Need pricing update**:
- [ ] Metronome rate cards updated
- [ ] Autobilling tests updated and passing
### QA
- [ ] **QA done**
- [ ] **QA not required**
### Comms
- [ ] Informed **Kosinkadink**

58
.github/workflows/api-node-template.yml vendored Normal file
View File

@@ -0,0 +1,58 @@
name: Append API Node PR template
on:
pull_request_target:
types: [opened, reopened, synchronize, ready_for_review]
paths:
- 'comfy_api_nodes/**' # only run if these files changed
permissions:
contents: read
pull-requests: write
jobs:
inject:
runs-on: ubuntu-latest
steps:
- name: Ensure template exists and append to PR body
uses: actions/github-script@v7
with:
script: |
const { owner, repo } = context.repo;
const number = context.payload.pull_request.number;
const templatePath = '.github/PULL_REQUEST_TEMPLATE/api-node.md';
const marker = '<!-- API_NODE_PR_CHECKLIST: do not remove -->';
const { data: pr } = await github.rest.pulls.get({ owner, repo, pull_number: number });
let templateText;
try {
const res = await github.rest.repos.getContent({
owner,
repo,
path: templatePath,
ref: pr.base.ref
});
const buf = Buffer.from(res.data.content, res.data.encoding || 'base64');
templateText = buf.toString('utf8');
} catch (e) {
core.setFailed(`Required PR template not found at "${templatePath}" on ${pr.base.ref}. Please add it to the repo.`);
return;
}
// Enforce the presence of the marker inside the template (for idempotence)
if (!templateText.includes(marker)) {
core.setFailed(`Template at "${templatePath}" does not contain the required marker:\n${marker}\nAdd it so we can detect duplicates safely.`);
return;
}
// If the PR already contains the marker, do not append again.
const body = pr.body || '';
if (body.includes(marker)) {
core.info('Template already present in PR body; nothing to inject.');
return;
}
const newBody = (body ? body + '\n\n' : '') + templateText + '\n';
await github.rest.pulls.update({ owner, repo, pull_number: number, body: newBody });
core.notice('API Node template appended to PR description.');

View File

@@ -14,7 +14,7 @@ jobs:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA Default (cu129)"
name: "Release NVIDIA Default (cu130)"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
@@ -43,16 +43,33 @@ jobs:
test_release: true
secrets: inherit
release_nvidia_cu126:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA cu126"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu126"
python_minor: "12"
python_patch: "10"
rel_name: "nvidia"
rel_extra_name: "_cu126"
test_release: true
secrets: inherit
release_amd_rocm:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release AMD ROCm 6.4.4"
name: "Release AMD ROCm 7.1.1"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "rocm644"
cache_tag: "rocm711"
python_minor: "12"
python_patch: "10"
rel_name: "amd"

View File

@@ -21,14 +21,15 @@ jobs:
fail-fast: false
matrix:
# os: [macos, linux, windows]
os: [macos, linux]
python_version: ["3.9", "3.10", "3.11", "3.12"]
# os: [macos, linux]
os: [linux]
python_version: ["3.10", "3.11", "3.12"]
cuda_version: ["12.1"]
torch_version: ["stable"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
# - os: macos
# runner_label: [self-hosted, macOS]
# flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""
@@ -73,14 +74,15 @@ jobs:
strategy:
fail-fast: false
matrix:
os: [macos, linux]
# os: [macos, linux]
os: [linux]
python_version: ["3.11"]
cuda_version: ["12.1"]
torch_version: ["nightly"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
# - os: macos
# runner_label: [self-hosted, macOS]
# flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""

View File

@@ -1,3 +1,2 @@
# Admins
* @comfyanonymous
* @kosinkadink
* @comfyanonymous @kosinkadink @guill

168
QUANTIZATION.md Normal file
View File

@@ -0,0 +1,168 @@
# The Comfy guide to Quantization
## How does quantization work?
Quantization aims to map a high-precision value x_f to a lower precision format with minimal loss in accuracy. These smaller formats then serve to reduce the models memory footprint and increase throughput by using specialized hardware.
When simply converting a value from FP16 to FP8 using the round-nearest method we might hit two issues:
- The dynamic range of FP16 (-65,504, 65,504) far exceeds FP8 formats like E4M3 (-448, 448) or E5M2 (-57,344, 57,344), potentially resulting in clipped values
- The original values are concentrated in a small range (e.g. -1,1) leaving many FP8-bits "unused"
By using a scaling factor, we aim to map these values into the quantized-dtype range, making use of the full spectrum. One of the easiest approaches, and common, is using per-tensor absolute-maximum scaling.
```
absmax = max(abs(tensor))
scale = amax / max_dynamic_range_low_precision
# Quantization
tensor_q = (tensor / scale).to(low_precision_dtype)
# De-Quantization
tensor_dq = tensor_q.to(fp16) * scale
tensor_dq ~ tensor
```
Given that additional information (scaling factor) is needed to "interpret" the quantized values, we describe those as derived datatypes.
## Quantization in Comfy
```
QuantizedTensor (torch.Tensor subclass)
↓ __torch_dispatch__
Two-Level Registry (generic + layout handlers)
MixedPrecisionOps + Metadata Detection
```
### Representation
To represent these derived datatypes, ComfyUI uses a subclass of torch.Tensor to implements these using the `QuantizedTensor` class found in `comfy/quant_ops.py`
A `Layout` class defines how a specific quantization format behaves:
- Required parameters
- Quantize method
- De-Quantize method
```python
from comfy.quant_ops import QuantizedLayout
class MyLayout(QuantizedLayout):
@classmethod
def quantize(cls, tensor, **kwargs):
# Convert to quantized format
qdata = ...
params = {'scale': ..., 'orig_dtype': tensor.dtype}
return qdata, params
@staticmethod
def dequantize(qdata, scale, orig_dtype, **kwargs):
return qdata.to(orig_dtype) * scale
```
To then run operations using these QuantizedTensors we use two registry systems to define supported operations.
The first is a **generic registry** that handles operations common to all quantized formats (e.g., `.to()`, `.clone()`, `.reshape()`).
The second registry is layout-specific and allows to implement fast-paths like nn.Linear.
```python
from comfy.quant_ops import register_layout_op
@register_layout_op(torch.ops.aten.linear.default, MyLayout)
def my_linear(func, args, kwargs):
# Extract tensors, call optimized kernel
...
```
When `torch.nn.functional.linear()` is called with QuantizedTensor arguments, `__torch_dispatch__` automatically routes to the registered implementation.
For any unsupported operation, QuantizedTensor will fallback to call `dequantize` and dispatch using the high-precision implementation.
### Mixed Precision
The `MixedPrecisionOps` class (lines 542-648 in `comfy/ops.py`) enables per-layer quantization decisions, allowing different layers in a model to use different precisions. This is activated when a model config contains a `layer_quant_config` dictionary that specifies which layers should be quantized and how.
**Architecture:**
```python
class MixedPrecisionOps(disable_weight_init):
_layer_quant_config = {} # Maps layer names to quantization configs
_compute_dtype = torch.bfloat16 # Default compute / dequantize precision
```
**Key mechanism:**
The custom `Linear._load_from_state_dict()` method inspects each layer during model loading:
- If the layer name is **not** in `_layer_quant_config`: load weight as regular tensor in `_compute_dtype`
- If the layer name **is** in `_layer_quant_config`:
- Load weight as `QuantizedTensor` with the specified layout (e.g., `TensorCoreFP8Layout`)
- Load associated quantization parameters (scales, block_size, etc.)
**Why it's needed:**
Not all layers tolerate quantization equally. Sensitive operations like final projections can be kept in higher precision, while compute-heavy matmuls are quantized. This provides most of the performance benefits while maintaining quality.
The system is selected in `pick_operations()` when `model_config.layer_quant_config` is present, making it the highest-priority operation mode.
## Checkpoint Format
Quantized checkpoints are stored as standard safetensors files with quantized weight tensors and associated scaling parameters, plus a `_quantization_metadata` JSON entry describing the quantization scheme.
The quantized checkpoint will contain the same layers as the original checkpoint but:
- The weights are stored as quantized values, sometimes using a different storage datatype. E.g. uint8 container for fp8.
- For each quantized weight a number of additional scaling parameters are stored alongside depending on the recipe.
- We store a metadata.json in the metadata of the final safetensor containing the `_quantization_metadata` describing which layers are quantized and what layout has been used.
### Scaling Parameters details
We define 4 possible scaling parameters that should cover most recipes in the near-future:
- **weight_scale**: quantization scalers for the weights
- **weight_scale_2**: global scalers in the context of double scaling
- **pre_quant_scale**: scalers used for smoothing salient weights
- **input_scale**: quantization scalers for the activations
| Format | Storage dtype | weight_scale | weight_scale_2 | pre_quant_scale | input_scale |
|--------|---------------|--------------|----------------|-----------------|-------------|
| float8_e4m3fn | float32 | float32 (scalar) | - | - | float32 (scalar) |
You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS).
### Quantization Metadata
The metadata stored alongside the checkpoint contains:
- **format_version**: String to define a version of the standard
- **layers**: A dictionary mapping layer names to their quantization format. The format string maps to the definitions found in `QUANT_ALGOS`.
Example:
```json
{
"_quantization_metadata": {
"format_version": "1.0",
"layers": {
"model.layers.0.mlp.up_proj": "float8_e4m3fn",
"model.layers.0.mlp.down_proj": "float8_e4m3fn",
"model.layers.1.mlp.up_proj": "float8_e4m3fn"
}
}
}
```
## Creating Quantized Checkpoints
To create compatible checkpoints, use any quantization tool provided the output follows the checkpoint format described above and uses a layout defined in `QUANT_ALGOS`.
### Weight Quantization
Weight quantization is straightforward - compute the scaling factor directly from the weight tensor using the absolute maximum method described earlier. Each layer's weights are quantized independently and stored with their corresponding `weight_scale` parameter.
### Calibration (for Activation Quantization)
Activation quantization (e.g., for FP8 Tensor Core operations) requires `input_scale` parameters that cannot be determined from static weights alone. Since activation values depend on actual inputs, we use **post-training calibration (PTQ)**:
1. **Collect statistics**: Run inference on N representative samples
2. **Track activations**: Record the absolute maximum (`amax`) of inputs to each quantized layer
3. **Compute scales**: Derive `input_scale` from collected statistics
4. **Store in checkpoint**: Save `input_scale` parameters alongside weights
The calibration dataset should be representative of your target use case. For diffusion models, this typically means a diverse set of prompts and generation parameters.

View File

@@ -67,6 +67,8 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/)
- [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/)
- [Flux 2](https://comfyanonymous.github.io/ComfyUI_examples/flux2/)
- [Z Image](https://comfyanonymous.github.io/ComfyUI_examples/z_image/)
- Image Editing Models
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
@@ -79,6 +81,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
- [Wan 2.2](https://comfyanonymous.github.io/ComfyUI_examples/wan22/)
- [Hunyuan Video 1.5](https://docs.comfy.org/tutorials/video/hunyuan/hunyuan-video-1-5)
- Audio Models
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
@@ -173,7 +176,7 @@ There is a portable standalone build for Windows that should work for running on
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z)
Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
Simply download, extract with [7-Zip](https://7-zip.org) or with the windows explorer on recent windows versions and run. For smaller models you normally only need to put the checkpoints (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints but many of the larger models have multiple files. Make sure to follow the instructions to know which subfolder to put them in ComfyUI\models\
If you have trouble extracting it, right click the file -> properties -> unblock
@@ -183,7 +186,9 @@ Update your Nvidia drivers if it doesn't start.
[Experimental portable for AMD GPUs](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_amd.7z)
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z) (Supports Nvidia 10 series and older GPUs).
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z).
[Portable with pytorch cuda 12.6 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu126.7z) (Supports Nvidia 10 series and older GPUs).
#### How do I share models between another UI and ComfyUI?
@@ -200,7 +205,7 @@ comfy install
## Manual Install (Windows, Linux)
Python 3.14 will work if you comment out the `kornia` dependency in the requirements.txt file (breaks the canny node) but it is not recommended.
Python 3.14 works but you may encounter issues with the torch compile node. The free threaded variant is still missing some dependencies.
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
@@ -221,7 +226,7 @@ AMD users can install rocm and pytorch with pip if you don't have it already ins
This is the command to install the nightly with ROCm 7.0 which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.0```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.1```
### AMD GPUs (Experimental: Windows and Linux), RDNA 3, 3.5 and 4 only.
@@ -242,7 +247,7 @@ RDNA 4 (RX 9000 series):
### Intel GPUs (Windows and Linux)
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
1. To install PyTorch xpu, use the following command:
@@ -252,10 +257,6 @@ This is the command to install the Pytorch xpu nightly which might have some per
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
### NVIDIA
Nvidia users should install stable pytorch using this command:
@@ -319,6 +320,32 @@ For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step
1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536)
2. Launch ComfyUI by running `python main.py`
## [ComfyUI-Manager](https://github.com/Comfy-Org/ComfyUI-Manager/tree/manager-v4)
**ComfyUI-Manager** is an extension that allows you to easily install, update, and manage custom nodes for ComfyUI.
### Setup
1. Install the manager dependencies:
```bash
pip install -r manager_requirements.txt
```
2. Enable the manager with the `--enable-manager` flag when running ComfyUI:
```bash
python main.py --enable-manager
```
### Command Line Options
| Flag | Description |
|------|-------------|
| `--enable-manager` | Enable ComfyUI-Manager |
| `--enable-manager-legacy-ui` | Use the legacy manager UI instead of the new UI (requires `--enable-manager`) |
| `--disable-manager-ui` | Disable the manager UI and endpoints while keeping background features like security checks and scheduled installation completion (requires `--enable-manager`) |
# Running
```python main.py```

View File

@@ -58,8 +58,13 @@ class InternalRoutes:
return web.json_response({"error": "Invalid directory type"}, status=400)
directory = get_directory_by_type(directory_type)
def is_visible_file(entry: os.DirEntry) -> bool:
"""Filter out hidden files (e.g., .DS_Store on macOS)."""
return entry.is_file() and not entry.name.startswith('.')
sorted_files = sorted(
(entry for entry in os.scandir(directory) if entry.is_file()),
(entry for entry in os.scandir(directory) if is_visible_file(entry)),
key=lambda entry: -entry.stat().st_mtime
)
return web.json_response([entry.name for entry in sorted_files], status=200)

View File

@@ -59,6 +59,9 @@ class UserManager():
user = "default"
if args.multi_user and "comfy-user" in request.headers:
user = request.headers["comfy-user"]
# Block System Users (use same error message to prevent probing)
if user.startswith(folder_paths.SYSTEM_USER_PREFIX):
raise KeyError("Unknown user: " + user)
if user not in self.users:
raise KeyError("Unknown user: " + user)
@@ -66,15 +69,16 @@ class UserManager():
return user
def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
user_directory = folder_paths.get_user_directory()
if type == "userdata":
root_dir = user_directory
root_dir = folder_paths.get_user_directory()
else:
raise KeyError("Unknown filepath type:" + type)
user = self.get_request_user_id(request)
path = user_root = os.path.abspath(os.path.join(root_dir, user))
user_root = folder_paths.get_public_user_directory(user)
if user_root is None:
return None
path = user_root
# prevent leaving /{type}
if os.path.commonpath((root_dir, user_root)) != root_dir:
@@ -101,7 +105,11 @@ class UserManager():
name = name.strip()
if not name:
raise ValueError("username not provided")
if name.startswith(folder_paths.SYSTEM_USER_PREFIX):
raise ValueError("System User prefix not allowed")
user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
if user_id.startswith(folder_paths.SYSTEM_USER_PREFIX):
raise ValueError("System User prefix not allowed")
user_id = user_id + "_" + str(uuid.uuid4())
self.users[user_id] = name
@@ -132,7 +140,10 @@ class UserManager():
if username in self.users.values():
return web.json_response({"error": "Duplicate username."}, status=400)
user_id = self.add_user(username)
try:
user_id = self.add_user(username)
except ValueError as e:
return web.json_response({"error": str(e)}, status=400)
return web.json_response(user_id)
@routes.get("/userdata")
@@ -424,7 +435,7 @@ class UserManager():
return source
dest = get_user_data_path(request, check_exists=False, param="dest")
if not isinstance(source, str):
if not isinstance(dest, str):
return dest
overwrite = request.query.get("overwrite", 'true') != "false"

View File

@@ -413,7 +413,8 @@ class ControlNet(nn.Module):
out_middle = []
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
if y is None:
raise ValueError("y is None, did you try using a controlnet for SDXL on SD1?")
emb = emb + self.label_emb(y)
h = x

View File

@@ -97,6 +97,13 @@ class LatentPreviewMethod(enum.Enum):
Latent2RGB = "latent2rgb"
TAESD = "taesd"
@classmethod
def from_string(cls, value: str):
for member in cls:
if member.value == value:
return member
return None
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
@@ -121,6 +128,12 @@ upcast.add_argument("--force-upcast-attention", action="store_true", help="Force
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
parser.add_argument("--enable-manager", action="store_true", help="Enable the ComfyUI-Manager feature.")
manager_group = parser.add_mutually_exclusive_group()
manager_group.add_argument("--disable-manager-ui", action="store_true", help="Disables only the ComfyUI-Manager UI and endpoints. Scheduled installations and similar background tasks will still operate.")
manager_group.add_argument("--enable-manager-legacy-ui", action="store_true", help="Enables the legacy UI of ComfyUI-Manager")
vram_group = parser.add_mutually_exclusive_group()
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
@@ -131,7 +144,8 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
parser.add_argument("--async-offload", nargs='?', const=2, type=int, default=None, metavar="NUM_STREAMS", help="Use async weight offloading. An optional argument controls the amount of offload streams. Default is 2. Enabled by default on Nvidia.")
parser.add_argument("--disable-async-offload", action="store_true", help="Disable async weight offloading.")
parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.")
@@ -160,13 +174,14 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes. Also prevents the frontend from communicating with the internet.")
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
# The default built-in provider hosted under web/
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"

View File

@@ -51,32 +51,43 @@ class ContextHandlerABC(ABC):
class IndexListContextWindow(ContextWindowABC):
def __init__(self, index_list: list[int], dim: int=0):
def __init__(self, index_list: list[int], dim: int=0, total_frames: int=0):
self.index_list = index_list
self.context_length = len(index_list)
self.dim = dim
self.total_frames = total_frames
self.center_ratio = (min(index_list) + max(index_list)) / (2 * total_frames)
def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor:
def get_tensor(self, full: torch.Tensor, device=None, dim=None, retain_index_list=[]) -> torch.Tensor:
if dim is None:
dim = self.dim
if dim == 0 and full.shape[dim] == 1:
return full
idx = [slice(None)] * dim + [self.index_list]
return full[idx].to(device)
idx = tuple([slice(None)] * dim + [self.index_list])
window = full[idx]
if retain_index_list:
idx = tuple([slice(None)] * dim + [retain_index_list])
window[idx] = full[idx]
return window.to(device)
def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor:
if dim is None:
dim = self.dim
idx = [slice(None)] * dim + [self.index_list]
idx = tuple([slice(None)] * dim + [self.index_list])
full[idx] += to_add
return full
def get_region_index(self, num_regions: int) -> int:
region_idx = int(self.center_ratio * num_regions)
return min(max(region_idx, 0), num_regions - 1)
class IndexListCallbacks:
EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows"
COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results"
EXECUTE_START = "execute_start"
EXECUTE_CLEANUP = "execute_cleanup"
RESIZE_COND_ITEM = "resize_cond_item"
def init_callbacks(self):
return {}
@@ -94,7 +105,8 @@ class ContextFuseMethod:
ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window'])
class IndexListContextHandler(ContextHandlerABC):
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0):
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1,
closed_loop: bool=False, dim:int=0, freenoise: bool=False, cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False):
self.context_schedule = context_schedule
self.fuse_method = fuse_method
self.context_length = context_length
@@ -103,13 +115,18 @@ class IndexListContextHandler(ContextHandlerABC):
self.closed_loop = closed_loop
self.dim = dim
self._step = 0
self.freenoise = freenoise
self.cond_retain_index_list = [int(x.strip()) for x in cond_retain_index_list.split(",")] if cond_retain_index_list else []
self.split_conds_to_windows = split_conds_to_windows
self.callbacks = {}
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
# for now, assume first dim is batch - should have stored on BaseModel in actual implementation
if x_in.size(self.dim) > self.context_length:
logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.")
logging.info(f"Using context windows {self.context_length} with overlap {self.context_overlap} for {x_in.size(self.dim)} frames.")
if self.cond_retain_index_list:
logging.info(f"Retaining original cond for indexes: {self.cond_retain_index_list}")
return True
return False
@@ -123,6 +140,11 @@ class IndexListContextHandler(ContextHandlerABC):
return None
# reuse or resize cond items to match context requirements
resized_cond = []
# if multiple conds, split based on primary region
if self.split_conds_to_windows and len(cond_in) > 1:
region = window.get_region_index(len(cond_in))
logging.info(f"Splitting conds to windows; using region {region} for window {window[0]}-{window[-1]} with center ratio {window.center_ratio:.3f}")
cond_in = [cond_in[region]]
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
for actual_cond in cond_in:
resized_actual_cond = actual_cond.copy()
@@ -145,13 +167,32 @@ class IndexListContextHandler(ContextHandlerABC):
new_cond_item = cond_item.copy()
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
for cond_key, cond_value in new_cond_item.items():
# Allow callbacks to handle custom conditioning items
handled = False
for callback in comfy.patcher_extension.get_all_callbacks(
IndexListCallbacks.RESIZE_COND_ITEM, self.callbacks
):
result = callback(cond_key, cond_value, window, x_in, device, new_cond_item)
if result is not None:
new_cond_item[cond_key] = result
handled = True
break
if handled:
continue
if isinstance(cond_value, torch.Tensor):
if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
if (self.dim < cond_value.ndim and cond_value(self.dim) == x_in.size(self.dim)) or \
(cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim)):
new_cond_item[cond_key] = window.get_tensor(cond_value, device)
# Handle audio_embed (temporal dim is 1)
elif cond_key == "audio_embed" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
audio_cond = cond_value.cond
if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1))
# if has cond that is a Tensor, check if needs to be subset
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \
(cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim)):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device, retain_index_list=self.cond_retain_index_list))
elif cond_key == "num_video_frames": # for SVD
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
new_cond_item[cond_key].cond = window.context_length
@@ -164,7 +205,7 @@ class IndexListContextHandler(ContextHandlerABC):
return resized_cond
def set_step(self, timestep: torch.Tensor, model_options: dict[str]):
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001)
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep[0], rtol=0.0001)
matches = torch.nonzero(mask)
if torch.numel(matches) == 0:
raise Exception("No sample_sigmas matched current timestep; something went wrong.")
@@ -173,7 +214,7 @@ class IndexListContextHandler(ContextHandlerABC):
def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]:
full_length = x_in.size(self.dim) # TODO: choose dim based on model
context_windows = self.context_schedule.func(full_length, self, model_options)
context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows]
context_windows = [IndexListContextWindow(window, dim=self.dim, total_frames=full_length) for window in context_windows]
return context_windows
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
@@ -250,8 +291,8 @@ class IndexListContextHandler(ContextHandlerABC):
prev_weight = (bias_total / (bias_total + bias))
new_weight = (bias / (bias_total + bias))
# account for dims of tensors
idx_window = [slice(None)] * self.dim + [idx]
pos_window = [slice(None)] * self.dim + [pos]
idx_window = tuple([slice(None)] * self.dim + [idx])
pos_window = tuple([slice(None)] * self.dim + [pos])
# apply new values
conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight
biases_final[i][idx] = bias_total + bias
@@ -287,6 +328,28 @@ def create_prepare_sampling_wrapper(model: ModelPatcher):
)
def _sampler_sample_wrapper(executor, guider, sigmas, extra_args, callback, noise, *args, **kwargs):
model_options = extra_args.get("model_options", None)
if model_options is None:
raise Exception("model_options not found in sampler_sample_wrapper; this should never happen, something went wrong.")
handler: IndexListContextHandler = model_options.get("context_handler", None)
if handler is None:
raise Exception("context_handler not found in sampler_sample_wrapper; this should never happen, something went wrong.")
if not handler.freenoise:
return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs)
noise = apply_freenoise(noise, handler.dim, handler.context_length, handler.context_overlap, extra_args["seed"])
return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs)
def create_sampler_sample_wrapper(model: ModelPatcher):
model.add_wrapper_with_key(
comfy.patcher_extension.WrappersMP.SAMPLER_SAMPLE,
"ContextWindows_sampler_sample",
_sampler_sample_wrapper
)
def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor:
total_dims = len(x_in.shape)
weights_tensor = torch.Tensor(weights).to(device=device)
@@ -538,3 +601,29 @@ def shift_window_to_end(window: list[int], num_frames: int):
for i in range(len(window)):
# 2) add end_delta to each val to slide windows to end
window[i] = window[i] + end_delta
# https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved/blob/90fb1331201a4b29488089e4fbffc0d82cc6d0a9/animatediff/sample_settings.py#L465
def apply_freenoise(noise: torch.Tensor, dim: int, context_length: int, context_overlap: int, seed: int):
logging.info("Context windows: Applying FreeNoise")
generator = torch.Generator(device='cpu').manual_seed(seed)
latent_video_length = noise.shape[dim]
delta = context_length - context_overlap
for start_idx in range(0, latent_video_length - context_length, delta):
place_idx = start_idx + context_length
actual_delta = min(delta, latent_video_length - place_idx)
if actual_delta <= 0:
break
list_idx = torch.randperm(actual_delta, generator=generator, device='cpu') + start_idx
source_slice = [slice(None)] * noise.ndim
source_slice[dim] = list_idx
target_slice = [slice(None)] * noise.ndim
target_slice[dim] = slice(place_idx, place_idx + actual_delta)
noise[tuple(target_slice)] = noise[tuple(source_slice)]
return noise

View File

@@ -1557,10 +1557,13 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5, solver_type="phi_1"):
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
if solver_type not in {"phi_1", "phi_2"}:
raise ValueError("solver_type must be 'phi_1' or 'phi_2'")
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
@@ -1600,8 +1603,14 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
if solver_type == "phi_1":
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
elif solver_type == "phi_2":
b2 = ei_h_phi_2(-h_eta) / r
b1 = ei_h_phi_1(-h_eta) - b2
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b2 * denoised_2)
if inject_noise:
segment_factor = (r - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()

View File

@@ -6,6 +6,7 @@ class LatentFormat:
latent_dimensions = 2
latent_rgb_factors = None
latent_rgb_factors_bias = None
latent_rgb_factors_reshape = None
taesd_decoder_name = None
def process_in(self, latent):
@@ -178,6 +179,54 @@ class Flux(SD3):
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
class Flux2(LatentFormat):
latent_channels = 128
def __init__(self):
self.latent_rgb_factors =[
[0.0058, 0.0113, 0.0073],
[0.0495, 0.0443, 0.0836],
[-0.0099, 0.0096, 0.0644],
[0.2144, 0.3009, 0.3652],
[0.0166, -0.0039, -0.0054],
[0.0157, 0.0103, -0.0160],
[-0.0398, 0.0902, -0.0235],
[-0.0052, 0.0095, 0.0109],
[-0.3527, -0.2712, -0.1666],
[-0.0301, -0.0356, -0.0180],
[-0.0107, 0.0078, 0.0013],
[0.0746, 0.0090, -0.0941],
[0.0156, 0.0169, 0.0070],
[-0.0034, -0.0040, -0.0114],
[0.0032, 0.0181, 0.0080],
[-0.0939, -0.0008, 0.0186],
[0.0018, 0.0043, 0.0104],
[0.0284, 0.0056, -0.0127],
[-0.0024, -0.0022, -0.0030],
[0.1207, -0.0026, 0.0065],
[0.0128, 0.0101, 0.0142],
[0.0137, -0.0072, -0.0007],
[0.0095, 0.0092, -0.0059],
[0.0000, -0.0077, -0.0049],
[-0.0465, -0.0204, -0.0312],
[0.0095, 0.0012, -0.0066],
[0.0290, -0.0034, 0.0025],
[0.0220, 0.0169, -0.0048],
[-0.0332, -0.0457, -0.0468],
[-0.0085, 0.0389, 0.0609],
[-0.0076, 0.0003, -0.0043],
[-0.0111, -0.0460, -0.0614],
]
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
self.latent_rgb_factors_reshape = lambda t: t.reshape(t.shape[0], 32, 2, 2, t.shape[-2], t.shape[-1]).permute(0, 1, 4, 2, 5, 3).reshape(t.shape[0], 32, t.shape[-2] * 2, t.shape[-1] * 2)
def process_in(self, latent):
return latent
def process_out(self, latent):
return latent
class Mochi(LatentFormat):
latent_channels = 12
latent_dimensions = 3
@@ -382,6 +431,7 @@ class HunyuanVideo(LatentFormat):
]
latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]
taesd_decoder_name = "taehv"
class Cosmos1CV8x8x8(LatentFormat):
latent_channels = 16
@@ -445,7 +495,7 @@ class Wan21(LatentFormat):
]).view(1, self.latent_channels, 1, 1, 1)
self.taesd_decoder_name = None #TODO
self.taesd_decoder_name = "lighttaew2_1"
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
@@ -516,6 +566,7 @@ class Wan22(Wan21):
def __init__(self):
self.scale_factor = 1.0
self.taesd_decoder_name = "lighttaew2_2"
self.latents_mean = torch.tensor([
-0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557,
-0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825,
@@ -611,6 +662,67 @@ class HunyuanImage21Refiner(LatentFormat):
latent_dimensions = 3
scale_factor = 1.03682
def process_in(self, latent):
out = latent * self.scale_factor
out = torch.cat((out[:, :, :1], out), dim=2)
out = out.permute(0, 2, 1, 3, 4)
b, f_times_2, c, h, w = out.shape
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
out = out.permute(0, 2, 1, 3, 4).contiguous()
return out
def process_out(self, latent):
z = latent / self.scale_factor
z = z.permute(0, 2, 1, 3, 4)
b, f, c, h, w = z.shape
z = z.reshape(b, f, 2, c // 2, h, w)
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
z = z.permute(0, 2, 1, 3, 4)
z = z[:, :, 1:]
return z
class HunyuanVideo15(LatentFormat):
latent_rgb_factors = [
[ 0.0568, -0.0521, -0.0131],
[ 0.0014, 0.0735, 0.0326],
[ 0.0186, 0.0531, -0.0138],
[-0.0031, 0.0051, 0.0288],
[ 0.0110, 0.0556, 0.0432],
[-0.0041, -0.0023, -0.0485],
[ 0.0530, 0.0413, 0.0253],
[ 0.0283, 0.0251, 0.0339],
[ 0.0277, -0.0372, -0.0093],
[ 0.0393, 0.0944, 0.1131],
[ 0.0020, 0.0251, 0.0037],
[-0.0017, 0.0012, 0.0234],
[ 0.0468, 0.0436, 0.0203],
[ 0.0354, 0.0439, -0.0233],
[ 0.0090, 0.0123, 0.0346],
[ 0.0382, 0.0029, 0.0217],
[ 0.0261, -0.0300, 0.0030],
[-0.0088, -0.0220, -0.0283],
[-0.0272, -0.0121, -0.0363],
[-0.0664, -0.0622, 0.0144],
[ 0.0414, 0.0479, 0.0529],
[ 0.0355, 0.0612, -0.0247],
[ 0.0147, 0.0264, 0.0174],
[ 0.0438, 0.0038, 0.0542],
[ 0.0431, -0.0573, -0.0033],
[-0.0162, -0.0211, -0.0406],
[-0.0487, -0.0295, -0.0393],
[ 0.0005, -0.0109, 0.0253],
[ 0.0296, 0.0591, 0.0353],
[ 0.0119, 0.0181, -0.0306],
[-0.0085, -0.0362, 0.0229],
[ 0.0005, -0.0106, 0.0242]
]
latent_rgb_factors_bias = [ 0.0456, -0.0202, -0.0644]
latent_channels = 32
latent_dimensions = 3
scale_factor = 1.03682
taesd_decoder_name = "lighttaehy1_5"
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1

View File

@@ -1,15 +1,15 @@
import torch
from torch import Tensor, nn
from comfy.ldm.flux.math import attention
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
QKNorm,
SelfAttention,
ModulationOut,
)
# TODO: remove this in a few months
SingleStreamBlock = None
DoubleStreamBlock = None
class ChromaModulationOut(ModulationOut):
@@ -48,124 +48,6 @@ class Approximator(nn.Module):
return x
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}):
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask, transformer_options=transformer_options)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
# calculate the txt bloks
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}) -> Tensor:
mod = vec
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x.addcmul_(mod.gate, output)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()

View File

@@ -11,12 +11,12 @@ import comfy.ldm.common_dit
from comfy.ldm.flux.layers import (
EmbedND,
timestep_embedding,
DoubleStreamBlock,
SingleStreamBlock,
)
from .layers import (
DoubleStreamBlock,
LastLayer,
SingleStreamBlock,
Approximator,
ChromaModulationOut,
)
@@ -40,7 +40,8 @@ class ChromaParams:
out_dim: int
hidden_dim: int
n_layers: int
txt_ids_dims: list
vec_in_dim: int
@@ -90,6 +91,7 @@ class Chroma(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=False,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -98,7 +100,7 @@ class Chroma(nn.Module):
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=False, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
@@ -178,7 +180,10 @@ class Chroma(nn.Module):
pe = self.pe_embedder(ids)
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if i not in self.skip_mmdit:
double_mod = (
self.get_modulations(mod_vectors, "double_img", idx=i),
@@ -221,7 +226,10 @@ class Chroma(nn.Module):
img = torch.cat((txt, img), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if i not in self.skip_dit:
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
if ("single_block", i) in blocks_replace:

View File

@@ -10,12 +10,10 @@ from torch import Tensor, nn
from einops import repeat
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock
from comfy.ldm.chroma.model import Chroma, ChromaParams
from comfy.ldm.chroma.layers import (
DoubleStreamBlock,
SingleStreamBlock,
Approximator,
)
from .layers import (
@@ -39,7 +37,7 @@ class ChromaRadianceParams(ChromaParams):
