Compare commits

..

1 Commits

Author SHA1 Message Date
Terry Jia
ddfa2da27e add painter node 2026-02-04 23:43:54 -05:00
55 changed files with 444 additions and 3526 deletions

View File

@@ -25,11 +25,11 @@ class AudioEncoderModel():
elif model_type == "whisper3":
self.model = WhisperLargeV3(**model_config)
self.model.eval()
self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.model_sample_rate = 16000
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
return self.model.load_state_dict(sd, strict=False)
def get_sd(self):
return self.model.state_dict()

View File

@@ -159,7 +159,6 @@ class PerformanceFeature(enum.Enum):
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
AutoTune = "autotune"
DynamicVRAM = "dynamic_vram"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. This is used to test new features so using it might crash your comfyui. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
@@ -258,6 +257,3 @@ elif args.fast == []:
# '--fast' is provided with a list of performance features, use that list
else:
args.fast = set(args.fast)
def enables_dynamic_vram():
return PerformanceFeature.DynamicVRAM in args.fast and not args.highvram and not args.gpu_only

View File

@@ -47,10 +47,10 @@ class ClipVisionModel():
self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast)
self.model.eval()
self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
return self.model.load_state_dict(sd, strict=False)
def get_sd(self):
return self.model.state_dict()

View File

@@ -203,7 +203,7 @@ class ControlNet(ControlBase):
self.control_model = control_model
self.load_device = load_device
if control_model is not None:
self.control_model_wrapped = comfy.model_patcher.CoreModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
self.compression_ratio = compression_ratio
self.global_average_pooling = global_average_pooling

View File

@@ -1,12 +1,11 @@
import math
import time
from functools import partial
from scipy import integrate
import torch
from torch import nn
import torchsde
from tqdm.auto import trange as trange_, tqdm
from tqdm.auto import trange, tqdm
from . import utils
from . import deis
@@ -14,36 +13,6 @@ from . import sa_solver
import comfy.model_patcher
import comfy.model_sampling
import comfy.memory_management
def trange(*args, **kwargs):
if comfy.memory_management.aimdo_allocator is None:
return trange_(*args, **kwargs)
pbar = trange_(*args, **kwargs, smoothing=1.0)
pbar._i = 0
pbar.set_postfix_str(" Model Initializing ... ")
_update = pbar.update
def warmup_update(n=1):
pbar._i += 1
if pbar._i == 1:
pbar.i1_time = time.time()
pbar.set_postfix_str(" Model Initialization complete! ")
elif pbar._i == 2:
#bring forward the effective start time based the the diff between first and second iteration
#to attempt to remove load overhead from the final step rate estimate.
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
pbar.set_postfix_str("")
_update(n)
pbar.update = warmup_update
return pbar
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])

View File

@@ -755,10 +755,6 @@ class ACEAudio(LatentFormat):
latent_channels = 8
latent_dimensions = 2
class ACEAudio15(LatentFormat):
latent_channels = 64
latent_dimensions = 1
class ChromaRadiance(LatentFormat):
latent_channels = 3
spacial_downscale_ratio = 1

File diff suppressed because it is too large Load Diff

View File

@@ -109,10 +109,10 @@ class HunyuanVideo15SRModel():
self.model_class = UPSAMPLERS.get(model_type)
self.model = self.model_class(**config).eval()
self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=True, assign=self.patcher.is_dynamic())
return self.model.load_state_dict(sd, strict=True)
def get_sd(self):
return self.model.state_dict()

View File

@@ -332,12 +332,6 @@ def model_lora_keys_unet(model, key_map={}):
key_map["{}".format(key_lora)] = k
key_map["transformer.{}".format(key_lora)] = k
if isinstance(model, comfy.model_base.ACEStep15):
for k in sdk:
if k.startswith("diffusion_model.decoder.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model.decoder."):-len(".weight")]
key_map["base_model.model.{}".format(key_lora)] = k # Official base model loras
return key_map

View File

@@ -1,81 +0,0 @@
import math
import torch
from typing import NamedTuple
from comfy.quant_ops import QuantizedTensor
class TensorGeometry(NamedTuple):
shape: any
dtype: torch.dtype
def element_size(self):
info = torch.finfo(self.dtype) if self.dtype.is_floating_point else torch.iinfo(self.dtype)
return info.bits // 8
def numel(self):
return math.prod(self.shape)
def tensors_to_geometries(tensors, dtype=None):
geometries = []
for t in tensors:
if t is None or isinstance(t, QuantizedTensor):
geometries.append(t)
continue
tdtype = t.dtype
if hasattr(t, "_model_dtype"):
tdtype = t._model_dtype
if dtype is not None:
tdtype = dtype
geometries.append(TensorGeometry(shape=t.shape, dtype=tdtype))
return geometries
def vram_aligned_size(tensor):
if isinstance(tensor, list):
return sum([vram_aligned_size(t) for t in tensor])
if isinstance(tensor, QuantizedTensor):
inner_tensors, _ = tensor.__tensor_flatten__()
return vram_aligned_size([ getattr(tensor, attr) for attr in inner_tensors ])
if tensor is None:
return 0
size = tensor.numel() * tensor.element_size()
aligment_req = 1024
return (size + aligment_req - 1) // aligment_req * aligment_req
def interpret_gathered_like(tensors, gathered):
offset = 0
dest_views = []
if gathered.dim() != 1 or gathered.element_size() != 1:
raise ValueError(f"Buffer must be 1D and single-byte (got {gathered.dim()}D {gathered.dtype})")
for tensor in tensors:
if tensor is None:
dest_views.append(None)
continue
if isinstance(tensor, QuantizedTensor):
inner_tensors, qt_ctx = tensor.__tensor_flatten__()
templates = { attr: getattr(tensor, attr) for attr in inner_tensors }
else:
templates = { "data": tensor }
actuals = {}
for attr, template in templates.items():
size = template.numel() * template.element_size()
if offset + size > gathered.numel():
raise ValueError(f"Buffer too small: needs {offset + size} bytes, but only has {gathered.numel()}. ")
actuals[attr] = gathered[offset:offset+size].view(dtype=template.dtype).view(template.shape)
offset += vram_aligned_size(template)
if isinstance(tensor, QuantizedTensor):
dest_views.append(QuantizedTensor.__tensor_unflatten__(actuals, qt_ctx, 0, 0))
else:
dest_views.append(actuals["data"])
return dest_views
aimdo_allocator = None