nerf_final_head_type: str
# None means use the same dtype as the model.
nerf_embedder_dtype: Optional[torch.dtype]
use_x0: bool
class ChromaRadiance(Chroma):
"""
@@ -89,7 +87,6 @@ class ChromaRadiance(Chroma):
dtype=dtype, device=device, operations=operations
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
@@ -97,6 +94,7 @@ class ChromaRadiance(Chroma):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=False,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -109,6 +107,7 @@ class ChromaRadiance(Chroma):
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
modulation=False,
dtype=dtype, device=device, operations=operations,
)
for _ in range(params.depth_single_blocks)
@@ -160,6 +159,9 @@ class ChromaRadiance(Chroma):
self.skip_dit = []
self.lite = False
if params.use_x0:
self.register_buffer("__x0__", torch.tensor([]))
@property
def _nerf_final_layer(self) -> nn.Module:
if self.params.nerf_final_head_type == "linear":
@@ -277,6 +279,12 @@ class ChromaRadiance(Chroma):
params_dict |= overrides
return params.__class__(**params_dict)
def _apply_x0_residual(self, predicted, noisy, timesteps):
# non zero during training to prevent 0 div
eps = 0.0
return (noisy - predicted) / (timesteps.view(-1,1,1,1) + eps)
def _forward(
self,
x: Tensor,
@@ -317,4 +325,11 @@ class ChromaRadiance(Chroma):
transformer_options,
attn_mask=kwargs.get("attention_mask", None),
)
return self.forward_nerf(img, img_out, params)[:, :, :h, :w]
out = self.forward_nerf(img, img_out, params)[:, :, :h, :w]
# If x0 variant → v-pred, just return this instead
if hasattr(self, "__x0__"):
out = self._apply_x0_residual(out, img, timestep)
return out

View File

@@ -48,15 +48,44 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
def __init__(self, in_dim: int, hidden_dim: int, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=bias, dtype=dtype, device=device)
self.silu = nn.SiLU()
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=bias, dtype=dtype, device=device)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class YakMLP(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, dtype=None, device=None, operations=None):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.gate_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device)
self.up_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device)
self.down_proj = operations.Linear(self.intermediate_size, self.hidden_size, bias=True, dtype=dtype, device=device)
self.act_fn = nn.SiLU()
def forward(self, x: Tensor) -> Tensor:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dtype=None, device=None, operations=None):
if yak_mlp:
return YakMLP(hidden_size, mlp_hidden_dim, dtype=dtype, device=device, operations=operations)
if mlp_silu_act:
return nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device),
SiLUActivation(),
operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device),
)
else:
return nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, dtype=None, device=None, operations=None):
@@ -80,14 +109,14 @@ class QKNorm(torch.nn.Module):
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, dtype=None, device=None, operations=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
self.proj = operations.Linear(dim, dim, bias=proj_bias, dtype=dtype, device=device)
@dataclass
@@ -98,11 +127,11 @@ class ModulationOut:
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
def __init__(self, dim: int, double: bool, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
self.lin = operations.Linear(dim, self.multiplier * dim, bias=bias, dtype=dtype, device=device)
def forward(self, vec: Tensor) -> tuple:
if vec.ndim == 2:
@@ -129,77 +158,107 @@ def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
return tensor
class SiLUActivation(nn.Module):
def __init__(self):
super().__init__()
self.gate_fn = nn.SiLU()
def forward(self, x: Tensor) -> Tensor:
x1, x2 = x.chunk(2, dim=-1)
return self.gate_fn(x1) * x2
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.modulation = modulation
if self.modulation:
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.img_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
if self.modulation:
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
if self.modulation:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
else:
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img)
img_qkv = self.img_attn.qkv(img_modulated)
del img_modulated
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del img_qkv
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt)
txt_qkv = self.txt_attn.qkv(txt_modulated)
del txt_modulated
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del txt_qkv
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
if self.flipped_img_txt:
q = torch.cat((img_q, txt_q), dim=2)
del img_q, txt_q
k = torch.cat((img_k, txt_k), dim=2)
del img_k, txt_k
v = torch.cat((img_v, txt_v), dim=2)
del img_v, txt_v
# run actual attention
attn = attention(torch.cat((img_q, txt_q), dim=2),
torch.cat((img_k, txt_k), dim=2),
torch.cat((img_v, txt_v), dim=2),
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
else:
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
# calculate the img bloks
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
del img_attn
img += apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
# calculate the txt bloks
txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt)
del txt_attn
txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt)
if txt.dtype == torch.float16:
@@ -220,6 +279,10 @@ class SingleStreamBlock(nn.Module):
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
modulation=True,
mlp_silu_act=False,
bias=True,
yak_mlp=False,
dtype=None,
device=None,
operations=None
@@ -231,30 +294,55 @@ class SingleStreamBlock(nn.Module):
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.mlp_hidden_dim_first = self.mlp_hidden_dim
self.yak_mlp = yak_mlp
if mlp_silu_act:
self.mlp_hidden_dim_first = int(hidden_size * mlp_ratio * 2)
self.mlp_act = SiLUActivation()
else:
self.mlp_act = nn.GELU(approximate="tanh")
if self.yak_mlp:
self.mlp_hidden_dim_first *= 2
self.mlp_act = nn.SiLU()
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim_first, bias=bias, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, bias=bias, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
if modulation:
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
else:
self.modulation = None
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
mod, _ = self.modulation(vec)
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
if self.modulation:
mod, _ = self.modulation(vec)
else:
mod = vec
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim_first], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del qkv
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
if self.yak_mlp:
mlp = self.mlp_act(mlp[..., self.mlp_hidden_dim_first // 2:]) * mlp[..., :self.mlp_hidden_dim_first // 2]
else:
mlp = self.mlp_act(mlp)
output = self.linear2(torch.cat((attn, mlp), 2))
x += apply_mod(output, mod.gate, None, modulation_dims)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
@@ -262,11 +350,11 @@ class SingleStreamBlock(nn.Module):
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=bias, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=bias, dtype=dtype, device=device))
def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor:
if vec.ndim == 2:

View File

@@ -7,7 +7,8 @@ import comfy.model_management
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor:
q, k = apply_rope(q, k, pe)
if pe is not None:
q, k = apply_rope(q, k, pe)
heads = q.shape[1]
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options)
return x

View File

@@ -15,6 +15,8 @@ from .layers import (
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
Modulation,
RMSNorm
)
@dataclass
@@ -33,6 +35,14 @@ class FluxParams:
patch_size: int
qkv_bias: bool
guidance_embed: bool
txt_ids_dims: list
global_modulation: bool = False
mlp_silu_act: bool = False
ops_bias: bool = True
default_ref_method: str = "offset"
ref_index_scale: float = 1.0
yak_mlp: bool = False
txt_norm: bool = False
class Flux(nn.Module):
@@ -58,13 +68,22 @@ class Flux(nn.Module):
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations)
if params.vec_in_dim is not None:
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
else:
self.vector_in = None
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
if params.txt_norm:
self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations)
else:
self.txt_norm = None
self.double_blocks = nn.ModuleList(
[
@@ -73,6 +92,10 @@ class Flux(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=params.global_modulation is False,
mlp_silu_act=params.mlp_silu_act,
proj_bias=params.ops_bias,
yak_mlp=params.yak_mlp,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -81,13 +104,30 @@ class Flux(nn.Module):
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, bias=params.ops_bias, yak_mlp=params.yak_mlp, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
if final_layer:
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, bias=params.ops_bias, dtype=dtype, device=device, operations=operations)
if params.global_modulation:
self.double_stream_modulation_img = Modulation(
self.hidden_size,
double=True,
bias=False,
dtype=dtype, device=device, operations=operations
)
self.double_stream_modulation_txt = Modulation(
self.hidden_size,
double=True,
bias=False,
dtype=dtype, device=device, operations=operations
)
self.single_stream_modulation = Modulation(
self.hidden_size, double=False, bias=False, dtype=dtype, device=device, operations=operations
)
def forward_orig(
self,
@@ -103,9 +143,6 @@ class Flux(nn.Module):
attn_mask: Tensor = None,
) -> Tensor:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches = transformer_options.get("patches", {})
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
@@ -118,9 +155,19 @@ class Flux(nn.Module):
if guidance is not None:
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
if self.vector_in is not None:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
if self.txt_norm is not None:
txt = self.txt_norm(txt)
txt = self.txt_in(txt)
vec_orig = vec
if self.params.global_modulation:
vec = (self.double_stream_modulation_img(vec_orig), self.double_stream_modulation_txt(vec_orig))
if "post_input" in patches:
for p in patches["post_input"]:
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
@@ -136,7 +183,10 @@ class Flux(nn.Module):
pe = None
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -177,7 +227,13 @@ class Flux(nn.Module):
img = torch.cat((txt, img), 1)
if self.params.global_modulation:
vec, _ = self.single_stream_modulation(vec_orig)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -207,10 +263,10 @@ class Flux(nn.Module):
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
img = self.final_layer(img, vec_orig) # (N, T, patch_size ** 2 * out_channels)
return img
def process_img(self, x, index=0, h_offset=0, w_offset=0):
def process_img(self, x, index=0, h_offset=0, w_offset=0, transformer_options={}):
bs, c, h, w = x.shape
patch_size = self.patch_size
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
@@ -222,10 +278,22 @@ class Flux(nn.Module):
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
steps_h = h_len
steps_w = w_len
rope_options = transformer_options.get("rope_options", None)
if rope_options is not None:
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
index += rope_options.get("shift_t", 0.0)
h_offset += rope_options.get("shift_y", 0.0)
w_offset += rope_options.get("shift_x", 0.0)
img_ids = torch.zeros((steps_h, steps_w, len(self.params.axes_dim)), device=x.device, dtype=torch.float32)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=steps_h, device=x.device, dtype=torch.float32).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=steps_w, device=x.device, dtype=torch.float32).unsqueeze(0)
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
@@ -241,16 +309,16 @@ class Flux(nn.Module):
h_len = ((h_orig + (patch_size // 2)) // patch_size)
w_len = ((w_orig + (patch_size // 2)) // patch_size)
img, img_ids = self.process_img(x)
img, img_ids = self.process_img(x, transformer_options=transformer_options)
img_tokens = img.shape[1]
if ref_latents is not None:
h = 0
w = 0
index = 0
ref_latents_method = kwargs.get("ref_latents_method", "offset")
ref_latents_method = kwargs.get("ref_latents_method", self.params.default_ref_method)
for ref in ref_latents:
if ref_latents_method == "index":
index += 1
index += self.params.ref_index_scale
h_offset = 0
w_offset = 0
elif ref_latents_method == "uxo":
@@ -274,7 +342,12 @@ class Flux(nn.Module):
img = torch.cat([img, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
txt_ids = torch.zeros((bs, context.shape[1], len(self.params.axes_dim)), device=x.device, dtype=torch.float32)
if len(self.params.txt_ids_dims) > 0:
for i in self.params.txt_ids_dims:
txt_ids[:, :, i] = torch.linspace(0, context.shape[1] - 1, steps=context.shape[1], device=x.device, dtype=torch.float32)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
out = out[:, :img_tokens]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h_orig,:w_orig]

View File

@@ -6,7 +6,6 @@ import comfy.ldm.flux.layers
import comfy.ldm.modules.diffusionmodules.mmdit
from comfy.ldm.modules.attention import optimized_attention
from dataclasses import dataclass
from einops import repeat
@@ -42,6 +41,9 @@ class HunyuanVideoParams:
guidance_embed: bool
byt5: bool
meanflow: bool
use_cond_type_embedding: bool
vision_in_dim: int
meanflow_sum: bool
class SelfAttentionRef(nn.Module):
@@ -157,7 +159,10 @@ class TokenRefiner(nn.Module):
t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
# m = mask.float().unsqueeze(-1)
# c = (x.float() * m).sum(dim=1) / m.sum(dim=1) #TODO: the following works when the x.shape is the same length as the tokens but might break otherwise
c = x.sum(dim=1) / x.shape[1]
if x.dtype == torch.float16:
c = x.float().sum(dim=1) / x.shape[1]
else:
c = x.sum(dim=1) / x.shape[1]
c = t + self.c_embedder(c.to(x.dtype))
x = self.input_embedder(x)
@@ -196,11 +201,15 @@ class HunyuanVideo(nn.Module):
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
super().__init__()
self.dtype = dtype
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
params = HunyuanVideoParams(**kwargs)
self.params = params
self.patch_size = params.patch_size
self.in_channels = params.in_channels
self.out_channels = params.out_channels
self.use_cond_type_embedding = params.use_cond_type_embedding
self.vision_in_dim = params.vision_in_dim
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
@@ -266,6 +275,18 @@ class HunyuanVideo(nn.Module):
if final_layer:
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
# HunyuanVideo 1.5 specific modules
if self.vision_in_dim is not None:
from comfy.ldm.wan.model import MLPProj
self.vision_in = MLPProj(in_dim=self.vision_in_dim, out_dim=self.hidden_size, operation_settings=operation_settings)
else:
self.vision_in = None
if self.use_cond_type_embedding:
# 0: text_encoder feature 1: byt5 feature 2: vision_encoder feature
self.cond_type_embedding = nn.Embedding(3, self.hidden_size)
else:
self.cond_type_embedding = None
def forward_orig(
self,
img: Tensor,
@@ -276,6 +297,7 @@ class HunyuanVideo(nn.Module):
timesteps: Tensor,
y: Tensor = None,
txt_byt5=None,
clip_fea=None,
guidance: Tensor = None,
guiding_frame_index=None,
ref_latent=None,
@@ -296,7 +318,7 @@ class HunyuanVideo(nn.Module):
timesteps_r = transformer_options['sample_sigmas'][w[0] + 1]
timesteps_r = timesteps_r.unsqueeze(0).to(device=timesteps.device, dtype=timesteps.dtype)
vec_r = self.time_r_in(timestep_embedding(timesteps_r, 256, time_factor=1000.0).to(img.dtype))
vec = (vec + vec_r) / 2
vec = (vec + vec_r) if self.params.meanflow_sum else (vec + vec_r) / 2
if ref_latent is not None:
ref_latent_ids = self.img_ids(ref_latent)
@@ -331,12 +353,31 @@ class HunyuanVideo(nn.Module):
txt = self.txt_in(txt, timesteps, txt_mask, transformer_options=transformer_options)
if self.cond_type_embedding is not None:
self.cond_type_embedding.to(txt.device)
cond_emb = self.cond_type_embedding(torch.zeros_like(txt[:, :, 0], device=txt.device, dtype=torch.long))
txt = txt + cond_emb.to(txt.dtype)
if self.byt5_in is not None and txt_byt5 is not None:
txt_byt5 = self.byt5_in(txt_byt5)
if self.cond_type_embedding is not None:
cond_emb = self.cond_type_embedding(torch.ones_like(txt_byt5[:, :, 0], device=txt_byt5.device, dtype=torch.long))
txt_byt5 = txt_byt5 + cond_emb.to(txt_byt5.dtype)
txt = torch.cat((txt_byt5, txt), dim=1) # byt5 first for HunyuanVideo1.5
else:
txt = torch.cat((txt, txt_byt5), dim=1)
txt_byt5_ids = torch.zeros((txt_ids.shape[0], txt_byt5.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt = torch.cat((txt, txt_byt5), dim=1)
txt_ids = torch.cat((txt_ids, txt_byt5_ids), dim=1)
if clip_fea is not None:
txt_vision_states = self.vision_in(clip_fea)
if self.cond_type_embedding is not None:
cond_emb = self.cond_type_embedding(2 * torch.ones_like(txt_vision_states[:, :, 0], dtype=torch.long, device=txt_vision_states.device))
txt_vision_states = txt_vision_states + cond_emb
txt = torch.cat((txt_vision_states.to(txt.dtype), txt), dim=1)
extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1)
ids = torch.cat((img_ids, txt_ids), dim=1)
pe = self.pe_embedder(ids)
@@ -349,7 +390,10 @@ class HunyuanVideo(nn.Module):
attn_mask = None
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -371,7 +415,10 @@ class HunyuanVideo(nn.Module):
img = torch.cat((img, txt), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -430,14 +477,14 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
return repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
def forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, txt_byt5, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
).execute(x, timestep, context, y, txt_byt5, clip_fea, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
def _forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
bs = x.shape[0]
if len(self.patch_size) == 3:
img_ids = self.img_ids(x)
@@ -445,5 +492,5 @@ class HunyuanVideo(nn.Module):
else:
img_ids = self.img_ids_2d(x)
txt_ids = torch.zeros((bs, context.shape[1], 2), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, clip_fea, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
return out

View File

@@ -0,0 +1,121 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d
from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm
import model_management, model_patcher
class SRResidualCausalBlock3D(nn.Module):
def __init__(self, channels: int):
super().__init__()
self.block = nn.Sequential(
VideoConv3d(channels, channels, kernel_size=3),
nn.SiLU(inplace=True),
VideoConv3d(channels, channels, kernel_size=3),
nn.SiLU(inplace=True),
VideoConv3d(channels, channels, kernel_size=3),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.block(x)
class SRModel3DV2(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int = 64,
num_blocks: int = 6,
global_residual: bool = False,
):
super().__init__()
self.in_conv = VideoConv3d(in_channels, hidden_channels, kernel_size=3)
self.blocks = nn.ModuleList([SRResidualCausalBlock3D(hidden_channels) for _ in range(num_blocks)])
self.out_conv = VideoConv3d(hidden_channels, out_channels, kernel_size=3)
self.global_residual = bool(global_residual)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
y = self.in_conv(x)
for blk in self.blocks:
y = blk(y)
y = self.out_conv(y)
if self.global_residual and (y.shape == residual.shape):
y = y + residual
return y
class Upsampler(nn.Module):
def __init__(
self,
z_channels: int,
out_channels: int,
block_out_channels: tuple[int, ...],
num_res_blocks: int = 2,
):
super().__init__()
self.num_res_blocks = num_res_blocks
self.block_out_channels = block_out_channels
self.z_channels = z_channels
ch = block_out_channels[0]
self.conv_in = VideoConv3d(z_channels, ch, kernel_size=3)
self.up = nn.ModuleList()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_shortcut=False,
conv_op=VideoConv3d, norm_op=RMS_norm)
for j in range(num_res_blocks + 1)])
ch = tgt
self.up.append(stage)
self.norm_out = RMS_norm(ch)
self.conv_out = VideoConv3d(ch, out_channels, kernel_size=3)
def forward(self, z):
"""
Args:
z: (B, C, T, H, W)
target_shape: (H, W)
"""
# z to block_in
repeats = self.block_out_channels[0] // (self.z_channels)
x = self.conv_in(z) + z.repeat_interleave(repeats=repeats, dim=1)
# upsampling
for stage in self.up:
for blk in stage.block:
x = blk(x)
out = self.conv_out(F.silu(self.norm_out(x)))
return out
UPSAMPLERS = {
"720p": SRModel3DV2,
"1080p": Upsampler,
}
class HunyuanVideo15SRModel():
def __init__(self, model_type, config):
self.load_device = model_management.vae_device()
offload_device = model_management.vae_offload_device()
self.dtype = model_management.vae_dtype(self.load_device)
self.model_class = UPSAMPLERS.get(model_type)
self.model = self.model_class(**config).eval()
self.patcher = model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=True)
def get_sd(self):
return self.model.state_dict()
def resample_latent(self, latent):
model_management.load_model_gpu(self.patcher)
return self.model(latent.to(self.load_device))

View File

@@ -1,11 +1,13 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d, Normalize
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, CarriedConv3d, Normalize, conv_carry_causal_3d, torch_cat_if_needed
import comfy.ops
import comfy.ldm.models.autoencoder
import comfy.model_management
ops = comfy.ops.disable_weight_init
class RMS_norm(nn.Module):
def __init__(self, dim):
super().__init__()
@@ -14,10 +16,10 @@ class RMS_norm(nn.Module):
self.gamma = nn.Parameter(torch.empty(shape))
def forward(self, x):
return F.normalize(x, dim=1) * self.scale * self.gamma
return F.normalize(x, dim=1) * self.scale * comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device)
class DnSmpl(nn.Module):
def __init__(self, ic, oc, tds=True, refiner_vae=True, op=VideoConv3d):
def __init__(self, ic, oc, tds, refiner_vae, op):
super().__init__()
fct = 2 * 2 * 2 if tds else 1 * 2 * 2
assert oc % fct == 0
@@ -27,11 +29,12 @@ class DnSmpl(nn.Module):
self.tds = tds
self.gs = fct * ic // oc
def forward(self, x):
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
r1 = 2 if self.tds else 1
h = self.conv(x)
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
if self.tds and self.refiner_vae and conv_carry_in is None:
if self.tds and self.refiner_vae:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2)
@@ -39,14 +42,7 @@ class DnSmpl(nn.Module):
hf = hf.reshape(b, 2 * 2 * c, f, ht // 2, wd // 2)
hf = torch.cat([hf, hf], dim=1)
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nf = frms // r1
hn = hn.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
hn = hn.permute(0, 3, 5, 7, 1, 2, 4, 6)
hn = hn.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
h = torch.cat([hf, hn], dim=2)
h = h[:, :, 1:, :, :]
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
@@ -54,38 +50,36 @@ class DnSmpl(nn.Module):
xf = xf.permute(0, 4, 6, 1, 2, 3, 5)
xf = xf.reshape(b, 2 * 2 * ci, f, ht // 2, wd // 2)
B, C, T, H, W = xf.shape
xf = xf.view(B, h.shape[1], self.gs // 2, T, H, W).mean(dim=2)
xf = xf.view(B, hf.shape[1], self.gs // 2, T, H, W).mean(dim=2)
xn = x[:, :, 1:, :, :]
b, ci, frms, ht, wd = xn.shape
nf = frms // r1
xn = xn.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
xn = xn.permute(0, 3, 5, 7, 1, 2, 4, 6)
xn = xn.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = xn.shape
xn = xn.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
x = x[:, :, 1:, :, :]
nf = frms // r1
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
if h.shape[2] == 0:
return hf + xf
b, ci, frms, ht, wd = x.shape
nf = frms // r1
sc = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
sc = sc.permute(0, 3, 5, 7, 1, 2, 4, 6)
sc = sc.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = sc.shape
sc = sc.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
b, c, frms, ht, wd = h.shape
nf = frms // r1
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
return h + sc
b, ci, frms, ht, wd = x.shape
nf = frms // r1
x = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
x = x.permute(0, 3, 5, 7, 1, 2, 4, 6)
x = x.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = x.shape
x = x.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
if self.tds and self.refiner_vae and conv_carry_in is None:
h = torch.cat([hf, h], dim=2)
x = torch.cat([xf, x], dim=2)
return h + x
class UpSmpl(nn.Module):
def __init__(self, ic, oc, tus=True, refiner_vae=True, op=VideoConv3d):
def __init__(self, ic, oc, tus, refiner_vae, op):
super().__init__()
fct = 2 * 2 * 2 if tus else 1 * 2 * 2
self.conv = op(ic, oc * fct, kernel_size=3, stride=1, padding=1)
@@ -94,11 +88,11 @@ class UpSmpl(nn.Module):
self.tus = tus
self.rp = fct * oc // ic
def forward(self, x):
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
r1 = 2 if self.tus else 1
h = self.conv(x)
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
if self.tus and self.refiner_vae:
if self.tus and self.refiner_vae and conv_carry_in is None:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
nc = c // (2 * 2)
@@ -107,14 +101,7 @@ class UpSmpl(nn.Module):
hf = hf.reshape(b, nc, f, ht * 2, wd * 2)
hf = hf[:, : hf.shape[1] // 2]
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nc = c // (r1 * 2 * 2)
hn = hn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
hn = hn.permute(0, 4, 5, 1, 6, 2, 7, 3)
hn = hn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
h = torch.cat([hf, hn], dim=2)
h = h[:, :, 1:, :, :]
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
@@ -125,29 +112,26 @@ class UpSmpl(nn.Module):
xf = xf.permute(0, 3, 4, 5, 1, 6, 2)
xf = xf.reshape(b, nc, f, ht * 2, wd * 2)
xn = x[:, :, 1:, :, :]
xn = xn.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = xn.shape
nc = c // (r1 * 2 * 2)
xn = xn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
xn = xn.permute(0, 4, 5, 1, 6, 2, 7, 3)
xn = xn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
nc = c // (r1 * 2 * 2)
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
x = x[:, :, 1:, :, :]
sc = x.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = sc.shape
nc = c // (r1 * 2 * 2)
sc = sc.reshape(b, r1, 2, 2, nc, frms, ht, wd)
sc = sc.permute(0, 4, 5, 1, 6, 2, 7, 3)
sc = sc.reshape(b, nc, frms * r1, ht * 2, wd * 2)
b, c, frms, ht, wd = h.shape
nc = c // (r1 * 2 * 2)
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
return h + sc
x = x.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = x.shape
nc = c // (r1 * 2 * 2)
x = x.reshape(b, r1, 2, 2, nc, frms, ht, wd)
x = x.permute(0, 4, 5, 1, 6, 2, 7, 3)
x = x.reshape(b, nc, frms * r1, ht * 2, wd * 2)
if self.tus and self.refiner_vae and conv_carry_in is None:
h = torch.cat([hf, h], dim=2)
x = torch.cat([xf, x], dim=2)
return h + x
class Encoder(nn.Module):
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
@@ -160,7 +144,7 @@ class Encoder(nn.Module):
self.refiner_vae = refiner_vae
if self.refiner_vae:
conv_op = VideoConv3d
conv_op = CarriedConv3d
norm_op = RMS_norm
else:
conv_op = ops.Conv3d
@@ -188,9 +172,9 @@ class Encoder(nn.Module):
self.down.append(stage)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.norm_out = norm_op(ch)
self.conv_out = conv_op(ch, z_channels << 1, 3, 1, 1)
@@ -201,31 +185,48 @@ class Encoder(nn.Module):
if not self.refiner_vae and x.shape[2] == 1:
x = x.expand(-1, -1, self.ffactor_temporal, -1, -1)
x = self.conv_in(x)
if self.refiner_vae:
xl = [x[:, :, :1, :, :]]
if x.shape[2] > self.ffactor_temporal:
xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // self.ffactor_temporal) * self.ffactor_temporal, :, :], self.ffactor_temporal * 2, dim=2)
x = xl
else:
x = [x]
out = []
for stage in self.down:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'downsample'):
x = stage.downsample(x)
conv_carry_in = None
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
x1 = [ x1 ]
x1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out)
for stage in self.down:
for blk in stage.block:
x1 = blk(x1, None, conv_carry_in, conv_carry_out)
if hasattr(stage, 'downsample'):
x1 = stage.downsample(x1, conv_carry_in, conv_carry_out)
out.append(x1)
conv_carry_in = conv_carry_out
out = torch_cat_if_needed(out, dim=2)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(out)))
del out
b, c, t, h, w = x.shape
grp = c // (self.z_channels << 1)
skip = x.view(b, c // grp, grp, t, h, w).mean(2)
out = self.conv_out(F.silu(self.norm_out(x))) + skip
out = conv_carry_causal_3d([F.silu(self.norm_out(x))], self.conv_out) + skip
if self.refiner_vae:
out = self.regul(out)[0]
out = torch.cat((out[:, :, :1], out), dim=2)
out = out.permute(0, 2, 1, 3, 4)
b, f_times_2, c, h, w = out.shape
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
out = out.permute(0, 2, 1, 3, 4).contiguous()
return out
class Decoder(nn.Module):
@@ -239,7 +240,7 @@ class Decoder(nn.Module):
self.refiner_vae = refiner_vae
if self.refiner_vae:
conv_op = VideoConv3d
conv_op = CarriedConv3d
norm_op = RMS_norm
else:
conv_op = ops.Conv3d
@@ -249,9 +250,9 @@ class Decoder(nn.Module):
self.conv_in = conv_op(z_channels, ch, kernel_size=3, stride=1, padding=1)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.up = nn.ModuleList()
depth = (ffactor_spatial >> 1).bit_length()
@@ -275,27 +276,38 @@ class Decoder(nn.Module):
self.conv_out = conv_op(ch, out_channels, 3, stride=1, padding=1)
def forward(self, z):
if self.refiner_vae:
z = z.permute(0, 2, 1, 3, 4)
b, f, c, h, w = z.shape
z = z.reshape(b, f, 2, c // 2, h, w)
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
z = z.permute(0, 2, 1, 3, 4)
z = z[:, :, 1:]
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = conv_carry_causal_3d([z], self.conv_in) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
for stage in self.up:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'upsample'):
x = stage.upsample(x)
if self.refiner_vae:
x = torch.split(x, 2, dim=2)
else:
x = [ x ]
out = []
out = self.conv_out(F.silu(self.norm_out(x)))
conv_carry_in = None
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
for stage in self.up:
for blk in stage.block:
x1 = blk(x1, None, conv_carry_in, conv_carry_out)
if hasattr(stage, 'upsample'):
x1 = stage.upsample(x1, conv_carry_in, conv_carry_out)
x1 = [ F.silu(self.norm_out(x1)) ]
x1 = conv_carry_causal_3d(x1, self.conv_out, conv_carry_in, conv_carry_out)
out.append(x1)
conv_carry_in = conv_carry_out
del x
out = torch_cat_if_needed(out, dim=2)
if not self.refiner_vae:
if z.shape[-3] == 1:
out = out[:, :, -1:]
return out

View File

@@ -0,0 +1,413 @@
import torch
from torch import nn
import math
import comfy.ldm.common_dit
from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.math import apply_rope1
from comfy.ldm.flux.layers import EmbedND
def attention(q, k, v, heads, transformer_options={}):
return optimized_attention(
q.transpose(1, 2),
k.transpose(1, 2),
v.transpose(1, 2),
heads=heads,
skip_reshape=True,
transformer_options=transformer_options
)
def apply_scale_shift_norm(norm, x, scale, shift):
return torch.addcmul(shift, norm(x), scale + 1.0)
def apply_gate_sum(x, out, gate):
return torch.addcmul(x, gate, out)
def get_shift_scale_gate(params):
shift, scale, gate = torch.chunk(params, 3, dim=-1)
return tuple(x.unsqueeze(1) for x in (shift, scale, gate))
def get_freqs(dim, max_period=10000.0):
return torch.exp(-math.log(max_period) * torch.arange(start=0, end=dim, dtype=torch.float32) / dim)
class TimeEmbeddings(nn.Module):
def __init__(self, model_dim, time_dim, max_period=10000.0, operation_settings=None):
super().__init__()
assert model_dim % 2 == 0
self.model_dim = model_dim
self.max_period = max_period
self.register_buffer("freqs", get_freqs(model_dim // 2, max_period), persistent=False)
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(model_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.activation = nn.SiLU()
self.out_layer = operations.Linear(time_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, timestep, dtype):
args = torch.outer(timestep, self.freqs.to(device=timestep.device))
time_embed = torch.cat([torch.cos(args), torch.sin(args)], dim=-1).to(dtype)
time_embed = self.out_layer(self.activation(self.in_layer(time_embed)))
return time_embed
class TextEmbeddings(nn.Module):
def __init__(self, text_dim, model_dim, operation_settings=None):
super().__init__()
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(text_dim, model_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.norm = operations.LayerNorm(model_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, text_embed):
text_embed = self.in_layer(text_embed)
return self.norm(text_embed).type_as(text_embed)
class VisualEmbeddings(nn.Module):
def __init__(self, visual_dim, model_dim, patch_size, operation_settings=None):
super().__init__()
self.patch_size = patch_size
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(visual_dim, model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, x):
x = x.movedim(1, -1) # B C T H W -> B T H W C
B, T, H, W, dim = x.shape
pt, ph, pw = self.patch_size
x = x.view(
B,
T // pt, pt,
H // ph, ph,
W // pw, pw,
dim,
).permute(0, 1, 3, 5, 2, 4, 6, 7).flatten(4, 7)
return self.in_layer(x)
class Modulation(nn.Module):
def __init__(self, time_dim, model_dim, num_params, operation_settings=None):
super().__init__()
self.activation = nn.SiLU()
self.out_layer = operation_settings.get("operations").Linear(time_dim, num_params * model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, x):
return self.out_layer(self.activation(x))
class SelfAttention(nn.Module):
def __init__(self, num_channels, head_dim, operation_settings=None):
super().__init__()
assert num_channels % head_dim == 0
self.num_heads = num_channels // head_dim
self.head_dim = head_dim
operations = operation_settings.get("operations")
self.to_query = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.to_key = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.to_value = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.query_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.key_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.out_layer = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.num_chunks = 2
def _compute_qk(self, x, freqs, proj_fn, norm_fn):
result = proj_fn(x).view(*x.shape[:-1], self.num_heads, -1)
return apply_rope1(norm_fn(result), freqs)
def _forward(self, x, freqs, transformer_options={}):
q = self._compute_qk(x, freqs, self.to_query, self.query_norm)
k = self._compute_qk(x, freqs, self.to_key, self.key_norm)
v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1)
out = attention(q, k, v, self.num_heads, transformer_options=transformer_options)
return self.out_layer(out)
def _forward_chunked(self, x, freqs, transformer_options={}):
def process_chunks(proj_fn, norm_fn):
x_chunks = torch.chunk(x, self.num_chunks, dim=1)
freqs_chunks = torch.chunk(freqs, self.num_chunks, dim=1)
chunks = []
for x_chunk, freqs_chunk in zip(x_chunks, freqs_chunks):
chunks.append(self._compute_qk(x_chunk, freqs_chunk, proj_fn, norm_fn))
return torch.cat(chunks, dim=1)
q = process_chunks(self.to_query, self.query_norm)
k = process_chunks(self.to_key, self.key_norm)
v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1)
out = attention(q, k, v, self.num_heads, transformer_options=transformer_options)
return self.out_layer(out)
def forward(self, x, freqs, transformer_options={}):
if x.shape[1] > 8192:
return self._forward_chunked(x, freqs, transformer_options=transformer_options)
else:
return self._forward(x, freqs, transformer_options=transformer_options)
class CrossAttention(SelfAttention):
def get_qkv(self, x, context):
q = self.to_query(x).view(*x.shape[:-1], self.num_heads, -1)
k = self.to_key(context).view(*context.shape[:-1], self.num_heads, -1)
v = self.to_value(context).view(*context.shape[:-1], self.num_heads, -1)
return q, k, v
def forward(self, x, context, transformer_options={}):
q, k, v = self.get_qkv(x, context)
out = attention(self.query_norm(q), self.key_norm(k), v, self.num_heads, transformer_options=transformer_options)
return self.out_layer(out)
class FeedForward(nn.Module):
def __init__(self, dim, ff_dim, operation_settings=None):
super().__init__()
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(dim, ff_dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.activation = nn.GELU()
self.out_layer = operations.Linear(ff_dim, dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.num_chunks = 4
def _forward(self, x):
return self.out_layer(self.activation(self.in_layer(x)))
def _forward_chunked(self, x):
chunks = torch.chunk(x, self.num_chunks, dim=1)
output_chunks = []
for chunk in chunks:
output_chunks.append(self._forward(chunk))
return torch.cat(output_chunks, dim=1)
def forward(self, x):
if x.shape[1] > 8192:
return self._forward_chunked(x)
else:
return self._forward(x)
class OutLayer(nn.Module):
def __init__(self, model_dim, time_dim, visual_dim, patch_size, operation_settings=None):
super().__init__()
self.patch_size = patch_size
self.modulation = Modulation(time_dim, model_dim, 2, operation_settings=operation_settings)
operations = operation_settings.get("operations")
self.norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.out_layer = operations.Linear(model_dim, math.prod(patch_size) * visual_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, visual_embed, time_embed):
B, T, H, W, _ = visual_embed.shape
shift, scale = torch.chunk(self.modulation(time_embed), 2, dim=-1)
scale = scale[:, None, None, None, :]
shift = shift[:, None, None, None, :]
visual_embed = apply_scale_shift_norm(self.norm, visual_embed, scale, shift)
x = self.out_layer(visual_embed)
out_dim = x.shape[-1] // (self.patch_size[0] * self.patch_size[1] * self.patch_size[2])
x = x.view(
B, T, H, W,
out_dim,
self.patch_size[0], self.patch_size[1], self.patch_size[2]
)
return x.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(2, 3).flatten(3, 4).flatten(4, 5)
class TransformerEncoderBlock(nn.Module):
def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None):
super().__init__()
self.text_modulation = Modulation(time_dim, model_dim, 6, operation_settings=operation_settings)
operations = operation_settings.get("operations")
self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings)
self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings)
def forward(self, x, time_embed, freqs, transformer_options={}):
self_attn_params, ff_params = torch.chunk(self.text_modulation(time_embed), 2, dim=-1)
shift, scale, gate = get_shift_scale_gate(self_attn_params)
out = apply_scale_shift_norm(self.self_attention_norm, x, scale, shift)
out = self.self_attention(out, freqs, transformer_options=transformer_options)
x = apply_gate_sum(x, out, gate)
shift, scale, gate = get_shift_scale_gate(ff_params)
out = apply_scale_shift_norm(self.feed_forward_norm, x, scale, shift)
out = self.feed_forward(out)
x = apply_gate_sum(x, out, gate)
return x
class TransformerDecoderBlock(nn.Module):
def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None):
super().__init__()
self.visual_modulation = Modulation(time_dim, model_dim, 9, operation_settings=operation_settings)
operations = operation_settings.get("operations")
self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings)
self.cross_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.cross_attention = CrossAttention(model_dim, head_dim, operation_settings=operation_settings)
self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings)
def forward(self, visual_embed, text_embed, time_embed, freqs, transformer_options={}):
self_attn_params, cross_attn_params, ff_params = torch.chunk(self.visual_modulation(time_embed), 3, dim=-1)
# self attention
shift, scale, gate = get_shift_scale_gate(self_attn_params)
visual_out = apply_scale_shift_norm(self.self_attention_norm, visual_embed, scale, shift)
visual_out = self.self_attention(visual_out, freqs, transformer_options=transformer_options)
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
# cross attention
shift, scale, gate = get_shift_scale_gate(cross_attn_params)
visual_out = apply_scale_shift_norm(self.cross_attention_norm, visual_embed, scale, shift)
visual_out = self.cross_attention(visual_out, text_embed, transformer_options=transformer_options)
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
# feed forward
shift, scale, gate = get_shift_scale_gate(ff_params)
visual_out = apply_scale_shift_norm(self.feed_forward_norm, visual_embed, scale, shift)
visual_out = self.feed_forward(visual_out)
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
return visual_embed
class Kandinsky5(nn.Module):
def __init__(
self,
in_visual_dim=16, out_visual_dim=16, in_text_dim=3584, in_text_dim2=768, time_dim=512,
model_dim=1792, ff_dim=7168, visual_embed_dim=132, patch_size=(1, 2, 2), num_text_blocks=2, num_visual_blocks=32,
axes_dims=(16, 24, 24), rope_scale_factor=(1.0, 2.0, 2.0),
dtype=None, device=None, operations=None, **kwargs
):
super().__init__()
head_dim = sum(axes_dims)
self.rope_scale_factor = rope_scale_factor
self.in_visual_dim = in_visual_dim
self.model_dim = model_dim
self.patch_size = patch_size
self.visual_embed_dim = visual_embed_dim
self.dtype = dtype
self.device = device
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.time_embeddings = TimeEmbeddings(model_dim, time_dim, operation_settings=operation_settings)
self.text_embeddings = TextEmbeddings(in_text_dim, model_dim, operation_settings=operation_settings)
self.pooled_text_embeddings = TextEmbeddings(in_text_dim2, time_dim, operation_settings=operation_settings)
self.visual_embeddings = VisualEmbeddings(visual_embed_dim, model_dim, patch_size, operation_settings=operation_settings)
self.text_transformer_blocks = nn.ModuleList(
[TransformerEncoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_text_blocks)]
)
self.visual_transformer_blocks = nn.ModuleList(
[TransformerDecoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_visual_blocks)]
)
self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size, operation_settings=operation_settings)
self.rope_embedder_3d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=axes_dims)
self.rope_embedder_1d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=[head_dim])
def rope_encode_1d(self, seq_len, seq_start=0, steps=None, device=None, dtype=None, transformer_options={}):
steps = seq_len if steps is None else steps
seq_ids = torch.linspace(seq_start, seq_start + (seq_len - 1), steps=steps, device=device, dtype=dtype)
seq_ids = seq_ids.reshape(-1, 1).unsqueeze(0) # Shape: (1, steps, 1)
freqs = self.rope_embedder_1d(seq_ids).movedim(1, 2)
return freqs
def rope_encode_3d(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}):
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
if steps_t is None:
steps_t = t_len
if steps_h is None:
steps_h = h_len
if steps_w is None:
steps_w = w_len
h_start = 0
w_start = 0
rope_options = transformer_options.get("rope_options", None)
if rope_options is not None:
t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
t_start += rope_options.get("shift_t", 0.0)
h_start += rope_options.get("shift_y", 0.0)
w_start += rope_options.get("shift_x", 0.0)
else:
rope_scale_factor = self.rope_scale_factor
if self.model_dim == 4096: # pro video model uses different rope scaling at higher resolutions
if h * w >= 14080:
rope_scale_factor = (1.0, 3.16, 3.16)
t_len = (t_len - 1.0) / rope_scale_factor[0] + 1.0
h_len = (h_len - 1.0) / rope_scale_factor[1] + 1.0
w_len = (w_len - 1.0) / rope_scale_factor[2] + 1.0
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
freqs = self.rope_embedder_3d(img_ids).movedim(1, 2)
return freqs
def forward_orig(self, x, timestep, context, y, freqs, freqs_text, transformer_options={}, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
context = self.text_embeddings(context)
time_embed = self.time_embeddings(timestep, x.dtype) + self.pooled_text_embeddings(y)
for block in self.text_transformer_blocks:
context = block(context, time_embed, freqs_text, transformer_options=transformer_options)
visual_embed = self.visual_embeddings(x)
visual_shape = visual_embed.shape[:-1]
visual_embed = visual_embed.flatten(1, -2)
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.visual_transformer_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.visual_transformer_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
return block(x=args["x"], context=args["context"], time_embed=args["time_embed"], freqs=args["freqs"], transformer_options=args.get("transformer_options"))
visual_embed = blocks_replace[("double_block", i)]({"x": visual_embed, "context": context, "time_embed": time_embed, "freqs": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})["x"]
else:
visual_embed = block(visual_embed, context, time_embed, freqs=freqs, transformer_options=transformer_options)
visual_embed = visual_embed.reshape(*visual_shape, -1)
return self.out_layer(visual_embed, time_embed)
def _forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs):
original_dims = x.ndim
if original_dims == 4:
x = x.unsqueeze(2)
bs, c, t_len, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
if time_dim_replace is not None:
time_dim_replace = comfy.ldm.common_dit.pad_to_patch_size(time_dim_replace, self.patch_size)
x[:, :time_dim_replace.shape[1], :time_dim_replace.shape[2]] = time_dim_replace
freqs = self.rope_encode_3d(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options)
freqs_text = self.rope_encode_1d(context.shape[1], device=x.device, dtype=x.dtype, transformer_options=transformer_options)
out = self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs)
if original_dims == 4:
out = out.squeeze(2)
return out
def forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, time_dim_replace=time_dim_replace, transformer_options=transformer_options, **kwargs)

View File

@@ -0,0 +1,160 @@
import torch
from torch import nn
from .model import JointTransformerBlock
class ZImageControlTransformerBlock(JointTransformerBlock):
def __init__(
self,
layer_id: int,
dim: int,
n_heads: int,
n_kv_heads: int,
multiple_of: int,
ffn_dim_multiplier: float,
norm_eps: float,
qk_norm: bool,
modulation=True,
block_id=0,
operation_settings=None,
):
super().__init__(layer_id, dim, n_heads, n_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, qk_norm, modulation, z_image_modulation=True, operation_settings=operation_settings)
self.block_id = block_id
if block_id == 0:
self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, c, x, **kwargs):
if self.block_id == 0:
c = self.before_proj(c) + x
c = super().forward(c, **kwargs)
c_skip = self.after_proj(c)
return c_skip, c
class ZImage_Control(torch.nn.Module):
def __init__(
self,
dim: int = 3840,
n_heads: int = 30,
n_kv_heads: int = 30,
multiple_of: int = 256,
ffn_dim_multiplier: float = (8.0 / 3.0),
norm_eps: float = 1e-5,
qk_norm: bool = True,
n_control_layers=6,
control_in_dim=16,
additional_in_dim=0,
broken=False,
refiner_control=False,
dtype=None,
device=None,
operations=None,
**kwargs
):
super().__init__()
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.broken = broken
self.additional_in_dim = additional_in_dim
self.control_in_dim = control_in_dim
n_refiner_layers = 2
self.n_control_layers = n_control_layers
self.control_layers = nn.ModuleList(
[
ZImageControlTransformerBlock(
i,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
block_id=i,
operation_settings=operation_settings,
)
for i in range(self.n_control_layers)
]
)
all_x_embedder = {}
patch_size = 2
f_patch_size = 1
x_embedder = operations.Linear(f_patch_size * patch_size * patch_size * (self.control_in_dim + self.additional_in_dim), dim, bias=True, device=device, dtype=dtype)
all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder
self.refiner_control = refiner_control
self.control_all_x_embedder = nn.ModuleDict(all_x_embedder)
if self.refiner_control:
self.control_noise_refiner = nn.ModuleList(
[
ZImageControlTransformerBlock(
layer_id,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
block_id=layer_id,
operation_settings=operation_settings,
)
for layer_id in range(n_refiner_layers)
]
)
else:
self.control_noise_refiner = nn.ModuleList(
[
JointTransformerBlock(
layer_id,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
modulation=True,
z_image_modulation=True,
operation_settings=operation_settings,
)
for layer_id in range(n_refiner_layers)
]
)
def forward(self, cap_feats, control_context, x_freqs_cis, adaln_input):
patch_size = 2
f_patch_size = 1
pH = pW = patch_size
B, C, H, W = control_context.shape
control_context = self.control_all_x_embedder[f"{patch_size}-{f_patch_size}"](control_context.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2))
x_attn_mask = None
if not self.refiner_control:
for layer in self.control_noise_refiner:
control_context = layer(control_context, x_attn_mask, x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input)
return control_context
def forward_noise_refiner_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input):
if self.refiner_control:
if self.broken:
if layer_id == 0:
return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
if layer_id > 0:
out = None
for i in range(1, len(self.control_layers)):
o, control_context = self.control_layers[i](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
if out is None:
out = o
return (out, control_context)
else:
return self.control_noise_refiner[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
else:
return (None, control_context)
def forward_control_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input):
return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)

View File

@@ -11,6 +11,7 @@ import comfy.ldm.common_dit
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope
import comfy.patcher_extension
@@ -21,6 +22,10 @@ def modulate(x, scale):
# Core NextDiT Model #
#############################################################################
def clamp_fp16(x):
if x.dtype == torch.float16:
return torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class JointAttention(nn.Module):
"""Multi-head attention module."""