View File

@@ -50,7 +50,6 @@ import comfy.ldm.omnigen.omnigen2
import comfy.ldm.qwen_image.model
import comfy.ldm.kandinsky5.model
import comfy.ldm.anima.model
import comfy.ldm.ace.ace_step15
import comfy.model_management
import comfy.patcher_extension
@@ -150,8 +149,6 @@ class BaseModel(torch.nn.Module):
self.model_type = model_type
self.model_sampling = model_sampling(model_config, model_type)
comfy.model_management.archive_model_dtypes(self.diffusion_model)
self.adm_channels = unet_config.get("adm_in_channels", None)
if self.adm_channels is None:
self.adm_channels = 0
@@ -302,7 +299,7 @@ class BaseModel(torch.nn.Module):
return out
def load_model_weights(self, sd, unet_prefix="", assign=False):
def load_model_weights(self, sd, unet_prefix=""):
to_load = {}
keys = list(sd.keys())
for k in keys:
@@ -310,7 +307,7 @@ class BaseModel(torch.nn.Module):
to_load[k[len(unet_prefix):]] = sd.pop(k)
to_load = self.model_config.process_unet_state_dict(to_load)
m, u = self.diffusion_model.load_state_dict(to_load, strict=False, assign=assign)
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
if len(m) > 0:
logging.warning("unet missing: {}".format(m))
@@ -325,7 +322,7 @@ class BaseModel(torch.nn.Module):
def process_latent_out(self, latent):
return self.latent_format.process_out(latent)
def state_dict_for_saving(self, unet_state_dict, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
extra_sds = []
if clip_state_dict is not None:
extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict))
@@ -333,7 +330,10 @@ class BaseModel(torch.nn.Module):
extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict))
if clip_vision_state_dict is not None:
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
unet_state_dict = self.diffusion_model.state_dict()
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
if self.model_type == ModelType.V_PREDICTION:
unet_state_dict["v_pred"] = torch.tensor([])
@@ -776,8 +776,8 @@ class StableAudio1(BaseModel):
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
def state_dict_for_saving(self, unet_state_dict, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
sd = super().state_dict_for_saving(unet_state_dict, clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict)
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
sd = super().state_dict_for_saving(clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict)
d = {"conditioner.conditioners.seconds_start.": self.seconds_start_embedder.state_dict(), "conditioner.conditioners.seconds_total.": self.seconds_total_embedder.state_dict()}
for k in d:
s = d[k]
@@ -1541,47 +1541,6 @@ class ACEStep(BaseModel):
out['lyrics_strength'] = comfy.conds.CONDConstant(kwargs.get("lyrics_strength", 1.0))
return out
class ACEStep15(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.ace.ace_step15.AceStepConditionGenerationModel)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
device = kwargs["device"]
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_lyrics = kwargs.get("conditioning_lyrics", None)
if cross_attn is not None:
out['lyric_embed'] = comfy.conds.CONDRegular(conditioning_lyrics)
refer_audio = kwargs.get("reference_audio_timbre_latents", None)
if refer_audio is None or len(refer_audio) == 0:
refer_audio = torch.tensor([[[-1.3672e-01, -1.5820e-01, 5.8594e-01, -5.7422e-01, 3.0273e-02,
2.7930e-01, -2.5940e-03, -2.0703e-01, -1.6113e-01, -1.4746e-01,
-2.7710e-02, -1.8066e-01, -2.9688e-01, 1.6016e+00, -2.6719e+00,
7.7734e-01, -1.3516e+00, -1.9434e-01, -7.1289e-02, -5.0938e+00,
2.4316e-01, 4.7266e-01, 4.6387e-02, -6.6406e-01, -2.1973e-01,
-6.7578e-01, -1.5723e-01, 9.5312e-01, -2.0020e-01, -1.7109e+00,
5.8984e-01, -5.7422e-01, 5.1562e-01, 2.8320e-01, 1.4551e-01,
-1.8750e-01, -5.9814e-02, 3.6719e-01, -1.0059e-01, -1.5723e-01,
2.0605e-01, -4.3359e-01, -8.2812e-01, 4.5654e-02, -6.6016e-01,
1.4844e-01, 9.4727e-02, 3.8477e-01, -1.2578e+00, -3.3203e-01,
-8.5547e-01, 4.3359e-01, 4.2383e-01, -8.9453e-01, -5.0391e-01,
-5.6152e-02, -2.9219e+00, -2.4658e-02, 5.0391e-01, 9.8438e-01,
7.2754e-02, -2.1582e-01, 6.3672e-01, 1.0000e+00]]], device=device).movedim(-1, 1).repeat(1, 1, 750)
else:
refer_audio = refer_audio[-1]
out['refer_audio'] = comfy.conds.CONDRegular(refer_audio)
audio_codes = kwargs.get("audio_codes", None)
if audio_codes is not None:
out['audio_codes'] = comfy.conds.CONDRegular(torch.tensor(audio_codes, device=device))
return out
class Omnigen2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.omnigen.omnigen2.OmniGen2Transformer2DModel)

View File

@@ -655,11 +655,6 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["num_visual_blocks"] = count_blocks(state_dict_keys, '{}visual_transformer_blocks.'.format(key_prefix) + '{}.')
return dit_config
if '{}encoder.lyric_encoder.layers.0.input_layernorm.weight'.format(key_prefix) in state_dict_keys:
dit_config = {}
dit_config["audio_model"] = "ace1.5"
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None

View File

@@ -19,21 +19,13 @@
import psutil
import logging
from enum import Enum
from comfy.cli_args import args, PerformanceFeature, enables_dynamic_vram
import threading
from comfy.cli_args import args, PerformanceFeature
import torch
import sys
import platform
import weakref
import gc
import os
from contextlib import nullcontext
import comfy.memory_management
import comfy.utils
import comfy.quant_ops
import comfy_aimdo.torch
import comfy_aimdo.model_vbar
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
@@ -586,15 +578,9 @@ WINDOWS = any(platform.win32_ver())
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
if WINDOWS:
import comfy.windows
EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue
if total_vram > (15 * 1024): # more extra reserved vram on 16GB+ cards
EXTRA_RESERVED_VRAM += 100 * 1024 * 1024
def get_free_ram():
return comfy.windows.get_free_ram()
else:
def get_free_ram():
return psutil.virtual_memory().available
if args.reserve_vram is not None:
EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024
@@ -606,7 +592,7 @@ def extra_reserved_memory():
def minimum_inference_memory():
return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory()
def free_memory(memory_required, device, keep_loaded=[], for_dynamic=False, ram_required=0):
def free_memory(memory_required, device, keep_loaded=[]):
cleanup_models_gc()
unloaded_model = []
can_unload = []
@@ -621,23 +607,15 @@ def free_memory(memory_required, device, keep_loaded=[], for_dynamic=False, ram_
for x in sorted(can_unload):
i = x[-1]
memory_to_free = 1e32
ram_to_free = 1e32
memory_to_free = None
if not DISABLE_SMART_MEMORY:
memory_to_free = memory_required - get_free_memory(device)
ram_to_free = ram_required - get_free_ram()
if current_loaded_models[i].model.is_dynamic() and for_dynamic:
#don't actually unload dynamic models for the sake of other dynamic models
#as that works on-demand.
memory_required -= current_loaded_models[i].model.loaded_size()
memory_to_free = 0
if memory_to_free > 0 and current_loaded_models[i].model_unload(memory_to_free):
logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}")
free_mem = get_free_memory(device)
if free_mem > memory_required:
break
memory_to_free = memory_required - free_mem
logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}")
if current_loaded_models[i].model_unload(memory_to_free):
unloaded_model.append(i)
if ram_to_free > 0:
logging.debug(f"RAM Unloading {current_loaded_models[i].model.model.__class__.__name__}")
current_loaded_models[i].model.partially_unload_ram(ram_to_free)
for i in sorted(unloaded_model, reverse=True):
unloaded_models.append(current_loaded_models.pop(i))
@@ -651,7 +629,7 @@ def free_memory(memory_required, device, keep_loaded=[], for_dynamic=False, ram_
soft_empty_cache()
return unloaded_models
def load_models_gpu_orig(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
cleanup_models_gc()
global vram_state
@@ -672,10 +650,7 @@ def load_models_gpu_orig(models, memory_required=0, force_patch_weights=False, m
models_to_load = []
free_for_dynamic=True
for x in models:
if not x.is_dynamic():
free_for_dynamic = False
loaded_model = LoadedModel(x)
try:
loaded_model_index = current_loaded_models.index(loaded_model)
@@ -701,25 +676,19 @@ def load_models_gpu_orig(models, memory_required=0, force_patch_weights=False, m
model_to_unload.model.detach(unpatch_all=False)
model_to_unload.model_finalizer.detach()
total_memory_required = {}
total_ram_required = {}
for loaded_model in models_to_load:
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
#x2, one to make sure the OS can fit the model for loading in disk cache, and for us to do any pinning we
#want to do.
#FIXME: This should subtract off the to_load current pin consumption.
total_ram_required[loaded_model.device] = total_ram_required.get(loaded_model.device, 0) + loaded_model.model_memory() * 2
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(total_memory_required[device] * 1.1 + extra_mem, device, for_dynamic=free_for_dynamic, ram_required=total_ram_required[device])
free_memory(total_memory_required[device] * 1.1 + extra_mem, device)
for device in total_memory_required:
if device != torch.device("cpu"):
free_mem = get_free_memory(device)
if free_mem < minimum_memory_required:
models_l = free_memory(minimum_memory_required, device, for_dynamic=free_for_dynamic)
models_l = free_memory(minimum_memory_required, device)
logging.info("{} models unloaded.".format(len(models_l)))
for loaded_model in models_to_load:
@@ -747,26 +716,6 @@ def load_models_gpu_orig(models, memory_required=0, force_patch_weights=False, m
current_loaded_models.insert(0, loaded_model)
return
def load_models_gpu_thread(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load):
with torch.inference_mode():
load_models_gpu_orig(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load)
soft_empty_cache()
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
#Deliberately load models outside of the Aimdo mempool so they can be retained accross
#nodes. Use a dummy thread to do it as pytorch documents that mempool contexts are
#thread local. So exploit that to escape context
if enables_dynamic_vram():
t = threading.Thread(
target=load_models_gpu_thread,
args=(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load)
)
t.start()
t.join()
else:
load_models_gpu_orig(models, memory_required=memory_required, force_patch_weights=force_patch_weights,
minimum_memory_required=minimum_memory_required, force_full_load=force_full_load)
def load_model_gpu(model):
return load_models_gpu([model])
@@ -783,9 +732,6 @@ def loaded_models(only_currently_used=False):
def cleanup_models_gc():
do_gc = False
reset_cast_buffers()
for i in range(len(current_loaded_models)):
cur = current_loaded_models[i]
if cur.is_dead():
@@ -803,11 +749,6 @@ def cleanup_models_gc():
logging.warning("WARNING, memory leak with model {}. Please make sure it is not being referenced from somewhere.".format(cur.real_model().__class__.__name__))
def archive_model_dtypes(model):
for name, module in model.named_modules():
for param_name, param in module.named_parameters(recurse=False):
setattr(module, f"{param_name}_comfy_model_dtype", param.dtype)
def cleanup_models():
to_delete = []
@@ -851,7 +792,7 @@ def unet_inital_load_device(parameters, dtype):
mem_dev = get_free_memory(torch_dev)
mem_cpu = get_free_memory(cpu_dev)
if mem_dev > mem_cpu and model_size < mem_dev and comfy.memory_management.aimdo_allocator is None:
if mem_dev > mem_cpu and model_size < mem_dev:
return torch_dev
else:
return cpu_dev
@@ -1110,51 +1051,6 @@ def current_stream(device):
return None
stream_counters = {}
STREAM_CAST_BUFFERS = {}
LARGEST_CASTED_WEIGHT = (None, 0)
def get_cast_buffer(offload_stream, device, size, ref):
global LARGEST_CASTED_WEIGHT
if offload_stream is not None:
wf_context = offload_stream
if hasattr(wf_context, "as_context"):
wf_context = wf_context.as_context(offload_stream)
else:
wf_context = nullcontext()
cast_buffer = STREAM_CAST_BUFFERS.get(offload_stream, None)
if cast_buffer is None or cast_buffer.numel() < size:
if ref is LARGEST_CASTED_WEIGHT[0]:
#If there is one giant weight we do not want both streams to
#allocate a buffer for it. It's up to the caster to get the other
#offload stream in this corner case
return None
if cast_buffer is not None and cast_buffer.numel() > 50 * (1024 ** 2):
#I want my wrongly sized 50MB+ of VRAM back from the caching allocator right now
synchronize()
del STREAM_CAST_BUFFERS[offload_stream]
del cast_buffer
#FIXME: This doesn't work in Aimdo because mempool cant clear cache
soft_empty_cache()
with wf_context:
cast_buffer = torch.empty((size), dtype=torch.int8, device=device)
STREAM_CAST_BUFFERS[offload_stream] = cast_buffer
if size > LARGEST_CASTED_WEIGHT[1]:
LARGEST_CASTED_WEIGHT = (ref, size)
return cast_buffer
def reset_cast_buffers():
global LARGEST_CASTED_WEIGHT
LARGEST_CASTED_WEIGHT = (None, 0)
for offload_stream in STREAM_CAST_BUFFERS:
offload_stream.synchronize()
STREAM_CAST_BUFFERS.clear()
soft_empty_cache()
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
if NUM_STREAMS == 0:
@@ -1197,62 +1093,7 @@ def sync_stream(device, stream):
return
current_stream(device).wait_stream(stream)
def cast_to_gathered(tensors, r, non_blocking=False, stream=None):
wf_context = nullcontext()
if stream is not None:
wf_context = stream
if hasattr(wf_context, "as_context"):
wf_context = wf_context.as_context(stream)
dest_views = comfy.memory_management.interpret_gathered_like(tensors, r)
with wf_context:
for tensor in tensors:
dest_view = dest_views.pop(0)
if tensor is None:
continue
dest_view.copy_(tensor, non_blocking=non_blocking)
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None, r=None):
if hasattr(weight, "_v"):
#Unexpected usage patterns. There is no reason these don't work but they
#have no testing and no callers do this.
assert r is None
assert stream is None
cast_geometry = comfy.memory_management.tensors_to_geometries([ weight ])
if dtype is None:
dtype = weight._model_dtype
r = torch.empty_like(weight, dtype=dtype, device=device)
signature = comfy_aimdo.model_vbar.vbar_fault(weight._v)
if signature is not None:
raw_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device)
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, raw_tensor)[0]
if not comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
weight._v_signature = signature
#Send it over
v_tensor.copy_(weight, non_blocking=non_blocking)
#always take a deep copy even if _v is good, as we have no reasonable point to unpin
#a non comfy weight
r.copy_(v_tensor)
comfy_aimdo.model_vbar.vbar_unpin(weight._v)
return r
if weight.dtype != r.dtype and weight.dtype != weight._model_dtype:
#Offloaded casting could skip this, however it would make the quantizations
#inconsistent between loaded and offloaded weights. So force the double casting
#that would happen in regular flow to make offload deterministic.
cast_buffer = torch.empty_like(weight, dtype=weight._model_dtype, device=device)
cast_buffer.copy_(weight, non_blocking=non_blocking)
weight = cast_buffer
r.copy_(weight, non_blocking=non_blocking)
return r
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
@@ -1271,12 +1112,10 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str
if hasattr(wf_context, "as_context"):
wf_context = wf_context.as_context(stream)
with wf_context:
if r is None:
r = torch.empty_like(weight, dtype=dtype, device=device)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
else:
if r is None:
r = torch.empty_like(weight, dtype=dtype, device=device)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
return r
@@ -1296,14 +1135,14 @@ if not args.disable_pinned_memory:
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95
logging.info("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024)))
PINNING_ALLOWED_TYPES = set(["Tensor", "Parameter", "QuantizedTensor"])
PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"])
def discard_cuda_async_error():
try:
a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
_ = a + b
synchronize()
torch.cuda.synchronize()
except torch.AcceleratorError:
#Dump it! We already know about it from the synchronous return
pass
@@ -1707,12 +1546,6 @@ def lora_compute_dtype(device):
LORA_COMPUTE_DTYPES[device] = dtype
return dtype
def synchronize():
if is_intel_xpu():
torch.xpu.synchronize()
elif torch.cuda.is_available():
torch.cuda.synchronize()
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:
@@ -1724,11 +1557,8 @@ def soft_empty_cache(force=False):
elif is_mlu():
torch.mlu.empty_cache()
elif torch.cuda.is_available():
if comfy.memory_management.aimdo_allocator is None:
#Pytorch 2.7 and earlier crashes if you try and empty_cache when mempools exist
torch.cuda.synchronize()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def unload_all_models():
free_memory(1e30, get_torch_device())
@@ -1738,6 +1568,9 @@ def debug_memory_summary():
return torch.cuda.memory.memory_summary()
return ""
#TODO: might be cleaner to put this somewhere else
import threading
class InterruptProcessingException(Exception):
pass