@@ -31,6 +36,7 @@ class JointAttention(nn.Module):
n_heads: int,
n_kv_heads: Optional[int],
qk_norm: bool,
out_bias: bool = False,
operation_settings={},
):
"""
@@ -59,7 +65,7 @@ class JointAttention(nn.Module):
self.out = operation_settings.get("operations").Linear(
n_heads * self.head_dim,
dim,
bias=False,
bias=out_bias,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
)
@@ -70,35 +76,6 @@ class JointAttention(nn.Module):
else:
self.q_norm = self.k_norm = nn.Identity()
@staticmethod
def apply_rotary_emb(
x_in: torch.Tensor,
freqs_cis: torch.Tensor,
) -> torch.Tensor:
"""
Apply rotary embeddings to input tensors using the given frequency
tensor.
This function applies rotary embeddings to the given query 'xq' and
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
input tensors are reshaped as complex numbers, and the frequency tensor
is reshaped for broadcasting compatibility. The resulting tensors
contain rotary embeddings and are returned as real tensors.
Args:
x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
exponentials.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
and key tensor with rotary embeddings.
"""
t_ = x_in.reshape(*x_in.shape[:-1], -1, 1, 2)
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
return t_out.reshape(*x_in.shape)
def forward(
self,
x: torch.Tensor,
@@ -134,8 +111,7 @@ class JointAttention(nn.Module):
xq = self.q_norm(xq)
xk = self.k_norm(xk)
xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis)
xq, xk = apply_rope(xq, xk, freqs_cis)
n_rep = self.n_local_heads // self.n_local_kv_heads
if n_rep >= 1:
@@ -197,7 +173,7 @@ class FeedForward(nn.Module):
# @torch.compile
def _forward_silu_gating(self, x1, x3):
return F.silu(x1) * x3
return clamp_fp16(F.silu(x1) * x3)
def forward(self, x):
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
@@ -215,6 +191,8 @@ class JointTransformerBlock(nn.Module):
norm_eps: float,
qk_norm: bool,
modulation=True,
z_image_modulation=False,
attn_out_bias=False,
operation_settings={},
) -> None:
"""
@@ -235,10 +213,10 @@ class JointTransformerBlock(nn.Module):
super().__init__()
self.dim = dim
self.head_dim = dim // n_heads
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, operation_settings=operation_settings)
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, out_bias=attn_out_bias, operation_settings=operation_settings)
self.feed_forward = FeedForward(
dim=dim,
hidden_dim=4 * dim,
hidden_dim=dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
operation_settings=operation_settings,
@@ -252,16 +230,27 @@ class JointTransformerBlock(nn.Module):
self.modulation = modulation
if modulation:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(dim, 1024),
4 * dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
if z_image_modulation:
self.adaLN_modulation = nn.Sequential(
operation_settings.get("operations").Linear(
min(dim, 256),
4 * dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
else:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(dim, 1024),
4 * dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
def forward(
self,
@@ -288,27 +277,27 @@ class JointTransformerBlock(nn.Module):
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)
x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2(
self.attention(
clamp_fp16(self.attention(
modulate(self.attention_norm1(x), scale_msa),
x_mask,
freqs_cis,
transformer_options=transformer_options,
)
))
)
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
self.feed_forward(
clamp_fp16(self.feed_forward(
modulate(self.ffn_norm1(x), scale_mlp),
)
))
)
else:
assert adaln_input is None
x = x + self.attention_norm2(
self.attention(
clamp_fp16(self.attention(
self.attention_norm1(x),
x_mask,
freqs_cis,
transformer_options=transformer_options,
)
))
)
x = x + self.ffn_norm2(
self.feed_forward(
@@ -323,7 +312,7 @@ class FinalLayer(nn.Module):
The final layer of NextDiT.
"""
def __init__(self, hidden_size, patch_size, out_channels, operation_settings={}):
def __init__(self, hidden_size, patch_size, out_channels, z_image_modulation=False, operation_settings={}):
super().__init__()
self.norm_final = operation_settings.get("operations").LayerNorm(
hidden_size,
@@ -340,10 +329,15 @@ class FinalLayer(nn.Module):
dtype=operation_settings.get("dtype"),
)
if z_image_modulation:
min_mod = 256
else:
min_mod = 1024
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(hidden_size, 1024),
min(hidden_size, min_mod),
hidden_size,
bias=True,
device=operation_settings.get("device"),
@@ -373,12 +367,17 @@ class NextDiT(nn.Module):
n_heads: int = 32,
n_kv_heads: Optional[int] = None,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
ffn_dim_multiplier: float = 4.0,
norm_eps: float = 1e-5,
qk_norm: bool = False,
cap_feat_dim: int = 5120,
axes_dims: List[int] = (16, 56, 56),
axes_lens: List[int] = (1, 512, 512),
rope_theta=10000.0,
z_image_modulation=False,
time_scale=1.0,
pad_tokens_multiple=None,
clip_text_dim=None,
image_model=None,
device=None,
dtype=None,
@@ -390,6 +389,8 @@ class NextDiT(nn.Module):
self.in_channels = in_channels
self.out_channels = in_channels
self.patch_size = patch_size
self.time_scale = time_scale
self.pad_tokens_multiple = pad_tokens_multiple
self.x_embedder = operation_settings.get("operations").Linear(
in_features=patch_size * patch_size * in_channels,
@@ -411,6 +412,7 @@ class NextDiT(nn.Module):
norm_eps,
qk_norm,
modulation=True,
z_image_modulation=z_image_modulation,
operation_settings=operation_settings,
)
for layer_id in range(n_refiner_layers)
@@ -434,7 +436,7 @@ class NextDiT(nn.Module):
]
)
self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
self.t_embedder = TimestepEmbedder(min(dim, 1024), output_size=256 if z_image_modulation else None, **operation_settings)
self.cap_embedder = nn.Sequential(
operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").Linear(
@@ -446,6 +448,31 @@ class NextDiT(nn.Module):
),
)
self.clip_text_pooled_proj = None
if clip_text_dim is not None:
self.clip_text_dim = clip_text_dim
self.clip_text_pooled_proj = nn.Sequential(
operation_settings.get("operations").RMSNorm(clip_text_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").Linear(
clip_text_dim,
clip_text_dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
self.time_text_embed = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(dim, 1024) + clip_text_dim,
min(dim, 1024),
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
self.layers = nn.ModuleList(
[
JointTransformerBlock(
@@ -457,18 +484,24 @@ class NextDiT(nn.Module):
ffn_dim_multiplier,
norm_eps,
qk_norm,
z_image_modulation=z_image_modulation,
attn_out_bias=False,
operation_settings=operation_settings,
)
for layer_id in range(n_layers)
]
)
self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, z_image_modulation=z_image_modulation, operation_settings=operation_settings)
if self.pad_tokens_multiple is not None:
self.x_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype))
self.cap_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype))
assert (dim // n_heads) == sum(axes_dims)
self.axes_dims = axes_dims
self.axes_lens = axes_lens
self.rope_embedder = EmbedND(dim=dim // n_heads, theta=10000.0, axes_dim=axes_dims)
self.rope_embedder = EmbedND(dim=dim // n_heads, theta=rope_theta, axes_dim=axes_dims)
self.dim = dim
self.n_heads = n_heads
@@ -503,108 +536,63 @@ class NextDiT(nn.Module):
bsz = len(x)
pH = pW = self.patch_size
device = x[0].device
dtype = x[0].dtype
orig_x = x
if cap_mask is not None:
l_effective_cap_len = cap_mask.sum(dim=1).tolist()
else:
l_effective_cap_len = [num_tokens] * bsz
if self.pad_tokens_multiple is not None:
pad_extra = (-cap_feats.shape[1]) % self.pad_tokens_multiple
cap_feats = torch.cat((cap_feats, self.cap_pad_token.to(device=cap_feats.device, dtype=cap_feats.dtype, copy=True).unsqueeze(0).repeat(cap_feats.shape[0], pad_extra, 1)), dim=1)
if cap_mask is not None and not torch.is_floating_point(cap_mask):
cap_mask = (cap_mask - 1).to(dtype) * torch.finfo(dtype).max
cap_pos_ids = torch.zeros(bsz, cap_feats.shape[1], 3, dtype=torch.float32, device=device)
cap_pos_ids[:, :, 0] = torch.arange(cap_feats.shape[1], dtype=torch.float32, device=device) + 1.0
img_sizes = [(img.size(1), img.size(2)) for img in x]
l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes]
B, C, H, W = x.shape
x = self.x_embedder(x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2))
max_seq_len = max(
(cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len))
)
max_cap_len = max(l_effective_cap_len)
max_img_len = max(l_effective_img_len)
rope_options = transformer_options.get("rope_options", None)
h_scale = 1.0
w_scale = 1.0
h_start = 0
w_start = 0
if rope_options is not None:
h_scale = rope_options.get("scale_y", 1.0)
w_scale = rope_options.get("scale_x", 1.0)
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.float32, device=device)
h_start = rope_options.get("shift_y", 0.0)
w_start = rope_options.get("shift_x", 0.0)
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
H, W = img_sizes[i]
H_tokens, W_tokens = H // pH, W // pW
assert H_tokens * W_tokens == img_len
H_tokens, W_tokens = H // pH, W // pW
x_pos_ids = torch.zeros((bsz, x.shape[1], 3), dtype=torch.float32, device=device)
x_pos_ids[:, :, 0] = cap_feats.shape[1] + 1
x_pos_ids[:, :, 1] = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten()
x_pos_ids[:, :, 2] = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten()
rope_options = transformer_options.get("rope_options", None)
h_scale = 1.0
w_scale = 1.0
h_start = 0
w_start = 0
if rope_options is not None:
h_scale = rope_options.get("scale_y", 1.0)
w_scale = rope_options.get("scale_x", 1.0)
if self.pad_tokens_multiple is not None:
pad_extra = (-x.shape[1]) % self.pad_tokens_multiple
x = torch.cat((x, self.x_pad_token.to(device=x.device, dtype=x.dtype, copy=True).unsqueeze(0).repeat(x.shape[0], pad_extra, 1)), dim=1)
x_pos_ids = torch.nn.functional.pad(x_pos_ids, (0, 0, 0, pad_extra))
h_start = rope_options.get("shift_y", 0.0)
w_start = rope_options.get("shift_x", 0.0)
freqs_cis = self.rope_embedder(torch.cat((cap_pos_ids, x_pos_ids), dim=1)).movedim(1, 2)
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.float32, device=device)
position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
row_ids = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten()
col_ids = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten()
position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
position_ids[i, cap_len:cap_len+img_len, 2] = col_ids
freqs_cis = self.rope_embedder(position_ids).movedim(1, 2).to(dtype)
# build freqs_cis for cap and image individually
cap_freqs_cis_shape = list(freqs_cis.shape)
# cap_freqs_cis_shape[1] = max_cap_len
cap_freqs_cis_shape[1] = cap_feats.shape[1]
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
img_freqs_cis_shape = list(freqs_cis.shape)
img_freqs_cis_shape[1] = max_img_len
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len]
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len]
patches = transformer_options.get("patches", {})
# refine context
for layer in self.context_refiner:
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis, transformer_options=transformer_options)
cap_feats = layer(cap_feats, cap_mask, freqs_cis[:, :cap_pos_ids.shape[1]], transformer_options=transformer_options)
# refine image
flat_x = []
for i in range(bsz):
img = x[i]
C, H, W = img.size()
img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1)
flat_x.append(img)
x = flat_x
padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype)
padded_img_mask = torch.zeros(bsz, max_img_len, dtype=dtype, device=device)
for i in range(bsz):
padded_img_embed[i, :l_effective_img_len[i]] = x[i]
padded_img_mask[i, l_effective_img_len[i]:] = -torch.finfo(dtype).max
padded_img_embed = self.x_embedder(padded_img_embed)
padded_img_mask = padded_img_mask.unsqueeze(1)
for layer in self.noise_refiner:
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t, transformer_options=transformer_options)
if cap_mask is not None:
mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device)
mask[:, :max_cap_len] = cap_mask[:, :max_cap_len]
else:
mask = None
padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype)
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len]
padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len]
padded_img_mask = None
x_input = x
for i, layer in enumerate(self.noise_refiner):
x = layer(x, padded_img_mask, freqs_cis[:, cap_pos_ids.shape[1]:], t, transformer_options=transformer_options)
if "noise_refiner" in patches:
for p in patches["noise_refiner"]:
out = p({"img": x, "img_input": x_input, "txt": cap_feats, "pe": freqs_cis[:, cap_pos_ids.shape[1]:], "vec": t, "x": orig_x, "block_index": i, "transformer_options": transformer_options, "block_type": "noise_refiner"})
if "img" in out:
x = out["img"]
padded_full_embed = torch.cat((cap_feats, x), dim=1)
mask = None
img_sizes = [(H, W)] * bsz
l_effective_cap_len = [cap_feats.shape[1]] * bsz
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
@@ -615,7 +603,7 @@ class NextDiT(nn.Module):
).execute(x, timesteps, context, num_tokens, attention_mask, **kwargs)
# def forward(self, x, t, cap_feats, cap_mask):
def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, transformer_options={}, **kwargs):
t = 1.0 - timesteps
cap_feats = context
cap_mask = attention_mask
@@ -627,21 +615,38 @@ class NextDiT(nn.Module):
y: (N,) tensor of text tokens/features
"""
t = self.t_embedder(t, dtype=x.dtype) # (N, D)
t = self.t_embedder(t * self.time_scale, dtype=x.dtype) # (N, D)
adaln_input = t
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
transformer_options = kwargs.get("transformer_options", {})
if self.clip_text_pooled_proj is not None:
pooled = kwargs.get("clip_text_pooled", None)
if pooled is not None:
pooled = self.clip_text_pooled_proj(pooled)
else:
pooled = torch.zeros((1, self.clip_text_dim), device=x.device, dtype=x.dtype)
adaln_input = self.time_text_embed(torch.cat((t, pooled), dim=-1))
patches = transformer_options.get("patches", {})
x_is_tensor = isinstance(x, torch.Tensor)
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options)
freqs_cis = freqs_cis.to(x.device)
img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, adaln_input, num_tokens, transformer_options=transformer_options)
freqs_cis = freqs_cis.to(img.device)
for layer in self.layers:
x = layer(x, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
img_input = img
for i, layer in enumerate(self.layers):
img = layer(img, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
if "double_block" in patches:
for p in patches["double_block"]:
out = p({"img": img[:, cap_size[0]:], "img_input": img_input[:, cap_size[0]:], "txt": img[:, :cap_size[0]], "pe": freqs_cis[:, cap_size[0]:], "vec": adaln_input, "x": x, "block_index": i, "transformer_options": transformer_options})
if "img" in out:
img[:, cap_size[0]:] = out["img"]
if "txt" in out:
img[:, :cap_size[0]] = out["txt"]
x = self.final_layer(x, adaln_input)
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w]
img = self.final_layer(img, adaln_input)
img = self.unpatchify(img, img_size, cap_size, return_tensor=x_is_tensor)[:, :, :h, :w]
return -x
return -img

View File

@@ -9,6 +9,8 @@ from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistri
from comfy.ldm.util import get_obj_from_str, instantiate_from_config
from comfy.ldm.modules.ema import LitEma
import comfy.ops
from einops import rearrange
import comfy.model_management
class DiagonalGaussianRegularizer(torch.nn.Module):
def __init__(self, sample: bool = False):
@@ -179,6 +181,21 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
self.post_quant_conv = conv_op(embed_dim, ddconfig["z_channels"], 1)
self.embed_dim = embed_dim
if ddconfig.get("batch_norm_latent", False):
self.bn_eps = 1e-4
self.bn_momentum = 0.1
self.ps = [2, 2]
self.bn = torch.nn.BatchNorm2d(math.prod(self.ps) * ddconfig["z_channels"],
eps=self.bn_eps,
momentum=self.bn_momentum,
affine=False,
track_running_stats=True,
)
self.bn.eval()
else:
self.bn = None
def get_autoencoder_params(self) -> list:
params = super().get_autoencoder_params()
return params
@@ -201,11 +218,36 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
z = torch.cat(z, 0)
z, reg_log = self.regularization(z)
if self.bn is not None:
z = rearrange(z,
"... c (i pi) (j pj) -> ... (c pi pj) i j",
pi=self.ps[0],
pj=self.ps[1],
)
z = torch.nn.functional.batch_norm(z,
comfy.model_management.cast_to(self.bn.running_mean, dtype=z.dtype, device=z.device),
comfy.model_management.cast_to(self.bn.running_var, dtype=z.dtype, device=z.device),
momentum=self.bn_momentum,
eps=self.bn_eps)
if return_reg_log:
return z, reg_log
return z
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
if self.bn is not None:
s = torch.sqrt(comfy.model_management.cast_to(self.bn.running_var.view(1, -1, 1, 1), dtype=z.dtype, device=z.device) + self.bn_eps)
m = comfy.model_management.cast_to(self.bn.running_mean.view(1, -1, 1, 1), dtype=z.dtype, device=z.device)
z = z * s + m
z = rearrange(
z,
"... (c pi pj) i j -> ... c (i pi) (j pj)",
pi=self.ps[0],
pj=self.ps[1],
)
if self.max_batch_size is None:
dec = self.post_quant_conv(z)
dec = self.decoder(dec, **decoder_kwargs)

View File

@@ -517,6 +517,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
@wrap_attn
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
exception_fallback = False
if skip_reshape:
b, _, _, dim_head = q.shape
tensor_layout = "HND"
@@ -541,6 +542,8 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
except Exception as e:
logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e))
exception_fallback = True
if exception_fallback:
if tensor_layout == "NHD":
q, k, v = map(
lambda t: t.transpose(1, 2),

View File

@@ -211,12 +211,14 @@ class TimestepEmbedder(nn.Module):
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
def __init__(self, hidden_size, frequency_embedding_size=256, output_size=None, dtype=None, device=None, operations=None):
super().__init__()
if output_size is None:
output_size = hidden_size
self.mlp = nn.Sequential(
operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
operations.Linear(hidden_size, output_size, bias=True, dtype=dtype, device=device),
)
self.frequency_embedding_size = frequency_embedding_size

View File

@@ -13,6 +13,12 @@ if model_management.xformers_enabled_vae():
import xformers
import xformers.ops
def torch_cat_if_needed(xl, dim):
if len(xl) > 1:
return torch.cat(xl, dim)
else:
return xl[0]
def get_timestep_embedding(timesteps, embedding_dim):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models:
@@ -43,6 +49,37 @@ def Normalize(in_channels, num_groups=32):
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
class CarriedConv3d(nn.Module):
def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, **kwargs):
super().__init__()
self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs)
def forward(self, x):
return self.conv(x)
def conv_carry_causal_3d(xl, op, conv_carry_in=None, conv_carry_out=None):
x = xl[0]
xl.clear()
if isinstance(op, CarriedConv3d):
if conv_carry_in is None:
x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2, 0), mode = 'replicate')
else:
carry_len = conv_carry_in[0].shape[2]
x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2 - carry_len, 0), mode = 'replicate')
x = torch.cat([conv_carry_in.pop(0), x], dim=2)
if conv_carry_out is not None:
to_push = x[:, :, -2:, :, :].clone()
conv_carry_out.append(to_push)
out = op(x)
return out
class VideoConv3d(nn.Module):
def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding_mode='replicate', padding=1, **kwargs):
super().__init__()
@@ -89,29 +126,24 @@ class Upsample(nn.Module):
stride=1,
padding=1)
def forward(self, x):
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
scale_factor = self.scale_factor
if isinstance(scale_factor, (int, float)):
scale_factor = (scale_factor,) * (x.ndim - 2)
if x.ndim == 5 and scale_factor[0] > 1.0:
t = x.shape[2]
if t > 1:
a, b = x.split((1, t - 1), dim=2)
del x
b = interpolate_up(b, scale_factor)
else:
a = x
a = interpolate_up(a.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2)
if t > 1:
x = torch.cat((a, b), dim=2)
else:
x = a
results = []
if conv_carry_in is None:
first = x[:, :, :1, :, :]
results.append(interpolate_up(first.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2))
x = x[:, :, 1:, :, :]
if x.shape[2] > 0:
results.append(interpolate_up(x, scale_factor))
x = torch_cat_if_needed(results, dim=2)
else:
x = interpolate_up(x, scale_factor)
if self.with_conv:
x = self.conv(x)
x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
return x
@@ -127,17 +159,20 @@ class Downsample(nn.Module):
stride=stride,
padding=0)
def forward(self, x):
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
if self.with_conv:
if x.ndim == 4:
if isinstance(self.conv, CarriedConv3d):
x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
elif x.ndim == 4:
pad = (0, 1, 0, 1)
mode = "constant"
x = torch.nn.functional.pad(x, pad, mode=mode, value=0)
x = self.conv(x)
elif x.ndim == 5:
pad = (1, 1, 1, 1, 2, 0)
mode = "replicate"
x = torch.nn.functional.pad(x, pad, mode=mode)
x = self.conv(x)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
@@ -183,23 +218,23 @@ class ResnetBlock(nn.Module):
stride=1,
padding=0)
def forward(self, x, temb=None):
def forward(self, x, temb=None, conv_carry_in=None, conv_carry_out=None):
h = x
h = self.norm1(h)
h = self.swish(h)
h = self.conv1(h)
h = [ self.swish(h) ]
h = conv_carry_causal_3d(h, self.conv1, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
if temb is not None:
h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
h = self.norm2(h)
h = self.swish(h)
h = self.dropout(h)
h = self.conv2(h)
h = [ self.dropout(h) ]
h = conv_carry_causal_3d(h, self.conv2, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
x = conv_carry_causal_3d([x], self.conv_shortcut, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
else:
x = self.nin_shortcut(x)
@@ -279,6 +314,7 @@ def pytorch_attention(q, k, v):
orig_shape = q.shape
B = orig_shape[0]
C = orig_shape[1]
oom_fallback = False
q, k, v = map(
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
(q, k, v),
@@ -289,6 +325,8 @@ def pytorch_attention(q, k, v):
out = out.transpose(2, 3).reshape(orig_shape)
except model_management.OOM_EXCEPTION:
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
oom_fallback = True
if oom_fallback:
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape)
return out
@@ -517,9 +555,14 @@ class Encoder(nn.Module):
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.carried = False
if conv3d:
conv_op = VideoConv3d
if not attn_resolutions:
conv_op = CarriedConv3d
self.carried = True
else:
conv_op = VideoConv3d
mid_attn_conv_op = ops.Conv3d
else:
conv_op = ops.Conv2d
@@ -532,6 +575,7 @@ class Encoder(nn.Module):
stride=1,
padding=1)
self.time_compress = 1
curr_res = resolution
in_ch_mult = (1,)+tuple(ch_mult)
self.in_ch_mult = in_ch_mult
@@ -558,10 +602,15 @@ class Encoder(nn.Module):
if time_compress is not None:
if (self.num_resolutions - 1 - i_level) > math.log2(time_compress):
stride = (1, 2, 2)
else:
self.time_compress *= 2
down.downsample = Downsample(block_in, resamp_with_conv, stride=stride, conv_op=conv_op)
curr_res = curr_res // 2
self.down.append(down)
if time_compress is not None:
self.time_compress = time_compress
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
@@ -587,15 +636,42 @@ class Encoder(nn.Module):
def forward(self, x):
# timestep embedding
temb = None
# downsampling
h = self.conv_in(x)
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h, temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if i_level != self.num_resolutions-1:
h = self.down[i_level].downsample(h)
if self.carried:
xl = [x[:, :, :1, :, :]]
if x.shape[2] > self.time_compress:
tc = self.time_compress
xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // tc) * tc, :, :], tc * 2, dim = 2)
x = xl
else:
x = [x]
out = []
conv_carry_in = None
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
# downsampling
x1 = [ x1 ]
h1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out)
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h1 = self.down[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out)
if len(self.down[i_level].attn) > 0:
assert i == 0 #carried should not happen if attn exists
h1 = self.down[i_level].attn[i_block](h1)
if i_level != self.num_resolutions-1:
h1 = self.down[i_level].downsample(h1, conv_carry_in, conv_carry_out)
out.append(h1)
conv_carry_in = conv_carry_out
h = torch_cat_if_needed(out, dim=2)
del out
# middle
h = self.mid.block_1(h, temb)
@@ -604,15 +680,15 @@ class Encoder(nn.Module):
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
h = [ nonlinearity(h) ]
h = conv_carry_causal_3d(h, self.conv_out)
return h
class Decoder(nn.Module):
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
resolution, z_channels, tanh_out=False, use_linear_attn=False,
conv_out_op=ops.Conv2d,
resnet_op=ResnetBlock,
attn_op=AttnBlock,
@@ -626,12 +702,18 @@ class Decoder(nn.Module):
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.tanh_out = tanh_out
self.carried = False
if conv3d:
conv_op = VideoConv3d
conv_out_op = VideoConv3d
if not attn_resolutions and resnet_op == ResnetBlock:
conv_op = CarriedConv3d
conv_out_op = CarriedConv3d
self.carried = True
else:
conv_op = VideoConv3d
conv_out_op = VideoConv3d
mid_attn_conv_op = ops.Conv3d
else:
conv_op = ops.Conv2d
@@ -706,29 +788,43 @@ class Decoder(nn.Module):
temb = None
# z to block_in
h = self.conv_in(z)
h = conv_carry_causal_3d([z], self.conv_in)
# middle
h = self.mid.block_1(h, temb, **kwargs)
h = self.mid.attn_1(h, **kwargs)
h = self.mid.block_2(h, temb, **kwargs)
if self.carried:
h = torch.split(h, 2, dim=2)
else:
h = [ h ]
out = []
conv_carry_in = None
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks+1):
h = self.up[i_level].block[i_block](h, temb, **kwargs)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h, **kwargs)
if i_level != 0:
h = self.up[i_level].upsample(h)
for i, h1 in enumerate(h):
conv_carry_out = []
if i == len(h) - 1:
conv_carry_out = None
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks+1):
h1 = self.up[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out, **kwargs)
if len(self.up[i_level].attn) > 0:
assert i == 0 #carried should not happen if attn exists
h1 = self.up[i_level].attn[i_block](h1, **kwargs)
if i_level != 0:
h1 = self.up[i_level].upsample(h1, conv_carry_in, conv_carry_out)
# end
if self.give_pre_end:
return h
h1 = self.norm_out(h1)
h1 = [ nonlinearity(h1) ]
h1 = conv_carry_causal_3d(h1, self.conv_out, conv_carry_in, conv_carry_out)
if self.tanh_out:
h1 = torch.tanh(h1)
out.append(h1)
conv_carry_in = conv_carry_out
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h, **kwargs)
if self.tanh_out:
h = torch.tanh(h)
return h
out = torch_cat_if_needed(out, dim=2)
return out

View File

@@ -218,9 +218,24 @@ class QwenImageTransformerBlock(nn.Module):
operations=operations,
)
def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
def _apply_gate(self, x, y, gate, timestep_zero_index=None):
if timestep_zero_index is not None:
return y + torch.cat((x[:, :timestep_zero_index] * gate[0], x[:, timestep_zero_index:] * gate[1]), dim=1)
else:
return torch.addcmul(y, gate, x)
def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor, timestep_zero_index=None) -> Tuple[torch.Tensor, torch.Tensor]:
shift, scale, gate = torch.chunk(mod_params, 3, dim=-1)
return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1)
if timestep_zero_index is not None:
actual_batch = shift.size(0) // 2
shift, shift_0 = shift[:actual_batch], shift[actual_batch:]
scale, scale_0 = scale[:actual_batch], scale[actual_batch:]
gate, gate_0 = gate[:actual_batch], gate[actual_batch:]
reg = torch.addcmul(shift.unsqueeze(1), x[:, :timestep_zero_index], 1 + scale.unsqueeze(1))
zero = torch.addcmul(shift_0.unsqueeze(1), x[:, timestep_zero_index:], 1 + scale_0.unsqueeze(1))
return torch.cat((reg, zero), dim=1), (gate.unsqueeze(1), gate_0.unsqueeze(1))
else:
return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1)
def forward(
self,
@@ -229,17 +244,22 @@ class QwenImageTransformerBlock(nn.Module):
encoder_hidden_states_mask: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
timestep_zero_index=None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
img_mod_params = self.img_mod(temb)
if timestep_zero_index is not None:
temb = temb.chunk(2, dim=0)[0]
txt_mod_params = self.txt_mod(temb)
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)
img_normed = self.img_norm1(hidden_states)
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
txt_normed = self.txt_norm1(encoder_hidden_states)
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
img_modulated, img_gate1 = self._modulate(self.img_norm1(hidden_states), img_mod1, timestep_zero_index)
del img_mod1
txt_modulated, txt_gate1 = self._modulate(self.txt_norm1(encoder_hidden_states), txt_mod1)
del txt_mod1
img_attn_output, txt_attn_output = self.attn(
hidden_states=img_modulated,
@@ -248,16 +268,20 @@ class QwenImageTransformerBlock(nn.Module):
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
del img_modulated
del txt_modulated
hidden_states = hidden_states + img_gate1 * img_attn_output
hidden_states = self._apply_gate(img_attn_output, hidden_states, img_gate1, timestep_zero_index)
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
del img_attn_output
del txt_attn_output
del img_gate1
del txt_gate1
img_normed2 = self.img_norm2(hidden_states)
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2))
img_modulated2, img_gate2 = self._modulate(self.img_norm2(hidden_states), img_mod2, timestep_zero_index)
hidden_states = self._apply_gate(self.img_mlp(img_modulated2), hidden_states, img_gate2, timestep_zero_index)
txt_normed2 = self.txt_norm2(encoder_hidden_states)
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
txt_modulated2, txt_gate2 = self._modulate(self.txt_norm2(encoder_hidden_states), txt_mod2)
encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2))
return encoder_hidden_states, hidden_states
@@ -387,11 +411,14 @@ class QwenImageTransformer2DModel(nn.Module):
hidden_states, img_ids, orig_shape = self.process_img(x)
num_embeds = hidden_states.shape[1]
timestep_zero_index = None
if ref_latents is not None:
h = 0
w = 0
index = 0
index_ref_method = kwargs.get("ref_latents_method", "index") == "index"
ref_method = kwargs.get("ref_latents_method", "index")
index_ref_method = (ref_method == "index") or (ref_method == "index_timestep_zero")
timestep_zero = ref_method == "index_timestep_zero"
for ref in ref_latents:
if index_ref_method:
index += 1
@@ -411,6 +438,10 @@ class QwenImageTransformer2DModel(nn.Module):
kontext, kontext_ids, _ = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
hidden_states = torch.cat([hidden_states, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
if timestep_zero:
if index > 0:
timestep = torch.cat([timestep, timestep * 0], dim=0)
timestep_zero_index = num_embeds
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
@@ -435,11 +466,14 @@ class QwenImageTransformer2DModel(nn.Module):
patches = transformer_options.get("patches", {})
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.transformer_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.transformer_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], timestep_zero_index=timestep_zero_index, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
hidden_states = out["img"]
@@ -451,6 +485,7 @@ class QwenImageTransformer2DModel(nn.Module):
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
timestep_zero_index=timestep_zero_index,
transformer_options=transformer_options,
)
@@ -467,6 +502,9 @@ class QwenImageTransformer2DModel(nn.Module):
if add is not None:
hidden_states[:, :add.shape[1]] += add
if timestep_zero_index is not None:
temb = temb.chunk(2, dim=0)[0]
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)

View File

@@ -313,6 +313,23 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(key_lora)] = k
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
if isinstance(model, comfy.model_base.Lumina2):
diffusers_keys = comfy.utils.z_image_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
for k in diffusers_keys:
if k.endswith(".weight"):
to = diffusers_keys[k]
key_lora = k[:-len(".weight")]
key_map["diffusion_model.{}".format(key_lora)] = to
key_map["transformer.{}".format(key_lora)] = to
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to
if isinstance(model, comfy.model_base.Kandinsky5):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
key_map["transformer.{}".format(key_lora)] = k
return key_map

View File

@@ -47,6 +47,7 @@ import comfy.ldm.chroma_radiance.model
import comfy.ldm.ace.model
import comfy.ldm.omnigen.omnigen2
import comfy.ldm.qwen_image.model
import comfy.ldm.kandinsky5.model
import comfy.model_management
import comfy.patcher_extension
@@ -134,7 +135,7 @@ class BaseModel(torch.nn.Module):
if not unet_config.get("disable_unet_model_creation", False):
if model_config.custom_operations is None:
fp8 = model_config.optimizations.get("fp8", False)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8, model_config=model_config)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, model_config=model_config)
else:
operations = model_config.custom_operations
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
@@ -329,18 +330,6 @@ class BaseModel(torch.nn.Module):
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
unet_state_dict = self.diffusion_model.state_dict()
if self.model_config.scaled_fp8 is not None:
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8)
# Save mixed precision metadata
if hasattr(self.model_config, 'layer_quant_config') and self.model_config.layer_quant_config:
metadata = {
"format_version": "1.0",
"layers": self.model_config.layer_quant_config
}
unet_state_dict["_quantization_metadata"] = metadata
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
if self.model_type == ModelType.V_PREDICTION:
@@ -898,12 +887,13 @@ class Flux(BaseModel):
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
shape = kwargs["noise"].shape
mask_ref_size = kwargs["attention_mask_img_shape"]
# the model will pad to the patch size, and then divide
# essentially dividing and rounding up
(h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size))
attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok))
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
mask_ref_size = kwargs.get("attention_mask_img_shape", None)
if mask_ref_size is not None:
# the model will pad to the patch size, and then divide
# essentially dividing and rounding up
(h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size))
attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok))
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
guidance = kwargs.get("guidance", 3.5)
if guidance is not None:
@@ -925,9 +915,19 @@ class Flux(BaseModel):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()[2:]), ref_latents))])
return out
class Flux2(Flux):
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
target_text_len = 512
if cross_attn.shape[1] < target_text_len:
cross_attn = torch.nn.functional.pad(cross_attn, (0, 0, target_text_len - cross_attn.shape[1], 0))
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
class GenmoMochi(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
@@ -1103,9 +1103,17 @@ class Lumina2(BaseModel):
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item()))
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
if 'num_tokens' not in out:
out['num_tokens'] = comfy.conds.CONDConstant(cross_attn.shape[1])
clip_text_pooled = kwargs["pooled_output"] # Newbie
if clip_text_pooled is not None:
out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled)
return out
class WAN21(BaseModel):
@@ -1536,3 +1544,140 @@ class HunyuanImage21Refiner(HunyuanImage21):
out = super().extra_conds(**kwargs)
out['disable_time_r'] = comfy.conds.CONDConstant(True)
return out
class HunyuanVideo15(HunyuanVideo):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
extra_channels = self.diffusion_model.img_in.proj.weight.shape[1] - noise.shape[1] - 1 #noise 32 img cond 32 + mask 1
if extra_channels == 0:
return None
image = kwargs.get("concat_latent_image", None)
device = kwargs["device"]
if image is None:
shape_image = list(noise.shape)
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
latent_dim = self.latent_format.latent_channels
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], latent_dim):
image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim])
image = utils.resize_to_batch_size(image, noise.shape[0])
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :1]
else:
mask = 1.0 - mask
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((image, mask), dim=1)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_byt5small = kwargs.get("conditioning_byt5small", None)
if conditioning_byt5small is not None:
out['txt_byt5'] = comfy.conds.CONDRegular(conditioning_byt5small)
guidance = kwargs.get("guidance", 6.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
clip_vision_output = kwargs.get("clip_vision_output", None)
if clip_vision_output is not None:
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.last_hidden_state)
return out
class HunyuanVideo15_SR_Distilled(HunyuanVideo15):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
image = kwargs.get("concat_latent_image", None)
noise_augmentation = kwargs.get("noise_augmentation", 0.0)
device = kwargs["device"]
if image is None:
image = torch.zeros([noise.shape[0], noise.shape[1] * 2 + 2, noise.shape[-3], noise.shape[-2], noise.shape[-1]], device=comfy.model_management.intermediate_device())
else:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
#image = self.process_latent_in(image) # scaling wasn't applied in reference code
image = utils.resize_to_batch_size(image, noise.shape[0])
lq_image_slice = slice(noise.shape[1] + 1, 2 * noise.shape[1] + 1)
if noise_augmentation > 0:
generator = torch.Generator(device="cpu")
generator.manual_seed(kwargs.get("seed", 0) - 10)
noise = torch.randn(image[:, lq_image_slice].shape, generator=generator, dtype=image.dtype, device="cpu").to(image.device)
image[:, lq_image_slice] = noise_augmentation * noise + min(1.0 - noise_augmentation, 0.75) * image[:, lq_image_slice]
else:
image[:, lq_image_slice] = 0.75 * image[:, lq_image_slice]
return image
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
out['disable_time_r'] = comfy.conds.CONDConstant(False)
return out
class Kandinsky5(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.kandinsky5.model.Kandinsky5)
def encode_adm(self, **kwargs):
return kwargs["pooled_output"]
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
device = kwargs["device"]
image = torch.zeros_like(noise)
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :1]
else:
mask = 1.0 - mask
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((image, mask), dim=1)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
time_dim_replace = kwargs.get("time_dim_replace", None)
if time_dim_replace is not None:
out['time_dim_replace'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_replace))
return out
class Kandinsky5Image(Kandinsky5):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
def concat_cond(self, **kwargs):
return None

View File

@@ -6,20 +6,6 @@ import math
import logging
import torch
def detect_layer_quantization(metadata):
quant_key = "_quantization_metadata"
if metadata is not None and quant_key in metadata:
quant_metadata = metadata.pop(quant_key)
quant_metadata = json.loads(quant_metadata)
if isinstance(quant_metadata, dict) and "layers" in quant_metadata:
logging.info(f"Found quantization metadata (version {quant_metadata.get('format_version', 'unknown')})")
return quant_metadata["layers"]
else:
raise ValueError("Invalid quantization metadata format")
return None
def count_blocks(state_dict_keys, prefix_string):
count = 0
while True:
@@ -186,30 +172,73 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
guidance_keys = list(filter(lambda a: a.startswith("{}guidance_in.".format(key_prefix)), state_dict_keys))
dit_config["guidance_embed"] = len(guidance_keys) > 0
# HunyuanVideo 1.5
if '{}cond_type_embedding.weight'.format(key_prefix) in state_dict_keys:
dit_config["use_cond_type_embedding"] = True
else:
dit_config["use_cond_type_embedding"] = False
if '{}vision_in.proj.0.weight'.format(key_prefix) in state_dict_keys:
dit_config["vision_in_dim"] = state_dict['{}vision_in.proj.0.weight'.format(key_prefix)].shape[0]
dit_config["meanflow_sum"] = True
else:
dit_config["vision_in_dim"] = None
dit_config["meanflow_sum"] = False
return dit_config
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
dit_config = {}
dit_config["image_model"] = "flux"
if '{}double_stream_modulation_img.lin.weight'.format(key_prefix) in state_dict_keys:
dit_config["image_model"] = "flux2"
dit_config["axes_dim"] = [32, 32, 32, 32]
dit_config["num_heads"] = 48
dit_config["mlp_ratio"] = 3.0
dit_config["theta"] = 2000
dit_config["out_channels"] = 128
dit_config["global_modulation"] = True
dit_config["mlp_silu_act"] = True
dit_config["qkv_bias"] = False
dit_config["ops_bias"] = False
dit_config["default_ref_method"] = "index"
dit_config["ref_index_scale"] = 10.0
dit_config["txt_ids_dims"] = [3]
patch_size = 1
else:
dit_config["image_model"] = "flux"
dit_config["axes_dim"] = [16, 56, 56]
dit_config["num_heads"] = 24
dit_config["mlp_ratio"] = 4.0
dit_config["theta"] = 10000
dit_config["out_channels"] = 16
dit_config["qkv_bias"] = True
dit_config["txt_ids_dims"] = []
patch_size = 2
dit_config["in_channels"] = 16
patch_size = 2
dit_config["hidden_size"] = 3072
dit_config["context_in_dim"] = 4096
dit_config["patch_size"] = patch_size
in_key = "{}img_in.weight".format(key_prefix)
if in_key in state_dict_keys:
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size)
dit_config["out_channels"] = 16
w = state_dict[in_key]
dit_config["in_channels"] = w.shape[1] // (patch_size * patch_size)
dit_config["hidden_size"] = w.shape[0]
txt_in_key = "{}txt_in.weight".format(key_prefix)
if txt_in_key in state_dict_keys:
w = state_dict[txt_in_key]
dit_config["context_in_dim"] = w.shape[1]
dit_config["hidden_size"] = w.shape[0]
vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix)
if vec_in_key in state_dict_keys:
dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1]
dit_config["context_in_dim"] = 4096
dit_config["hidden_size"] = 3072
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 24
else:
dit_config["vec_in_dim"] = None
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
dit_config["axes_dim"] = [16, 56, 56]
dit_config["theta"] = 10000
dit_config["qkv_bias"] = True
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
dit_config["image_model"] = "chroma"
dit_config["in_channels"] = 64
@@ -230,8 +259,17 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["nerf_tile_size"] = 512
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
dit_config["nerf_embedder_dtype"] = torch.float32
if "__x0__" in state_dict_keys: # x0 pred
dit_config["use_x0"] = True
else:
dit_config["use_x0"] = False
else:
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys
dit_config["txt_norm"] = "{}txt_norm.scale".format(key_prefix) in state_dict_keys
if dit_config["yak_mlp"] and dit_config["txt_norm"]: # Ovis model
dit_config["txt_ids_dims"] = [1, 2]
return dit_config
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview
@@ -378,14 +416,34 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["image_model"] = "lumina2"
dit_config["patch_size"] = 2
dit_config["in_channels"] = 16
dit_config["dim"] = 2304
dit_config["cap_feat_dim"] = state_dict['{}cap_embedder.1.weight'.format(key_prefix)].shape[1]
w = state_dict['{}cap_embedder.1.weight'.format(key_prefix)]
dit_config["dim"] = w.shape[0]
dit_config["cap_feat_dim"] = w.shape[1]
dit_config["n_layers"] = count_blocks(state_dict_keys, '{}layers.'.format(key_prefix) + '{}.')
dit_config["n_heads"] = 24
dit_config["n_kv_heads"] = 8
dit_config["qk_norm"] = True
dit_config["axes_dims"] = [32, 32, 32]
dit_config["axes_lens"] = [300, 512, 512]
if dit_config["dim"] == 2304: # Original Lumina 2
dit_config["n_heads"] = 24
dit_config["n_kv_heads"] = 8
dit_config["axes_dims"] = [32, 32, 32]
dit_config["axes_lens"] = [300, 512, 512]
dit_config["rope_theta"] = 10000.0
dit_config["ffn_dim_multiplier"] = 4.0
ctd_weight = state_dict.get('{}clip_text_pooled_proj.0.weight'.format(key_prefix), None)
if ctd_weight is not None:
dit_config["clip_text_dim"] = ctd_weight.shape[0]
elif dit_config["dim"] == 3840: # Z image
dit_config["n_heads"] = 30
dit_config["n_kv_heads"] = 30
dit_config["axes_dims"] = [32, 48, 48]
dit_config["axes_lens"] = [1536, 512, 512]
dit_config["rope_theta"] = 256.0
dit_config["ffn_dim_multiplier"] = (8.0 / 3.0)
dit_config["z_image_modulation"] = True
dit_config["time_scale"] = 1000.0
if '{}cap_pad_token'.format(key_prefix) in state_dict_keys:
dit_config["pad_tokens_multiple"] = 32
return dit_config
if '{}head.modulation'.format(key_prefix) in state_dict_keys: # Wan 2.1
@@ -562,6 +620,24 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
return dit_config
if '{}visual_transformer_blocks.0.cross_attention.key_norm.weight'.format(key_prefix) in state_dict_keys: # Kandinsky 5
dit_config = {}
model_dim = state_dict['{}visual_embeddings.in_layer.bias'.format(key_prefix)].shape[0]
dit_config["model_dim"] = model_dim
if model_dim in [4096, 2560]: # pro video and lite image
dit_config["axes_dims"] = (32, 48, 48)
if model_dim == 2560: # lite image
dit_config["rope_scale_factor"] = (1.0, 1.0, 1.0)
elif model_dim == 1792: # lite video
dit_config["axes_dims"] = (16, 24, 24)
dit_config["time_dim"] = state_dict['{}time_embeddings.in_layer.bias'.format(key_prefix)].shape[0]
dit_config["image_model"] = "kandinsky5"
dit_config["ff_dim"] = state_dict['{}visual_transformer_blocks.0.feed_forward.in_layer.weight'.format(key_prefix)].shape[0]
dit_config["visual_embed_dim"] = state_dict['{}visual_embeddings.in_layer.weight'.format(key_prefix)].shape[1]
dit_config["num_text_blocks"] = count_blocks(state_dict_keys, '{}text_transformer_blocks.'.format(key_prefix) + '{}.')
dit_config["num_visual_blocks"] = count_blocks(state_dict_keys, '{}visual_transformer_blocks.'.format(key_prefix) + '{}.')
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None
@@ -704,22 +780,11 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
if model_config is None and use_base_if_no_match:
model_config = comfy.supported_models_base.BASE(unet_config)
scaled_fp8_key = "{}scaled_fp8".format(unet_key_prefix)
if scaled_fp8_key in state_dict:
scaled_fp8_weight = state_dict.pop(scaled_fp8_key)
model_config.scaled_fp8 = scaled_fp8_weight.dtype
if model_config.scaled_fp8 == torch.float32:
model_config.scaled_fp8 = torch.float8_e4m3fn
if scaled_fp8_weight.nelement() == 2:
model_config.optimizations["fp8"] = False
else:
model_config.optimizations["fp8"] = True
# Detect per-layer quantization (mixed precision)
layer_quant_config = detect_layer_quantization(metadata)
if layer_quant_config:
model_config.layer_quant_config = layer_quant_config
logging.info(f"Detected mixed precision quantization: {len(layer_quant_config)} layers quantized")
quant_config = comfy.utils.detect_layer_quantization(state_dict, unet_key_prefix)
if quant_config:
model_config.quant_config = quant_config
logging.info("Detected mixed precision quantization")
return model_config

View File

@@ -504,6 +504,7 @@ class LoadedModel:
if use_more_vram == 0:
use_more_vram = 1e32
self.model_use_more_vram(use_more_vram, force_patch_weights=force_patch_weights)
real_model = self.model.model
if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and real_model is not None:
@@ -688,8 +689,11 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
loaded_memory = loaded_model.model_loaded_memory()
current_free_mem = get_free_memory(torch_dev) + loaded_memory
lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
lowvram_model_memory = max(0, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = lowvram_model_memory - loaded_memory
if lowvram_model_memory == 0:
lowvram_model_memory = 0.1
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 0.1
@@ -1008,9 +1012,18 @@ def force_channels_last():
STREAMS = {}
NUM_STREAMS = 1
if args.async_offload:
NUM_STREAMS = 2
NUM_STREAMS = 0
if args.async_offload is not None:
NUM_STREAMS = args.async_offload
else:
# Enable by default on Nvidia
if is_nvidia():
NUM_STREAMS = 2
if args.disable_async_offload:
NUM_STREAMS = 0
if NUM_STREAMS > 0:
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
def current_stream(device):
@@ -1026,7 +1039,10 @@ def current_stream(device):
stream_counters = {}
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
if NUM_STREAMS <= 1:
if NUM_STREAMS == 0:
return None
if torch.compiler.is_compiling():
return None
if device in STREAMS:
@@ -1039,7 +1055,9 @@ def get_offload_stream(device):
elif is_device_cuda(device):
ss = []
for k in range(NUM_STREAMS):
ss.append(torch.cuda.Stream(device=device, priority=0))
s1 = torch.cuda.Stream(device=device, priority=0)
s1.as_context = torch.cuda.stream
ss.append(s1)
STREAMS[device] = ss
s = ss[stream_counter]
stream_counters[device] = stream_counter
@@ -1047,7 +1065,9 @@ def get_offload_stream(device):
elif is_device_xpu(device):
ss = []
for k in range(NUM_STREAMS):
ss.append(torch.xpu.Stream(device=device, priority=0))
s1 = torch.xpu.Stream(device=device, priority=0)
s1.as_context = torch.xpu.stream
ss.append(s1)
STREAMS[device] = ss
s = ss[stream_counter]
stream_counters[device] = stream_counter
@@ -1065,12 +1085,19 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str
if dtype is None or weight.dtype == dtype:
return weight
if stream is not None:
with stream:
wf_context = stream
if hasattr(wf_context, "as_context"):
wf_context = wf_context.as_context(stream)
with wf_context:
return weight.to(dtype=dtype, copy=copy)
return weight.to(dtype=dtype, copy=copy)
if stream is not None:
with stream:
wf_context = stream
if hasattr(wf_context, "as_context"):
wf_context = wf_context.as_context(stream)
with wf_context:
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
else:
@@ -1094,12 +1121,16 @@ if not args.disable_pinned_memory:
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95
logging.info("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024)))
PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"])
def pin_memory(tensor):
global TOTAL_PINNED_MEMORY
if MAX_PINNED_MEMORY <= 0:
return False
if type(tensor).__name__ not in PINNING_ALLOWED_TYPES:
return False
if not is_device_cpu(tensor.device):
return False
@@ -1109,11 +1140,17 @@ def pin_memory(tensor):
#on the GPU async. So dont trust the CUDA API and guard here
return False
if not tensor.is_contiguous():
return False
size = tensor.numel() * tensor.element_size()
if (TOTAL_PINNED_MEMORY + size) > MAX_PINNED_MEMORY:
return False
ptr = tensor.data_ptr()
if ptr == 0:
return False
if torch.cuda.cudart().cudaHostRegister(ptr, size, 1) == 0:
PINNED_MEMORY[ptr] = size
TOTAL_PINNED_MEMORY += size
@@ -1455,6 +1492,20 @@ def extended_fp16_support():
return True
LORA_COMPUTE_DTYPES = {}
def lora_compute_dtype(device):
dtype = LORA_COMPUTE_DTYPES.get(device, None)
if dtype is not None:
return dtype
if should_use_fp16(device):
dtype = torch.float16
else:
dtype = torch.float32
LORA_COMPUTE_DTYPES[device] = dtype
return dtype
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:

View File

@@ -35,6 +35,7 @@ import comfy.model_management
import comfy.patcher_extension
import comfy.utils
from comfy.comfy_types import UnetWrapperFunction
from comfy.quant_ops import QuantizedTensor
from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP
@@ -126,27 +127,23 @@ class LowVramPatch:
def __init__(self, key, patches, convert_func=None, set_func=None):
self.key = key
self.patches = patches
self.convert_func = convert_func
self.convert_func = convert_func # TODO: remove
self.set_func = set_func
def __call__(self, weight):
intermediate_dtype = weight.dtype
if self.convert_func is not None:
weight = self.convert_func(weight.to(dtype=torch.float32, copy=True), inplace=True)
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=weight.dtype)
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
intermediate_dtype = torch.float32
out = comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype)
if self.set_func is None:
return comfy.float.stochastic_rounding(out, weight.dtype, seed=string_to_seed(self.key))
else:
return self.set_func(out, seed=string_to_seed(self.key), return_weight=True)
LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR = 2
out = comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
if self.set_func is not None:
return self.set_func(out, seed=string_to_seed(self.key), return_weight=True).to(dtype=intermediate_dtype)
else:
return out
def low_vram_patch_estimate_vram(model, key):
weight, set_func, convert_func = get_key_weight(model, key)
if weight is None:
return 0
model_dtype = getattr(model, "manual_cast_dtype", torch.float32)
if model_dtype is None:
model_dtype = weight.dtype
return weight.numel() * model_dtype.itemsize * LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR
def get_key_weight(model, key):
set_func = None
@@ -231,7 +228,6 @@ class ModelPatcher:
self.object_patches_backup = {}
self.weight_wrapper_patches = {}
self.model_options = {"transformer_options":{}}
self.model_size()
self.load_device = load_device
self.offload_device = offload_device
self.weight_inplace_update = weight_inplace_update
@@ -270,6 +266,9 @@ class ModelPatcher:
if not hasattr(self.model, 'current_weight_patches_uuid'):
self.model.current_weight_patches_uuid = None
if not hasattr(self.model, 'model_offload_buffer_memory'):
self.model.model_offload_buffer_memory = 0
def model_size(self):
if self.size > 0:
return self.size
@@ -286,7 +285,7 @@ class ModelPatcher:
return self.model.lowvram_patch_counter
def clone(self):
n = self.__class__(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
n = self.__class__(self.model, self.load_device, self.offload_device, self.model_size(), weight_inplace_update=self.weight_inplace_update)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
@@ -455,6 +454,9 @@ class ModelPatcher:
def set_model_post_input_patch(self, patch):
self.set_model_patch(patch, "post_input")
def set_model_noise_refiner_patch(self, patch):
self.set_model_patch(patch, "noise_refiner")
def set_model_rope_options(self, scale_x, shift_x, scale_y, shift_y, scale_t, shift_t, **kwargs):
rope_options = self.model_options["transformer_options"].get("rope_options", {})
rope_options["scale_x"] = scale_x
@@ -619,10 +621,11 @@ class ModelPatcher:
if key not in self.backup:
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)
temp_dtype = comfy.model_management.lora_compute_dtype(device_to)
if device_to is not None:
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
temp_weight = comfy.model_management.cast_to_device(weight, device_to, temp_dtype, copy=True)
else:
temp_weight = weight.to(torch.float32, copy=True)
temp_weight = weight.to(temp_dtype, copy=True)
if convert_func is not None:
temp_weight = convert_func(temp_weight, inplace=True)
@@ -663,7 +666,22 @@ class ModelPatcher:
skip = True # skip random weights in non leaf modules
break
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
loading.append((comfy.model_management.module_size(m), n, m, params))
module_mem = comfy.model_management.module_size(m)
module_offload_mem = module_mem
if hasattr(m, "comfy_cast_weights"):
def check_module_offload_mem(key):
if key in self.patches:
return low_vram_patch_estimate_vram(self.model, key)
model_dtype = getattr(self.model, "manual_cast_dtype", None)
weight, _, _ = get_key_weight(self.model, key)
if model_dtype is None or weight is None:
return 0
if (weight.dtype != model_dtype or isinstance(weight, QuantizedTensor)):
return weight.numel() * model_dtype.itemsize
return 0
module_offload_mem += check_module_offload_mem("{}.weight".format(n))
module_offload_mem += check_module_offload_mem("{}.bias".format(n))
loading.append((module_offload_mem, module_mem, n, m, params))
return loading
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
@@ -677,20 +695,22 @@ class ModelPatcher:
load_completely = []
offloaded = []
offload_buffer = 0
loading.sort(reverse=True)
for x in loading:
n = x[1]
m = x[2]
params = x[3]
module_mem = x[0]
for i, x in enumerate(loading):
module_offload_mem, module_mem, n, m, params = x
lowvram_weight = False
potential_offload = max(offload_buffer, module_offload_mem + sum([ x1[1] for x1 in loading[i+1:i+1+comfy.model_management.NUM_STREAMS]]))
lowvram_fits = mem_counter + module_mem + potential_offload < lowvram_model_memory
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if not full_load and hasattr(m, "comfy_cast_weights"):
if mem_counter + module_mem >= lowvram_model_memory:
if not lowvram_fits:
offload_buffer = potential_offload
lowvram_weight = True
lowvram_counter += 1
lowvram_mem_counter += module_mem
@@ -724,9 +744,11 @@ class ModelPatcher:
if hasattr(m, "comfy_cast_weights"):
wipe_lowvram_weight(m)
if full_load or mem_counter + module_mem < lowvram_model_memory:
if full_load or lowvram_fits:
mem_counter += module_mem
load_completely.append((module_mem, n, m, params))
else:
offload_buffer = potential_offload
if cast_weight and hasattr(m, "comfy_cast_weights"):
m.prev_comfy_cast_weights = m.comfy_cast_weights
@@ -753,6 +775,8 @@ class ModelPatcher:
key = "{}.{}".format(n, param)
self.unpin_weight(key)
self.patch_weight_to_device(key, device_to=device_to)
if comfy.model_management.is_device_cuda(device_to):
torch.cuda.synchronize()
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
m.comfy_patched_weights = True
@@ -767,7 +791,7 @@ class ModelPatcher:
self.pin_weight_to_device("{}.{}".format(n, param))
if lowvram_counter > 0:
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), patch_counter))
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
self.model.model_lowvram = True
else:
logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
@@ -779,6 +803,7 @@ class ModelPatcher:
self.model.lowvram_patch_counter += patch_counter
self.model.device = device_to
self.model.model_loaded_weight_memory = mem_counter
self.model.model_offload_buffer_memory = offload_buffer
self.model.current_weight_patches_uuid = self.patches_uuid
for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD):
@@ -832,6 +857,7 @@ class ModelPatcher:
self.model.to(device_to)
self.model.device = device_to
self.model.model_loaded_weight_memory = 0
self.model.model_offload_buffer_memory = 0
for m in self.model.modules():
if hasattr(m, "comfy_patched_weights"):
@@ -843,20 +869,25 @@ class ModelPatcher:
self.object_patches_backup.clear()
def partially_unload(self, device_to, memory_to_free=0):
def partially_unload(self, device_to, memory_to_free=0, force_patch_weights=False):
with self.use_ejected():
hooks_unpatched = False
memory_freed = 0
patch_counter = 0
unload_list = self._load_list()
unload_list.sort()
offload_buffer = self.model.model_offload_buffer_memory
if len(unload_list) > 0:
NS = comfy.model_management.NUM_STREAMS
offload_weight_factor = [ min(offload_buffer / (NS + 1), unload_list[0][1]) ] * NS
for unload in unload_list:
if memory_to_free < memory_freed:
if memory_to_free + offload_buffer - self.model.model_offload_buffer_memory < memory_freed:
break
module_mem = unload[0]
n = unload[1]
m = unload[2]
params = unload[3]
module_offload_mem, module_mem, n, m, params = unload
potential_offload = module_offload_mem + sum(offload_weight_factor)
lowvram_possible = hasattr(m, "comfy_cast_weights")
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
@@ -887,28 +918,40 @@ class ModelPatcher:
module_mem += move_weight_functions(m, device_to)
if lowvram_possible:
if weight_key in self.patches:
_, set_func, convert_func = get_key_weight(self.model, weight_key)
m.weight_function.append(LowVramPatch(weight_key, self.patches, convert_func, set_func))
patch_counter += 1
if force_patch_weights:
self.patch_weight_to_device(weight_key)
else:
_, set_func, convert_func = get_key_weight(self.model, weight_key)
m.weight_function.append(LowVramPatch(weight_key, self.patches, convert_func, set_func))
patch_counter += 1
if bias_key in self.patches:
_, set_func, convert_func = get_key_weight(self.model, bias_key)
m.bias_function.append(LowVramPatch(bias_key, self.patches, convert_func, set_func))
patch_counter += 1
if force_patch_weights:
self.patch_weight_to_device(bias_key)
else:
_, set_func, convert_func = get_key_weight(self.model, bias_key)
m.bias_function.append(LowVramPatch(bias_key, self.patches, convert_func, set_func))
patch_counter += 1
cast_weight = True
if cast_weight:
if cast_weight and hasattr(m, "comfy_cast_weights"):
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
m.comfy_patched_weights = False
memory_freed += module_mem
offload_buffer = max(offload_buffer, potential_offload)
offload_weight_factor.append(module_mem)
offload_weight_factor.pop(0)
logging.debug("freed {}".format(n))
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
self.model.model_lowvram = True
self.model.lowvram_patch_counter += patch_counter
self.model.model_loaded_weight_memory -= memory_freed
self.model.model_offload_buffer_memory = offload_buffer
logging.info("Unloaded partially: {:.2f} MB freed, {:.2f} MB remains loaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(memory_freed / (1024 * 1024), self.model.model_loaded_weight_memory / (1024 * 1024), offload_buffer / (1024 * 1024), self.model.lowvram_patch_counter))
return memory_freed
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
@@ -921,6 +964,9 @@ class ModelPatcher:
extra_memory += (used - self.model.model_loaded_weight_memory)
self.patch_model(load_weights=False)
if extra_memory < 0 and not unpatch_weights:
self.partially_unload(self.offload_device, -extra_memory, force_patch_weights=force_patch_weights)
return 0
full_load = False
if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0:
self.apply_hooks(self.forced_hooks, force_apply=True)

View File

@@ -22,7 +22,7 @@ import comfy.model_management
from comfy.cli_args import args, PerformanceFeature
import comfy.float
import comfy.rmsnorm
import contextlib
import json
def run_every_op():
if torch.compiler.is_compiling():
@@ -58,7 +58,8 @@ except (ModuleNotFoundError, TypeError):
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = False
try:
if comfy.model_management.is_nvidia():
if torch.backends.cudnn.version() >= 91002 and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10):
cudnn_version = torch.backends.cudnn.version()
if (cudnn_version >= 91002 and cudnn_version < 91500) and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10):
#TODO: change upper bound version once it's fixed'
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = True
logging.info("working around nvidia conv3d memory bug.")
@@ -77,7 +78,10 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
# will add async-offload support to your cast and improve performance.
if input is not None:
if dtype is None:
dtype = input.dtype
if isinstance(input, QuantizedTensor):
dtype = input._layout_params["orig_dtype"]
else:
dtype = input.dtype
if bias_dtype is None:
bias_dtype = dtype
if device is None:
@@ -89,11 +93,6 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
else:
offload_stream = None
if offload_stream is not None:
wf_context = offload_stream
else:
wf_context = contextlib.nullcontext()
non_blocking = comfy.model_management.device_supports_non_blocking(device)
weight_has_function = len(s.weight_function) > 0
@@ -105,20 +104,24 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
if s.bias is not None:
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
if bias_has_function:
with wf_context:
for f in s.bias_function:
bias = f(bias)
weight = weight.to(dtype=dtype)
if weight_has_function:
with wf_context:
for f in s.weight_function:
weight = f(weight)
comfy.model_management.sync_stream(device, offload_stream)
bias_a = bias
weight_a = weight
if s.bias is not None:
for f in s.bias_function:
bias = f(bias)
if weight_has_function or weight.dtype != dtype:
weight = weight.to(dtype=dtype)
if isinstance(weight, QuantizedTensor):
weight = weight.dequantize()
for f in s.weight_function:
weight = f(weight)
if offloadable:
return weight, bias, offload_stream
return weight, bias, (offload_stream, weight_a, bias_a)
else:
#Legacy function signature
return weight, bias
@@ -127,13 +130,16 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
def uncast_bias_weight(s, weight, bias, offload_stream):
if offload_stream is None:
return
if weight is not None:
device = weight.device
os, weight_a, bias_a = offload_stream
if os is None:
return
if weight_a is not None:
device = weight_a.device
else:
if bias is None:
if bias_a is None:
return
device = bias.device
offload_stream.wait_stream(comfy.model_management.current_stream(device))
device = bias_a.device
os.wait_stream(comfy.model_management.current_stream(device))
class CastWeightBiasOp:
@@ -409,22 +415,12 @@ def fp8_linear(self, input):
if input.ndim == 3 or input.ndim == 2:
w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True)
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
scale_weight = self.scale_weight
scale_input = self.scale_input
if scale_weight is None:
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
else:
scale_weight = scale_weight.to(input.device)
if scale_input is None:
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
input = torch.clamp(input, min=-448, max=448, out=input)
layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype}
quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight)
else:
scale_input = scale_input.to(input.device)
quantized_input = QuantizedTensor.from_float(input, "TensorCoreFP8Layout", scale=scale_input, dtype=dtype)
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
input = torch.clamp(input, min=-448, max=448, out=input)
layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype}
quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight)
# Wrap weight in QuantizedTensor - this enables unified dispatch
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
@@ -445,7 +441,7 @@ class fp8_ops(manual_cast):
return None
def forward_comfy_cast_weights(self, input):
if not self.training:
if len(self.weight_function) == 0 and len(self.bias_function) == 0:
try:
out = fp8_linear(self, input)
if out is not None:
@@ -458,59 +454,6 @@ class fp8_ops(manual_cast):
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
class scaled_fp8_op(manual_cast):
class Linear(manual_cast.Linear):
def __init__(self, *args, **kwargs):
if override_dtype is not None:
kwargs['dtype'] = override_dtype
super().__init__(*args, **kwargs)
def reset_parameters(self):
if not hasattr(self, 'scale_weight'):
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
if not scale_input:
self.scale_input = None
if not hasattr(self, 'scale_input'):
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
return None
def forward_comfy_cast_weights(self, input):
if fp8_matrix_mult:
out = fp8_linear(self, input)
if out is not None:
return out
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
if weight.numel() < input.numel(): #TODO: optimize
x = torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
else:
x = torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def convert_weight(self, weight, inplace=False, **kwargs):
if inplace:
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
return weight
else:
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
if return_weight:
return weight
if inplace_update:
self.weight.data.copy_(weight)
else:
self.weight = torch.nn.Parameter(weight, requires_grad=False)
return scaled_fp8_op
CUBLAS_IS_AVAILABLE = False
try:
from cublas_ops import CublasLinear
@@ -534,129 +477,182 @@ if CUBLAS_IS_AVAILABLE:
# ==============================================================================
# Mixed Precision Operations
# ==============================================================================
from .quant_ops import QuantizedTensor
from .quant_ops import QuantizedTensor, QUANT_ALGOS
QUANT_FORMAT_MIXINS = {
"float8_e4m3fn": {
"dtype": torch.float8_e4m3fn,
"layout_type": "TensorCoreFP8Layout",
"parameters": {
"weight_scale": torch.nn.Parameter(torch.zeros((), dtype=torch.float32), requires_grad=False),
"input_scale": torch.nn.Parameter(torch.zeros((), dtype=torch.float32), requires_grad=False),
}
}
}
class MixedPrecisionOps(disable_weight_init):
_layer_quant_config = {}
_compute_dtype = torch.bfloat16
def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False):
class MixedPrecisionOps(manual_cast):
_quant_config = quant_config
_compute_dtype = compute_dtype
_full_precision_mm = full_precision_mm
class Linear(torch.nn.Module, CastWeightBiasOp):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
super().__init__()
class Linear(torch.nn.Module, CastWeightBiasOp):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
super().__init__()
self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype}
# self.factory_kwargs = {"device": device, "dtype": dtype}
if dtype is None:
dtype = MixedPrecisionOps._compute_dtype
self.in_features = in_features
self.out_features = out_features
if bias:
self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs))
else:
self.register_parameter("bias", None)
self.factory_kwargs = {"device": device, "dtype": dtype}
self.tensor_class = None
self.in_features = in_features
self.out_features = out_features
self._has_bias = bias
def reset_parameters(self):
return None
self.tensor_class = None
self._full_precision_mm = MixedPrecisionOps._full_precision_mm
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys, error_msgs):
def reset_parameters(self):
return None
device = self.factory_kwargs["device"]
layer_name = prefix.rstrip('.')
weight_key = f"{prefix}weight"
weight = state_dict.pop(weight_key, None)
if weight is None:
raise ValueError(f"Missing weight for layer {layer_name}")
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys, error_msgs):
manually_loaded_keys = [weight_key]
device = self.factory_kwargs["device"]
layer_name = prefix.rstrip('.')
weight_key = f"{prefix}weight"
weight = state_dict.pop(weight_key, None)
if weight is None:
raise ValueError(f"Missing weight for layer {layer_name}")
if layer_name not in MixedPrecisionOps._layer_quant_config:
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False)
else:
quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None)
if quant_format is None:
raise ValueError(f"Unknown quantization format for layer {layer_name}")
manually_loaded_keys = [weight_key]
mixin = QUANT_FORMAT_MIXINS[quant_format]
self.layout_type = mixin["layout_type"]
layer_conf = state_dict.pop(f"{prefix}comfy_quant", None)
if layer_conf is not None:
layer_conf = json.loads(layer_conf.numpy().tobytes())
scale_key = f"{prefix}weight_scale"
layout_params = {
'scale': state_dict.pop(scale_key, None),
'orig_dtype': MixedPrecisionOps._compute_dtype
}
if layout_params['scale'] is not None:
manually_loaded_keys.append(scale_key)
if layer_conf is None:
dtype = self.factory_kwargs["dtype"]
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=dtype), requires_grad=False)
if dtype != MixedPrecisionOps._compute_dtype:
self.comfy_cast_weights = True
if self._has_bias:
self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=dtype))
else:
self.register_parameter("bias", None)
else:
self.quant_format = layer_conf.get("format", None)
if not self._full_precision_mm:
self._full_precision_mm = layer_conf.get("full_precision_matrix_mult", False)
self.weight = torch.nn.Parameter(
QuantizedTensor(weight.to(device=device, dtype=mixin["dtype"]), self.layout_type, layout_params),
requires_grad=False
)
if self.quant_format is None:
raise ValueError(f"Unknown quantization format for layer {layer_name}")
for param_name, param_value in mixin["parameters"].items():
param_key = f"{prefix}{param_name}"
_v = state_dict.pop(param_key, None)
if _v is None:
qconfig = QUANT_ALGOS[self.quant_format]
self.layout_type = qconfig["comfy_tensor_layout"]
weight_scale_key = f"{prefix}weight_scale"
scale = state_dict.pop(weight_scale_key, None)
if scale is not None:
scale = scale.to(device)
layout_params = {
'scale': scale,
'orig_dtype': MixedPrecisionOps._compute_dtype,
'block_size': qconfig.get("group_size", None),
}
if scale is not None:
manually_loaded_keys.append(weight_scale_key)
self.weight = torch.nn.Parameter(
QuantizedTensor(weight.to(device=device, dtype=qconfig.get("storage_t", None)), self.layout_type, layout_params),
requires_grad=False
)
if self._has_bias:
self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=MixedPrecisionOps._compute_dtype))
else:
self.register_parameter("bias", None)
for param_name in qconfig["parameters"]:
param_key = f"{prefix}{param_name}"
_v = state_dict.pop(param_key, None)
if _v is None:
continue
self.register_parameter(param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
manually_loaded_keys.append(param_key)
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
for key in manually_loaded_keys:
if key in missing_keys:
missing_keys.remove(key)
def state_dict(self, *args, destination=None, prefix="", **kwargs):
sd = super().state_dict(*args, destination=destination, prefix=prefix, **kwargs)
if isinstance(self.weight, QuantizedTensor):
sd["{}weight_scale".format(prefix)] = self.weight._layout_params['scale']
quant_conf = {"format": self.quant_format}
if self._full_precision_mm:
quant_conf["full_precision_matrix_mult"] = True
sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8)
return sd
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
def forward_comfy_cast_weights(self, input):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, input, *args, **kwargs):
run_every_op()
if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(input, *args, **kwargs)
if (getattr(self, 'layout_type', None) is not None and
not isinstance(input, QuantizedTensor)):
input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None), dtype=self.weight.dtype)
return self._forward(input, self.weight, self.bias)
def convert_weight(self, weight, inplace=False, **kwargs):
if isinstance(weight, QuantizedTensor):
return weight.dequantize()
else:
return weight
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
if getattr(self, 'layout_type', None) is not None:
weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True)
else:
weight = weight.to(self.weight.dtype)
if return_weight:
return weight
assert inplace_update is False # TODO: eventually remove the inplace_update stuff
self.weight = torch.nn.Parameter(weight, requires_grad=False)
def _apply(self, fn, recurse=True): # This is to get torch.compile + moving weights to another device working
if recurse:
for module in self.children():
module._apply(fn)
for key, param in self._parameters.items():
if param is None:
continue
setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
manually_loaded_keys.append(param_key)
self.register_parameter(key, torch.nn.Parameter(fn(param), requires_grad=False))
for key, buf in self._buffers.items():
if buf is not None:
self._buffers[key] = fn(buf)
return self
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
return MixedPrecisionOps
for key in manually_loaded_keys:
if key in missing_keys:
missing_keys.remove(key)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, model_config=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
def forward_comfy_cast_weights(self, input):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, input, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(input, *args, **kwargs)
if (getattr(self, 'layout_type', None) is not None and
getattr(self, 'input_scale', None) is not None and
not isinstance(input, QuantizedTensor)):
input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, fp8_dtype=self.weight.dtype)
return self._forward(input, self.weight, self.bias)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None):
if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config:
MixedPrecisionOps._layer_quant_config = model_config.layer_quant_config
MixedPrecisionOps._compute_dtype = compute_dtype
logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers")
return MixedPrecisionOps
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None:
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)
if model_config and hasattr(model_config, 'quant_config') and model_config.quant_config:
logging.info("Using mixed precision operations")
return mixed_precision_ops(model_config.quant_config, compute_dtype, full_precision_mm=not fp8_compute)
if (
fp8_compute and

View File

@@ -1,6 +1,7 @@
import torch
import logging
from typing import Tuple, Dict
import comfy.float
_LAYOUT_REGISTRY = {}
_GENERIC_UTILS = {}
@@ -74,6 +75,12 @@ def _copy_layout_params(params):
new_params[k] = v
return new_params
def _copy_layout_params_inplace(src, dst, non_blocking=False):
for k, v in src.items():
if isinstance(v, torch.Tensor):
dst[k].copy_(v, non_blocking=non_blocking)
else:
dst[k] = v
class QuantizedLayout:
"""
@@ -222,6 +229,17 @@ class QuantizedTensor(torch.Tensor):
new_kwargs = dequant_arg(kwargs)
return func(*new_args, **new_kwargs)
def data_ptr(self):
return self._qdata.data_ptr()
def is_pinned(self):
return self._qdata.is_pinned()
def is_contiguous(self, *arg, **kwargs):
return self._qdata.is_contiguous(*arg, **kwargs)
def storage(self):
return self._qdata.storage()
# ==============================================================================
# Generic Utilities (Layout-Agnostic Operations)
@@ -234,12 +252,6 @@ def _create_transformed_qtensor(qt, transform_fn):
def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"):
if target_dtype is not None and target_dtype != qt.dtype:
logging.warning(
f"QuantizedTensor: dtype conversion requested to {target_dtype}, "
f"but not supported for quantized tensors. Ignoring dtype."
)
if target_layout is not None and target_layout != torch.strided:
logging.warning(
f"QuantizedTensor: layout change requested to {target_layout}, "
@@ -259,6 +271,8 @@ def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=
logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}")
new_q_data = qt._qdata.to(device=target_device)
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
if target_dtype is not None:
new_params["orig_dtype"] = target_dtype
new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params)
logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}")
return new_qt
@@ -318,13 +332,15 @@ def generic_to_dtype_layout(func, args, kwargs):
def generic_copy_(func, args, kwargs):
qt_dest = args[0]
src = args[1]
non_blocking = args[2] if len(args) > 2 else False
if isinstance(qt_dest, QuantizedTensor):
if isinstance(src, QuantizedTensor):
# Copy from another quantized tensor
qt_dest._qdata.copy_(src._qdata)
qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking)
qt_dest._layout_type = src._layout_type
qt_dest._layout_params = _copy_layout_params(src._layout_params)
orig_dtype = qt_dest._layout_params["orig_dtype"]
_copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking)
qt_dest._layout_params["orig_dtype"] = orig_dtype
else:
# Copy from regular tensor - just copy raw data
qt_dest._qdata.copy_(src)
@@ -332,10 +348,42 @@ def generic_copy_(func, args, kwargs):
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten.to.dtype)
def generic_to_dtype(func, args, kwargs):
"""Handle .to(dtype) calls - dtype conversion only."""