View File

@@ -38,7 +38,19 @@ from comfy.comfy_types import UnetWrapperFunction
from comfy.quant_ops import QuantizedTensor
from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP
import comfy_aimdo.model_vbar
def string_to_seed(data):
crc = 0xFFFFFFFF
for byte in data:
if isinstance(byte, str):
byte = ord(byte)
crc ^= byte
for _ in range(8):
if crc & 1:
crc = (crc >> 1) ^ 0xEDB88320
else:
crc >>= 1
return crc ^ 0xFFFFFFFF
def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
to = model_options["transformer_options"].copy()
@@ -111,10 +123,6 @@ def move_weight_functions(m, device):
memory += f.move_to(device=device)
return memory
def string_to_seed(data):
logging.warning("WARNING: string_to_seed has moved from comfy.model_patcher to comfy.utils")
return comfy.utils.string_to_seed(data)
class LowVramPatch:
def __init__(self, key, patches, convert_func=None, set_func=None):
self.key = key
@@ -161,11 +169,6 @@ def get_key_weight(model, key):
return weight, set_func, convert_func
def key_param_name_to_key(key, param):
if len(key) == 0:
return param
return "{}.{}".format(key, param)
class AutoPatcherEjector:
def __init__(self, model: 'ModelPatcher', skip_and_inject_on_exit_only=False):
self.model = model
@@ -209,27 +212,6 @@ class MemoryCounter:
def decrement(self, used: int):
self.value -= used
CustomTorchDevice = collections.namedtuple("FakeDevice", ["type", "index"])("comfy-lazy-caster", 0)
class LazyCastingParam(torch.nn.Parameter):
def __new__(cls, model, key, tensor):
return super().__new__(cls, tensor)
def __init__(self, model, key, tensor):
self.model = model
self.key = key
@property
def device(self):
return CustomTorchDevice
#safetensors will .to() us to the cpu which we catch here to cast on demand. The returned tensor is
#then just a short lived thing in the safetensors serialization logic inside its big for loop over
#all weights getting garbage collected per-weight
def to(self, *args, **kwargs):
return self.model.patch_weight_to_device(self.key, device_to=self.model.load_device, return_weight=True).to("cpu")
class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
self.size = size
@@ -287,9 +269,6 @@ class ModelPatcher:
if not hasattr(self.model, 'model_offload_buffer_memory'):
self.model.model_offload_buffer_memory = 0
def is_dynamic(self):
return False
def model_size(self):
if self.size > 0:
return self.size
@@ -305,9 +284,6 @@ class ModelPatcher:
def lowvram_patch_counter(self):
return self.model.lowvram_patch_counter
def get_free_memory(self, device):
return comfy.model_management.get_free_memory(device)
def clone(self):
n = self.__class__(self.model, self.load_device, self.offload_device, self.model_size(), weight_inplace_update=self.weight_inplace_update)
n.patches = {}
@@ -635,14 +611,14 @@ class ModelPatcher:
sd.pop(k)
return sd
def patch_weight_to_device(self, key, device_to=None, inplace_update=False, return_weight=False):
weight, set_func, convert_func = get_key_weight(self.model, key)
def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
if key not in self.patches:
return weight
return
weight, set_func, convert_func = get_key_weight(self.model, key)
inplace_update = self.weight_inplace_update or inplace_update
if key not in self.backup and not return_weight:
if key not in self.backup:
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)
temp_dtype = comfy.model_management.lora_compute_dtype(device_to)
@@ -655,15 +631,13 @@ class ModelPatcher:
out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
if set_func is None:
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=comfy.utils.string_to_seed(key))
if return_weight:
return out_weight
elif inplace_update:
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
if inplace_update:
comfy.utils.copy_to_param(self.model, key, out_weight)
else:
comfy.utils.set_attr_param(self.model, key, out_weight)
else:
return set_func(out_weight, inplace_update=inplace_update, seed=comfy.utils.string_to_seed(key), return_weight=return_weight)
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
def pin_weight_to_device(self, key):
weight, set_func, convert_func = get_key_weight(self.model, key)
@@ -680,7 +654,7 @@ class ModelPatcher:
for key in list(self.pinned):
self.unpin_weight(key)
def _load_list(self, prio_comfy_cast_weights=False):
def _load_list(self):
loading = []
for n, m in self.model.named_modules():
params = []
@@ -707,8 +681,7 @@ class ModelPatcher:
return 0
module_offload_mem += check_module_offload_mem("{}.weight".format(n))
module_offload_mem += check_module_offload_mem("{}.bias".format(n))
prepend = (not hasattr(m, "comfy_cast_weights"),) if prio_comfy_cast_weights else ()
loading.append(prepend + (module_offload_mem, module_mem, n, m, params))
loading.append((module_offload_mem, module_mem, n, m, params))
return loading
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
@@ -800,7 +773,7 @@ class ModelPatcher:
continue
for param in params:
key = key_param_name_to_key(n, param)
key = "{}.{}".format(n, param)
self.unpin_weight(key)
self.patch_weight_to_device(key, device_to=device_to)
if comfy.model_management.is_device_cuda(device_to):
@@ -816,7 +789,7 @@ class ModelPatcher:
n = x[1]
params = x[3]
for param in params:
self.pin_weight_to_device(key_param_name_to_key(n, param))
self.pin_weight_to_device("{}.{}".format(n, param))
usable_stat = "{:.2f} MB usable,".format(lowvram_model_memory / (1024 * 1024)) if lowvram_model_memory < 1e32 else ""
if lowvram_counter > 0:
@@ -922,7 +895,7 @@ class ModelPatcher:
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
move_weight = True
for param in params:
key = key_param_name_to_key(n, param)
key = "{}.{}".format(n, param)
bk = self.backup.get(key, None)
if bk is not None:
if not lowvram_possible:
@@ -973,7 +946,7 @@ class ModelPatcher:
logging.debug("freed {}".format(n))
for param in params:
self.pin_weight_to_device(key_param_name_to_key(n, param))
self.pin_weight_to_device("{}.{}".format(n, param))
self.model.model_lowvram = True
@@ -1011,9 +984,6 @@ class ModelPatcher:
return self.model.model_loaded_weight_memory - current_used
def partially_unload_ram(self, ram_to_unload):
pass
def detach(self, unpatch_all=True):
self.eject_model()
self.model_patches_to(self.offload_device)
@@ -1347,10 +1317,10 @@ class ModelPatcher:
key, original_weights=original_weights)
del original_weights[key]
if set_func is None:
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=comfy.utils.string_to_seed(key))
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
comfy.utils.copy_to_param(self.model, key, out_weight)
else:
set_func(out_weight, inplace_update=True, seed=comfy.utils.string_to_seed(key))
set_func(out_weight, inplace_update=True, seed=string_to_seed(key))
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
# TODO: disable caching if not enough system RAM to do so
target_device = self.offload_device
@@ -1385,249 +1355,7 @@ class ModelPatcher:
self.unpatch_hooks()
self.clear_cached_hook_weights()
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
unet_state_dict = self.model.diffusion_model.state_dict()
for k, v in unet_state_dict.items():
op_keys = k.rsplit('.', 1)
if (len(op_keys) < 2) or op_keys[1] not in ["weight", "bias"]:
continue
try:
op = comfy.utils.get_attr(self.model.diffusion_model, op_keys[0])
except:
continue
if not op or not hasattr(op, "comfy_cast_weights") or \
(hasattr(op, "comfy_patched_weights") and op.comfy_patched_weights == True):
continue
key = "diffusion_model." + k
unet_state_dict[k] = LazyCastingParam(self, key, comfy.utils.get_attr(self.model, key))
return self.model.state_dict_for_saving(unet_state_dict)
def __del__(self):
self.unpin_all_weights()
self.detach(unpatch_all=False)
class ModelPatcherDynamic(ModelPatcher):
def __new__(cls, model=None, load_device=None, offload_device=None, size=0, weight_inplace_update=False):
if load_device is not None and comfy.model_management.is_device_cpu(load_device):