src = args[0]
if isinstance(src, QuantizedTensor):
# For dtype-only conversion, just change the orig_dtype, no real cast is needed
target_dtype = args[1] if len(args) > 1 else kwargs.get('dtype')
src._layout_params["orig_dtype"] = target_dtype
return src
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten._has_compatible_shallow_copy_type.default)
def generic_has_compatible_shallow_copy_type(func, args, kwargs):
return True
@register_generic_util(torch.ops.aten.empty_like.default)
def generic_empty_like(func, args, kwargs):
"""Empty_like operation - creates an empty tensor with the same quantized structure."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
# Create empty tensor with same shape and dtype as the quantized data
hp_dtype = kwargs.pop('dtype', qt._layout_params["orig_dtype"])
new_qdata = torch.empty_like(qt._qdata, **kwargs)
# Handle device transfer for layout params
target_device = kwargs.get('device', new_qdata.device)
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
# Update orig_dtype if dtype is specified
new_params['orig_dtype'] = hp_dtype
return QuantizedTensor(new_qdata, qt._layout_type, new_params)
return func(*args, **kwargs)
# ==============================================================================
# FP8 Layout + Operation Handlers
# ==============================================================================
@@ -347,37 +395,57 @@ class TensorCoreFP8Layout(QuantizedLayout):
- orig_dtype: Original dtype before quantization (for casting back)
"""
@classmethod
def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn):
def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn, stochastic_rounding=0, inplace_ops=False):
orig_dtype = tensor.dtype
if scale is None:
scale = torch.amax(tensor.abs()) / torch.finfo(dtype).max
if isinstance(scale, str) and scale == "recalculate":
scale = torch.amax(tensor.abs()).to(dtype=torch.float32) / torch.finfo(dtype).max
if tensor.dtype not in [torch.float32, torch.bfloat16]: # Prevent scale from being too small
tensor_info = torch.finfo(tensor.dtype)
scale = (1.0 / torch.clamp((1.0 / scale), min=tensor_info.min, max=tensor_info.max))
if not isinstance(scale, torch.Tensor):
scale = torch.tensor(scale)
scale = scale.to(device=tensor.device, dtype=torch.float32)
if scale is not None:
if not isinstance(scale, torch.Tensor):
scale = torch.tensor(scale)
scale = scale.to(device=tensor.device, dtype=torch.float32)
tensor_scaled = tensor * (1.0 / scale).to(tensor.dtype)
# TODO: uncomment this if it's actually needed because the clamp has a small performance penality'
# lp_amax = torch.finfo(dtype).max
# torch.clamp(tensor_scaled, min=-lp_amax, max=lp_amax, out=tensor_scaled)
qdata = tensor_scaled.to(dtype, memory_format=torch.contiguous_format)
if inplace_ops:
tensor *= (1.0 / scale).to(tensor.dtype)
else:
tensor = tensor * (1.0 / scale).to(tensor.dtype)
else:
scale = torch.ones((), device=tensor.device, dtype=torch.float32)
if stochastic_rounding > 0:
tensor = comfy.float.stochastic_rounding(tensor, dtype=dtype, seed=stochastic_rounding)
else:
lp_amax = torch.finfo(dtype).max
torch.clamp(tensor, min=-lp_amax, max=lp_amax, out=tensor)
tensor = tensor.to(dtype, memory_format=torch.contiguous_format)
layout_params = {
'scale': scale,
'orig_dtype': orig_dtype
}
return qdata, layout_params
return tensor, layout_params
@staticmethod
def dequantize(qdata, scale, orig_dtype, **kwargs):
plain_tensor = torch.ops.aten._to_copy.default(qdata, dtype=orig_dtype)
return plain_tensor * scale
plain_tensor.mul_(scale)
return plain_tensor
@classmethod
def get_plain_tensors(cls, qtensor):
return qtensor._qdata, qtensor._layout_params['scale']
QUANT_ALGOS = {
"float8_e4m3fn": {
"storage_t": torch.float8_e4m3fn,
"parameters": {"weight_scale", "input_scale"},
"comfy_tensor_layout": "TensorCoreFP8Layout",
},
}
LAYOUTS = {
"TensorCoreFP8Layout": TensorCoreFP8Layout,

View File

@@ -52,6 +52,9 @@ import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.text_encoders.hunyuan_image
import comfy.text_encoders.z_image
import comfy.text_encoders.ovis
import comfy.text_encoders.kandinsky5
import comfy.model_patcher
import comfy.lora
@@ -59,6 +62,8 @@ import comfy.lora_convert
import comfy.hooks
import comfy.t2i_adapter.adapter
import comfy.taesd.taesd
import comfy.taesd.taehv
import comfy.latent_formats
import comfy.ldm.flux.redux
@@ -94,7 +99,7 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
class CLIP:
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}):
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, state_dict=[], model_options={}):
if no_init:
return
params = target.params.copy()
@@ -122,9 +127,32 @@ class CLIP:
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
#Match torch.float32 hardcode upcast in TE implemention
self.patcher.set_model_compute_dtype(torch.float32)
self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram
self.patcher.is_clip = True
self.apply_hooks_to_conds = None
if len(state_dict) > 0:
if isinstance(state_dict, list):
for c in state_dict:
m, u = self.load_sd(c)
if len(m) > 0:
logging.warning("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected: {}".format(u))
else:
m, u = self.load_sd(state_dict, full_model=True)
if len(m) > 0:
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
if len(m_filter) > 0:
logging.warning("clip missing: {}".format(m))
else:
logging.debug("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected {}:".format(u))
if params['device'] == load_device:
model_management.load_models_gpu([self.patcher], force_full_load=True)
self.layer_idx = None
@@ -189,6 +217,7 @@ class CLIP:
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model()
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
all_hooks.reset()
self.patcher.patch_hooks(None)
if show_pbar:
@@ -236,6 +265,7 @@ class CLIP:
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model()
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
o = self.cond_stage_model.encode_token_weights(tokens)
cond, pooled = o[:2]
if return_dict:
@@ -356,7 +386,7 @@ class VAE:
self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype)
elif sd['decoder.conv_in.weight'].shape[1] == 32:
elif sd['decoder.conv_in.weight'].shape[1] == 32 and sd['decoder.conv_in.weight'].ndim == 5:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True, "refiner_vae": False}
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
@@ -382,6 +412,17 @@ class VAE:
self.upscale_ratio = 4
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
if 'decoder.post_quant_conv.weight' in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"decoder.post_quant_conv.": "post_quant_conv.", "encoder.quant_conv.": "quant_conv."})
if 'bn.running_mean' in sd:
ddconfig["batch_norm_latent"] = True
self.downscale_ratio *= 2
self.upscale_ratio *= 2
self.latent_channels *= 4
old_memory_used_decode = self.memory_used_decode
self.memory_used_decode = lambda shape, dtype: old_memory_used_decode(shape, dtype) * 4.0
if 'post_quant_conv.weight' in sd:
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
else:
@@ -441,20 +482,20 @@ class VAE:
elif "decoder.conv_in.conv.weight" in sd and sd['decoder.conv_in.conv.weight'].shape[1] == 32:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True}
ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
self.latent_channels = 64
self.latent_channels = 32
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
self.latent_dim = 3
self.not_video = True
self.not_video = False
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.EmptyRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (1400 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1400 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (1400 * 9 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (3600 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
elif "decoder.conv_in.conv.weight" in sd:
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
ddconfig["conv3d"] = True
@@ -466,8 +507,10 @@ class VAE:
self.latent_dim = 3
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
self.memory_used_decode = lambda shape, dtype: (1500 * shape[2] * shape[3] * shape[4] * (4 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (900 * max(shape[2], 2) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
#This is likely to significantly over-estimate with single image or low frame counts as the
#implementation is able to completely skip caching. Rework if used as an image only VAE
self.memory_used_decode = lambda shape, dtype: (2800 * min(8, ((shape[2] - 1) * 4) + 1) * shape[3] * shape[4] * (8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (1400 * min(9, shape[2]) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
elif "decoder.unpatcher3d.wavelets" in sd:
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 8, 8)
@@ -496,17 +539,20 @@ class VAE:
self.memory_used_encode = lambda shape, dtype: 3300 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 8000 * shape[3] * shape[4] * (16 * 16) * model_management.dtype_size(dtype)
else: # Wan 2.1 VAE
dim = sd["decoder.head.0.gamma"].shape[0]
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.latent_dim = 3
self.latent_channels = 16
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (1500 if shape[2]<=4 else 6000) * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (2200 if shape[2]<=4 else 7000) * shape[3] * shape[4] * (8*8) * model_management.dtype_size(dtype)
# Hunyuan 3d v2 2.0 & 2.1
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
@@ -572,6 +618,35 @@ class VAE:
self.process_input = lambda audio: audio
self.working_dtypes = [torch.float32]
self.crop_input = False
elif "decoder.22.bias" in sd: # taehv, taew and lighttae
self.latent_channels = sd["decoder.1.weight"].shape[1]
self.latent_dim = 3
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
if self.latent_channels == 48: # Wan 2.2
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=None) # taehv doesn't need scaling
self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently"))
self.process_output = lambda image: image
self.memory_used_decode = lambda shape, dtype: (1800 * (max(1, (shape[-3] ** 0.7 * 0.1)) * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype))
elif self.latent_channels == 32 and sd["decoder.22.bias"].shape[0] == 12: # lighttae_hv15
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=comfy.latent_formats.HunyuanVideo15)
self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently"))
self.memory_used_decode = lambda shape, dtype: (1200 * (max(1, (shape[-3] ** 0.7 * 0.05)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype))
else:
if sd["decoder.1.weight"].dtype == torch.float16: # taehv currently only available in float16, so assume it's not lighttaew2_1 as otherwise state dicts are identical
latent_format=comfy.latent_formats.HunyuanVideo
else:
latent_format=None # lighttaew2_1 doesn't need scaling
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=latent_format)
self.process_input = self.process_output = lambda image: image
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.memory_used_encode = lambda shape, dtype: (700 * (max(1, (shape[-3] ** 0.66 * 0.11)) * shape[-2] * shape[-1]) * model_management.dtype_size(dtype))
self.memory_used_decode = lambda shape, dtype: (50 * (max(1, (shape[-3] ** 0.65 * 0.26)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype))
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@@ -696,6 +771,8 @@ class VAE:
self.throw_exception_if_invalid()
pixel_samples = None
do_tile = False
if self.latent_dim == 2 and samples_in.ndim == 5:
samples_in = samples_in[:, :, 0]
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
@@ -911,12 +988,19 @@ class CLIPType(Enum):
OMNIGEN2 = 17
QWEN_IMAGE = 18
HUNYUAN_IMAGE = 19
HUNYUAN_VIDEO_15 = 20
OVIS = 21
KANDINSKY5 = 22
KANDINSKY5_IMAGE = 23
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
clip_data = []
for p in ckpt_paths:
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
sd, metadata = comfy.utils.load_torch_file(p, safe_load=True, return_metadata=True)
if model_options.get("custom_operations", None) is None:
sd, metadata = comfy.utils.convert_old_quants(sd, model_prefix="", metadata=metadata)
clip_data.append(sd)
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
@@ -934,6 +1018,11 @@ class TEModel(Enum):
QWEN25_7B = 11
BYT5_SMALL_GLYPH = 12
GEMMA_3_4B = 13
MISTRAL3_24B = 14
MISTRAL3_24B_PRUNED_FLUX2 = 15
QWEN3_4B = 16
QWEN3_2B = 17
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@@ -966,6 +1055,18 @@ def detect_te_model(sd):
if weight.shape[0] == 512:
return TEModel.QWEN25_7B
if "model.layers.0.post_attention_layernorm.weight" in sd:
weight = sd['model.layers.0.post_attention_layernorm.weight']
if 'model.layers.0.self_attn.q_norm.weight' in sd:
if weight.shape[0] == 2560:
return TEModel.QWEN3_4B
elif weight.shape[0] == 2048:
return TEModel.QWEN3_2B
if weight.shape[0] == 5120:
if "model.layers.39.post_attention_layernorm.weight" in sd:
return TEModel.MISTRAL3_24B
else:
return TEModel.MISTRAL3_24B_PRUNED_FLUX2
return TEModel.LLAMA3_8
return None
@@ -1015,7 +1116,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
@@ -1039,7 +1140,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data),
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None)
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
@@ -1068,7 +1169,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.LLAMA3_8:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
elif te_model == TEModel.QWEN25_3B:
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
@@ -1080,13 +1181,23 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
else:
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
elif te_model == TEModel.MISTRAL3_24B or te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2:
clip_target.clip = comfy.text_encoders.flux.flux2_te(**llama_detect(clip_data), pruned=te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2)
clip_target.tokenizer = comfy.text_encoders.flux.Flux2Tokenizer
tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None)
elif te_model == TEModel.QWEN3_4B:
clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer
elif te_model == TEModel.QWEN3_2B:
clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer
else:
# clip_l
if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sd1_clip.SD1ClipModel
@@ -1126,6 +1237,15 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
elif clip_type == CLIPType.HUNYUAN_VIDEO_15:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer
elif clip_type == CLIPType.KANDINSKY5:
clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer
elif clip_type == CLIPType.KANDINSKY5_IMAGE:
clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
@@ -1141,14 +1261,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
parameters += comfy.utils.calculate_parameters(c)
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options)
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options)
for c in clip_data:
m, u = clip.load_sd(c)
if len(m) > 0:
logging.warning("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected: {}".format(u))
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, state_dict=clip_data, model_options=model_options)
return clip
def load_gligen(ckpt_path):
@@ -1207,6 +1320,10 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
load_device = model_management.get_torch_device()
custom_operations = model_options.get("custom_operations", None)
if custom_operations is None:
sd, metadata = comfy.utils.convert_old_quants(sd, diffusion_model_prefix, metadata=metadata)
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
if model_config is None:
logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
@@ -1215,18 +1332,22 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
return None
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.scaled_fp8 is not None:
if model_config.quant_config is not None:
weight_dtype = None
model_config.custom_operations = model_options.get("custom_operations", None)
if custom_operations is not None:
model_config.custom_operations = custom_operations
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
if unet_dtype is None:
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
if model_config.quant_config is not None:
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
else:
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
if model_config.clip_vision_prefix is not None:
@@ -1244,22 +1365,33 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
vae = VAE(sd=vae_sd, metadata=metadata)
if output_clip:
if te_model_options.get("custom_operations", None) is None:
scaled_fp8_list = []
for k in list(sd.keys()): # Convert scaled fp8 to mixed ops
if k.endswith(".scaled_fp8"):
scaled_fp8_list.append(k[:-len("scaled_fp8")])
if len(scaled_fp8_list) > 0:
out_sd = {}
for k in sd:
skip = False
for pref in scaled_fp8_list:
skip = skip or k.startswith(pref)
if not skip:
out_sd[k] = sd[k]
for pref in scaled_fp8_list:
quant_sd, qmetadata = comfy.utils.convert_old_quants(sd, pref, metadata={})
for k in quant_sd:
out_sd[k] = quant_sd[k]
sd = out_sd
clip_target = model_config.clip_target(state_dict=sd)
if clip_target is not None:
clip_sd = model_config.process_clip_state_dict(sd)
if len(clip_sd) > 0:
parameters = comfy.utils.calculate_parameters(clip_sd)
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
m, u = clip.load_sd(clip_sd, full_model=True)
if len(m) > 0:
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
if len(m_filter) > 0:
logging.warning("clip missing: {}".format(m))
else:
logging.debug("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected {}:".format(u))
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, state_dict=clip_sd, model_options=te_model_options)
else:
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
@@ -1306,6 +1438,9 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
if len(temp_sd) > 0:
sd = temp_sd
custom_operations = model_options.get("custom_operations", None)
if custom_operations is None:
sd, metadata = comfy.utils.convert_old_quants(sd, "", metadata=metadata)
parameters = comfy.utils.calculate_parameters(sd)
weight_dtype = comfy.utils.weight_dtype(sd)
@@ -1336,7 +1471,7 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
offload_device = model_management.unet_offload_device()
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.scaled_fp8 is not None:
if model_config.quant_config is not None:
weight_dtype = None
if dtype is None:
@@ -1344,12 +1479,15 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
else:
unet_dtype = dtype
if model_config.layer_quant_config is not None:
if model_config.quant_config is not None:
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
else:
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
if custom_operations is not None:
model_config.custom_operations = custom_operations
if model_options.get("fp8_optimizations", False):
model_config.optimizations["fp8"] = True
@@ -1388,6 +1526,9 @@ def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, m
if vae is not None:
vae_sd = vae.get_sd()
if metadata is None:
metadata = {}
model_management.load_models_gpu(load_models, force_patch_weights=True)
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)

View File

@@ -90,7 +90,6 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
if textmodel_json_config is None:
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
@@ -108,19 +107,17 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
config[k] = v
operations = model_options.get("custom_operations", None)
scaled_fp8 = None
quant_config = model_options.get("quantization_metadata", None)
if operations is None:
scaled_fp8 = model_options.get("scaled_fp8", None)
if scaled_fp8 is not None:
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8)
if quant_config is not None:
operations = comfy.ops.mixed_precision_ops(quant_config, dtype, full_precision_mm=True)
logging.info("Using MixedPrecisionOps for text encoder")
else:
operations = comfy.ops.manual_cast
self.operations = operations
self.transformer = model_class(config, dtype, device, self.operations)
if scaled_fp8 is not None:
self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8))
self.num_layers = self.transformer.num_layers
@@ -138,6 +135,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.layer_norm_hidden_state = layer_norm_hidden_state
self.return_projected_pooled = return_projected_pooled
self.return_attention_masks = return_attention_masks
self.execution_device = None
if layer == "hidden":
assert layer_idx is not None
@@ -154,7 +152,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
def set_clip_options(self, options):
layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
if self.layer == "all":
self.execution_device = options.get("execution_device", self.execution_device)
if isinstance(self.layer, list) or self.layer == "all":
pass
elif layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
@@ -166,6 +165,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.layer = self.options_default[0]
self.layer_idx = self.options_default[1]
self.return_projected_pooled = self.options_default[2]
self.execution_device = None
def process_tokens(self, tokens, device):
end_token = self.special_tokens.get("end", None)
@@ -249,14 +249,20 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info
def forward(self, tokens):
device = self.transformer.get_input_embeddings().weight.device
if self.execution_device is None:
device = self.transformer.get_input_embeddings().weight.device
else:
device = self.execution_device
embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device)
attention_mask_model = None
if self.enable_attention_masks:
attention_mask_model = attention_mask
if self.layer == "all":
if isinstance(self.layer, list):
intermediate_output = self.layer
elif self.layer == "all":
intermediate_output = "all"
else:
intermediate_output = self.layer_idx
@@ -460,7 +466,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
return embed_out
class SDTokenizer:
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}):
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, tokenizer_data={}, tokenizer_args={}):
if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
@@ -468,6 +474,7 @@ class SDTokenizer:
self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length)
self.end_token = None
self.min_padding = min_padding
self.pad_left = pad_left
empty = self.tokenizer('')["input_ids"]
self.tokenizer_adds_end_token = has_end_token
@@ -522,6 +529,12 @@ class SDTokenizer:
return (embed, "{} {}".format(embedding_name[len(stripped):], leftover))
return (embed, leftover)
def pad_tokens(self, tokens, amount):
if self.pad_left:
for i in range(amount):
tokens.insert(0, (self.pad_token, 1.0, 0))
else:
tokens.extend([(self.pad_token, 1.0, 0)] * amount)
def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs):
'''
@@ -600,7 +613,7 @@ class SDTokenizer:
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length))
self.pad_tokens(batch, remaining_length)
#start new batch
batch = []
if self.start_token is not None:
@@ -614,11 +627,11 @@ class SDTokenizer:
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if min_padding is not None:
batch.extend([(self.pad_token, 1.0, 0)] * min_padding)
self.pad_tokens(batch, min_padding)
if self.pad_to_max_length and len(batch) < self.max_length:
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
self.pad_tokens(batch, self.max_length - len(batch))
if min_length is not None and len(batch) < min_length:
batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch)))
self.pad_tokens(batch, min_length - len(batch))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]

View File

@@ -21,6 +21,8 @@ import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.text_encoders.hunyuan_image
import comfy.text_encoders.kandinsky5
import comfy.text_encoders.z_image
from . import supported_models_base
from . import latent_formats
@@ -539,7 +541,7 @@ class SD3(supported_models_base.BASE):
unet_extra_config = {}
latent_format = latent_formats.SD3
memory_usage_factor = 1.2
memory_usage_factor = 1.6
text_encoder_key_prefix = ["text_encoders."]
@@ -741,6 +743,37 @@ class FluxSchnell(Flux):
out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device)
return out
class Flux2(Flux):
unet_config = {
"image_model": "flux2",
}
sampling_settings = {
"shift": 2.02,
}
unet_extra_config = {}
latent_format = latent_formats.Flux2
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = self.memory_usage_factor * (2.0 * 2.0) * 2.36
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Flux2(self, device=device)
return out
def clip_target(self, state_dict={}):
return None # TODO
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect))
class GenmoMochi(supported_models_base.BASE):
unet_config = {
"image_model": "mochi_preview",
@@ -932,7 +965,7 @@ class CosmosT2IPredict2(supported_models_base.BASE):
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.9
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.95
def get_model(self, state_dict, prefix="", device=None):
out = model_base.CosmosPredict2(self, device=device)
@@ -963,7 +996,7 @@ class Lumina2(supported_models_base.BASE):
"shift": 6.0,
}
memory_usage_factor = 1.2
memory_usage_factor = 1.4
unet_extra_config = {}
latent_format = latent_formats.Flux
@@ -982,6 +1015,26 @@ class Lumina2(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}gemma2_2b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.lumina2.LuminaTokenizer, comfy.text_encoders.lumina2.te(**hunyuan_detect))
class ZImage(Lumina2):
unet_config = {
"image_model": "lumina2",
"dim": 3840,
}
sampling_settings = {
"multiplier": 1.0,
"shift": 3.0,
}
memory_usage_factor = 2.0
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.z_image.ZImageTokenizer, comfy.text_encoders.z_image.te(**hunyuan_detect))
class WAN21_T2V(supported_models_base.BASE):
unet_config = {
"image_model": "wan2.1",
@@ -1236,7 +1289,7 @@ class ChromaRadiance(Chroma):
latent_format = comfy.latent_formats.ChromaRadiance
# Pixel-space model, no spatial compression for model input.
memory_usage_factor = 0.038
memory_usage_factor = 0.044
def get_model(self, state_dict, prefix="", device=None):
return model_base.ChromaRadiance(self, device=device)
@@ -1279,7 +1332,7 @@ class Omnigen2(supported_models_base.BASE):
"shift": 2.6,
}
memory_usage_factor = 1.65 #TODO
memory_usage_factor = 1.95 #TODO
unet_extra_config = {}
latent_format = latent_formats.Flux
@@ -1344,7 +1397,7 @@ class HunyuanImage21(HunyuanVideo):
latent_format = latent_formats.HunyuanImage21
memory_usage_factor = 7.7
memory_usage_factor = 8.7
supported_inference_dtypes = [torch.bfloat16, torch.float32]
@@ -1374,6 +1427,108 @@ class HunyuanImage21Refiner(HunyuanVideo):
out = model_base.HunyuanImage21Refiner(self, device=device)
return out
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage]
class HunyuanVideo15(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"vision_in_dim": 1152,
}
sampling_settings = {
"shift": 7.0,
}
memory_usage_factor = 4.0 #TODO
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
latent_format = latent_formats.HunyuanVideo15
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideo15(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
class HunyuanVideo15_SR_Distilled(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"vision_in_dim": 1152,
"in_channels": 98,
}
sampling_settings = {
"shift": 2.0,
}
memory_usage_factor = 4.0 #TODO
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
latent_format = latent_formats.HunyuanVideo15
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideo15_SR_Distilled(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
class Kandinsky5(supported_models_base.BASE):
unet_config = {
"image_model": "kandinsky5",
}
sampling_settings = {
"shift": 10.0,
}
unet_extra_config = {}
latent_format = latent_formats.HunyuanVideo
memory_usage_factor = 1.25 #TODO
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Kandinsky5(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
class Kandinsky5Image(Kandinsky5):
unet_config = {
"image_model": "kandinsky5",
"model_dim": 2560,
"visual_embed_dim": 64,
}
sampling_settings = {
"shift": 3.0,
}
latent_format = latent_formats.Flux
memory_usage_factor = 1.25 #TODO
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Kandinsky5Image(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5]
models += [SVD_img2vid]

View File

@@ -17,6 +17,7 @@
"""
import torch
import logging
from . import model_base
from . import utils
from . import latent_formats
@@ -49,8 +50,7 @@ class BASE:
manual_cast_dtype = None
custom_operations = None
scaled_fp8 = None
layer_quant_config = None # Per-layer quantization configuration for mixed precision
quant_config = None # quantization configuration for mixed precision
optimizations = {"fp8": False}
@classmethod
@@ -118,3 +118,7 @@ class BASE:
def set_inference_dtype(self, dtype, manual_cast_dtype):
self.unet_config['dtype'] = dtype
self.manual_cast_dtype = manual_cast_dtype
def __getattr__(self, name):
logging.warning("\nWARNING, you accessed {} from the model config object which doesn't exist. Please fix your code.\n".format(name))
return None

171
comfy/taesd/taehv.py Normal file
View File

@@ -0,0 +1,171 @@
# Tiny AutoEncoder for HunyuanVideo and WanVideo https://github.com/madebyollin/taehv
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm.auto import tqdm
from collections import namedtuple, deque
import comfy.ops
operations=comfy.ops.disable_weight_init
DecoderResult = namedtuple("DecoderResult", ("frame", "memory"))
TWorkItem = namedtuple("TWorkItem", ("input_tensor", "block_index"))
def conv(n_in, n_out, **kwargs):
return operations.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
class Clamp(nn.Module):
def forward(self, x):
return torch.tanh(x / 3) * 3
class MemBlock(nn.Module):
def __init__(self, n_in, n_out, act_func):
super().__init__()
self.conv = nn.Sequential(conv(n_in * 2, n_out), act_func, conv(n_out, n_out), act_func, conv(n_out, n_out))
self.skip = operations.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
self.act = act_func
def forward(self, x, past):
return self.act(self.conv(torch.cat([x, past], 1)) + self.skip(x))
class TPool(nn.Module):
def __init__(self, n_f, stride):
super().__init__()
self.stride = stride
self.conv = operations.Conv2d(n_f*stride,n_f, 1, bias=False)
def forward(self, x):
_NT, C, H, W = x.shape
return self.conv(x.reshape(-1, self.stride * C, H, W))
class TGrow(nn.Module):
def __init__(self, n_f, stride):
super().__init__()
self.stride = stride
self.conv = operations.Conv2d(n_f, n_f*stride, 1, bias=False)
def forward(self, x):
_NT, C, H, W = x.shape
x = self.conv(x)
return x.reshape(-1, C, H, W)
def apply_model_with_memblocks(model, x, parallel, show_progress_bar):
B, T, C, H, W = x.shape
if parallel:
x = x.reshape(B*T, C, H, W)
# parallel over input timesteps, iterate over blocks
for b in tqdm(model, disable=not show_progress_bar):
if isinstance(b, MemBlock):
BT, C, H, W = x.shape
T = BT // B
_x = x.reshape(B, T, C, H, W)
mem = F.pad(_x, (0,0,0,0,0,0,1,0), value=0)[:,:T].reshape(x.shape)
x = b(x, mem)
else:
x = b(x)
BT, C, H, W = x.shape
T = BT // B
x = x.view(B, T, C, H, W)
else:
out = []
work_queue = deque([TWorkItem(xt, 0) for t, xt in enumerate(x.reshape(B, T * C, H, W).chunk(T, dim=1))])
progress_bar = tqdm(range(T), disable=not show_progress_bar)
mem = [None] * len(model)
while work_queue:
xt, i = work_queue.popleft()
if i == 0:
progress_bar.update(1)
if i == len(model):
out.append(xt)
del xt
else:
b = model[i]
if isinstance(b, MemBlock):
if mem[i] is None:
xt_new = b(xt, xt * 0)
mem[i] = xt.detach().clone()
else:
xt_new = b(xt, mem[i])
mem[i] = xt.detach().clone()
del xt
work_queue.appendleft(TWorkItem(xt_new, i+1))
elif isinstance(b, TPool):
if mem[i] is None:
mem[i] = []
mem[i].append(xt.detach().clone())
if len(mem[i]) == b.stride:
B, C, H, W = xt.shape
xt = b(torch.cat(mem[i], 1).view(B*b.stride, C, H, W))
mem[i] = []
work_queue.appendleft(TWorkItem(xt, i+1))
elif isinstance(b, TGrow):
xt = b(xt)
NT, C, H, W = xt.shape
for xt_next in reversed(xt.view(B, b.stride*C, H, W).chunk(b.stride, 1)):
work_queue.appendleft(TWorkItem(xt_next, i+1))
del xt
else:
xt = b(xt)
work_queue.appendleft(TWorkItem(xt, i+1))
progress_bar.close()
x = torch.stack(out, 1)
return x
class TAEHV(nn.Module):
def __init__(self, latent_channels, parallel=False, decoder_time_upscale=(True, True), decoder_space_upscale=(True, True, True), latent_format=None, show_progress_bar=True):
super().__init__()
self.image_channels = 3
self.patch_size = 1
self.latent_channels = latent_channels
self.parallel = parallel
self.latent_format = latent_format
self.show_progress_bar = show_progress_bar
self.process_in = latent_format().process_in if latent_format is not None else (lambda x: x)
self.process_out = latent_format().process_out if latent_format is not None else (lambda x: x)
if self.latent_channels in [48, 32]: # Wan 2.2 and HunyuanVideo1.5
self.patch_size = 2
if self.latent_channels == 32: # HunyuanVideo1.5
act_func = nn.LeakyReLU(0.2, inplace=True)
else: # HunyuanVideo, Wan 2.1
act_func = nn.ReLU(inplace=True)
self.encoder = nn.Sequential(
conv(self.image_channels*self.patch_size**2, 64), act_func,
TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func),
TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func),
TPool(64, 1), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func),
conv(64, self.latent_channels),
)
n_f = [256, 128, 64, 64]
self.frames_to_trim = 2**sum(decoder_time_upscale) - 1
self.decoder = nn.Sequential(
Clamp(), conv(self.latent_channels, n_f[0]), act_func,
MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[0] else 1), TGrow(n_f[0], 1), conv(n_f[0], n_f[1], bias=False),
MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[1] else 1), TGrow(n_f[1], 2 if decoder_time_upscale[0] else 1), conv(n_f[1], n_f[2], bias=False),
MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[2] else 1), TGrow(n_f[2], 2 if decoder_time_upscale[1] else 1), conv(n_f[2], n_f[3], bias=False),
act_func, conv(n_f[3], self.image_channels*self.patch_size**2),
)
@property
def show_progress_bar(self):
return self._show_progress_bar
@show_progress_bar.setter
def show_progress_bar(self, value):
self._show_progress_bar = value
def encode(self, x, **kwargs):
if self.patch_size > 1: x = F.pixel_unshuffle(x, self.patch_size)
x = x.movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W]
if x.shape[1] % 4 != 0:
# pad at end to multiple of 4
n_pad = 4 - x.shape[1] % 4
padding = x[:, -1:].repeat_interleave(n_pad, dim=1)
x = torch.cat([x, padding], 1)
x = apply_model_with_memblocks(self.encoder, x, self.parallel, self.show_progress_bar).movedim(2, 1)
return self.process_out(x)
def decode(self, x, **kwargs):
x = self.process_in(x).movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W]
x = apply_model_with_memblocks(self.decoder, x, self.parallel, self.show_progress_bar)
if self.patch_size > 1: x = F.pixel_shuffle(x, self.patch_size)
return x[:, self.frames_to_trim:].movedim(2, 1)

View File

@@ -7,10 +7,10 @@ from transformers import T5TokenizerFast
class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_old_config_xxl.json")
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
if t5xxl_scaled_fp8 is not None:
t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None)
if t5xxl_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
model_options["quantization_metadata"] = t5xxl_quantization_metadata
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, zero_out_masked=attention_mask, model_options=model_options)
@@ -30,12 +30,12 @@ class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def te(dtype_t5=None, t5xxl_scaled_fp8=None):
def te(dtype_t5=None, t5_quantization_metadata=None):
class CosmosTEModel_(CosmosT5XXL):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@@ -1,10 +1,13 @@
from comfy import sd1_clip
import comfy.text_encoders.t5
import comfy.text_encoders.sd3_clip
import comfy.text_encoders.llama
import comfy.model_management
from transformers import T5TokenizerFast
from transformers import T5TokenizerFast, LlamaTokenizerFast
import torch
import os
import json
import base64
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
@@ -60,11 +63,112 @@ class FluxClipModel(torch.nn.Module):
else:
return self.t5xxl.load_sd(sd)
def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None):
def flux_clip(dtype_t5=None, t5_quantization_metadata=None):
class FluxClipModel_(FluxClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
return FluxClipModel_
def load_mistral_tokenizer(data):
if torch.is_tensor(data):
data = data.numpy().tobytes()
try:
from transformers.integrations.mistral import MistralConverter
except ModuleNotFoundError:
from transformers.models.pixtral.convert_pixtral_weights_to_hf import MistralConverter
mistral_vocab = json.loads(data)
special_tokens = {}
vocab = {}
max_vocab = mistral_vocab["config"]["default_vocab_size"]
max_vocab -= len(mistral_vocab["special_tokens"])
for w in mistral_vocab["vocab"]:
r = w["rank"]
if r >= max_vocab:
continue
vocab[base64.b64decode(w["token_bytes"])] = r
for w in mistral_vocab["special_tokens"]:
if "token_bytes" in w:
special_tokens[base64.b64decode(w["token_bytes"])] = w["rank"]
else:
special_tokens[w["token_str"]] = w["rank"]
all_special = []
for v in special_tokens:
all_special.append(v)
special_tokens.update(vocab)
vocab = special_tokens
return {"tokenizer_object": MistralConverter(vocab=vocab, additional_special_tokens=all_special).converted(), "legacy": False}
class MistralTokenizerClass:
@staticmethod
def from_pretrained(path, **kwargs):
return LlamaTokenizerFast(**kwargs)
class Mistral3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.tekken_data = tokenizer_data.get("tekken_model", None)
super().__init__("", pad_with_end=False, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
def state_dict(self):
return {"tekken_model": self.tekken_data}
class Flux2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="mistral3_24b", tokenizer=Mistral3Tokenizer)
self.llama_template = '[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]{}[/INST]'
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
return tokens
class Mistral3_24BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer=[10, 20, 30], layer_idx=None, dtype=None, attention_mask=True, model_options={}):
textmodel_json_config = {}
num_layers = model_options.get("num_layers", None)
if num_layers is not None:
textmodel_json_config["num_hidden_layers"] = num_layers
if num_layers < 40:
textmodel_json_config["final_norm"] = False
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 1, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Mistral3Small24B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Flux2TEModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, name="mistral3_24b", clip_model=Mistral3_24BModel):
super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options)
def encode_token_weights(self, token_weight_pairs):
out, pooled, extra = super().encode_token_weights(token_weight_pairs)
out = torch.stack((out[:, 0], out[:, 1], out[:, 2]), dim=1)
out = out.movedim(1, 2)
out = out.reshape(out.shape[0], out.shape[1], -1)
return out, pooled, extra
def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False):
class Flux2TEModel_(Flux2TEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if dtype_llama is not None:
dtype = dtype_llama
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
if pruned:
model_options = model_options.copy()
model_options["num_layers"] = 30
super().__init__(device=device, dtype=dtype, model_options=model_options)
return Flux2TEModel_

View File

@@ -26,12 +26,12 @@ class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def mochi_te(dtype_t5=None, t5xxl_scaled_fp8=None):
def mochi_te(dtype_t5=None, t5_quantization_metadata=None):
class MochiTEModel_(MochiT5XXL):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@@ -142,14 +142,14 @@ class HiDreamTEModel(torch.nn.Module):
return self.llama.load_sd(sd)
def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None):
def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5_quantization_metadata=None, llama_quantization_metadata=None):
class HiDreamTEModel_(HiDreamTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
model_options["llama_quantization_metadata"] = llama_quantization_metadata
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, dtype_t5=dtype_t5, dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
return HiDreamTEModel_

View File

@@ -40,10 +40,10 @@ class HunyuanImageTokenizer(QwenImageTokenizer):
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None)
if llama_scaled_fp8 is not None:
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
@@ -91,12 +91,12 @@ class HunyuanImageTEModel(QwenImageTEModel):
else:
return super().load_sd(sd)
def te(byt5=True, dtype_llama=None, llama_scaled_fp8=None):
def te(byt5=True, dtype_llama=None, llama_quantization_metadata=None):
class QwenImageTEModel_(HunyuanImageTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["qwen_scaled_fp8"] = llama_scaled_fp8
model_options["llama_quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(byt5=byt5, device=device, dtype=dtype, model_options=model_options)

View File

@@ -1,11 +1,12 @@
from comfy import sd1_clip
import comfy.model_management
import comfy.text_encoders.llama
from .hunyuan_image import HunyuanImageTokenizer
from transformers import LlamaTokenizerFast
import torch
import os
import numbers
import comfy.utils
def llama_detect(state_dict, prefix=""):
out = {}
@@ -13,9 +14,9 @@ def llama_detect(state_dict, prefix=""):
if t5_key in state_dict:
out["dtype_llama"] = state_dict[t5_key].dtype
scaled_fp8_key = "{}scaled_fp8".format(prefix)
if scaled_fp8_key in state_dict:
out["llama_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
quant = comfy.utils.detect_layer_quantization(state_dict, prefix)
if quant is not None:
out["llama_quantization_metadata"] = quant
return out
@@ -27,10 +28,10 @@ class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
class LLAMAModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}):
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
if llama_scaled_fp8 is not None:
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
model_options["quantization_metadata"] = llama_quantization_metadata
textmodel_json_config = {}
vocab_size = model_options.get("vocab_size", None)
@@ -73,6 +74,14 @@ class HunyuanVideoTokenizer:
return {}
class HunyuanVideo15Tokenizer(HunyuanImageTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.llama_template = "<|im_start|>system\nYou are a helpful assistant. Describe the video by detailing the following aspects:\n1. The main content and theme of the video.\n2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.\n3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.\n4. background environment, light, style and atmosphere.\n5. camera angles, movements, and transitions used in the video.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
return super().tokenize_with_weights(text, return_word_ids, prevent_empty_text=True, **kwargs)
class HunyuanVideoClipModel(torch.nn.Module):
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
super().__init__()
@@ -149,11 +158,11 @@ class HunyuanVideoClipModel(torch.nn.Module):
return self.llama.load_sd(sd)
def hunyuan_video_clip(dtype_llama=None, llama_scaled_fp8=None):
def hunyuan_video_clip(dtype_llama=None, llama_quantization_metadata=None):
class HunyuanVideoClipModel_(HunyuanVideoClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
model_options["llama_quantization_metadata"] = llama_quantization_metadata
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
return HunyuanVideoClipModel_

View File

@@ -0,0 +1,68 @@
from comfy import sd1_clip
from .qwen_image import QwenImageTokenizer, QwenImageTEModel
from .llama import Qwen25_7BVLI
class Kandinsky5Tokenizer(QwenImageTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.llama_template = "<|im_start|>system\nYou are a prompt engineer. Describe the video in detail.\nDescribe how the camera moves or shakes, describe the zoom and view angle, whether it follows the objects.\nDescribe the location of the video, main characters or objects and their action.\nDescribe the dynamism of the video and presented actions.\nName the visual style of the video: whether it is a professional footage, user generated content, some kind of animation, video game or screen content.\nDescribe the visual effects, postprocessing and transitions if they are presented in the video.\nPay attention to the order of key actions shown in the scene.<|im_end|>\n<|im_start|>user\n{}<|im_end|>"
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = super().tokenize_with_weights(text, return_word_ids, **kwargs)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
return out
class Kandinsky5TokenizerImage(Kandinsky5Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.llama_template = "<|im_start|>system\nYou are a promt engineer. Describe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>"
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-1, dtype=None, attention_mask=True, model_options={}):
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Kandinsky5TEModel(QwenImageTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super(QwenImageTEModel, self).__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options)
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
def encode_token_weights(self, token_weight_pairs):
cond, p, extra = super().encode_token_weights(token_weight_pairs, template_end=-1)
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs["l"])
return cond, l_pooled, extra
def set_clip_options(self, options):
super().set_clip_options(options)
self.clip_l.set_clip_options(options)
def reset_clip_options(self):
super().reset_clip_options()
self.clip_l.reset_clip_options()
def load_sd(self, sd):
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
return self.clip_l.load_sd(sd)
else:
return super().load_sd(sd)
def te(dtype_llama=None, llama_quantization_metadata=None):
class Kandinsky5TEModel_(Kandinsky5TEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["llama_quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)
return Kandinsky5TEModel_

View File

@@ -32,6 +32,29 @@ class Llama2Config:
q_norm = None
k_norm = None
rope_scale = None
final_norm: bool = True
@dataclass
class Mistral3Small24BConfig:
vocab_size: int = 131072
hidden_size: int = 5120
intermediate_size: int = 32768
num_hidden_layers: int = 40
num_attention_heads: int = 32
num_key_value_heads: int = 8
max_position_embeddings: int = 8192
rms_norm_eps: float = 1e-5
rope_theta: float = 1000000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = None
k_norm = None
rope_scale = None
final_norm: bool = True
@dataclass
class Qwen25_3BConfig:
@@ -53,6 +76,51 @@ class Qwen25_3BConfig:
q_norm = None
k_norm = None
rope_scale = None
final_norm: bool = True
@dataclass
class Qwen3_4BConfig:
vocab_size: int = 151936
hidden_size: int = 2560
intermediate_size: int = 9728
num_hidden_layers: int = 36
num_attention_heads: int = 32
num_key_value_heads: int = 8
max_position_embeddings: int = 40960
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
@dataclass
class Ovis25_2BConfig:
vocab_size: int = 151936
hidden_size: int = 2048
intermediate_size: int = 6144
num_hidden_layers: int = 28
num_attention_heads: int = 16
num_key_value_heads: int = 8
max_position_embeddings: int = 40960
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
@dataclass
class Qwen25_7BVLI_Config:
@@ -74,6 +142,7 @@ class Qwen25_7BVLI_Config:
q_norm = None
k_norm = None
rope_scale = None
final_norm: bool = True
@dataclass
class Gemma2_2B_Config:
@@ -96,6 +165,7 @@ class Gemma2_2B_Config:
k_norm = None
sliding_attention = None
rope_scale = None
final_norm: bool = True
@dataclass
class Gemma3_4B_Config:
@@ -118,6 +188,7 @@ class Gemma3_4B_Config:
k_norm = "gemma3"
sliding_attention = [False, False, False, False, False, 1024]
rope_scale = [1.0, 8.0]
final_norm: bool = True
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None):
@@ -366,7 +437,12 @@ class Llama2_(nn.Module):
transformer(config, index=i, device=device, dtype=dtype, ops=ops)
for i in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
if config.final_norm:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
else:
self.norm = None
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]):
@@ -402,8 +478,12 @@ class Llama2_(nn.Module):
intermediate = None
all_intermediate = None
only_layers = None
if intermediate_output is not None:
if intermediate_output == "all":
if isinstance(intermediate_output, list):
all_intermediate = []
only_layers = set(intermediate_output)
elif intermediate_output == "all":
all_intermediate = []
intermediate_output = None
elif intermediate_output < 0:
@@ -411,7 +491,8 @@ class Llama2_(nn.Module):
for i, layer in enumerate(self.layers):
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if only_layers is None or (i in only_layers):
all_intermediate.append(x.unsqueeze(1).clone())
x = layer(
x=x,
attention_mask=mask,
@@ -421,14 +502,17 @@ class Llama2_(nn.Module):
if i == intermediate_output:
intermediate = x.clone()
x = self.norm(x)
if self.norm is not None:
x = self.norm(x)
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if only_layers is None or ((i + 1) in only_layers):
all_intermediate.append(x.unsqueeze(1).clone())
if all_intermediate is not None:
intermediate = torch.cat(all_intermediate, dim=1)
if intermediate is not None and final_layer_norm_intermediate:
if intermediate is not None and final_layer_norm_intermediate and self.norm is not None:
intermediate = self.norm(intermediate)
return x, intermediate
@@ -453,6 +537,15 @@ class Llama2(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Mistral3Small24B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Mistral3Small24BConfig(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen25_3B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
@@ -462,6 +555,24 @@ class Qwen25_3B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_4B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_4BConfig(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Ovis25_2B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Ovis25_2BConfig(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen25_7BVLI(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()

View File

@@ -40,7 +40,7 @@ class LuminaModel(sd1_clip.SD1ClipModel):
super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options)
def te(dtype_llama=None, llama_scaled_fp8=None, model_type="gemma2_2b"):
def te(dtype_llama=None, llama_quantization_metadata=None, model_type="gemma2_2b"):
if model_type == "gemma2_2b":
model = Gemma2_2BModel
elif model_type == "gemma3_4b":
@@ -48,9 +48,9 @@ def te(dtype_llama=None, llama_scaled_fp8=None, model_type="gemma2_2b"):
class LuminaTEModel_(LuminaModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
model_options["quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, name=model_type, model_options=model_options, clip_model=model)

View File

@@ -32,12 +32,12 @@ class Omnigen2Model(sd1_clip.SD1ClipModel):
super().__init__(device=device, dtype=dtype, name="qwen25_3b", clip_model=Qwen25_3BModel, model_options=model_options)
def te(dtype_llama=None, llama_scaled_fp8=None):
def te(dtype_llama=None, llama_quantization_metadata=None):
class Omnigen2TEModel_(Omnigen2Model):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
model_options["quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@@ -0,0 +1,66 @@
from transformers import Qwen2Tokenizer
import comfy.text_encoders.llama
from comfy import sd1_clip
import os
import torch
import numbers
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='qwen3_2b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=284, pad_token=151643, tokenizer_data=tokenizer_data)
class OvisTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_2b", tokenizer=Qwen3Tokenizer)
self.llama_template = "<|im_start|>user\nDescribe the image by detailing the color, quantity, text, shape, size, texture, spatial relationships of the objects and background: {}<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
return tokens
class Ovis25_2BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Ovis25_2B, enable_attention_masks=attention_mask, return_attention_masks=False, zero_out_masked=True, model_options=model_options)
class OvisTEModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="qwen3_2b", clip_model=Ovis25_2BModel, model_options=model_options)
def encode_token_weights(self, token_weight_pairs, template_end=-1):
out, pooled = super().encode_token_weights(token_weight_pairs)
tok_pairs = token_weight_pairs["qwen3_2b"][0]
count_im_start = 0
if template_end == -1:
for i, v in enumerate(tok_pairs):
elem = v[0]
if not torch.is_tensor(elem):
if isinstance(elem, numbers.Integral):
if elem == 4004 and count_im_start < 1:
template_end = i
count_im_start += 1
if out.shape[1] > (template_end + 1):
if tok_pairs[template_end + 1][0] == 25:
template_end += 1
out = out[:, template_end:]
return out, pooled, {}
def te(dtype_llama=None, llama_quantization_metadata=None):
class OvisTEModel_(OvisTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if dtype_llama is not None:
dtype = dtype_llama
if llama_quantization_metadata is not None:
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, dtype=dtype, model_options=model_options)
return OvisTEModel_

View File

@@ -30,12 +30,12 @@ class PixArtTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None):
def pixart_te(dtype_t5=None, t5_quantization_metadata=None):
class PixArtTEModel_(PixArtT5XXL):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@@ -179,36 +179,36 @@
"special": false
},
"151665": {
"content": "<|img|>",
"content": "<tool_response>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
"special": false
},
"151666": {
"content": "<|endofimg|>",
"content": "</tool_response>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
"special": false
},
"151667": {
"content": "<|meta|>",
"content": "<think>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
"special": false
},
"151668": {
"content": "<|endofmeta|>",
"content": "</think>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
"special": false
}
},
"additional_special_tokens": [

View File

@@ -17,12 +17,14 @@ class QwenImageTokenizer(sd1_clip.SD1Tokenizer):
self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
self.llama_template_images = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], **kwargs):
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], prevent_empty_text=False, **kwargs):
skip_template = False
if text.startswith('<|im_start|>'):
skip_template = True
if text.startswith('<|start_header_id|>'):
skip_template = True
if prevent_empty_text and text == '':
text = ' '
if skip_template:
llama_text = text
@@ -83,12 +85,12 @@ class QwenImageTEModel(sd1_clip.SD1ClipModel):
return out, pooled, extra
def te(dtype_llama=None, llama_scaled_fp8=None):
def te(dtype_llama=None, llama_quantization_metadata=None):
class QwenImageTEModel_(QwenImageTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
model_options["quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@@ -6,14 +6,15 @@ import torch
import os
import comfy.model_management
import logging
import comfy.utils
class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
if t5xxl_scaled_fp8 is not None:
t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None)
if t5xxl_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
model_options["quantization_metadata"] = t5xxl_quantization_metadata
model_options = {**model_options, "model_name": "t5xxl"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
@@ -25,9 +26,9 @@ def t5_xxl_detect(state_dict, prefix=""):
if t5_key in state_dict:
out["dtype_t5"] = state_dict[t5_key].dtype
scaled_fp8_key = "{}scaled_fp8".format(prefix)
if scaled_fp8_key in state_dict:
out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
quant = comfy.utils.detect_layer_quantization(state_dict, prefix)
if quant is not None:
out["t5_quantization_metadata"] = quant
return out
@@ -156,11 +157,11 @@ class SD3ClipModel(torch.nn.Module):
else:
return self.t5xxl.load_sd(sd)
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False):
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_quantization_metadata=None, t5_attention_mask=False):
class SD3ClipModel_(SD3ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options)
return SD3ClipModel_

View File

@@ -25,12 +25,12 @@ class WanT5Model(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
super().__init__(device=device, dtype=dtype, model_options=model_options, name="umt5xxl", clip_model=UMT5XXlModel, **kwargs)
def te(dtype_t5=None, t5xxl_scaled_fp8=None):
def te(dtype_t5=None, t5_quantization_metadata=None):
class WanTEModel(WanT5Model):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "scaled_fp8" not in model_options:
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
model_options["quantization_metadata"] = t5_quantization_metadata
if dtype_t5 is not None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)

View File

@@ -0,0 +1,45 @@
from transformers import Qwen2Tokenizer
import comfy.text_encoders.llama
from comfy import sd1_clip
import os
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class ZImageTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_4b", tokenizer=Qwen3Tokenizer)
self.llama_template = "<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
return tokens
class Qwen3_4BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class ZImageTEModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="qwen3_4b", clip_model=Qwen3_4BModel, model_options=model_options)
def te(dtype_llama=None, llama_quantization_metadata=None):
class ZImageTEModel_(ZImageTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if dtype_llama is not None:
dtype = dtype_llama
if llama_quantization_metadata is not None:
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, dtype=dtype, model_options=model_options)
return ZImageTEModel_

View File

@@ -29,6 +29,7 @@ import itertools
from torch.nn.functional import interpolate
from einops import rearrange
from comfy.cli_args import args
import json
MMAP_TORCH_FILES = args.mmap_torch_files
DISABLE_MMAP = args.disable_mmap
@@ -52,7 +53,7 @@ if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in
ALWAYS_SAFE_LOAD = True
logging.info("Checkpoint files will always be loaded safely.")