#reroute to default MP for CPUs
return ModelPatcher(model, load_device, offload_device, size, weight_inplace_update)
return super().__new__(cls)
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
super().__init__(model, load_device, offload_device, size, weight_inplace_update)
#this is now way more dynamic and we dont support the same base model for both Dynamic
#and non-dynamic patchers.
if hasattr(self.model, "model_loaded_weight_memory"):
del self.model.model_loaded_weight_memory
if not hasattr(self.model, "dynamic_vbars"):
self.model.dynamic_vbars = {}
assert load_device is not None
def is_dynamic(self):
return True
def _vbar_get(self, create=False):
if self.load_device == torch.device("cpu"):
return None
vbar = self.model.dynamic_vbars.get(self.load_device, None)
if create and vbar is None:
# x10. We dont know what model defined type casts we have in the vbar, but virtual address
# space is pretty free. This will cover someone casting an entire model from FP4 to FP32
# with some left over.
vbar = comfy_aimdo.model_vbar.ModelVBAR(self.model_size() * 10, self.load_device.index)
self.model.dynamic_vbars[self.load_device] = vbar
return vbar
def loaded_size(self):
vbar = self._vbar_get()
if vbar is None:
return 0
return vbar.loaded_size()
def get_free_memory(self, device):
#NOTE: on high condition / batch counts, estimate should have already vacated
#all non-dynamic models so this is safe even if its not 100% true that this
#would all be avaiable for inference use.
return comfy.model_management.get_total_memory(device) - self.model_size()
#Pinning is deferred to ops time. Assert against this API to avoid pin leaks.
def pin_weight_to_device(self, key):
raise RuntimeError("pin_weight_to_device invalid for dymamic weight loading")
def unpin_weight(self, key):
raise RuntimeError("unpin_weight invalid for dymamic weight loading")
def unpin_all_weights(self):
self.partially_unload_ram(1e32)
def memory_required(self, input_shape):
#Pad this significantly. We are trying to get away from precise estimates. This
#estimate is only used when using the ModelPatcherDynamic after ModelPatcher. If you
#use all ModelPatcherDynamic this is ignored and its all done dynamically.
return super().memory_required(input_shape=input_shape) * 1.3 + (1024 ** 3)
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False, dirty=False):
#Force patching doesn't make sense in Dynamic loading, as you dont know what does and
#doesn't need to be forced at this stage. The only thing you could do would be patch
#it all on CPU which consumes huge RAM.
assert not force_patch_weights
#Full load doesn't make sense as we dont actually have any loader capability here and
#now.
assert not full_load
assert device_to == self.load_device
num_patches = 0
allocated_size = 0
with self.use_ejected():
self.unpatch_hooks()
vbar = self._vbar_get(create=True)
if vbar is not None:
vbar.prioritize()
#We have way more tools for acceleration on comfy weight offloading, so always
#prioritize the non-comfy weights (note the order reverse).
loading = self._load_list(prio_comfy_cast_weights=True)
loading.sort(reverse=True)
for x in loading:
_, _, _, n, m, params = x
def set_dirty(item, dirty):
if dirty or not hasattr(item, "_v_signature"):
item._v_signature = None
def setup_param(self, m, n, param_key):
nonlocal num_patches
key = key_param_name_to_key(n, param_key)
weight_function = []
weight, _, _ = get_key_weight(self.model, key)
if weight is None:
return 0
if key in self.patches:
setattr(m, param_key + "_lowvram_function", LowVramPatch(key, self.patches))
num_patches += 1
else:
setattr(m, param_key + "_lowvram_function", None)
if key in self.weight_wrapper_patches:
weight_function.extend(self.weight_wrapper_patches[key])
setattr(m, param_key + "_function", weight_function)
geometry = weight
if not isinstance(weight, QuantizedTensor):
model_dtype = getattr(m, param_key + "_comfy_model_dtype", weight.dtype)
weight._model_dtype = model_dtype
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
return comfy.memory_management.vram_aligned_size(geometry)
if hasattr(m, "comfy_cast_weights"):
m.comfy_cast_weights = True
m.pin_failed = False
m.seed_key = n
set_dirty(m, dirty)
v_weight_size = 0
v_weight_size += setup_param(self, m, n, "weight")
v_weight_size += setup_param(self, m, n, "bias")
if vbar is not None and not hasattr(m, "_v"):
m._v = vbar.alloc(v_weight_size)
allocated_size += v_weight_size
else:
for param in params:
key = key_param_name_to_key(n, param)
weight, _, _ = get_key_weight(self.model, key)
weight.seed_key = key
set_dirty(weight, dirty)
geometry = weight
model_dtype = getattr(m, param + "_comfy_model_dtype", weight.dtype)
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
weight_size = geometry.numel() * geometry.element_size()
if vbar is not None and not hasattr(weight, "_v"):
weight._v = vbar.alloc(weight_size)
weight._model_dtype = model_dtype
allocated_size += weight_size
logging.info(f"Model {self.model.__class__.__name__} prepared for dynamic VRAM loading. {allocated_size // (1024 ** 2)}MB Staged. {num_patches} patches attached.")
self.model.device = device_to
self.model.current_weight_patches_uuid = self.patches_uuid
for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD):
#These are all super dangerous. Who knows what the custom nodes actually do here...
callback(self, device_to, lowvram_model_memory, force_patch_weights, full_load)
self.apply_hooks(self.forced_hooks, force_apply=True)
def partially_unload(self, device_to, memory_to_free=0, force_patch_weights=False):
assert not force_patch_weights #See above
assert self.load_device != torch.device("cpu")
vbar = self._vbar_get()
return 0 if vbar is None else vbar.free_memory(memory_to_free)
def partially_unload_ram(self, ram_to_unload):
loading = self._load_list(prio_comfy_cast_weights=True)
for x in loading:
_, _, _, _, m, _ = x
ram_to_unload -= comfy.pinned_memory.unpin_memory(m)
if ram_to_unload <= 0:
return
def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
#This isn't used by the core at all and can only be to load a model out of
#the control of proper model_managment. If you are a custom node author reading
#this, the correct pattern is to call load_models_gpu() to get a proper
#managed load of your model.
assert not load_weights
return super().patch_model(load_weights=load_weights, force_patch_weights=force_patch_weights)
def unpatch_model(self, device_to=None, unpatch_weights=True):
super().unpatch_model(device_to=None, unpatch_weights=False)
if unpatch_weights:
self.partially_unload_ram(1e32)
self.partially_unload(None, 1e32)
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
assert not force_patch_weights #See above
with self.use_ejected(skip_and_inject_on_exit_only=True):
dirty = self.model.current_weight_patches_uuid is not None and (self.model.current_weight_patches_uuid != self.patches_uuid)
self.unpatch_model(self.offload_device, unpatch_weights=False)
self.patch_model(load_weights=False)
try:
self.load(device_to, dirty=dirty)
except Exception as e:
self.detach()
raise e
#ModelPatcher::partially_load returns a number on what got loaded but
#nothing in core uses this and we have no data in the Dynamic world. Hit
#the custom node devs with a None rather than a 0 that would mislead any
#logic they might have.
return None
def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter):
assert False #Should be unreachable - we dont ever cache in the new implementation
def patch_hook_weight_to_device(self, hooks: comfy.hooks.HookGroup, combined_patches: dict, key: str, original_weights: dict, memory_counter: MemoryCounter):
if key not in combined_patches:
return
raise RuntimeError("Hooks not implemented in ModelPatcherDynamic. Please remove --fast arguments form ComfyUI startup")
def unpatch_hooks(self, whitelist_keys_set: set[str]=None) -> None:
pass
CoreModelPatcher = ModelPatcher