else:
logging.info("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended.")
logging.warning("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended as older versions of pytorch are no longer supported.")
def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
if device is None:
@@ -675,6 +676,72 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
return key_map
def z_image_to_diffusers(mmdit_config, output_prefix=""):
n_layers = mmdit_config.get("n_layers", 0)
hidden_size = mmdit_config.get("dim", 0)
n_context_refiner = mmdit_config.get("n_refiner_layers", 2)
n_noise_refiner = mmdit_config.get("n_refiner_layers", 2)
key_map = {}
def add_block_keys(prefix_from, prefix_to, has_adaln=True):
for end in ("weight", "bias"):
k = "{}.attention.".format(prefix_from)
qkv = "{}.attention.qkv.{}".format(prefix_to, end)
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
block_map = {
"attention.norm_q.weight": "attention.q_norm.weight",
"attention.norm_k.weight": "attention.k_norm.weight",
"attention.to_out.0.weight": "attention.out.weight",
"attention.to_out.0.bias": "attention.out.bias",
"attention_norm1.weight": "attention_norm1.weight",
"attention_norm2.weight": "attention_norm2.weight",
"feed_forward.w1.weight": "feed_forward.w1.weight",
"feed_forward.w2.weight": "feed_forward.w2.weight",
"feed_forward.w3.weight": "feed_forward.w3.weight",
"ffn_norm1.weight": "ffn_norm1.weight",
"ffn_norm2.weight": "ffn_norm2.weight",
}
if has_adaln:
block_map["adaLN_modulation.0.weight"] = "adaLN_modulation.0.weight"
block_map["adaLN_modulation.0.bias"] = "adaLN_modulation.0.bias"
for k, v in block_map.items():
key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, v)
for i in range(n_layers):
add_block_keys("layers.{}".format(i), "{}layers.{}".format(output_prefix, i))
for i in range(n_context_refiner):
add_block_keys("context_refiner.{}".format(i), "{}context_refiner.{}".format(output_prefix, i))
for i in range(n_noise_refiner):
add_block_keys("noise_refiner.{}".format(i), "{}noise_refiner.{}".format(output_prefix, i))
MAP_BASIC = [
("final_layer.linear.weight", "all_final_layer.2-1.linear.weight"),
("final_layer.linear.bias", "all_final_layer.2-1.linear.bias"),
("final_layer.adaLN_modulation.1.weight", "all_final_layer.2-1.adaLN_modulation.1.weight"),
("final_layer.adaLN_modulation.1.bias", "all_final_layer.2-1.adaLN_modulation.1.bias"),
("x_embedder.weight", "all_x_embedder.2-1.weight"),
("x_embedder.bias", "all_x_embedder.2-1.bias"),
("x_pad_token", "x_pad_token"),
("cap_embedder.0.weight", "cap_embedder.0.weight"),
("cap_embedder.1.weight", "cap_embedder.1.weight"),
("cap_embedder.1.bias", "cap_embedder.1.bias"),
("cap_pad_token", "cap_pad_token"),
("t_embedder.mlp.0.weight", "t_embedder.mlp.0.weight"),
("t_embedder.mlp.0.bias", "t_embedder.mlp.0.bias"),
("t_embedder.mlp.2.weight", "t_embedder.mlp.2.weight"),
("t_embedder.mlp.2.bias", "t_embedder.mlp.2.bias"),
]
for c, diffusers in MAP_BASIC:
key_map[diffusers] = "{}{}".format(output_prefix, c)
return key_map
def repeat_to_batch_size(tensor, batch_size, dim=0):
if tensor.shape[dim] > batch_size:
return tensor.narrow(dim, 0, batch_size)
@@ -736,12 +803,17 @@ def safetensors_header(safetensors_path, max_size=100*1024*1024):
return None
return f.read(length_of_header)
ATTR_UNSET={}
def set_attr(obj, attr, value):
attrs = attr.split(".")
for name in attrs[:-1]:
obj = getattr(obj, name)
prev = getattr(obj, attrs[-1])
setattr(obj, attrs[-1], value)
prev = getattr(obj, attrs[-1], ATTR_UNSET)
if value is ATTR_UNSET:
delattr(obj, attrs[-1])
else:
setattr(obj, attrs[-1], value)
return prev
def set_attr_param(obj, attr, value):
@@ -1128,3 +1200,68 @@ def unpack_latents(combined_latent, latent_shapes):
else:
output_tensors = combined_latent
return output_tensors
def detect_layer_quantization(state_dict, prefix):
for k in state_dict:
if k.startswith(prefix) and k.endswith(".comfy_quant"):
logging.info("Found quantization metadata version 1")
return {"mixed_ops": True}
return None
def convert_old_quants(state_dict, model_prefix="", metadata={}):
if metadata is None:
metadata = {}
quant_metadata = None
if "_quantization_metadata" not in metadata:
scaled_fp8_key = "{}scaled_fp8".format(model_prefix)
if scaled_fp8_key in state_dict:
scaled_fp8_weight = state_dict[scaled_fp8_key]
scaled_fp8_dtype = scaled_fp8_weight.dtype
if scaled_fp8_dtype == torch.float32:
scaled_fp8_dtype = torch.float8_e4m3fn
if scaled_fp8_weight.nelement() == 2:
full_precision_matrix_mult = True
else:
full_precision_matrix_mult = False
out_sd = {}
layers = {}
for k in list(state_dict.keys()):
if not k.startswith(model_prefix):
out_sd[k] = state_dict[k]
continue
k_out = k
w = state_dict.pop(k)
layer = None
if k_out.endswith(".scale_weight"):
layer = k_out[:-len(".scale_weight")]
k_out = "{}.weight_scale".format(layer)
if layer is not None:
layer_conf = {"format": "float8_e4m3fn"} # TODO: check if anyone did some non e4m3fn scaled checkpoints
if full_precision_matrix_mult:
layer_conf["full_precision_matrix_mult"] = full_precision_matrix_mult
layers[layer] = layer_conf
if k_out.endswith(".scale_input"):
layer = k_out[:-len(".scale_input")]
k_out = "{}.input_scale".format(layer)
if w.item() == 1.0:
continue
out_sd[k_out] = w
state_dict = out_sd
quant_metadata = {"layers": layers}
else:
quant_metadata = json.loads(metadata["_quantization_metadata"])
if quant_metadata is not None:
layers = quant_metadata["layers"]
for k, v in layers.items():
state_dict["{}.comfy_quant".format(k)] = torch.tensor(list(json.dumps(v).encode('utf-8')), dtype=torch.uint8)
return state_dict, metadata

View File

@@ -194,6 +194,7 @@ class LoRAAdapter(WeightAdapterBase):
lora_diff = torch.mm(
mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)
).reshape(weight.shape)
del mat1, mat2
if dora_scale is not None:
weight = weight_decompose(
dora_scale,

View File

@@ -5,19 +5,20 @@ This module handles capability negotiation between frontend and backend,
allowing graceful protocol evolution while maintaining backward compatibility.
"""
from typing import Any, Dict
from typing import Any
from comfy.cli_args import args
# Default server capabilities
SERVER_FEATURE_FLAGS: Dict[str, Any] = {
SERVER_FEATURE_FLAGS: dict[str, Any] = {
"supports_preview_metadata": True,
"max_upload_size": args.max_upload_size * 1024 * 1024, # Convert MB to bytes
"extension": {"manager": {"supports_v4": True}},
}
def get_connection_feature(
sockets_metadata: Dict[str, Dict[str, Any]],
sockets_metadata: dict[str, dict[str, Any]],
sid: str,
feature_name: str,
default: Any = False
@@ -41,7 +42,7 @@ def get_connection_feature(
def supports_feature(
sockets_metadata: Dict[str, Dict[str, Any]],
sockets_metadata: dict[str, dict[str, Any]],
sid: str,
feature_name: str
) -> bool:
@@ -59,7 +60,7 @@ def supports_feature(
return get_connection_feature(sockets_metadata, sid, feature_name, False) is True
def get_server_features() -> Dict[str, Any]:
def get_server_features() -> dict[str, Any]:
"""
Get the server's feature flags.

View File

@@ -1,4 +1,4 @@
from typing import Type, List, NamedTuple
from typing import NamedTuple
from comfy_api.internal.singleton import ProxiedSingleton
from packaging import version as packaging_version
@@ -10,7 +10,7 @@ class ComfyAPIBase(ProxiedSingleton):
class ComfyAPIWithVersion(NamedTuple):
version: str
api_class: Type[ComfyAPIBase]
api_class: type[ComfyAPIBase]
def parse_version(version_str: str) -> packaging_version.Version:
@@ -23,16 +23,16 @@ def parse_version(version_str: str) -> packaging_version.Version:
return packaging_version.parse(version_str)
registered_versions: List[ComfyAPIWithVersion] = []
registered_versions: list[ComfyAPIWithVersion] = []
def register_versions(versions: List[ComfyAPIWithVersion]):
def register_versions(versions: list[ComfyAPIWithVersion]):
versions.sort(key=lambda x: parse_version(x.version))
global registered_versions
registered_versions = versions
def get_all_versions() -> List[ComfyAPIWithVersion]:
def get_all_versions() -> list[ComfyAPIWithVersion]:
"""
Returns a list of all registered ComfyAPI versions.
"""

View File

@@ -8,7 +8,7 @@ import os
import textwrap
import threading
from enum import Enum
from typing import Optional, Type, get_origin, get_args
from typing import Optional, get_origin, get_args, get_type_hints
class TypeTracker:
@@ -193,7 +193,7 @@ class AsyncToSyncConverter:
return result_container["result"]
@classmethod
def create_sync_class(cls, async_class: Type, thread_pool_size=10) -> Type:
def create_sync_class(cls, async_class: type, thread_pool_size=10) -> type:
"""
Creates a new class with synchronous versions of all async methods.
@@ -220,11 +220,18 @@ class AsyncToSyncConverter:
self._async_instance = async_class(*args, **kwargs)
# Handle annotated class attributes (like execution: Execution)
# Get all annotations from the class hierarchy
all_annotations = {}
for base_class in reversed(inspect.getmro(async_class)):
if hasattr(base_class, "__annotations__"):
all_annotations.update(base_class.__annotations__)
# Get all annotations from the class hierarchy and resolve string annotations
try:
# get_type_hints resolves string annotations to actual type objects
# This handles classes using 'from __future__ import annotations'
all_annotations = get_type_hints(async_class)
except Exception:
# Fallback to raw annotations if get_type_hints fails
# (e.g., for undefined forward references)
all_annotations = {}
for base_class in reversed(inspect.getmro(async_class)):
if hasattr(base_class, "__annotations__"):
all_annotations.update(base_class.__annotations__)
# For each annotated attribute, check if it needs to be created or wrapped
for attr_name, attr_type in all_annotations.items():
@@ -556,7 +563,7 @@ class AsyncToSyncConverter:
@classmethod
def _generate_imports(
cls, async_class: Type, type_tracker: TypeTracker
cls, async_class: type, type_tracker: TypeTracker
) -> list[str]:
"""Generate import statements for the stub file."""
imports = []
@@ -621,19 +628,23 @@ class AsyncToSyncConverter:
return imports
@classmethod
def _get_class_attributes(cls, async_class: Type) -> list[tuple[str, Type]]:
def _get_class_attributes(cls, async_class: type) -> list[tuple[str, type]]:
"""Extract class attributes that are classes themselves."""
class_attributes = []
# Get resolved type hints to handle string annotations
try:
type_hints = get_type_hints(async_class)
except Exception:
type_hints = {}
# Look for class attributes that are classes
for name, attr in sorted(inspect.getmembers(async_class)):
if isinstance(attr, type) and not name.startswith("_"):
class_attributes.append((name, attr))
elif (
hasattr(async_class, "__annotations__")
and name in async_class.__annotations__
):
annotation = async_class.__annotations__[name]
elif name in type_hints:
# Use resolved type hint instead of raw annotation
annotation = type_hints[name]
if isinstance(annotation, type):
class_attributes.append((name, annotation))
@@ -643,7 +654,7 @@ class AsyncToSyncConverter:
def _generate_inner_class_stub(
cls,
name: str,
attr: Type,
attr: type,
indent: str = " ",
type_tracker: Optional[TypeTracker] = None,
) -> list[str]:
@@ -771,7 +782,7 @@ class AsyncToSyncConverter:
return processed
@classmethod
def generate_stub_file(cls, async_class: Type, sync_class: Type) -> None:
def generate_stub_file(cls, async_class: type, sync_class: type) -> None:
"""
Generate a .pyi stub file for the sync class to help IDEs with type checking.
"""
@@ -908,11 +919,15 @@ class AsyncToSyncConverter:
attribute_mappings = {}
# First check annotations for typed attributes (including from parent classes)
# Collect all annotations from the class hierarchy
all_annotations = {}
for base_class in reversed(inspect.getmro(async_class)):
if hasattr(base_class, "__annotations__"):
all_annotations.update(base_class.__annotations__)
# Resolve string annotations to actual types
try:
all_annotations = get_type_hints(async_class)
except Exception:
# Fallback to raw annotations
all_annotations = {}
for base_class in reversed(inspect.getmro(async_class)):
if hasattr(base_class, "__annotations__"):
all_annotations.update(base_class.__annotations__)
for attr_name, attr_type in sorted(all_annotations.items()):
for class_name, class_type in class_attributes:
@@ -973,7 +988,7 @@ class AsyncToSyncConverter:
logging.error(traceback.format_exc())
def create_sync_class(async_class: Type, thread_pool_size=10) -> Type:
def create_sync_class(async_class: type, thread_pool_size=10) -> type:
"""
Creates a sync version of an async class

View File

@@ -1,4 +1,4 @@
from typing import Type, TypeVar
from typing import TypeVar
class SingletonMetaclass(type):
T = TypeVar("T", bound="SingletonMetaclass")
@@ -11,13 +11,13 @@ class SingletonMetaclass(type):
)
return cls._instances[cls]
def inject_instance(cls: Type[T], instance: T) -> None:
def inject_instance(cls: type[T], instance: T) -> None:
assert cls not in SingletonMetaclass._instances, (
"Cannot inject instance after first instantiation"
)
SingletonMetaclass._instances[cls] = instance
def get_instance(cls: Type[T], *args, **kwargs) -> T:
def get_instance(cls: type[T], *args, **kwargs) -> T:
"""
Gets the singleton instance of the class, creating it if it doesn't exist.
"""

View File

@@ -1,15 +1,15 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Type, TYPE_CHECKING
from typing import TYPE_CHECKING
from comfy_api.internal import ComfyAPIBase
from comfy_api.internal.singleton import ProxiedSingleton
from comfy_api.internal.async_to_sync import create_sync_class
from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput
from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents
from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents
from . import _io as io
from . import _ui as ui
from ._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput
from ._input_impl import VideoFromFile, VideoFromComponents
from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL
from . import _io_public as io
from . import _ui_public as ui
# from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401
from comfy_execution.utils import get_executing_context
from comfy_execution.progress import get_progress_state, PreviewImageTuple
@@ -80,7 +80,7 @@ class ComfyExtension(ABC):
async def on_load(self) -> None:
"""
Called when an extension is loaded.
This should be used to initialize any global resources neeeded by the extension.
This should be used to initialize any global resources needed by the extension.
"""
@abstractmethod
@@ -104,6 +104,8 @@ class Types:
VideoCodec = VideoCodec
VideoContainer = VideoContainer
VideoComponents = VideoComponents
MESH = MESH
VOXEL = VOXEL
ComfyAPI = ComfyAPI_latest
@@ -111,7 +113,7 @@ ComfyAPI = ComfyAPI_latest
if TYPE_CHECKING:
import comfy_api.latest.generated.ComfyAPISyncStub # type: ignore
ComfyAPISync: Type[comfy_api.latest.generated.ComfyAPISyncStub.ComfyAPISyncStub]
ComfyAPISync: type[comfy_api.latest.generated.ComfyAPISyncStub.ComfyAPISyncStub]
ComfyAPISync = create_sync_class(ComfyAPI_latest)
# create new aliases for io and ui

View File

@@ -1,5 +1,5 @@
import torch
from typing import TypedDict, List, Optional
from typing import TypedDict, Optional
ImageInput = torch.Tensor
"""
@@ -39,4 +39,4 @@ class LatentInput(TypedDict):
Optional noise mask tensor in the same format as samples.
"""
batch_index: Optional[List[int]]
batch_index: Optional[list[int]]

View File

@@ -1,9 +1,10 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from fractions import Fraction
from typing import Optional, Union, IO
import io
import av
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
from .._util import VideoContainer, VideoCodec, VideoComponents
class VideoInput(ABC):
"""
@@ -72,6 +73,33 @@ class VideoInput(ABC):
frame_count = components.images.shape[0]
return float(frame_count / components.frame_rate)
def get_frame_count(self) -> int:
"""
Returns the number of frames in the video.
Default implementation uses :meth:`get_components`, which may require
loading all frames into memory. File-based implementations should
override this method and use container/stream metadata instead.
Returns:
Total number of frames as an integer.
"""
return int(self.get_components().images.shape[0])
def get_frame_rate(self) -> Fraction:
"""
Returns the frame rate of the video.
Default implementation materializes the video into memory via
`get_components()`. Subclasses that can inspect the underlying
container (e.g. `VideoFromFile`) should override this with a more
efficient implementation.
Returns:
Frame rate as a Fraction.
"""
return self.get_components().frame_rate
def get_container_format(self) -> str:
"""
Returns the container format of the video (e.g., 'mp4', 'mov', 'avi').

View File

@@ -3,14 +3,14 @@ from av.container import InputContainer
from av.subtitles.stream import SubtitleStream
from fractions import Fraction
from typing import Optional
from comfy_api.latest._input import AudioInput, VideoInput
from .._input import AudioInput, VideoInput
import av
import io
import json
import numpy as np
import math
import torch
from comfy_api.latest._util import VideoContainer, VideoCodec, VideoComponents
from .._util import VideoContainer, VideoCodec, VideoComponents
def container_to_output_format(container_format: str | None) -> str | None:
@@ -121,6 +121,71 @@ class VideoFromFile(VideoInput):
raise ValueError(f"Could not determine duration for file '{self.__file}'")
def get_frame_count(self) -> int:
"""
Returns the number of frames in the video without materializing them as
torch tensors.
"""
if isinstance(self.__file, io.BytesIO):
self.__file.seek(0)
with av.open(self.__file, mode="r") as container:
video_stream = self._get_first_video_stream(container)
# 1. Prefer the frames field if available
if video_stream.frames and video_stream.frames > 0:
return int(video_stream.frames)
# 2. Try to estimate from duration and average_rate using only metadata
if container.duration is not None and video_stream.average_rate:
duration_seconds = float(container.duration / av.time_base)
estimated_frames = int(round(duration_seconds * float(video_stream.average_rate)))
if estimated_frames > 0:
return estimated_frames
if (
getattr(video_stream, "duration", None) is not None
and getattr(video_stream, "time_base", None) is not None
and video_stream.average_rate
):
duration_seconds = float(video_stream.duration * video_stream.time_base)
estimated_frames = int(round(duration_seconds * float(video_stream.average_rate)))
if estimated_frames > 0:
return estimated_frames
# 3. Last resort: decode frames and count them (streaming)
frame_count = 0
container.seek(0)
for packet in container.demux(video_stream):
for _ in packet.decode():
frame_count += 1
if frame_count == 0:
raise ValueError(f"Could not determine frame count for file '{self.__file}'")
return frame_count
def get_frame_rate(self) -> Fraction:
"""
Returns the average frame rate of the video using container metadata
without decoding all frames.
"""
if isinstance(self.__file, io.BytesIO):
self.__file.seek(0)
with av.open(self.__file, mode="r") as container:
video_stream = self._get_first_video_stream(container)
# Preferred: use PyAV's average_rate (usually already a Fraction-like)
if video_stream.average_rate:
return Fraction(video_stream.average_rate)
# Fallback: estimate from frames + duration if available
if video_stream.frames and container.duration:
duration_seconds = float(container.duration / av.time_base)
if duration_seconds > 0:
return Fraction(video_stream.frames / duration_seconds).limit_denominator()
# Last resort: match get_components_internal default
return Fraction(1)
def get_container_format(self) -> str:
"""
Returns the container format of the video (e.g., 'mp4', 'mov', 'avi').
@@ -238,6 +303,13 @@ class VideoFromFile(VideoInput):
packet.stream = stream_map[packet.stream]
output_container.mux(packet)
def _get_first_video_stream(self, container: InputContainer):
video_stream = next((s for s in container.streams if s.type == "video"), None)
if video_stream is None:
raise ValueError(f"No video stream found in file '{self.__file}'")
return video_stream
class VideoFromComponents(VideoInput):
"""
Class representing video input from tensors.
@@ -264,7 +336,10 @@ class VideoFromComponents(VideoInput):
raise ValueError("Only MP4 format is supported for now")
if codec != VideoCodec.AUTO and codec != VideoCodec.H264:
raise ValueError("Only H264 codec is supported for now")
with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}) as output:
extra_kwargs = {}
if isinstance(format, VideoContainer) and format != VideoContainer.AUTO:
extra_kwargs["format"] = format.value
with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}, **extra_kwargs) as output:
# Add metadata before writing any streams
if metadata is not None:
for key, value in metadata.items():

View File

@@ -4,7 +4,8 @@ import copy
import inspect
from abc import ABC, abstractmethod
from collections import Counter
from dataclasses import asdict, dataclass
from collections.abc import Iterable
from dataclasses import asdict, dataclass, field
from enum import Enum
from typing import Any, Callable, Literal, TypedDict, TypeVar, TYPE_CHECKING
from typing_extensions import NotRequired, final
@@ -25,8 +26,9 @@ if TYPE_CHECKING:
from comfy_api.input import VideoInput
from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classproperty, copy_class, first_real_override, is_class,
prune_dict, shallow_clone_class)
from comfy_api.latest._resources import Resources, ResourcesLocal
from ._resources import Resources, ResourcesLocal
from comfy_execution.graph_utils import ExecutionBlocker
from ._util import MESH, VOXEL
# from comfy_extras.nodes_images import SVG as SVG_ # NOTE: needs to be moved before can be imported due to circular reference
@@ -149,6 +151,9 @@ class _IO_V3:
def __init__(self):
pass
def validate(self):
pass
@property
def io_type(self):
return self.Parent.io_type
@@ -181,6 +186,9 @@ class Input(_IO_V3):
def get_io_type(self):
return _StringIOType(self.io_type)
def get_all(self) -> list[Input]:
return [self]
class WidgetInput(Input):
'''
Base class for a V3 Input with widget.
@@ -560,6 +568,8 @@ class Conditioning(ComfyTypeIO):
'''Used by WAN Camera.'''
time_dim_concat: NotRequired[torch.Tensor]
'''Used by WAN Phantom Subject.'''
time_dim_replace: NotRequired[torch.Tensor]
'''Used by Kandinsky5 I2V.'''
CondList = list[tuple[torch.Tensor, PooledDict]]
Type = CondList
@@ -628,6 +638,10 @@ class UpscaleModel(ComfyTypeIO):
if TYPE_CHECKING:
Type = ImageModelDescriptor
@comfytype(io_type="LATENT_UPSCALE_MODEL")
class LatentUpscaleModel(ComfyTypeIO):
Type = Any
@comfytype(io_type="AUDIO")
class Audio(ComfyTypeIO):
class AudioDict(TypedDict):
@@ -656,11 +670,11 @@ class LossMap(ComfyTypeIO):
@comfytype(io_type="VOXEL")
class Voxel(ComfyTypeIO):
Type = Any # TODO: VOXEL class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3
Type = VOXEL
@comfytype(io_type="MESH")
class Mesh(ComfyTypeIO):
Type = Any # TODO: MESH class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3
Type = MESH
@comfytype(io_type="HOOKS")
class Hooks(ComfyTypeIO):
@@ -760,6 +774,13 @@ class AudioEncoder(ComfyTypeIO):
class AudioEncoderOutput(ComfyTypeIO):
Type = Any
@comfytype(io_type="TRACKS")
class Tracks(ComfyTypeIO):
class TrackDict(TypedDict):
track_path: torch.Tensor
track_visibility: torch.Tensor
Type = TrackDict
@comfytype(io_type="COMFY_MULTITYPED_V3")
class MultiType:
Type = Any
@@ -809,13 +830,61 @@ class MultiType:
else:
return super().as_dict()
@comfytype(io_type="COMFY_MATCHTYPE_V3")
class MatchType(ComfyTypeIO):
class Template:
def __init__(self, template_id: str, allowed_types: _ComfyType | list[_ComfyType] = AnyType):
self.template_id = template_id
# account for syntactic sugar
if not isinstance(allowed_types, Iterable):
allowed_types = [allowed_types]
for t in allowed_types:
if not isinstance(t, type):
if not isinstance(t, _ComfyType):
raise ValueError(f"Allowed types must be a ComfyType or a list of ComfyTypes, got {t.__class__.__name__}")
else:
if not issubclass(t, _ComfyType):
raise ValueError(f"Allowed types must be a ComfyType or a list of ComfyTypes, got {t.__name__}")
self.allowed_types = allowed_types
def as_dict(self):
return {
"template_id": self.template_id,
"allowed_types": ",".join([t.io_type for t in self.allowed_types]),
}
class Input(Input):
def __init__(self, id: str, template: MatchType.Template,
display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None):
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict)
self.template = template
def as_dict(self):
return super().as_dict() | prune_dict({
"template": self.template.as_dict(),
})
class Output(Output):
def __init__(self, template: MatchType.Template, id: str=None, display_name: str=None, tooltip: str=None,
is_output_list=False):
super().__init__(id, display_name, tooltip, is_output_list)
self.template = template
def as_dict(self):
return super().as_dict() | prune_dict({
"template": self.template.as_dict(),
})
class DynamicInput(Input, ABC):
'''
Abstract class for dynamic input registration.
'''
@abstractmethod
def get_dynamic(self) -> list[Input]:
...
return []
def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''):
pass
class DynamicOutput(Output, ABC):
'''
@@ -825,99 +894,223 @@ class DynamicOutput(Output, ABC):
is_output_list=False):
super().__init__(id, display_name, tooltip, is_output_list)
@abstractmethod
def get_dynamic(self) -> list[Output]:
...
return []
@comfytype(io_type="COMFY_AUTOGROW_V3")
class AutogrowDynamic(ComfyTypeI):
Type = list[Any]
class Input(DynamicInput):
def __init__(self, id: str, template_input: Input, min: int=1, max: int=None,
display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None):
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict)
self.template_input = template_input
if min is not None:
assert(min >= 1)
if max is not None:
assert(max >= 1)
class Autogrow(ComfyTypeI):
Type = dict[str, Any]
_MaxNames = 100 # NOTE: max 100 names for sanity
class _AutogrowTemplate:
def __init__(self, input: Input):
# dynamic inputs are not allowed as the template input
assert(not isinstance(input, DynamicInput))
self.input = copy.copy(input)
if isinstance(self.input, WidgetInput):
self.input.force_input = True
self.names: list[str] = []
self.cached_inputs = {}
def _create_input(self, input: Input, name: str):
new_input = copy.copy(self.input)
new_input.id = name
return new_input
def _create_cached_inputs(self):
for name in self.names:
self.cached_inputs[name] = self._create_input(self.input, name)
def get_all(self) -> list[Input]:
return list(self.cached_inputs.values())
def as_dict(self):
return prune_dict({
"input": create_input_dict_v1([self.input]),
})
def validate(self):
self.input.validate()
def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''):
real_inputs = []
for name, input in self.cached_inputs.items():
if name in live_inputs:
real_inputs.append(input)
add_to_input_dict_v1(d, real_inputs, live_inputs, curr_prefix)
add_dynamic_id_mapping(d, real_inputs, curr_prefix)
class TemplatePrefix(_AutogrowTemplate):
def __init__(self, input: Input, prefix: str, min: int=1, max: int=10):
super().__init__(input)
self.prefix = prefix
assert(min >= 0)
assert(max >= 1)
assert(max <= Autogrow._MaxNames)
self.min = min
self.max = max
self.names = [f"{self.prefix}{i}" for i in range(self.max)]
self._create_cached_inputs()
def as_dict(self):
return super().as_dict() | prune_dict({
"prefix": self.prefix,
"min": self.min,
"max": self.max,
})
class TemplateNames(_AutogrowTemplate):
def __init__(self, input: Input, names: list[str], min: int=1):
super().__init__(input)
self.names = names[:Autogrow._MaxNames]
assert(min >= 0)
self.min = min
self._create_cached_inputs()
def as_dict(self):
return super().as_dict() | prune_dict({
"names": self.names,
"min": self.min,
})
class Input(DynamicInput):
def __init__(self, id: str, template: Autogrow.TemplatePrefix | Autogrow.TemplateNames,
display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None):
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict)
self.template = template
def as_dict(self):
return super().as_dict() | prune_dict({
"template": self.template.as_dict(),
})
def get_dynamic(self) -> list[Input]:
curr_count = 1
new_inputs = []
for i in range(self.min):
new_input = copy.copy(self.template_input)
new_input.id = f"{new_input.id}{curr_count}_${self.id}_ag$"
if new_input.display_name is not None:
new_input.display_name = f"{new_input.display_name}{curr_count}"
new_input.optional = self.optional or new_input.optional
if isinstance(self.template_input, WidgetInput):
new_input.force_input = True
new_inputs.append(new_input)
curr_count += 1
# pretend to expand up to max
for i in range(curr_count-1, self.max):
new_input = copy.copy(self.template_input)
new_input.id = f"{new_input.id}{curr_count}_${self.id}_ag$"
if new_input.display_name is not None:
new_input.display_name = f"{new_input.display_name}{curr_count}"
new_input.optional = True
if isinstance(self.template_input, WidgetInput):
new_input.force_input = True
new_inputs.append(new_input)
curr_count += 1
return new_inputs
return self.template.get_all()
@comfytype(io_type="COMFY_COMBODYNAMIC_V3")
class ComboDynamic(ComfyTypeI):
class Input(DynamicInput):
def __init__(self, id: str):
pass
def get_all(self) -> list[Input]:
return [self] + self.template.get_all()
@comfytype(io_type="COMFY_MATCHTYPE_V3")
class MatchType(ComfyTypeIO):
class Template:
def __init__(self, template_id: str, allowed_types: _ComfyType | list[_ComfyType]):
self.template_id = template_id
self.allowed_types = [allowed_types] if isinstance(allowed_types, _ComfyType) else allowed_types
def validate(self):
self.template.validate()
def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''):
curr_prefix = f"{curr_prefix}{self.id}."
# need to remove self from expected inputs dictionary; replaced by template inputs in frontend
for inner_dict in d.values():
if self.id in inner_dict:
del inner_dict[self.id]
self.template.expand_schema_for_dynamic(d, live_inputs, curr_prefix)
@comfytype(io_type="COMFY_DYNAMICCOMBO_V3")
class DynamicCombo(ComfyTypeI):
Type = dict[str, Any]
class Option:
def __init__(self, key: str, inputs: list[Input]):
self.key = key
self.inputs = inputs
def as_dict(self):
return {
"template_id": self.template_id,
"allowed_types": "".join(t.io_type for t in self.allowed_types),
"key": self.key,
"inputs": create_input_dict_v1(self.inputs),
}
class Input(DynamicInput):
def __init__(self, id: str, template: MatchType.Template,
def __init__(self, id: str, options: list[DynamicCombo.Option],
display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None):
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict)
self.template = template
self.options = options
def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''):
# check if dynamic input's id is in live_inputs
if self.id in live_inputs:
curr_prefix = f"{curr_prefix}{self.id}."
key = live_inputs[self.id]
selected_option = None
for option in self.options:
if option.key == key:
selected_option = option
break
if selected_option is not None:
add_to_input_dict_v1(d, selected_option.inputs, live_inputs, curr_prefix)
add_dynamic_id_mapping(d, selected_option.inputs, curr_prefix, self)
def get_dynamic(self) -> list[Input]:
return [self]
return [input for option in self.options for input in option.inputs]
def get_all(self) -> list[Input]:
return [self] + [input for option in self.options for input in option.inputs]
def as_dict(self):
return super().as_dict() | prune_dict({
"template": self.template.as_dict(),
"options": [o.as_dict() for o in self.options],
})
class Output(DynamicOutput):
def __init__(self, id: str, template: MatchType.Template, display_name: str=None, tooltip: str=None,
is_output_list=False):
super().__init__(id, display_name, tooltip, is_output_list)
self.template = template
def validate(self):
# make sure all nested inputs are validated
for option in self.options:
for input in option.inputs:
input.validate()
def get_dynamic(self) -> list[Output]:
return [self]
@comfytype(io_type="COMFY_DYNAMICSLOT_V3")
class DynamicSlot(ComfyTypeI):
Type = dict[str, Any]
class Input(DynamicInput):
def __init__(self, slot: Input, inputs: list[Input],
display_name: str=None, tooltip: str=None, lazy: bool=None, extra_dict=None):
assert(not isinstance(slot, DynamicInput))
self.slot = copy.copy(slot)
self.slot.display_name = slot.display_name if slot.display_name is not None else display_name
optional = True
self.slot.tooltip = slot.tooltip if slot.tooltip is not None else tooltip
self.slot.lazy = slot.lazy if slot.lazy is not None else lazy
self.slot.extra_dict = slot.extra_dict if slot.extra_dict is not None else extra_dict
super().__init__(slot.id, self.slot.display_name, optional, self.slot.tooltip, self.slot.lazy, self.slot.extra_dict)
self.inputs = inputs
self.force_input = None
# force widget inputs to have no widgets, otherwise this would be awkward
if isinstance(self.slot, WidgetInput):
self.force_input = True
self.slot.force_input = True
def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''):
if self.id in live_inputs:
curr_prefix = f"{curr_prefix}{self.id}."
add_to_input_dict_v1(d, self.inputs, live_inputs, curr_prefix)
add_dynamic_id_mapping(d, [self.slot] + self.inputs, curr_prefix)
def get_dynamic(self) -> list[Input]:
return [self.slot] + self.inputs
def get_all(self) -> list[Input]:
return [self] + [self.slot] + self.inputs
def as_dict(self):
return super().as_dict() | prune_dict({
"template": self.template.as_dict(),
"slotType": str(self.slot.get_io_type()),
"inputs": create_input_dict_v1(self.inputs),
"forceInput": self.force_input,
})
def validate(self):
self.slot.validate()
for input in self.inputs:
input.validate()
def add_dynamic_id_mapping(d: dict[str, Any], inputs: list[Input], curr_prefix: str, self: DynamicInput=None):
dynamic = d.setdefault("dynamic_paths", {})
if self is not None:
dynamic[self.id] = f"{curr_prefix}{self.id}"
for i in inputs:
if not isinstance(i, DynamicInput):
dynamic[f"{i.id}"] = f"{curr_prefix}{i.id}"
class V3Data(TypedDict):
hidden_inputs: dict[str, Any]
dynamic_paths: dict[str, Any]
class HiddenHolder:
def __init__(self, unique_id: str, prompt: Any,
@@ -979,6 +1172,7 @@ class NodeInfoV1:
output_is_list: list[bool]=None
output_name: list[str]=None
output_tooltips: list[str]=None
output_matchtypes: list[str]=None
name: str=None
display_name: str=None
description: str=None
@@ -1014,9 +1208,9 @@ class Schema:
"""Display name of node."""
category: str = "sd"
"""The category of the node, as per the "Add Node" menu."""
inputs: list[Input]=None
outputs: list[Output]=None
hidden: list[Hidden]=None
inputs: list[Input] = field(default_factory=list)
outputs: list[Output] = field(default_factory=list)
hidden: list[Hidden] = field(default_factory=list)
description: str=""
"""Node description, shown as a tooltip when hovering over the node."""
is_input_list: bool = False
@@ -1056,7 +1250,11 @@ class Schema:
'''Validate the schema:
- verify ids on inputs and outputs are unique - both internally and in relation to each other
'''
input_ids = [i.id for i in self.inputs] if self.inputs is not None else []
nested_inputs: list[Input] = []
if self.inputs is not None:
for input in self.inputs:
nested_inputs.extend(input.get_all())
input_ids = [i.id for i in nested_inputs] if nested_inputs is not None else []
output_ids = [o.id for o in self.outputs] if self.outputs is not None else []
input_set = set(input_ids)
output_set = set(output_ids)
@@ -1072,6 +1270,13 @@ class Schema:
issues.append(f"Ids must be unique between inputs and outputs, but {intersection} are not.")
if len(issues) > 0:
raise ValueError("\n".join(issues))
# validate inputs and outputs
if self.inputs is not None:
for input in self.inputs:
input.validate()
if self.outputs is not None:
for output in self.outputs:
output.validate()
def finalize(self):
"""Add hidden based on selected schema options, and give outputs without ids default ids."""