View File

@@ -19,16 +19,10 @@
import torch
import logging
import comfy.model_management
from comfy.cli_args import args, PerformanceFeature, enables_dynamic_vram
from comfy.cli_args import args, PerformanceFeature
import comfy.float
import comfy.rmsnorm
import json
import comfy.memory_management
import comfy.pinned_memory
import comfy.utils
import comfy_aimdo.model_vbar
import comfy_aimdo.torch
def run_every_op():
if torch.compiler.is_compiling():
@@ -78,115 +72,7 @@ def cast_to_input(weight, input, non_blocking=False, copy=True):
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype):
offload_stream = None
xfer_dest = None
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
signature = comfy_aimdo.model_vbar.vbar_fault(s._v)
if signature is not None:
xfer_dest = comfy_aimdo.torch.aimdo_to_tensor(s._v, device)
resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature)
if not resident:
cast_dest = None
xfer_source = [ s.weight, s.bias ]
pin = comfy.pinned_memory.get_pin(s)
if pin is not None:
xfer_source = [ pin ]
for data, geometry in zip([ s.weight, s.bias ], cast_geometry):
if data is None:
continue
if data.dtype != geometry.dtype:
cast_dest = xfer_dest
if cast_dest is None:
cast_dest = torch.empty((comfy.memory_management.vram_aligned_size(cast_geometry),), dtype=torch.uint8, device=device)
xfer_dest = None
break
dest_size = comfy.memory_management.vram_aligned_size(xfer_source)
offload_stream = comfy.model_management.get_offload_stream(device)
if xfer_dest is None and offload_stream is not None:
xfer_dest = comfy.model_management.get_cast_buffer(offload_stream, device, dest_size, s)
if xfer_dest is None:
offload_stream = comfy.model_management.get_offload_stream(device)
xfer_dest = comfy.model_management.get_cast_buffer(offload_stream, device, dest_size, s)
if xfer_dest is None:
xfer_dest = torch.empty((dest_size,), dtype=torch.uint8, device=device)
offload_stream = None
if signature is None and pin is None:
comfy.pinned_memory.pin_memory(s)
pin = comfy.pinned_memory.get_pin(s)
else:
pin = None
if pin is not None:
comfy.model_management.cast_to_gathered(xfer_source, pin)
xfer_source = [ pin ]
#send it over
comfy.model_management.cast_to_gathered(xfer_source, xfer_dest, non_blocking=non_blocking, stream=offload_stream)
comfy.model_management.sync_stream(device, offload_stream)
if cast_dest is not None:
for pre_cast, post_cast in zip(comfy.memory_management.interpret_gathered_like([s.weight, s.bias ], xfer_dest),
comfy.memory_management.interpret_gathered_like(cast_geometry, cast_dest)):
if post_cast is not None:
post_cast.copy_(pre_cast)
xfer_dest = cast_dest
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
weight = params[0]
bias = params[1]
def post_cast(s, param_key, x, dtype, resident, update_weight):
lowvram_fn = getattr(s, param_key + "_lowvram_function", None)
fns = getattr(s, param_key + "_function", [])
orig = x
def to_dequant(tensor, dtype):
tensor = tensor.to(dtype=dtype)
if isinstance(tensor, QuantizedTensor):
tensor = tensor.dequantize()
return tensor
if orig.dtype != dtype or len(fns) > 0:
x = to_dequant(x, dtype)
if not resident and lowvram_fn is not None:
x = to_dequant(x, dtype if compute_dtype is None else compute_dtype)
#FIXME: this is not accurate, we need to be sensitive to the compute dtype
x = lowvram_fn(x)
if (isinstance(orig, QuantizedTensor) and
(orig.dtype == dtype and len(fns) == 0 or update_weight)):
seed = comfy.utils.string_to_seed(s.seed_key)
y = QuantizedTensor.from_float(x, s.layout_type, scale="recalculate", stochastic_rounding=seed)
if orig.dtype == dtype and len(fns) == 0:
#The layer actually wants our freshly saved QT
x = y
else:
y = x
if update_weight:
orig.copy_(y)
for f in fns:
x = f(x)
return x
update_weight = signature is not None
weight = post_cast(s, "weight", weight, dtype, resident, update_weight)
if s.bias is not None:
bias = post_cast(s, "bias", bias, bias_dtype, resident, update_weight)
s._v_signature=signature
#FIXME: weird offload return protocol
return weight, bias, (offload_stream, device if signature is not None else None, None)
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False, compute_dtype=None):
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False):
# NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass
# offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This
# will add async-offload support to your cast and improve performance.
@@ -201,38 +87,22 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
if device is None:
device = input.device
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if hasattr(s, "_v"):
return cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype)
if offloadable and (device != s.weight.device or
(s.bias is not None and device != s.bias.device)):
offload_stream = comfy.model_management.get_offload_stream(device)
else:
offload_stream = None
bias = None
weight = None
if offload_stream is not None and not args.cuda_malloc:
cast_buffer_size = comfy.memory_management.vram_aligned_size([ s.weight, s.bias ])
cast_buffer = comfy.model_management.get_cast_buffer(offload_stream, device, cast_buffer_size, s)
#The streams can be uneven in buffer capability and reject us. Retry to get the other stream
if cast_buffer is None:
offload_stream = comfy.model_management.get_offload_stream(device)
cast_buffer = comfy.model_management.get_cast_buffer(offload_stream, device, cast_buffer_size, s)
params = comfy.memory_management.interpret_gathered_like([ s.weight, s.bias ], cast_buffer)
weight = params[0]
bias = params[1]
non_blocking = comfy.model_management.device_supports_non_blocking(device)
weight_has_function = len(s.weight_function) > 0
bias_has_function = len(s.bias_function) > 0
weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream, r=weight)
weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream)
bias = None
if s.bias is not None:
bias = comfy.model_management.cast_to(s.bias, None, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream, r=bias)
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
comfy.model_management.sync_stream(device, offload_stream)
@@ -240,7 +110,6 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
weight_a = weight
if s.bias is not None:
bias = bias.to(dtype=bias_dtype)
for f in s.bias_function:
bias = f(bias)
@@ -262,20 +131,14 @@ def uncast_bias_weight(s, weight, bias, offload_stream):
if offload_stream is None:
return
os, weight_a, bias_a = offload_stream
device=None
#FIXME: This is not good RTTI
if not isinstance(weight_a, torch.Tensor):
comfy_aimdo.model_vbar.vbar_unpin(s._v)
device = weight_a
if os is None:
return
if device is None:
if weight_a is not None:
device = weight_a.device
else:
if bias_a is None:
return
device = bias_a.device
if weight_a is not None:
device = weight_a.device
else:
if bias_a is None:
return
device = bias_a.device
os.wait_stream(comfy.model_management.current_stream(device))
@@ -286,57 +149,6 @@ class CastWeightBiasOp:
class disable_weight_init:
class Linear(torch.nn.Linear, CastWeightBiasOp):
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None):
if not comfy.model_management.WINDOWS or not enables_dynamic_vram():
super().__init__(in_features, out_features, bias, device, dtype)
return
# Issue is with `torch.empty` still reserving the full memory for the layer.
# Windows doesn't over-commit memory so without this, We are momentarily commit
# charged for the weight even though we might zero-copy it when we load the
# state dict. If the commit charge exceeds the ceiling we can destabilize the
# system.
torch.nn.Module.__init__(self)
self.in_features = in_features
self.out_features = out_features
self.weight = None
self.bias = None
self.comfy_need_lazy_init_bias=bias
self.weight_comfy_model_dtype = dtype
self.bias_comfy_model_dtype = dtype
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys, error_msgs):
if not comfy.model_management.WINDOWS or not enables_dynamic_vram():
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs)
assign_to_params_buffers = local_metadata.get("assign_to_params_buffers", False)
prefix_len = len(prefix)
for k,v in state_dict.items():
if k[prefix_len:] == "weight":
if not assign_to_params_buffers:
v = v.clone()
self.weight = torch.nn.Parameter(v, requires_grad=False)
elif k[prefix_len:] == "bias" and v is not None:
if not assign_to_params_buffers:
v = v.clone()
self.bias = torch.nn.Parameter(v, requires_grad=False)
else:
unexpected_keys.append(k)
#Reconcile default construction of the weight if its missing.
if self.weight is None:
v = torch.zeros(self.in_features, self.out_features)
self.weight = torch.nn.Parameter(v, requires_grad=False)
missing_keys.append(prefix+"weight")
if self.bias is None and self.comfy_need_lazy_init_bias:
v = torch.zeros(self.out_features,)
self.bias = torch.nn.Parameter(v, requires_grad=False)
missing_keys.append(prefix+"bias")
def reset_parameters(self):
return None
@@ -843,8 +655,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
def forward_comfy_cast_weights(self, input, compute_dtype=None):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True, compute_dtype=compute_dtype)
def forward_comfy_cast_weights(self, input):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
@@ -854,8 +666,6 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
input_shape = input.shape
reshaped_3d = False
#If cast needs to apply lora, it should be done in the compute dtype
compute_dtype = input.dtype
if (getattr(self, 'layout_type', None) is not None and
not isinstance(input, QuantizedTensor) and not self._full_precision_mm and
@@ -874,8 +684,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
scale = comfy.model_management.cast_to_device(scale, input.device, None)
input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale)
output = self.forward_comfy_cast_weights(input, compute_dtype)
output = self.forward_comfy_cast_weights(input)
# Reshape output back to 3D if input was 3D
if reshaped_3d:

View File

@@ -1,29 +0,0 @@
import torch
import comfy.model_management
import comfy.memory_management
from comfy.cli_args import args
def get_pin(module):
return getattr(module, "_pin", None)
def pin_memory(module):
if module.pin_failed or args.disable_pinned_memory or get_pin(module) is not None:
return
#FIXME: This is a RAM cache trigger event
size = comfy.memory_management.vram_aligned_size([ module.weight, module.bias ])
pin = torch.empty((size,), dtype=torch.uint8)
if comfy.model_management.pin_memory(pin):
module._pin = pin
else:
module.pin_failed = True
return False
return True
def unpin_memory(module):
if get_pin(module) is None:
return 0
size = module._pin.numel() * module._pin.element_size()
comfy.model_management.unpin_memory(module._pin)
del module._pin
return size

View File

@@ -9,6 +9,7 @@ if TYPE_CHECKING:
import torch
from functools import partial
import collections
from comfy import model_management
import math
import logging
import comfy.sampler_helpers
@@ -259,7 +260,7 @@ def _calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tens
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
free_memory = model.current_patcher.get_free_memory(x_in.device)
free_memory = model_management.get_free_memory(x_in.device)
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]