@@ -1097,19 +1302,10 @@ class Schema:
if output.id is None:
output.id = f"_{i}_{output.io_type}_"
def get_v1_info(self, cls) -> NodeInfoV1:
def get_v1_info(self, cls, live_inputs: dict[str, Any]=None) -> NodeInfoV1:
# NOTE: live_inputs will not be used anymore very soon and this will be done another way
# get V1 inputs
input = {
"required": {}
}
if self.inputs:
for i in self.inputs:
if isinstance(i, DynamicInput):
dynamic_inputs = i.get_dynamic()
for d in dynamic_inputs:
add_to_dict_v1(d, input)
else:
add_to_dict_v1(i, input)
input = create_input_dict_v1(self.inputs, live_inputs)
if self.hidden:
for hidden in self.hidden:
input.setdefault("hidden", {})[hidden.name] = (hidden.value,)
@@ -1118,12 +1314,24 @@ class Schema:
output_is_list = []
output_name = []
output_tooltips = []
output_matchtypes = []
any_matchtypes = False
if self.outputs:
for o in self.outputs:
output.append(o.io_type)
output_is_list.append(o.is_output_list)
output_name.append(o.display_name if o.display_name else o.io_type)
output_tooltips.append(o.tooltip if o.tooltip else None)
# special handling for MatchType
if isinstance(o, MatchType.Output):
output_matchtypes.append(o.template.template_id)
any_matchtypes = True
else:
output_matchtypes.append(None)
# clear out lists that are all None
if not any_matchtypes:
output_matchtypes = None
info = NodeInfoV1(
input=input,
@@ -1132,6 +1340,7 @@ class Schema:
output_is_list=output_is_list,
output_name=output_name,
output_tooltips=output_tooltips,
output_matchtypes=output_matchtypes,
name=self.node_id,
display_name=self.display_name,
category=self.category,
@@ -1177,16 +1386,57 @@ class Schema:
return info
def add_to_dict_v1(i: Input, input: dict):
def create_input_dict_v1(inputs: list[Input], live_inputs: dict[str, Any]=None) -> dict:
input = {
"required": {}
}
add_to_input_dict_v1(input, inputs, live_inputs)
return input
def add_to_input_dict_v1(d: dict[str, Any], inputs: list[Input], live_inputs: dict[str, Any]=None, curr_prefix=''):
for i in inputs:
if isinstance(i, DynamicInput):
add_to_dict_v1(i, d)
if live_inputs is not None:
i.expand_schema_for_dynamic(d, live_inputs, curr_prefix)
else:
add_to_dict_v1(i, d)
def add_to_dict_v1(i: Input, d: dict, dynamic_dict: dict=None):
key = "optional" if i.optional else "required"
as_dict = i.as_dict()
# for v1, we don't want to include the optional key
as_dict.pop("optional", None)
input.setdefault(key, {})[i.id] = (i.get_io_type(), as_dict)
if dynamic_dict is None:
value = (i.get_io_type(), as_dict)
else:
value = (i.get_io_type(), as_dict, dynamic_dict)
d.setdefault(key, {})[i.id] = value
def add_to_dict_v3(io: Input | Output, d: dict):
d[io.id] = (io.get_io_type(), io.as_dict())
def build_nested_inputs(values: dict[str, Any], v3_data: V3Data):
paths = v3_data.get("dynamic_paths", None)
if paths is None:
return values
values = values.copy()
result = {}
for key, path in paths.items():
parts = path.split(".")
current = result
for i, p in enumerate(parts):
is_last = (i == len(parts) - 1)
if is_last:
current[p] = values.pop(key, None)
else:
current = current.setdefault(p, {})
values.update(result)
return values
class _ComfyNodeBaseInternal(_ComfyNodeInternal):
@@ -1306,12 +1556,12 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
@final
@classmethod
def PREPARE_CLASS_CLONE(cls, hidden_inputs: dict) -> type[ComfyNode]:
def PREPARE_CLASS_CLONE(cls, v3_data: V3Data) -> type[ComfyNode]:
"""Creates clone of real node class to prevent monkey-patching."""
c_type: type[ComfyNode] = cls if is_class(cls) else type(cls)
type_clone: type[ComfyNode] = shallow_clone_class(c_type)
# set hidden
type_clone.hidden = HiddenHolder.from_dict(hidden_inputs)
type_clone.hidden = HiddenHolder.from_dict(v3_data["hidden_inputs"])
return type_clone
@final
@@ -1428,14 +1678,18 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
@final
@classmethod
def INPUT_TYPES(cls, include_hidden=True, return_schema=False) -> dict[str, dict] | tuple[dict[str, dict], Schema]:
def INPUT_TYPES(cls, include_hidden=True, return_schema=False, live_inputs=None) -> dict[str, dict] | tuple[dict[str, dict], Schema, V3Data]:
schema = cls.FINALIZE_SCHEMA()
info = schema.get_v1_info(cls)
info = schema.get_v1_info(cls, live_inputs)
input = info.input
if not include_hidden:
input.pop("hidden", None)
if return_schema:
return input, schema
v3_data: V3Data = {}
dynamic = input.pop("dynamic_paths", None)
if dynamic is not None:
v3_data["dynamic_paths"] = dynamic
return input, schema, v3_data
return input
@final
@@ -1508,7 +1762,7 @@ class ComfyNode(_ComfyNodeBaseInternal):
raise NotImplementedError
@classmethod
def validate_inputs(cls, **kwargs) -> bool:
def validate_inputs(cls, **kwargs) -> bool | str:
"""Optionally, define this function to validate inputs; equivalent to V1's VALIDATE_INPUTS."""
raise NotImplementedError
@@ -1568,7 +1822,7 @@ class NodeOutput(_NodeOutputInternal):
ui = data["ui"]
if "expand" in data:
expand = data["expand"]
return cls(args=args, ui=ui, expand=expand)
return cls(*args, ui=ui, expand=expand)
def __getitem__(self, index) -> Any:
return self.args[index]
@@ -1623,6 +1877,7 @@ __all__ = [
"StyleModel",
"Gligen",
"UpscaleModel",
"LatentUpscaleModel",
"Audio",
"Video",
"SVG",
@@ -1646,6 +1901,11 @@ __all__ = [
"SEGS",
"AnyType",
"MultiType",
"Tracks",
# Dynamic Types
"MatchType",
# "DynamicCombo",
# "Autogrow",
# Other classes
"HiddenHolder",
"Hidden",
@@ -1656,4 +1916,5 @@ __all__ = [
"NodeOutput",
"add_to_dict_v1",
"add_to_dict_v3",
"V3Data",
]

View File

@@ -0,0 +1 @@
from ._io import * # noqa: F403

View File

@@ -3,8 +3,8 @@ from __future__ import annotations
import json
import os
import random
import uuid
from io import BytesIO
from typing import Type
import av
import numpy as np
@@ -21,7 +21,7 @@ import folder_paths
# used for image preview
from comfy.cli_args import args
from comfy_api.latest._io import ComfyNode, FolderType, Image, _UIOutput
from ._io import ComfyNode, FolderType, Image, _UIOutput
class SavedResult(dict):
@@ -82,7 +82,7 @@ class ImageSaveHelper:
return PILImage.fromarray(np.clip(255.0 * image_tensor.cpu().numpy(), 0, 255).astype(np.uint8))
@staticmethod
def _create_png_metadata(cls: Type[ComfyNode] | None) -> PngInfo | None:
def _create_png_metadata(cls: type[ComfyNode] | None) -> PngInfo | None:
"""Creates a PngInfo object with prompt and extra_pnginfo."""
if args.disable_metadata or cls is None or not cls.hidden:
return None
@@ -95,7 +95,7 @@ class ImageSaveHelper:
return metadata
@staticmethod
def _create_animated_png_metadata(cls: Type[ComfyNode] | None) -> PngInfo | None:
def _create_animated_png_metadata(cls: type[ComfyNode] | None) -> PngInfo | None:
"""Creates a PngInfo object with prompt and extra_pnginfo for animated PNGs (APNG)."""
if args.disable_metadata or cls is None or not cls.hidden:
return None
@@ -120,7 +120,7 @@ class ImageSaveHelper:
return metadata
@staticmethod
def _create_webp_metadata(pil_image: PILImage.Image, cls: Type[ComfyNode] | None) -> PILImage.Exif:
def _create_webp_metadata(pil_image: PILImage.Image, cls: type[ComfyNode] | None) -> PILImage.Exif:
"""Creates EXIF metadata bytes for WebP images."""
exif_data = pil_image.getexif()
if args.disable_metadata or cls is None or cls.hidden is None:
@@ -136,7 +136,7 @@ class ImageSaveHelper:
@staticmethod
def save_images(
images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, compress_level = 4,
images, filename_prefix: str, folder_type: FolderType, cls: type[ComfyNode] | None, compress_level = 4,
) -> list[SavedResult]:
"""Saves a batch of images as individual PNG files."""
full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path(
@@ -154,7 +154,7 @@ class ImageSaveHelper:
return results
@staticmethod
def get_save_images_ui(images, filename_prefix: str, cls: Type[ComfyNode] | None, compress_level=4) -> SavedImages:
def get_save_images_ui(images, filename_prefix: str, cls: type[ComfyNode] | None, compress_level=4) -> SavedImages:
"""Saves a batch of images and returns a UI object for the node output."""
return SavedImages(
ImageSaveHelper.save_images(
@@ -168,7 +168,7 @@ class ImageSaveHelper:
@staticmethod
def save_animated_png(
images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, fps: float, compress_level: int
images, filename_prefix: str, folder_type: FolderType, cls: type[ComfyNode] | None, fps: float, compress_level: int
) -> SavedResult:
"""Saves a batch of images as a single animated PNG."""
full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path(
@@ -190,7 +190,7 @@ class ImageSaveHelper:
@staticmethod
def get_save_animated_png_ui(
images, filename_prefix: str, cls: Type[ComfyNode] | None, fps: float, compress_level: int
images, filename_prefix: str, cls: type[ComfyNode] | None, fps: float, compress_level: int
) -> SavedImages:
"""Saves an animated PNG and returns a UI object for the node output."""
result = ImageSaveHelper.save_animated_png(
@@ -208,7 +208,7 @@ class ImageSaveHelper:
images,
filename_prefix: str,
folder_type: FolderType,
cls: Type[ComfyNode] | None,
cls: type[ComfyNode] | None,
fps: float,
lossless: bool,
quality: int,
@@ -237,7 +237,7 @@ class ImageSaveHelper:
def get_save_animated_webp_ui(
images,
filename_prefix: str,
cls: Type[ComfyNode] | None,
cls: type[ComfyNode] | None,
fps: float,
lossless: bool,
quality: int,
@@ -266,7 +266,7 @@ class AudioSaveHelper:
audio: dict,
filename_prefix: str,
folder_type: FolderType,
cls: Type[ComfyNode] | None,
cls: type[ComfyNode] | None,
format: str = "flac",
quality: str = "128k",
) -> list[SavedResult]:
@@ -318,9 +318,10 @@ class AudioSaveHelper:
for key, value in metadata.items():
output_container.metadata[key] = value
layout = "mono" if waveform.shape[0] == 1 else "stereo"
# Set up the output stream with appropriate properties
if format == "opus":
out_stream = output_container.add_stream("libopus", rate=sample_rate)
out_stream = output_container.add_stream("libopus", rate=sample_rate, layout=layout)
if quality == "64k":
out_stream.bit_rate = 64000
elif quality == "96k":
@@ -332,7 +333,7 @@ class AudioSaveHelper:
elif quality == "320k":
out_stream.bit_rate = 320000
elif format == "mp3":
out_stream = output_container.add_stream("libmp3lame", rate=sample_rate)
out_stream = output_container.add_stream("libmp3lame", rate=sample_rate, layout=layout)
if quality == "V0":
# TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
out_stream.codec_context.qscale = 1
@@ -341,12 +342,12 @@ class AudioSaveHelper:
elif quality == "320k":
out_stream.bit_rate = 320000
else: # format == "flac":
out_stream = output_container.add_stream("flac", rate=sample_rate)
out_stream = output_container.add_stream("flac", rate=sample_rate, layout=layout)
frame = av.AudioFrame.from_ndarray(
waveform.movedim(0, 1).reshape(1, -1).float().numpy(),
format="flt",
layout="mono" if waveform.shape[0] == 1 else "stereo",
layout=layout,
)
frame.sample_rate = sample_rate
frame.pts = 0
@@ -370,7 +371,7 @@ class AudioSaveHelper:
@staticmethod
def get_save_audio_ui(
audio, filename_prefix: str, cls: Type[ComfyNode] | None, format: str = "flac", quality: str = "128k",
audio, filename_prefix: str, cls: type[ComfyNode] | None, format: str = "flac", quality: str = "128k",
) -> SavedAudios:
"""Save and instantly wrap for UI."""
return SavedAudios(
@@ -386,7 +387,7 @@ class AudioSaveHelper:
class PreviewImage(_UIOutput):
def __init__(self, image: Image.Type, animated: bool = False, cls: Type[ComfyNode] = None, **kwargs):
def __init__(self, image: Image.Type, animated: bool = False, cls: type[ComfyNode] = None, **kwargs):
self.values = ImageSaveHelper.save_images(
image,
filename_prefix="ComfyUI_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for _ in range(5)),
@@ -410,7 +411,7 @@ class PreviewMask(PreviewImage):
class PreviewAudio(_UIOutput):
def __init__(self, audio: dict, cls: Type[ComfyNode] = None, **kwargs):
def __init__(self, audio: dict, cls: type[ComfyNode] = None, **kwargs):
self.values = AudioSaveHelper.save_audio(
audio,
filename_prefix="ComfyUI_temp_" + "".join(random.choice("abcdefghijklmnopqrstuvwxyz") for _ in range(5)),
@@ -436,9 +437,19 @@ class PreviewUI3D(_UIOutput):
def __init__(self, model_file, camera_info, **kwargs):
self.model_file = model_file
self.camera_info = camera_info
self.bg_image_path = None
bg_image = kwargs.get("bg_image", None)
if bg_image is not None:
img_array = (bg_image[0].cpu().numpy() * 255).astype(np.uint8)
img = PILImage.fromarray(img_array)
temp_dir = folder_paths.get_temp_directory()
filename = f"bg_{uuid.uuid4().hex}.png"
bg_image_path = os.path.join(temp_dir, filename)
img.save(bg_image_path, compress_level=1)
self.bg_image_path = f"temp/{filename}"
def as_dict(self):
return {"result": [self.model_file, self.camera_info]}
return {"result": [self.model_file, self.camera_info, self.bg_image_path]}
class PreviewText(_UIOutput):

View File

@@ -0,0 +1 @@
from ._ui import * # noqa: F403

View File

@@ -1,8 +1,11 @@
from .video_types import VideoContainer, VideoCodec, VideoComponents
from .geometry_types import VOXEL, MESH
__all__ = [
# Utility Types
"VideoContainer",
"VideoCodec",
"VideoComponents",
"VOXEL",
"MESH",
]

View File

@@ -0,0 +1,12 @@
import torch
class VOXEL:
def __init__(self, data: torch.Tensor):
self.data = data
class MESH:
def __init__(self, vertices: torch.Tensor, faces: torch.Tensor):
self.vertices = vertices
self.faces = faces

View File

@@ -3,7 +3,7 @@ from dataclasses import dataclass
from enum import Enum
from fractions import Fraction
from typing import Optional
from comfy_api.latest._input import ImageInput, AudioInput
from .._input import ImageInput, AudioInput
class VideoCodec(str, Enum):
AUTO = "auto"

View File

@@ -6,7 +6,7 @@ from comfy_api.latest import (
)
from typing import Type, TYPE_CHECKING
from comfy_api.internal.async_to_sync import create_sync_class
from comfy_api.latest import io, ui, ComfyExtension #noqa: F401
from comfy_api.latest import io, ui, IO, UI, ComfyExtension #noqa: F401
class ComfyAPIAdapter_v0_0_2(ComfyAPI_latest):
@@ -42,4 +42,8 @@ __all__ = [
"InputImpl",
"Types",
"ComfyExtension",
"io",
"IO",
"ui",
"UI",
]

View File

@@ -2,9 +2,8 @@ from comfy_api.latest import ComfyAPI_latest
from comfy_api.v0_0_2 import ComfyAPIAdapter_v0_0_2
from comfy_api.v0_0_1 import ComfyAPIAdapter_v0_0_1
from comfy_api.internal import ComfyAPIBase
from typing import List, Type
supported_versions: List[Type[ComfyAPIBase]] = [
supported_versions: list[type[ComfyAPIBase]] = [
ComfyAPI_latest,
ComfyAPIAdapter_v0_0_2,
ComfyAPIAdapter_v0_0_1,

View File

@@ -70,6 +70,29 @@ class BFLFluxProGenerateRequest(BaseModel):
# )
class Flux2ProGenerateRequest(BaseModel):
prompt: str = Field(...)
width: int = Field(1024, description="Must be a multiple of 32.")
height: int = Field(768, description="Must be a multiple of 32.")
seed: int | None = Field(None)
prompt_upsampling: bool | None = Field(None)
input_image: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_2: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_3: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_4: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_5: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_6: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_7: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_8: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_9: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
safety_tolerance: int | None = Field(
5, description="Tolerance level for input and output moderation. Value 0 being most strict.", ge=0, le=5
)
output_format: str | None = Field(
"png", description="Output format for the generated image. Can be 'jpeg' or 'png'."
)
class BFLFluxKontextProGenerateRequest(BaseModel):
prompt: str = Field(..., description='The text prompt for what you wannt to edit.')
input_image: Optional[str] = Field(None, description='Image to edit in base64 format')
@@ -109,8 +132,9 @@ class BFLFluxProUltraGenerateRequest(BaseModel):
class BFLFluxProGenerateResponse(BaseModel):
id: str = Field(..., description='The unique identifier for the generation task.')
polling_url: str = Field(..., description='URL to poll for the generation result.')
id: str = Field(..., description="The unique identifier for the generation task.")
polling_url: str = Field(..., description="URL to poll for the generation result.")
cost: float | None = Field(None, description="Price in cents")
class BFLStatus(str, Enum):

View File

@@ -0,0 +1,144 @@
from typing import Literal
from pydantic import BaseModel, Field
class Text2ImageTaskCreationRequest(BaseModel):
model: str = Field(...)
prompt: str = Field(...)
response_format: str | None = Field("url")
size: str | None = Field(None)
seed: int | None = Field(0, ge=0, le=2147483647)
guidance_scale: float | None = Field(..., ge=1.0, le=10.0)
watermark: bool | None = Field(True)
class Image2ImageTaskCreationRequest(BaseModel):
model: str = Field(...)
prompt: str = Field(...)
response_format: str | None = Field("url")
image: str = Field(..., description="Base64 encoded string or image URL")
size: str | None = Field("adaptive")
seed: int | None = Field(..., ge=0, le=2147483647)
guidance_scale: float | None = Field(..., ge=1.0, le=10.0)
watermark: bool | None = Field(True)
class Seedream4Options(BaseModel):
max_images: int = Field(15)
class Seedream4TaskCreationRequest(BaseModel):
model: str = Field(...)
prompt: str = Field(...)
response_format: str = Field("url")
image: list[str] | None = Field(None, description="Image URLs")
size: str = Field(...)
seed: int = Field(..., ge=0, le=2147483647)
sequential_image_generation: str = Field("disabled")
sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15))
watermark: bool = Field(True)
class ImageTaskCreationResponse(BaseModel):
model: str = Field(...)
created: int = Field(..., description="Unix timestamp (in seconds) indicating time when the request was created.")
data: list = Field([], description="Contains information about the generated image(s).")
error: dict = Field({}, description="Contains `code` and `message` fields in case of error.")
class TaskTextContent(BaseModel):
type: str = Field("text")
text: str = Field(...)
class TaskImageContentUrl(BaseModel):
url: str = Field(...)
class TaskImageContent(BaseModel):
type: str = Field("image_url")
image_url: TaskImageContentUrl = Field(...)
role: Literal["first_frame", "last_frame", "reference_image"] | None = Field(None)
class Text2VideoTaskCreationRequest(BaseModel):
model: str = Field(...)
content: list[TaskTextContent] = Field(..., min_length=1)
class Image2VideoTaskCreationRequest(BaseModel):
model: str = Field(...)
content: list[TaskTextContent | TaskImageContent] = Field(..., min_length=2)
class TaskCreationResponse(BaseModel):
id: str = Field(...)
class TaskStatusError(BaseModel):
code: str = Field(...)
message: str = Field(...)
class TaskStatusResult(BaseModel):
video_url: str = Field(...)
class TaskStatusResponse(BaseModel):
id: str = Field(...)
model: str = Field(...)
status: Literal["queued", "running", "cancelled", "succeeded", "failed"] = Field(...)
error: TaskStatusError | None = Field(None)
content: TaskStatusResult | None = Field(None)
RECOMMENDED_PRESETS = [
("1024x1024 (1:1)", 1024, 1024),
("864x1152 (3:4)", 864, 1152),
("1152x864 (4:3)", 1152, 864),
("1280x720 (16:9)", 1280, 720),
("720x1280 (9:16)", 720, 1280),
("832x1248 (2:3)", 832, 1248),
("1248x832 (3:2)", 1248, 832),
("1512x648 (21:9)", 1512, 648),
("2048x2048 (1:1)", 2048, 2048),
("Custom", None, None),
]
RECOMMENDED_PRESETS_SEEDREAM_4 = [
("2048x2048 (1:1)", 2048, 2048),
("2304x1728 (4:3)", 2304, 1728),
("1728x2304 (3:4)", 1728, 2304),
("2560x1440 (16:9)", 2560, 1440),
("1440x2560 (9:16)", 1440, 2560),
("2496x1664 (3:2)", 2496, 1664),
("1664x2496 (2:3)", 1664, 2496),
("3024x1296 (21:9)", 3024, 1296),
("4096x4096 (1:1)", 4096, 4096),
("Custom", None, None),
]
# The time in this dictionary are given for 10 seconds duration.
VIDEO_TASKS_EXECUTION_TIME = {
"seedance-1-0-lite-t2v-250428": {
"480p": 40,
"720p": 60,
"1080p": 90,
},
"seedance-1-0-lite-i2v-250428": {
"480p": 40,
"720p": 60,
"1080p": 90,
},
"seedance-1-0-pro-250528": {
"480p": 70,
"720p": 85,
"1080p": 115,
},
"seedance-1-0-pro-fast-251015": {
"480p": 50,
"720p": 65,
"1080p": 100,
},
}

View File

@@ -1,22 +1,228 @@
from typing import Optional
from datetime import date
from enum import Enum
from typing import Any
from comfy_api_nodes.apis import GeminiGenerationConfig, GeminiContent, GeminiSafetySetting, GeminiSystemInstructionContent, GeminiTool, GeminiVideoMetadata
from pydantic import BaseModel
from pydantic import BaseModel, Field
class GeminiSafetyCategory(str, Enum):
HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"
HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"
HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"
HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
class GeminiSafetyThreshold(str, Enum):
OFF = "OFF"
BLOCK_NONE = "BLOCK_NONE"
BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE"
BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE"
BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH"
class GeminiSafetySetting(BaseModel):
category: GeminiSafetyCategory
threshold: GeminiSafetyThreshold
class GeminiRole(str, Enum):
user = "user"
model = "model"
class GeminiMimeType(str, Enum):
application_pdf = "application/pdf"
audio_mpeg = "audio/mpeg"
audio_mp3 = "audio/mp3"
audio_wav = "audio/wav"
image_png = "image/png"
image_jpeg = "image/jpeg"
image_webp = "image/webp"
text_plain = "text/plain"
video_mov = "video/mov"
video_mpeg = "video/mpeg"
video_mp4 = "video/mp4"
video_mpg = "video/mpg"
video_avi = "video/avi"
video_wmv = "video/wmv"
video_mpegps = "video/mpegps"
video_flv = "video/flv"
class GeminiInlineData(BaseModel):
data: str | None = Field(
None,
description="The base64 encoding of the image, PDF, or video to include inline in the prompt. "
"When including media inline, you must also specify the media type (mimeType) of the data. Size limit: 20MB",
)
mimeType: GeminiMimeType | None = Field(None)
class GeminiFileData(BaseModel):
fileUri: str | None = Field(None)
mimeType: GeminiMimeType | None = Field(None)
class GeminiPart(BaseModel):
inlineData: GeminiInlineData | None = Field(None)
fileData: GeminiFileData | None = Field(None)
text: str | None = Field(None)
class GeminiTextPart(BaseModel):
text: str | None = Field(None)
class GeminiContent(BaseModel):
parts: list[GeminiPart] = Field([])
role: GeminiRole = Field(..., examples=["user"])
class GeminiSystemInstructionContent(BaseModel):
parts: list[GeminiTextPart] = Field(
...,
description="A list of ordered parts that make up a single message. "
"Different parts may have different IANA MIME types.",
)
role: GeminiRole | None = Field(..., description="The role field of systemInstruction may be ignored.")
class GeminiFunctionDeclaration(BaseModel):
description: str | None = Field(None)
name: str = Field(...)
parameters: dict[str, Any] = Field(..., description="JSON schema for the function parameters")
class GeminiTool(BaseModel):
functionDeclarations: list[GeminiFunctionDeclaration] | None = Field(None)
class GeminiOffset(BaseModel):
nanos: int | None = Field(None, ge=0, le=999999999)
seconds: int | None = Field(None, ge=-315576000000, le=315576000000)
class GeminiVideoMetadata(BaseModel):
endOffset: GeminiOffset | None = Field(None)
startOffset: GeminiOffset | None = Field(None)
class GeminiGenerationConfig(BaseModel):
maxOutputTokens: int | None = Field(None, ge=16, le=8192)
seed: int | None = Field(None)
stopSequences: list[str] | None = Field(None)
temperature: float | None = Field(None, ge=0.0, le=2.0)
topK: int | None = Field(None, ge=1)
topP: float | None = Field(None, ge=0.0, le=1.0)
class GeminiImageConfig(BaseModel):
aspectRatio: Optional[str] = None
aspectRatio: str | None = Field(None)
imageSize: str | None = Field(None)
class GeminiImageGenerationConfig(GeminiGenerationConfig):
responseModalities: Optional[list[str]] = None
imageConfig: Optional[GeminiImageConfig] = None
responseModalities: list[str] | None = Field(None)
imageConfig: GeminiImageConfig | None = Field(None)
class GeminiImageGenerateContentRequest(BaseModel):
contents: list[GeminiContent]
generationConfig: Optional[GeminiImageGenerationConfig] = None
safetySettings: Optional[list[GeminiSafetySetting]] = None
systemInstruction: Optional[GeminiSystemInstructionContent] = None
tools: Optional[list[GeminiTool]] = None
videoMetadata: Optional[GeminiVideoMetadata] = None
contents: list[GeminiContent] = Field(...)
generationConfig: GeminiImageGenerationConfig | None = Field(None)
safetySettings: list[GeminiSafetySetting] | None = Field(None)
systemInstruction: GeminiSystemInstructionContent | None = Field(None)
tools: list[GeminiTool] | None = Field(None)
videoMetadata: GeminiVideoMetadata | None = Field(None)
class GeminiGenerateContentRequest(BaseModel):
contents: list[GeminiContent] = Field(...)
generationConfig: GeminiGenerationConfig | None = Field(None)
safetySettings: list[GeminiSafetySetting] | None = Field(None)
systemInstruction: GeminiSystemInstructionContent | None = Field(None)
tools: list[GeminiTool] | None = Field(None)
videoMetadata: GeminiVideoMetadata | None = Field(None)
class Modality(str, Enum):
MODALITY_UNSPECIFIED = "MODALITY_UNSPECIFIED"
TEXT = "TEXT"
IMAGE = "IMAGE"
VIDEO = "VIDEO"
AUDIO = "AUDIO"
DOCUMENT = "DOCUMENT"
class ModalityTokenCount(BaseModel):
modality: Modality | None = None
tokenCount: int | None = Field(None, description="Number of tokens for the given modality.")
class Probability(str, Enum):
NEGLIGIBLE = "NEGLIGIBLE"
LOW = "LOW"
MEDIUM = "MEDIUM"
HIGH = "HIGH"
UNKNOWN = "UNKNOWN"
class GeminiSafetyRating(BaseModel):
category: GeminiSafetyCategory | None = None
probability: Probability | None = Field(
None,
description="The probability that the content violates the specified safety category",
)
class GeminiCitation(BaseModel):
authors: list[str] | None = None
endIndex: int | None = None
license: str | None = None
publicationDate: date | None = None
startIndex: int | None = None
title: str | None = None
uri: str | None = None
class GeminiCitationMetadata(BaseModel):
citations: list[GeminiCitation] | None = None
class GeminiCandidate(BaseModel):
citationMetadata: GeminiCitationMetadata | None = None
content: GeminiContent | None = None
finishReason: str | None = None
safetyRatings: list[GeminiSafetyRating] | None = None
class GeminiPromptFeedback(BaseModel):
blockReason: str | None = None
blockReasonMessage: str | None = None
safetyRatings: list[GeminiSafetyRating] | None = None
class GeminiUsageMetadata(BaseModel):
cachedContentTokenCount: int | None = Field(
None,
description="Output only. Number of tokens in the cached part in the input (the cached content).",
)
candidatesTokenCount: int | None = Field(None, description="Number of tokens in the response(s).")
candidatesTokensDetails: list[ModalityTokenCount] | None = Field(
None, description="Breakdown of candidate tokens by modality."
)
promptTokenCount: int | None = Field(
None,
description="Number of tokens in the request. When cachedContent is set, this is still the total effective prompt size meaning this includes the number of tokens in the cached content.",
)
promptTokensDetails: list[ModalityTokenCount] | None = Field(
None, description="Breakdown of prompt tokens by modality."
)
thoughtsTokenCount: int | None = Field(None, description="Number of tokens present in thoughts output.")
toolUsePromptTokenCount: int | None = Field(None, description="Number of tokens present in tool-use prompt(s).")
class GeminiGenerateContentResponse(BaseModel):
candidates: list[GeminiCandidate] | None = Field(None)
promptFeedback: GeminiPromptFeedback | None = Field(None)
usageMetadata: GeminiUsageMetadata | None = Field(None)
modelVersion: str | None = Field(None)

View File

@@ -0,0 +1,104 @@
from pydantic import BaseModel, Field
class OmniProText2VideoRequest(BaseModel):
model_name: str = Field(..., description="kling-video-o1")
aspect_ratio: str = Field(..., description="'16:9', '9:16' or '1:1'")
duration: str = Field(..., description="'5' or '10'")
prompt: str = Field(...)
mode: str = Field("pro")
class OmniParamImage(BaseModel):
image_url: str = Field(...)
type: str | None = Field(None, description="Can be 'first_frame' or 'end_frame'")
class OmniParamVideo(BaseModel):
video_url: str = Field(...)
refer_type: str | None = Field(..., description="Can be 'base' or 'feature'")
keep_original_sound: str = Field(..., description="'yes' or 'no'")
class OmniProFirstLastFrameRequest(BaseModel):
model_name: str = Field(..., description="kling-video-o1")
image_list: list[OmniParamImage] = Field(..., min_length=1, max_length=7)
duration: str = Field(..., description="'5' or '10'")
prompt: str = Field(...)
mode: str = Field("pro")
class OmniProReferences2VideoRequest(BaseModel):
model_name: str = Field(..., description="kling-video-o1")
aspect_ratio: str | None = Field(..., description="'16:9', '9:16' or '1:1'")
image_list: list[OmniParamImage] | None = Field(
None, max_length=7, description="Max length 4 when video is present."
)
video_list: list[OmniParamVideo] | None = Field(None, max_length=1)
duration: str | None = Field(..., description="From 3 to 10.")
prompt: str = Field(...)
mode: str = Field("pro")
class TaskStatusVideoResult(BaseModel):
duration: str | None = Field(None, description="Total video duration")
id: str | None = Field(None, description="Generated video ID")
url: str | None = Field(None, description="URL for generated video")
class TaskStatusImageResult(BaseModel):
index: int = Field(..., description="Image Number0-9")
url: str = Field(..., description="URL for generated image")
class TaskStatusResults(BaseModel):
videos: list[TaskStatusVideoResult] | None = Field(None)
images: list[TaskStatusImageResult] | None = Field(None)
class TaskStatusResponseData(BaseModel):
created_at: int | None = Field(None, description="Task creation time")
updated_at: int | None = Field(None, description="Task update time")
task_status: str | None = None
task_status_msg: str | None = Field(None, description="Additional failure reason. Only for polling endpoint.")
task_id: str | None = Field(None, description="Task ID")
task_result: TaskStatusResults | None = Field(None)
class TaskStatusResponse(BaseModel):
code: int | None = Field(None, description="Error code")
message: str | None = Field(None, description="Error message")
request_id: str | None = Field(None, description="Request ID")
data: TaskStatusResponseData | None = Field(None)
class OmniImageParamImage(BaseModel):
image: str = Field(...)
class OmniProImageRequest(BaseModel):
model_name: str = Field(..., description="kling-image-o1")
resolution: str = Field(..., description="'1k' or '2k'")
aspect_ratio: str | None = Field(...)
prompt: str = Field(...)
mode: str = Field("pro")
n: int | None = Field(1, le=9)
image_list: list[OmniImageParamImage] | None = Field(..., max_length=10)
class TextToVideoWithAudioRequest(BaseModel):
model_name: str = Field(..., description="kling-v2-6")
aspect_ratio: str = Field(..., description="'16:9', '9:16' or '1:1'")
duration: str = Field(..., description="'5' or '10'")
prompt: str = Field(...)
mode: str = Field("pro")
sound: str = Field(..., description="'on' or 'off'")
class ImageToVideoWithAudioRequest(BaseModel):
model_name: str = Field(..., description="kling-v2-6")
image: str = Field(...)
duration: str = Field(..., description="'5' or '10'")
prompt: str = Field(...)
mode: str = Field("pro")
sound: str = Field(..., description="'on' or 'off'")

View File

@@ -1,100 +0,0 @@
from typing import Optional
from enum import Enum
from pydantic import BaseModel, Field
class Pikaffect(str, Enum):
Cake_ify = "Cake-ify"
Crumble = "Crumble"
Crush = "Crush"
Decapitate = "Decapitate"
Deflate = "Deflate"
Dissolve = "Dissolve"
Explode = "Explode"
Eye_pop = "Eye-pop"
Inflate = "Inflate"
Levitate = "Levitate"
Melt = "Melt"
Peel = "Peel"
Poke = "Poke"
Squish = "Squish"
Ta_da = "Ta-da"
Tear = "Tear"
class PikaBodyGenerate22C2vGenerate22PikascenesPost(BaseModel):
aspectRatio: Optional[float] = Field(None, description='Aspect ratio (width / height)')
duration: Optional[int] = Field(5)
ingredientsMode: str = Field(...)
negativePrompt: Optional[str] = Field(None)
promptText: Optional[str] = Field(None)
resolution: Optional[str] = Field('1080p')
seed: Optional[int] = Field(None)
class PikaGenerateResponse(BaseModel):
video_id: str = Field(...)
class PikaBodyGenerate22I2vGenerate22I2vPost(BaseModel):
duration: Optional[int] = 5
negativePrompt: Optional[str] = Field(None)
promptText: Optional[str] = Field(None)
resolution: Optional[str] = '1080p'
seed: Optional[int] = Field(None)
class PikaBodyGenerate22KeyframeGenerate22PikaframesPost(BaseModel):
duration: Optional[int] = Field(None, ge=5, le=10)
negativePrompt: Optional[str] = Field(None)
promptText: str = Field(...)
resolution: Optional[str] = '1080p'
seed: Optional[int] = Field(None)
class PikaBodyGenerate22T2vGenerate22T2vPost(BaseModel):
aspectRatio: Optional[float] = Field(
1.7777777777777777,
description='Aspect ratio (width / height)',
ge=0.4,
le=2.5,
)
duration: Optional[int] = 5
negativePrompt: Optional[str] = Field(None)
promptText: str = Field(...)
resolution: Optional[str] = '1080p'
seed: Optional[int] = Field(None)
class PikaBodyGeneratePikadditionsGeneratePikadditionsPost(BaseModel):
negativePrompt: Optional[str] = Field(None)
promptText: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
class PikaBodyGeneratePikaffectsGeneratePikaffectsPost(BaseModel):
negativePrompt: Optional[str] = Field(None)
pikaffect: Optional[str] = None
promptText: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
class PikaBodyGeneratePikaswapsGeneratePikaswapsPost(BaseModel):
negativePrompt: Optional[str] = Field(None)
promptText: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
modifyRegionRoi: Optional[str] = Field(None)
class PikaStatusEnum(str, Enum):
queued = "queued"
started = "started"
finished = "finished"
failed = "failed"
class PikaVideoResponse(BaseModel):
id: str = Field(...)
progress: Optional[int] = Field(None)
status: PikaStatusEnum
url: Optional[str] = Field(None)

View File

@@ -0,0 +1,133 @@
from typing import Optional, Union
from pydantic import BaseModel, Field
class ImageEnhanceRequest(BaseModel):
model: str = Field("Reimagine")
output_format: str = Field("jpeg")
subject_detection: str = Field("All")
face_enhancement: bool = Field(True)
face_enhancement_creativity: float = Field(0, description="Is ignored if face_enhancement is false")
face_enhancement_strength: float = Field(0.8, description="Is ignored if face_enhancement is false")
source_url: str = Field(...)
output_width: Optional[int] = Field(None)
output_height: Optional[int] = Field(None)
crop_to_fill: bool = Field(False)
prompt: Optional[str] = Field(None, description="Text prompt for creative upscaling guidance")
creativity: int = Field(3, description="Creativity settings range from 1 to 9")
face_preservation: str = Field("true", description="To preserve the identity of characters")
color_preservation: str = Field("true", description="To preserve the original color")
class ImageAsyncTaskResponse(BaseModel):
process_id: str = Field(...)
class ImageStatusResponse(BaseModel):
process_id: str = Field(...)
status: str = Field(...)
progress: Optional[int] = Field(None)
credits: int = Field(...)
class ImageDownloadResponse(BaseModel):
download_url: str = Field(...)
expiry: int = Field(...)
class Resolution(BaseModel):
width: int = Field(...)
height: int = Field(...)
class CreateCreateVideoRequestSource(BaseModel):
container: str = Field(...)
size: int = Field(..., description="Size of the video file in bytes")
duration: int = Field(..., description="Duration of the video file in seconds")
frameCount: int = Field(..., description="Total number of frames in the video")
frameRate: int = Field(...)
resolution: Resolution = Field(...)
class VideoFrameInterpolationFilter(BaseModel):
model: str = Field(...)
slowmo: Optional[int] = Field(None)
fps: int = Field(...)
duplicate: bool = Field(...)
duplicate_threshold: float = Field(...)
class VideoEnhancementFilter(BaseModel):
model: str = Field(...)