View File

@@ -59,7 +59,6 @@ import comfy.text_encoders.kandinsky5
import comfy.text_encoders.jina_clip_2
import comfy.text_encoders.newbie
import comfy.text_encoders.anima
import comfy.text_encoders.ace15
import comfy.model_patcher
import comfy.lora
@@ -229,10 +228,8 @@ class CLIP:
self.cond_stage_model.to(offload_device)
logging.warning("Had to shift TE back.")
model_management.archive_model_dtypes(self.cond_stage_model)
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.patcher = comfy.model_patcher.CoreModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
#Match torch.float32 hardcode upcast in TE implemention
self.patcher.set_model_compute_dtype(torch.float32)
self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram
@@ -392,18 +389,8 @@ class CLIP:
def load_sd(self, sd, full_model=False):
if full_model:
return self.cond_stage_model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
return self.cond_stage_model.load_state_dict(sd, strict=False)
else:
can_assign = self.patcher.is_dynamic()
self.cond_stage_model.can_assign_sd = can_assign
# The CLIP models are a pretty complex web of wrappers and its
# a bit of an API change to plumb this all the way through.
# So spray paint the model with this flag that the loading
# nn.Module can then inspect for itself.
for m in self.cond_stage_model.modules():
m.can_assign_sd = can_assign
return self.cond_stage_model.load_sd(sd)
def get_sd(self):
@@ -453,8 +440,6 @@ class VAE:
self.extra_1d_channel = None
self.crop_input = True
self.audio_sample_rate = 44100
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
@@ -552,27 +537,14 @@ class VAE:
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
elif "decoder.layers.1.layers.0.beta" in sd:
config = {}
param_key = None
self.upscale_ratio = 2048
self.downscale_ratio = 2048
if "decoder.layers.2.layers.1.weight_v" in sd:
param_key = "decoder.layers.2.layers.1.weight_v"
if "decoder.layers.2.layers.1.parametrizations.weight.original1" in sd:
param_key = "decoder.layers.2.layers.1.parametrizations.weight.original1"
if param_key is not None:
if sd[param_key].shape[-1] == 12:
config["strides"] = [2, 4, 4, 6, 10]
self.audio_sample_rate = 48000
self.upscale_ratio = 1920
self.downscale_ratio = 1920
self.first_stage_model = AudioOobleckVAE(**config)
self.first_stage_model = AudioOobleckVAE()
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
self.latent_channels = 64
self.output_channels = 2
self.pad_channel_value = "replicate"
self.upscale_ratio = 2048
self.downscale_ratio = 2048
self.latent_dim = 1
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
@@ -793,7 +765,12 @@ class VAE:
self.first_stage_model = AutoencoderKL(**(config['params']))
self.first_stage_model = self.first_stage_model.eval()
model_management.archive_model_dtypes(self.first_stage_model)
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
if len(m) > 0:
logging.warning("Missing VAE keys {}".format(m))
if len(u) > 0:
logging.debug("Leftover VAE keys {}".format(u))
if device is None:
device = model_management.vae_device()
@@ -805,18 +782,7 @@ class VAE:
self.first_stage_model.to(self.vae_dtype)
self.output_device = model_management.intermediate_device()
mp = comfy.model_patcher.CoreModelPatcher
if self.disable_offload:
mp = comfy.model_patcher.ModelPatcher
self.patcher = mp(self.first_stage_model, load_device=self.device, offload_device=offload_device)
m, u = self.first_stage_model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
if len(m) > 0:
logging.warning("Missing VAE keys {}".format(m))
if len(u) > 0:
logging.debug("Leftover VAE keys {}".format(u))
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
self.model_size()
@@ -872,7 +838,7 @@ class VAE:
/ 3.0)
return output
def decode_tiled_1d(self, samples, tile_x=256, overlap=32):
def decode_tiled_1d(self, samples, tile_x=128, overlap=32):
if samples.ndim == 3:
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
else:
@@ -931,7 +897,7 @@ class VAE:
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
free_memory = self.patcher.get_free_memory(self.device)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
@@ -1005,7 +971,7 @@ class VAE:
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
free_memory = self.patcher.get_free_memory(self.device)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / max(1, memory_used))
batch_number = max(1, batch_number)
samples = None
@@ -1443,9 +1409,6 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_data_jina = clip_data[0]
tokenizer_data["gemma_spiece_model"] = clip_data_gemma.get("spiece_model", None)
tokenizer_data["jina_spiece_model"] = clip_data_jina.get("spiece_model", None)
elif clip_type == CLIPType.ACE:
clip_target.clip = comfy.text_encoders.ace15.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.ace15.ACE15Tokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
@@ -1469,7 +1432,7 @@ def load_gligen(ckpt_path):
model = gligen.load_gligen(data)
if model_management.should_use_fp16():
model = model.half()
return comfy.model_patcher.CoreModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
def model_detection_error_hint(path, state_dict):
filename = os.path.basename(path)
@@ -1557,8 +1520,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
if output_model:
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
model_patcher = comfy.model_patcher.CoreModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
model.load_model_weights(sd, diffusion_model_prefix, assign=model_patcher.is_dynamic())
model.load_model_weights(sd, diffusion_model_prefix)
if output_vae:
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
@@ -1601,6 +1563,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
logging.debug("left over keys: {}".format(left_over))
if output_model:
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
if inital_load_device != torch.device("cpu"):
logging.info("loaded diffusion model directly to GPU")
model_management.load_models_gpu([model_patcher], force_full_load=True)
@@ -1692,14 +1655,13 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
model_config.optimizations["fp8"] = True
model = model_config.get_model(new_sd, "")
model_patcher = comfy.model_patcher.CoreModelPatcher(model, load_device=load_device, offload_device=offload_device)
if not model_management.is_device_cpu(offload_device):
model.to(offload_device)
model.load_model_weights(new_sd, "", assign=model_patcher.is_dynamic())
model = model.to(offload_device)
model.load_model_weights(new_sd, "")
left_over = sd.keys()
if len(left_over) > 0:
logging.info("left over keys in diffusion model: {}".format(left_over))
return model_patcher
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
def load_diffusion_model(unet_path, model_options={}):
sd, metadata = comfy.utils.load_torch_file(unet_path, return_metadata=True)
@@ -1730,9 +1692,9 @@ def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, m
if metadata is None:
metadata = {}
model_management.load_models_gpu(load_models)
model_management.load_models_gpu(load_models, force_patch_weights=True)
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
sd = model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
for k in extra_keys:
sd[k] = extra_keys[k]

View File

@@ -155,8 +155,6 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.execution_device = options.get("execution_device", self.execution_device)
if isinstance(self.layer, list) or self.layer == "all":
pass
elif isinstance(layer_idx, list):
self.layer = layer_idx
elif layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
else:
@@ -299,7 +297,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
return self(tokens)
def load_sd(self, sd):
return self.transformer.load_state_dict(sd, strict=False, assign=getattr(self, "can_assign_sd", False))
return self.transformer.load_state_dict(sd, strict=False)
def parse_parentheses(string):
result = []

View File

@@ -24,7 +24,6 @@ import comfy.text_encoders.hunyuan_image
import comfy.text_encoders.kandinsky5
import comfy.text_encoders.z_image
import comfy.text_encoders.anima
import comfy.text_encoders.ace15
from . import supported_models_base
from . import latent_formats
@@ -1597,38 +1596,6 @@ class Kandinsky5Image(Kandinsky5):
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
class ACEStep15(supported_models_base.BASE):
unet_config = {
"audio_model": "ace1.5",
}
unet_extra_config = {
}
sampling_settings = {
"multiplier": 1.0,
"shift": 3.0,
}
latent_format = comfy.latent_formats.ACEAudio15
memory_usage_factor = 4.7
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.ACEStep15(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_2b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.ace15.ACE15Tokenizer, comfy.text_encoders.ace15.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, LTXAV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, ACEStep15, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5, Anima]
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, LTXAV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5, Anima]
models += [SVD_img2vid]