auto: Optional[str] = Field(None, description="Auto, Manual, Relative")
focusFixLevel: Optional[str] = Field(None, description="Downscales video input for correction of blurred subjects")
compression: Optional[float] = Field(None, description="Strength of compression recovery")
details: Optional[float] = Field(None, description="Amount of detail reconstruction")
prenoise: Optional[float] = Field(None, description="Amount of noise to add to input to reduce over-smoothing")
noise: Optional[float] = Field(None, description="Amount of noise reduction")
halo: Optional[float] = Field(None, description="Amount of halo reduction")
preblur: Optional[float] = Field(None, description="Anti-aliasing and deblurring strength")
blur: Optional[float] = Field(None, description="Amount of sharpness applied")
grain: Optional[float] = Field(None, description="Grain after AI model processing")
grainSize: Optional[float] = Field(None, description="Size of generated grain")
recoverOriginalDetailValue: Optional[float] = Field(None, description="Source details into the output video")
creativity: Optional[str] = Field(None, description="Creativity level(high, low) for slc-1 only")
isOptimizedMode: Optional[bool] = Field(None, description="Set to true for Starlight Creative (slc-1) only")
class OutputInformationVideo(BaseModel):
resolution: Resolution = Field(...)
frameRate: int = Field(...)
audioCodec: Optional[str] = Field(..., description="Required if audioTransfer is Copy or Convert")
audioTransfer: str = Field(..., description="Copy, Convert, None")
dynamicCompressionLevel: str = Field(..., description="Low, Mid, High")
class Overrides(BaseModel):
isPaidDiffusion: bool = Field(True)
class CreateVideoRequest(BaseModel):
source: CreateCreateVideoRequestSource = Field(...)
filters: list[Union[VideoFrameInterpolationFilter, VideoEnhancementFilter]] = Field(...)
output: OutputInformationVideo = Field(...)
overrides: Overrides = Field(Overrides(isPaidDiffusion=True))
class CreateVideoResponse(BaseModel):
requestId: str = Field(...)
class VideoAcceptResponse(BaseModel):
uploadId: str = Field(...)
urls: list[str] = Field(...)
class VideoCompleteUploadRequestPart(BaseModel):
partNum: int = Field(...)
eTag: str = Field(...)
class VideoCompleteUploadRequest(BaseModel):
uploadResults: list[VideoCompleteUploadRequestPart] = Field(...)
class VideoCompleteUploadResponse(BaseModel):
message: str = Field(..., description="Confirmation message")
class VideoStatusResponseEstimates(BaseModel):
cost: list[int] = Field(...)
class VideoStatusResponseDownloadUrl(BaseModel):
url: str = Field(...)
class VideoStatusResponse(BaseModel):
status: str = Field(...)
estimates: Optional[VideoStatusResponseEstimates] = Field(None)
progress: Optional[float] = Field(None)
message: Optional[str] = Field("")
download: Optional[VideoStatusResponseDownloadUrl] = Field(None)

View File

@@ -1,34 +1,21 @@
from typing import Optional, Union
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field
class Image2(BaseModel):
bytesBase64Encoded: str
gcsUri: Optional[str] = None
mimeType: Optional[str] = None
class VeoRequestInstanceImage(BaseModel):
bytesBase64Encoded: str | None = Field(None)
gcsUri: str | None = Field(None)
mimeType: str | None = Field(None)
class Image3(BaseModel):
bytesBase64Encoded: Optional[str] = None
gcsUri: str
mimeType: Optional[str] = None
class Instance1(BaseModel):
image: Optional[Union[Image2, Image3]] = Field(
None, description='Optional image to guide video generation'
)
class VeoRequestInstance(BaseModel):
image: VeoRequestInstanceImage | None = Field(None)
lastFrame: VeoRequestInstanceImage | None = Field(None)
prompt: str = Field(..., description='Text description of the video')
class PersonGeneration1(str, Enum):
ALLOW = 'ALLOW'
BLOCK = 'BLOCK'
class Parameters1(BaseModel):
class VeoRequestParameters(BaseModel):
aspectRatio: Optional[str] = Field(None, examples=['16:9'])
durationSeconds: Optional[int] = None
enhancePrompt: Optional[bool] = None
@@ -37,17 +24,18 @@ class Parameters1(BaseModel):
description='Generate audio for the video. Only supported by veo 3 models.',
)
negativePrompt: Optional[str] = None
personGeneration: Optional[PersonGeneration1] = None
personGeneration: str | None = Field(None, description="ALLOW or BLOCK")
sampleCount: Optional[int] = None
seed: Optional[int] = None
storageUri: Optional[str] = Field(
None, description='Optional Cloud Storage URI to upload the video'
)
resolution: str | None = Field(None)
class VeoGenVidRequest(BaseModel):
instances: Optional[list[Instance1]] = None
parameters: Optional[Parameters1] = None
instances: list[VeoRequestInstance] | None = Field(None)
parameters: VeoRequestParameters | None = Field(None)
class VeoGenVidResponse(BaseModel):
@@ -97,7 +85,7 @@ class Response1(BaseModel):
raiMediaFilteredReasons: Optional[list[str]] = Field(
None, description='Reasons why media was filtered by responsible AI policies'
)
videos: Optional[list[Video]] = None
videos: Optional[list[Video]] = Field(None)
class VeoGenVidPollResponse(BaseModel):

View File

@@ -1,7 +1,7 @@
from inspect import cleandoc
from typing import Optional
import torch
from pydantic import BaseModel
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension
@@ -9,15 +9,16 @@ from comfy_api_nodes.apis.bfl_api import (
BFLFluxExpandImageRequest,
BFLFluxFillImageRequest,
BFLFluxKontextProGenerateRequest,
BFLFluxProGenerateRequest,
BFLFluxProGenerateResponse,
BFLFluxProUltraGenerateRequest,
BFLFluxStatusResponse,
BFLStatus,
Flux2ProGenerateRequest,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_image_tensor,
get_number_of_images,
poll_op,
resize_mask_to_image,
sync_op,
@@ -116,7 +117,7 @@ class FluxProUltraImageNode(IO.ComfyNode):
prompt_upsampling: bool = False,
raw: bool = False,
seed: int = 0,
image_prompt: Optional[torch.Tensor] = None,
image_prompt: torch.Tensor | None = None,
image_prompt_strength: float = 0.1,
) -> IO.NodeOutput:
if image_prompt is None:
@@ -230,7 +231,7 @@ class FluxKontextProImageNode(IO.ComfyNode):
aspect_ratio: str,
guidance: float,
steps: int,
input_image: Optional[torch.Tensor] = None,
input_image: torch.Tensor | None = None,
seed=0,
prompt_upsampling=False,
) -> IO.NodeOutput:
@@ -280,124 +281,6 @@ class FluxKontextMaxImageNode(FluxKontextProImageNode):
DISPLAY_NAME = "Flux.1 Kontext [max] Image"
class FluxProImageNode(IO.ComfyNode):
"""
Generates images synchronously based on prompt and resolution.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="FluxProImageNode",
display_name="Flux 1.1 [pro] Image",
category="api node/image/BFL",
description=cleandoc(cls.__doc__ or ""),
inputs=[
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Prompt for the image generation",
),
IO.Boolean.Input(
"prompt_upsampling",
default=False,
tooltip="Whether to perform upsampling on the prompt. "
"If active, automatically modifies the prompt for more creative generation, "
"but results are nondeterministic (same seed will not produce exactly the same result).",
),
IO.Int.Input(
"width",
default=1024,
min=256,
max=1440,
step=32,
),
IO.Int.Input(
"height",
default=768,
min=256,
max=1440,
step=32,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFFFFFFFFFF,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
),
IO.Image.Input(
"image_prompt",
optional=True,
),
# "image_prompt_strength": (
# IO.FLOAT,
# {
# "default": 0.1,
# "min": 0.0,
# "max": 1.0,
# "step": 0.01,
# "tooltip": "Blend between the prompt and the image prompt.",
# },
# ),
],
outputs=[IO.Image.Output()],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
prompt: str,
prompt_upsampling,
width: int,
height: int,
seed=0,
image_prompt=None,
# image_prompt_strength=0.1,
) -> IO.NodeOutput:
image_prompt = image_prompt if image_prompt is None else tensor_to_base64_string(image_prompt)
initial_response = await sync_op(
cls,
ApiEndpoint(
path="/proxy/bfl/flux-pro-1.1/generate",
method="POST",
),
response_model=BFLFluxProGenerateResponse,
data=BFLFluxProGenerateRequest(
prompt=prompt,
prompt_upsampling=prompt_upsampling,
width=width,
height=height,
seed=seed,
image_prompt=image_prompt,
),
)
response = await poll_op(
cls,
ApiEndpoint(initial_response.polling_url),
response_model=BFLFluxStatusResponse,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
completed_statuses=[BFLStatus.ready],
failed_statuses=[
BFLStatus.request_moderated,
BFLStatus.content_moderated,
BFLStatus.error,
BFLStatus.task_not_found,
],
queued_statuses=[],
)
return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"]))
class FluxProExpandNode(IO.ComfyNode):
"""
Outpaints image based on prompt.
@@ -640,16 +523,125 @@ class FluxProFillNode(IO.ComfyNode):
return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"]))
class Flux2ProImageNode(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="Flux2ProImageNode",
display_name="Flux.2 [pro] Image",
category="api node/image/BFL",
description="Generates images synchronously based on prompt and resolution.",
inputs=[
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Prompt for the image generation or edit",
),
IO.Int.Input(
"width",
default=1024,
min=256,
max=2048,
step=32,
),
IO.Int.Input(
"height",
default=768,
min=256,
max=2048,
step=32,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFFFFFFFFFF,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
),
IO.Boolean.Input(
"prompt_upsampling",
default=False,
tooltip="Whether to perform upsampling on the prompt. "
"If active, automatically modifies the prompt for more creative generation, "
"but results are nondeterministic (same seed will not produce exactly the same result).",
),
IO.Image.Input("images", optional=True, tooltip="Up to 4 images to be used as references."),
],
outputs=[IO.Image.Output()],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
prompt: str,
width: int,
height: int,
seed: int,
prompt_upsampling: bool,
images: torch.Tensor | None = None,
) -> IO.NodeOutput:
reference_images = {}
if images is not None:
if get_number_of_images(images) > 9:
raise ValueError("The current maximum number of supported images is 9.")
for image_index in range(images.shape[0]):
key_name = f"input_image_{image_index + 1}" if image_index else "input_image"
reference_images[key_name] = tensor_to_base64_string(images[image_index], total_pixels=2048 * 2048)
initial_response = await sync_op(
cls,
ApiEndpoint(path="/proxy/bfl/flux-2-pro/generate", method="POST"),
response_model=BFLFluxProGenerateResponse,
data=Flux2ProGenerateRequest(
prompt=prompt,
width=width,
height=height,
seed=seed,
prompt_upsampling=prompt_upsampling,
**reference_images,
),
)
def price_extractor(_r: BaseModel) -> float | None:
return None if initial_response.cost is None else initial_response.cost / 100
response = await poll_op(
cls,
ApiEndpoint(initial_response.polling_url),
response_model=BFLFluxStatusResponse,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
price_extractor=price_extractor,
completed_statuses=[BFLStatus.ready],
failed_statuses=[
BFLStatus.request_moderated,
BFLStatus.content_moderated,
BFLStatus.error,
BFLStatus.task_not_found,
],
queued_statuses=[],
)
return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"]))
class BFLExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
FluxProUltraImageNode,
# FluxProImageNode,
FluxKontextProImageNode,
FluxKontextMaxImageNode,
FluxProExpandNode,
FluxProFillNode,
Flux2ProImageNode,
]

View File

@@ -1,13 +1,27 @@
import logging
import math
from enum import Enum
from typing import Literal, Optional, Union
import torch
from pydantic import BaseModel, Field
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api_nodes.apis.bytedance_api import (
RECOMMENDED_PRESETS,
RECOMMENDED_PRESETS_SEEDREAM_4,
VIDEO_TASKS_EXECUTION_TIME,
Image2ImageTaskCreationRequest,
Image2VideoTaskCreationRequest,
ImageTaskCreationResponse,
Seedream4Options,
Seedream4TaskCreationRequest,
TaskCreationResponse,
TaskImageContent,
TaskImageContentUrl,
TaskStatusResponse,
TaskTextContent,
Text2ImageTaskCreationRequest,
Text2VideoTaskCreationRequest,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_image_tensor,
@@ -29,162 +43,6 @@ BYTEPLUS_TASK_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks"
BYTEPLUS_TASK_STATUS_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks" # + /{task_id}
class Text2ImageModelName(str, Enum):
seedream_3 = "seedream-3-0-t2i-250415"
class Image2ImageModelName(str, Enum):
seededit_3 = "seededit-3-0-i2i-250628"
class Text2VideoModelName(str, Enum):
seedance_1_pro = "seedance-1-0-pro-250528"
seedance_1_lite = "seedance-1-0-lite-t2v-250428"
class Image2VideoModelName(str, Enum):
"""note(August 31): Pro model only supports FirstFrame: https://docs.byteplus.com/en/docs/ModelArk/1520757"""
seedance_1_pro = "seedance-1-0-pro-250528"
seedance_1_lite = "seedance-1-0-lite-i2v-250428"
class Text2ImageTaskCreationRequest(BaseModel):
model: Text2ImageModelName = Text2ImageModelName.seedream_3
prompt: str = Field(...)
response_format: Optional[str] = Field("url")
size: Optional[str] = Field(None)
seed: Optional[int] = Field(0, ge=0, le=2147483647)
guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0)
watermark: Optional[bool] = Field(True)
class Image2ImageTaskCreationRequest(BaseModel):
model: Image2ImageModelName = Image2ImageModelName.seededit_3
prompt: str = Field(...)
response_format: Optional[str] = Field("url")
image: str = Field(..., description="Base64 encoded string or image URL")
size: Optional[str] = Field("adaptive")
seed: Optional[int] = Field(..., ge=0, le=2147483647)
guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0)
watermark: Optional[bool] = Field(True)
class Seedream4Options(BaseModel):
max_images: int = Field(15)
class Seedream4TaskCreationRequest(BaseModel):
model: str = Field("seedream-4-0-250828")
prompt: str = Field(...)
response_format: str = Field("url")
image: Optional[list[str]] = Field(None, description="Image URLs")
size: str = Field(...)
seed: int = Field(..., ge=0, le=2147483647)
sequential_image_generation: str = Field("disabled")
sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15))
watermark: bool = Field(True)
class ImageTaskCreationResponse(BaseModel):
model: str = Field(...)
created: int = Field(..., description="Unix timestamp (in seconds) indicating time when the request was created.")
data: list = Field([], description="Contains information about the generated image(s).")
error: dict = Field({}, description="Contains `code` and `message` fields in case of error.")
class TaskTextContent(BaseModel):
type: str = Field("text")
text: str = Field(...)
class TaskImageContentUrl(BaseModel):
url: str = Field(...)
class TaskImageContent(BaseModel):
type: str = Field("image_url")
image_url: TaskImageContentUrl = Field(...)
role: Optional[Literal["first_frame", "last_frame", "reference_image"]] = Field(None)
class Text2VideoTaskCreationRequest(BaseModel):
model: Text2VideoModelName = Text2VideoModelName.seedance_1_pro
content: list[TaskTextContent] = Field(..., min_length=1)
class Image2VideoTaskCreationRequest(BaseModel):
model: Image2VideoModelName = Image2VideoModelName.seedance_1_pro
content: list[Union[TaskTextContent, TaskImageContent]] = Field(..., min_length=2)
class TaskCreationResponse(BaseModel):
id: str = Field(...)
class TaskStatusError(BaseModel):
code: str = Field(...)
message: str = Field(...)
class TaskStatusResult(BaseModel):
video_url: str = Field(...)
class TaskStatusResponse(BaseModel):
id: str = Field(...)
model: str = Field(...)
status: Literal["queued", "running", "cancelled", "succeeded", "failed"] = Field(...)
error: Optional[TaskStatusError] = Field(None)
content: Optional[TaskStatusResult] = Field(None)
RECOMMENDED_PRESETS = [
("1024x1024 (1:1)", 1024, 1024),
("864x1152 (3:4)", 864, 1152),
("1152x864 (4:3)", 1152, 864),
("1280x720 (16:9)", 1280, 720),
("720x1280 (9:16)", 720, 1280),
("832x1248 (2:3)", 832, 1248),
("1248x832 (3:2)", 1248, 832),
("1512x648 (21:9)", 1512, 648),
("2048x2048 (1:1)", 2048, 2048),
("Custom", None, None),
]
RECOMMENDED_PRESETS_SEEDREAM_4 = [
("2048x2048 (1:1)", 2048, 2048),
("2304x1728 (4:3)", 2304, 1728),
("1728x2304 (3:4)", 1728, 2304),
("2560x1440 (16:9)", 2560, 1440),
("1440x2560 (9:16)", 1440, 2560),
("2496x1664 (3:2)", 2496, 1664),
("1664x2496 (2:3)", 1664, 2496),
("3024x1296 (21:9)", 3024, 1296),
("4096x4096 (1:1)", 4096, 4096),
("Custom", None, None),
]
# The time in this dictionary are given for 10 seconds duration.
VIDEO_TASKS_EXECUTION_TIME = {
"seedance-1-0-lite-t2v-250428": {
"480p": 40,
"720p": 60,
"1080p": 90,
},
"seedance-1-0-lite-i2v-250428": {
"480p": 40,
"720p": 60,
"1080p": 90,
},
"seedance-1-0-pro-250528": {
"480p": 70,
"720p": 85,
"1080p": 115,
},
}
def get_image_url_from_response(response: ImageTaskCreationResponse) -> str:
if response.error:
error_msg = f"ByteDance request failed. Code: {response.error['code']}, message: {response.error['message']}"
@@ -194,13 +52,6 @@ def get_image_url_from_response(response: ImageTaskCreationResponse) -> str:
return response.data[0]["url"]
def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]:
"""Returns the video URL from the task status response if it exists."""
if hasattr(response, "content") and response.content:
return response.content.video_url
return None
class ByteDanceImageNode(IO.ComfyNode):
@classmethod
@@ -211,12 +62,7 @@ class ByteDanceImageNode(IO.ComfyNode):
category="api node/image/ByteDance",
description="Generate images using ByteDance models via api based on prompt",
inputs=[
IO.Combo.Input(
"model",
options=Text2ImageModelName,
default=Text2ImageModelName.seedream_3,
tooltip="Model name",
),
IO.Combo.Input("model", options=["seedream-3-0-t2i-250415"]),
IO.String.Input(
"prompt",
multiline=True,
@@ -335,12 +181,7 @@ class ByteDanceImageEditNode(IO.ComfyNode):
category="api node/image/ByteDance",
description="Edit images using ByteDance models via api based on prompt",
inputs=[
IO.Combo.Input(
"model",
options=Image2ImageModelName,
default=Image2ImageModelName.seededit_3,
tooltip="Model name",
),
IO.Combo.Input("model", options=["seededit-3-0-i2i-250628"]),
IO.Image.Input(
"image",
tooltip="The base image to edit",
@@ -394,7 +235,7 @@ class ByteDanceImageEditNode(IO.ComfyNode):
async def execute(
cls,
model: str,
image: torch.Tensor,
image: Input.Image,
prompt: str,
seed: int,
guidance_scale: float,
@@ -434,7 +275,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
inputs=[
IO.Combo.Input(
"model",
options=["seedream-4-0-250828"],
options=["seedream-4-5-251128", "seedream-4-0-250828"],
tooltip="Model name",
),
IO.String.Input(
@@ -459,7 +300,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
default=2048,
min=1024,
max=4096,
step=64,
step=8,
tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`",
optional=True,
),
@@ -468,7 +309,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
default=2048,
min=1024,
max=4096,
step=64,
step=8,
tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`",
optional=True,
),
@@ -532,7 +373,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
cls,
model: str,
prompt: str,
image: torch.Tensor = None,
image: Input.Image | None = None,
size_preset: str = RECOMMENDED_PRESETS_SEEDREAM_4[0][0],
width: int = 2048,
height: int = 2048,
@@ -555,6 +396,18 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
raise ValueError(
f"Custom size out of range: {w}x{h}. " "Both width and height must be between 1024 and 4096 pixels."
)
out_num_pixels = w * h
mp_provided = out_num_pixels / 1_000_000.0
if "seedream-4-5" in model and out_num_pixels < 3686400:
raise ValueError(
f"Minimum image resolution that Seedream 4.5 can generate is 3.68MP, "
f"but {mp_provided:.2f}MP provided."
)
if "seedream-4-0" in model and out_num_pixels < 921600:
raise ValueError(
f"Minimum image resolution that the selected model can generate is 0.92MP, "
f"but {mp_provided:.2f}MP provided."
)
n_input_images = get_number_of_images(image) if image is not None else 0
if n_input_images > 10:
raise ValueError(f"Maximum of 10 reference images are supported, but {n_input_images} received.")
@@ -607,9 +460,8 @@ class ByteDanceTextToVideoNode(IO.ComfyNode):
inputs=[
IO.Combo.Input(
"model",
options=Text2VideoModelName,
default=Text2VideoModelName.seedance_1_pro,
tooltip="Model name",
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"],
default="seedance-1-0-pro-fast-251015",
),
IO.String.Input(
"prompt",
@@ -714,9 +566,8 @@ class ByteDanceImageToVideoNode(IO.ComfyNode):
inputs=[
IO.Combo.Input(
"model",
options=Image2VideoModelName,
default=Image2VideoModelName.seedance_1_pro,
tooltip="Model name",
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"],
default="seedance-1-0-pro-fast-251015",
),
IO.String.Input(
"prompt",
@@ -787,7 +638,7 @@ class ByteDanceImageToVideoNode(IO.ComfyNode):
cls,
model: str,
prompt: str,
image: torch.Tensor,
image: Input.Image,
resolution: str,
aspect_ratio: str,
duration: int,
@@ -833,9 +684,8 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode):
inputs=[
IO.Combo.Input(
"model",
options=[model.value for model in Image2VideoModelName],
default=Image2VideoModelName.seedance_1_lite.value,
tooltip="Model name",
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"],
default="seedance-1-0-lite-i2v-250428",
),
IO.String.Input(
"prompt",
@@ -910,8 +760,8 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode):
cls,
model: str,
prompt: str,
first_frame: torch.Tensor,
last_frame: torch.Tensor,
first_frame: Input.Image,
last_frame: Input.Image,
resolution: str,
aspect_ratio: str,
duration: int,
@@ -968,9 +818,8 @@ class ByteDanceImageReferenceNode(IO.ComfyNode):
inputs=[
IO.Combo.Input(
"model",
options=[Image2VideoModelName.seedance_1_lite.value],
default=Image2VideoModelName.seedance_1_lite.value,
tooltip="Model name",
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"],
default="seedance-1-0-lite-i2v-250428",
),
IO.String.Input(
"prompt",
@@ -1034,7 +883,7 @@ class ByteDanceImageReferenceNode(IO.ComfyNode):
cls,
model: str,
prompt: str,
images: torch.Tensor,
images: Input.Image,
resolution: str,
aspect_ratio: str,
duration: int,
@@ -1069,8 +918,8 @@ class ByteDanceImageReferenceNode(IO.ComfyNode):
async def process_video_task(
cls: type[IO.ComfyNode],
payload: Union[Text2VideoTaskCreationRequest, Image2VideoTaskCreationRequest],
estimated_duration: Optional[int],
payload: Text2VideoTaskCreationRequest | Image2VideoTaskCreationRequest,
estimated_duration: int | None,
) -> IO.NodeOutput:
initial_response = await sync_op(
cls,
@@ -1085,7 +934,7 @@ async def process_video_task(
estimated_duration=estimated_duration,
response_model=TaskStatusResponse,
)
return IO.NodeOutput(await download_url_to_video_output(get_video_url_from_task_status(response)))
return IO.NodeOutput(await download_url_to_video_output(response.content.video_url))
def raise_if_text_params(prompt: str, text_params: list[str]) -> None:

View File

@@ -3,49 +3,55 @@ API Nodes for Gemini Multimodal LLM Usage via Remote API
See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
"""
from __future__ import annotations
import base64
import json
import os
import time
import uuid
from enum import Enum
from io import BytesIO
from typing import Literal, Optional
from typing import Literal
import torch
from typing_extensions import override
import folder_paths
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api.util import VideoCodec, VideoContainer
from comfy_api_nodes.apis import (
from comfy_api.latest import IO, ComfyExtension, Input, Types
from comfy_api_nodes.apis.gemini_api import (
GeminiContent,
GeminiFileData,
GeminiGenerateContentRequest,
GeminiGenerateContentResponse,
GeminiInlineData,
GeminiMimeType,
GeminiPart,
)
from comfy_api_nodes.apis.gemini_api import (
GeminiImageConfig,
GeminiImageGenerateContentRequest,
GeminiImageGenerationConfig,
GeminiInlineData,
GeminiMimeType,
GeminiPart,
GeminiRole,
GeminiSystemInstructionContent,
GeminiTextPart,
Modality,
)
from comfy_api_nodes.util import (
ApiEndpoint,
audio_to_base64_string,
bytesio_to_image_tensor,
get_number_of_images,
sync_op,
tensor_to_base64_string,
upload_images_to_comfyapi,
validate_string,
video_to_base64_string,
)
from server import PromptServer
GEMINI_BASE_ENDPOINT = "/proxy/vertexai/gemini"
GEMINI_MAX_INPUT_FILE_SIZE = 20 * 1024 * 1024 # 20 MB
GEMINI_IMAGE_SYS_PROMPT = (
"You are an expert image-generation engine. You must ALWAYS produce an image.\n"
"Interpret all user input—regardless of "
"format, intent, or abstraction—as literal visual directives for image composition.\n"
"If a prompt is conversational or lacks specific visual details, "
"you must creatively invent a concrete visual scenario that depicts the concept.\n"
"Prioritize generating the visual representation above any text, formatting, or conversational requests."
)
class GeminiModel(str, Enum):
@@ -57,6 +63,7 @@ class GeminiModel(str, Enum):
gemini_2_5_flash_preview_04_17 = "gemini-2.5-flash-preview-04-17"
gemini_2_5_pro = "gemini-2.5-pro"
gemini_2_5_flash = "gemini-2.5-flash"
gemini_3_0_pro = "gemini-3-pro-preview"
class GeminiImageModel(str, Enum):
@@ -68,24 +75,43 @@ class GeminiImageModel(str, Enum):
gemini_2_5_flash_image = "gemini-2.5-flash-image"
def create_image_parts(image_input: torch.Tensor) -> list[GeminiPart]:
"""
Convert image tensor input to Gemini API compatible parts.
Args:
image_input: Batch of image tensors from ComfyUI.
Returns:
List of GeminiPart objects containing the encoded images.
"""
async def create_image_parts(
cls: type[IO.ComfyNode],
images: Input.Image,
image_limit: int = 0,
) -> list[GeminiPart]:
image_parts: list[GeminiPart] = []
for image_index in range(image_input.shape[0]):
image_as_b64 = tensor_to_base64_string(image_input[image_index].unsqueeze(0))
if image_limit < 0:
raise ValueError("image_limit must be greater than or equal to 0 when creating Gemini image parts.")
total_images = get_number_of_images(images)
if total_images <= 0:
raise ValueError("No images provided to create_image_parts; at least one image is required.")
# If image_limit == 0 --> use all images; otherwise clamp to image_limit.
effective_max = total_images if image_limit == 0 else min(total_images, image_limit)
# Number of images we'll send as URLs (fileData)
num_url_images = min(effective_max, 10) # Vertex API max number of image links
reference_images_urls = await upload_images_to_comfyapi(
cls,
images,
max_images=num_url_images,
)
for reference_image_url in reference_images_urls:
image_parts.append(
GeminiPart(
fileData=GeminiFileData(
mimeType=GeminiMimeType.image_png,
fileUri=reference_image_url,
)
)
)
for idx in range(num_url_images, effective_max):
image_parts.append(
GeminiPart(
inlineData=GeminiInlineData(
mimeType=GeminiMimeType.image_png,
data=image_as_b64,
data=tensor_to_base64_string(images[idx]),
)
)
)
@@ -103,6 +129,16 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera
Returns:
List of response parts matching the requested type.
"""
if response.candidates is None:
if response.promptFeedback and response.promptFeedback.blockReason:
feedback = response.promptFeedback
raise ValueError(
f"Gemini API blocked the request. Reason: {feedback.blockReason} ({feedback.blockReasonMessage})"
)
raise ValueError(
"Gemini API returned no response candidates. If you are using the `IMAGE` modality, "
"try changing it to `IMAGE+TEXT` to view the model's reasoning and understand why image generation failed."
)
parts = []
for part in response.candidates[0].content.parts:
if part_type == "text" and hasattr(part, "text") and part.text:
@@ -127,8 +163,8 @@ def get_text_from_response(response: GeminiGenerateContentResponse) -> str:
return "\n".join([part.text for part in parts])
def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Tensor:
image_tensors: list[torch.Tensor] = []
def get_image_from_response(response: GeminiGenerateContentResponse) -> Input.Image:
image_tensors: list[Input.Image] = []
parts = get_parts_by_type(response, "image/png")
for part in parts:
image_data = base64.b64decode(part.inlineData.data)
@@ -139,6 +175,50 @@ def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Te
return torch.cat(image_tensors, dim=0)
def calculate_tokens_price(response: GeminiGenerateContentResponse) -> float | None:
if not response.modelVersion:
return None
# Define prices (Cost per 1,000,000 tokens), see https://cloud.google.com/vertex-ai/generative-ai/pricing
if response.modelVersion in ("gemini-2.5-pro-preview-05-06", "gemini-2.5-pro"):
input_tokens_price = 1.25
output_text_tokens_price = 10.0
output_image_tokens_price = 0.0
elif response.modelVersion in (
"gemini-2.5-flash-preview-04-17",
"gemini-2.5-flash",
):
input_tokens_price = 0.30
output_text_tokens_price = 2.50
output_image_tokens_price = 0.0
elif response.modelVersion in (
"gemini-2.5-flash-image-preview",
"gemini-2.5-flash-image",
):
input_tokens_price = 0.30
output_text_tokens_price = 2.50
output_image_tokens_price = 30.0
elif response.modelVersion == "gemini-3-pro-preview":
input_tokens_price = 2
output_text_tokens_price = 12.0
output_image_tokens_price = 0.0
elif response.modelVersion == "gemini-3-pro-image-preview":
input_tokens_price = 2
output_text_tokens_price = 12.0
output_image_tokens_price = 120.0
else:
return None
final_price = response.usageMetadata.promptTokenCount * input_tokens_price
if response.usageMetadata.candidatesTokensDetails:
for i in response.usageMetadata.candidatesTokensDetails:
if i.modality == Modality.IMAGE:
final_price += output_image_tokens_price * i.tokenCount # for Nano Banana models
else:
final_price += output_text_tokens_price * i.tokenCount
if response.usageMetadata.thoughtsTokenCount:
final_price += output_text_tokens_price * response.usageMetadata.thoughtsTokenCount
return final_price / 1_000_000.0
class GeminiNode(IO.ComfyNode):
"""
Node to generate text responses from a Gemini model.
@@ -206,6 +286,13 @@ class GeminiNode(IO.ComfyNode):
tooltip="Optional file(s) to use as context for the model. "
"Accepts inputs from the Gemini Generate Content Input Files node.",
),
IO.String.Input(
"system_prompt",
multiline=True,
default="",
optional=True,
tooltip="Foundational instructions that dictate an AI's behavior.",
),
],
outputs=[
IO.String.Output(),
@@ -222,7 +309,9 @@ class GeminiNode(IO.ComfyNode):
def create_video_parts(cls, video_input: Input.Video) -> list[GeminiPart]:
"""Convert video input to Gemini API compatible parts."""
base_64_string = video_to_base64_string(video_input, container_format=VideoContainer.MP4, codec=VideoCodec.H264)
base_64_string = video_to_base64_string(
video_input, container_format=Types.VideoContainer.MP4, codec=Types.VideoCodec.H264
)
return [
GeminiPart(
inlineData=GeminiInlineData(
@@ -272,10 +361,11 @@ class GeminiNode(IO.ComfyNode):
prompt: str,
model: str,
seed: int,
images: Optional[torch.Tensor] = None,
audio: Optional[Input.Audio] = None,
video: Optional[Input.Video] = None,
files: Optional[list[GeminiPart]] = None,
images: Input.Image | None = None,
audio: Input.Audio | None = None,
video: Input.Video | None = None,
files: list[GeminiPart] | None = None,
system_prompt: str = "",
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=False)
@@ -284,8 +374,7 @@ class GeminiNode(IO.ComfyNode):
# Add other modal parts
if images is not None:
image_parts = create_image_parts(images)
parts.extend(image_parts)
parts.extend(await create_image_parts(cls, images))
if audio is not None:
parts.extend(cls.create_audio_parts(audio))
if video is not None:
@@ -293,46 +382,27 @@ class GeminiNode(IO.ComfyNode):
if files is not None:
parts.extend(files)
# Create response
gemini_system_prompt = None
if system_prompt:
gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None)
response = await sync_op(
cls,
endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
data=GeminiGenerateContentRequest(
contents=[
GeminiContent(
role="user",
role=GeminiRole.user,
parts=parts,
)
]
],
systemInstruction=gemini_system_prompt,
),
response_model=GeminiGenerateContentResponse,
price_extractor=calculate_tokens_price,
)
# Get result output
output_text = get_text_from_response(response)
if output_text:
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
render_spec = {
"node_id": cls.hidden.unique_id,
"component": "ChatHistoryWidget",
"props": {
"history": json.dumps(
[
{
"prompt": prompt,
"response": output_text,
"response_id": str(uuid.uuid4()),
"timestamp": time.time(),
}
]
),
},
}
PromptServer.instance.send_sync(
"display_component",
render_spec,
)
return IO.NodeOutput(output_text or "Empty response from Gemini model...")
@@ -406,7 +476,7 @@ class GeminiInputFiles(IO.ComfyNode):
)
@classmethod
def execute(cls, file: str, GEMINI_INPUT_FILES: Optional[list[GeminiPart]] = None) -> IO.NodeOutput:
def execute(cls, file: str, GEMINI_INPUT_FILES: list[GeminiPart] | None = None) -> IO.NodeOutput:
"""Loads and formats input files for Gemini API."""
if GEMINI_INPUT_FILES is None:
GEMINI_INPUT_FILES = []
@@ -421,7 +491,7 @@ class GeminiImage(IO.ComfyNode):
def define_schema(cls):
return IO.Schema(
node_id="GeminiImageNode",
display_name="Google Gemini Image",
display_name="Nano Banana (Google Gemini Image)",
category="api node/image/Gemini",
description="Edit images synchronously via Google API.",
inputs=[
@@ -469,6 +539,20 @@ class GeminiImage(IO.ComfyNode):
"or otherwise generates 1:1 squares.",
optional=True,
),
IO.Combo.Input(
"response_modalities",
options=["IMAGE+TEXT", "IMAGE"],
tooltip="Choose 'IMAGE' for image-only output, or "
"'IMAGE+TEXT' to return both the generated image and a text response.",
optional=True,
),
IO.String.Input(
"system_prompt",
multiline=True,
default=GEMINI_IMAGE_SYS_PROMPT,
optional=True,
tooltip="Foundational instructions that dictate an AI's behavior.",
),
],
outputs=[
IO.Image.Output(),
@@ -488,9 +572,11 @@ class GeminiImage(IO.ComfyNode):
prompt: str,
model: str,
seed: int,
images: Optional[torch.Tensor] = None,
files: Optional[list[GeminiPart]] = None,
images: Input.Image | None = None,
files: list[GeminiPart] | None = None,
aspect_ratio: str = "auto",
response_modalities: str = "IMAGE+TEXT",
system_prompt: str = "",
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
parts: list[GeminiPart] = [GeminiPart(text=prompt)]
@@ -500,53 +586,164 @@ class GeminiImage(IO.ComfyNode):
image_config = GeminiImageConfig(aspectRatio=aspect_ratio)
if images is not None:
image_parts = create_image_parts(images)
parts.extend(image_parts)
parts.extend(await create_image_parts(cls, images))
if files is not None:
parts.extend(files)
gemini_system_prompt = None
if system_prompt:
gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None)
response = await sync_op(
cls,
endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
data=GeminiImageGenerateContentRequest(
contents=[
GeminiContent(role="user", parts=parts),
GeminiContent(role=GeminiRole.user, parts=parts),
],
generationConfig=GeminiImageGenerationConfig(
responseModalities=["TEXT", "IMAGE"],
responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]),
imageConfig=None if aspect_ratio == "auto" else image_config,
),
systemInstruction=gemini_system_prompt,
),
response_model=GeminiGenerateContentResponse,
price_extractor=calculate_tokens_price,
)
return IO.NodeOutput(get_image_from_response(response), get_text_from_response(response))
class GeminiImage2(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="GeminiImage2Node",
display_name="Nano Banana Pro (Google Gemini Image)",
category="api node/image/Gemini",
description="Generate or edit images synchronously via Google Vertex API.",
inputs=[
IO.String.Input(
"prompt",
multiline=True,
tooltip="Text prompt describing the image to generate or the edits to apply. "
"Include any constraints, styles, or details the model should follow.",
default="",
),
IO.Combo.Input(
"model",
options=["gemini-3-pro-image-preview"],
),
IO.Int.Input(
"seed",
default=42,
min=0,
max=0xFFFFFFFFFFFFFFFF,
control_after_generate=True,
tooltip="When the seed is fixed to a specific value, the model makes a best effort to provide "
"the same response for repeated requests. Deterministic output isn't guaranteed. "
"Also, changing the model or parameter settings, such as the temperature, "
"can cause variations in the response even when you use the same seed value. "
"By default, a random seed value is used.",
),
IO.Combo.Input(
"aspect_ratio",
options=["auto", "1:1", "2:3", "3:2", "3:4", "4:3", "4:5", "5:4", "9:16", "16:9", "21:9"],
default="auto",
tooltip="If set to 'auto', matches your input image's aspect ratio; "
"if no image is provided, a 16:9 square is usually generated.",
),
IO.Combo.Input(
"resolution",
options=["1K", "2K", "4K"],
tooltip="Target output resolution. For 2K/4K the native Gemini upscaler is used.",
),
IO.Combo.Input(
"response_modalities",
options=["IMAGE+TEXT", "IMAGE"],
tooltip="Choose 'IMAGE' for image-only output, or "
"'IMAGE+TEXT' to return both the generated image and a text response.",
),
IO.Image.Input(
"images",
optional=True,
tooltip="Optional reference image(s). "
"To include multiple images, use the Batch Images node (up to 14).",
),
IO.Custom("GEMINI_INPUT_FILES").Input(
"files",
optional=True,
tooltip="Optional file(s) to use as context for the model. "
"Accepts inputs from the Gemini Generate Content Input Files node.",
),
IO.String.Input(
"system_prompt",
multiline=True,
default=GEMINI_IMAGE_SYS_PROMPT,
optional=True,
tooltip="Foundational instructions that dictate an AI's behavior.",
),
],
outputs=[
IO.Image.Output(),
IO.String.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
output_image = get_image_from_response(response)
output_text = get_text_from_response(response)
if output_text:
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
render_spec = {
"node_id": cls.hidden.unique_id,
"component": "ChatHistoryWidget",
"props": {
"history": json.dumps(
[
{
"prompt": prompt,
"response": output_text,
"response_id": str(uuid.uuid4()),
"timestamp": time.time(),
}
]
),
},
}
PromptServer.instance.send_sync(
"display_component",
render_spec,
)
@classmethod
async def execute(
cls,
prompt: str,
model: str,
seed: int,
aspect_ratio: str,
resolution: str,
response_modalities: str,
images: Input.Image | None = None,
files: list[GeminiPart] | None = None,
system_prompt: str = "",
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
output_text = output_text or "Empty response from Gemini model..."
return IO.NodeOutput(output_image, output_text)
parts: list[GeminiPart] = [GeminiPart(text=prompt)]
if images is not None:
if get_number_of_images(images) > 14:
raise ValueError("The current maximum number of supported images is 14.")
parts.extend(await create_image_parts(cls, images))
if files is not None:
parts.extend(files)
image_config = GeminiImageConfig(imageSize=resolution)
if aspect_ratio != "auto":
image_config.aspectRatio = aspect_ratio
gemini_system_prompt = None
if system_prompt:
gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None)
response = await sync_op(
cls,
ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
data=GeminiImageGenerateContentRequest(
contents=[
GeminiContent(role=GeminiRole.user, parts=parts),
],
generationConfig=GeminiImageGenerationConfig(
responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]),
imageConfig=image_config,
),
systemInstruction=gemini_system_prompt,
),
response_model=GeminiGenerateContentResponse,
price_extractor=calculate_tokens_price,
)
return IO.NodeOutput(get_image_from_response(response), get_text_from_response(response))
class GeminiExtension(ComfyExtension):
@@ -555,6 +752,7 @@ class GeminiExtension(ComfyExtension):
return [
GeminiNode,
GeminiImage,
GeminiImage2,
GeminiInputFiles,
]

Some files were not shown because too many files have changed in this diff Show More