View File

@@ -1,223 +0,0 @@
from .anima import Qwen3Tokenizer
import comfy.text_encoders.llama
from comfy import sd1_clip
import torch
import math
import comfy.utils
def sample_manual_loop_no_classes(
model,
ids=None,
paddings=[],
execution_dtype=None,
cfg_scale: float = 2.0,
temperature: float = 0.85,
top_p: float = 0.9,
top_k: int = None,
seed: int = 1,
min_tokens: int = 1,
max_new_tokens: int = 2048,
audio_start_id: int = 151669, # The cutoff ID for audio codes
eos_token_id: int = 151645,
):
device = model.execution_device
if execution_dtype is None:
if comfy.model_management.should_use_bf16(device):
execution_dtype = torch.bfloat16
else:
execution_dtype = torch.float32
embeds, attention_mask, num_tokens, embeds_info = model.process_tokens(ids, device)
for i, t in enumerate(paddings):
attention_mask[i, :t] = 0
attention_mask[i, t:] = 1
output_audio_codes = []
past_key_values = []
generator = torch.Generator(device=device)
generator.manual_seed(seed)
model_config = model.transformer.model.config
for x in range(model_config.num_hidden_layers):
past_key_values.append((torch.empty([embeds.shape[0], model_config.num_key_value_heads, embeds.shape[1] + min_tokens, model_config.head_dim], device=device, dtype=execution_dtype), torch.empty([embeds.shape[0], model_config.num_key_value_heads, embeds.shape[1] + min_tokens, model_config.head_dim], device=device, dtype=execution_dtype), 0))
progress_bar = comfy.utils.ProgressBar(max_new_tokens)
for step in range(max_new_tokens):
outputs = model.transformer(None, attention_mask, embeds=embeds.to(execution_dtype), num_tokens=num_tokens, intermediate_output=None, dtype=execution_dtype, embeds_info=embeds_info, past_key_values=past_key_values)
next_token_logits = model.transformer.logits(outputs[0])[:, -1]
past_key_values = outputs[2]
cond_logits = next_token_logits[0:1]
uncond_logits = next_token_logits[1:2]
cfg_logits = uncond_logits + cfg_scale * (cond_logits - uncond_logits)
if eos_token_id is not None and eos_token_id < audio_start_id and min_tokens < step:
eos_score = cfg_logits[:, eos_token_id].clone()
remove_logit_value = torch.finfo(cfg_logits.dtype).min
# Only generate audio tokens
cfg_logits[:, :audio_start_id] = remove_logit_value
if eos_token_id is not None and eos_token_id < audio_start_id and min_tokens < step:
cfg_logits[:, eos_token_id] = eos_score
if top_k is not None and top_k > 0:
top_k_vals, _ = torch.topk(cfg_logits, top_k)
min_val = top_k_vals[..., -1, None]
cfg_logits[cfg_logits < min_val] = remove_logit_value
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(cfg_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
cfg_logits[indices_to_remove] = remove_logit_value
if temperature > 0:
cfg_logits = cfg_logits / temperature
next_token = torch.multinomial(torch.softmax(cfg_logits, dim=-1), num_samples=1, generator=generator).squeeze(1)
else:
next_token = torch.argmax(cfg_logits, dim=-1)
token = next_token.item()
if token == eos_token_id:
break
embed, _, _, _ = model.process_tokens([[token]], device)
embeds = embed.repeat(2, 1, 1)
attention_mask = torch.cat([attention_mask, torch.ones((2, 1), device=device, dtype=attention_mask.dtype)], dim=1)
output_audio_codes.append(token - audio_start_id)
progress_bar.update_absolute(step)
return output_audio_codes
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0):
cfg_scale = 2.0
positive = [[token for token, _ in inner_list] for inner_list in positive]
negative = [[token for token, _ in inner_list] for inner_list in negative]
positive = positive[0]
negative = negative[0]
neg_pad = 0
if len(negative) < len(positive):
neg_pad = (len(positive) - len(negative))
negative = [model.special_tokens["pad"]] * neg_pad + negative
pos_pad = 0
if len(negative) > len(positive):
pos_pad = (len(negative) - len(positive))
positive = [model.special_tokens["pad"]] * pos_pad + positive
paddings = [pos_pad, neg_pad]
return sample_manual_loop_no_classes(model, [positive, negative], paddings, cfg_scale=cfg_scale, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_06b", tokenizer=Qwen3Tokenizer)
def tokenize_with_weights(self, text, return_word_ids=False, **kwargs):
out = {}
lyrics = kwargs.get("lyrics", "")
bpm = kwargs.get("bpm", 120)
duration = kwargs.get("duration", 120)
keyscale = kwargs.get("keyscale", "C major")
timesignature = kwargs.get("timesignature", 2)
language = kwargs.get("language", "en")
seed = kwargs.get("seed", 0)
duration = math.ceil(duration)
meta_lm = 'bpm: {}\nduration: {}\nkeyscale: {}\ntimesignature: {}'.format(bpm, duration, keyscale, timesignature)
lm_template = "<|im_start|>system\n# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n<|im_end|>\n<|im_start|>user\n# Caption\n{}\n{}\n<|im_end|>\n<|im_start|>assistant\n<think>\n{}\n</think>\n\n<|im_end|>\n"
meta_cap = '- bpm: {}\n- timesignature: {}\n- keyscale: {}\n- duration: {}\n'.format(bpm, timesignature, keyscale, duration)
out["lm_prompt"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, meta_lm), disable_weights=True)
out["lm_prompt_negative"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, ""), disable_weights=True)
out["lyrics"] = self.qwen3_06b.tokenize_with_weights("# Languages\n{}\n\n# Lyric{}<|endoftext|><|endoftext|>".format(language, lyrics), return_word_ids, disable_weights=True, **kwargs)
out["qwen3_06b"] = self.qwen3_06b.tokenize_with_weights("# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n# Caption\n{}# Metas\n{}<|endoftext|>\n<|endoftext|>".format(text, meta_cap), return_word_ids, **kwargs)
out["lm_metadata"] = {"min_tokens": duration * 5, "seed": seed}
return out
class Qwen3_06BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_06B_ACE15, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Qwen3_2B_ACE15(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_2B_ACE15_lm, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class ACE15TEModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, dtype_llama=None, model_options={}):
super().__init__()
if dtype_llama is None:
dtype_llama = dtype
self.qwen3_06b = Qwen3_06BModel(device=device, dtype=dtype, model_options=model_options)
self.qwen3_2b = Qwen3_2B_ACE15(device=device, dtype=dtype_llama, model_options=model_options)
self.dtypes = set([dtype, dtype_llama])
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_base = token_weight_pairs["qwen3_06b"]
token_weight_pairs_lyrics = token_weight_pairs["lyrics"]
self.qwen3_06b.set_clip_options({"layer": None})
base_out, _, extra = self.qwen3_06b.encode_token_weights(token_weight_pairs_base)
self.qwen3_06b.set_clip_options({"layer": [0]})
lyrics_embeds, _, extra_l = self.qwen3_06b.encode_token_weights(token_weight_pairs_lyrics)
lm_metadata = token_weight_pairs["lm_metadata"]
audio_codes = generate_audio_codes(self.qwen3_2b, token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"])
return base_out, None, {"conditioning_lyrics": lyrics_embeds[:, 0], "audio_codes": [audio_codes]}
def set_clip_options(self, options):
self.qwen3_06b.set_clip_options(options)
self.qwen3_2b.set_clip_options(options)
def reset_clip_options(self):
self.qwen3_06b.reset_clip_options()
self.qwen3_2b.reset_clip_options()
def load_sd(self, sd):
if "model.layers.0.post_attention_layernorm.weight" in sd:
shape = sd["model.layers.0.post_attention_layernorm.weight"].shape
if shape[0] == 1024:
return self.qwen3_06b.load_sd(sd)
else:
return self.qwen3_2b.load_sd(sd)
def memory_estimation_function(self, token_weight_pairs, device=None):
lm_metadata = token_weight_pairs["lm_metadata"]
constant = 0.4375
if comfy.model_management.should_use_bf16(device):
constant *= 0.5
token_weight_pairs = token_weight_pairs.get("lm_prompt", [])
num_tokens = sum(map(lambda a: len(a), token_weight_pairs))
num_tokens += lm_metadata['min_tokens']
return num_tokens * constant * 1024 * 1024
def te(dtype_llama=None, llama_quantization_metadata=None):
class ACE15TEModel_(ACE15TEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["llama_quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, dtype_llama=dtype_llama, dtype=dtype, model_options=model_options)
return ACE15TEModel_

View File

@@ -8,7 +8,7 @@ import torch
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024, embedding_key='qwen3_06b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='qwen3_06b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@@ -118,7 +118,7 @@ class MistralTokenizerClass:
class Mistral3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.tekken_data = tokenizer_data.get("tekken_model", None)
super().__init__("", pad_with_end=False, embedding_directory=embedding_directory, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, start_token=1, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
super().__init__("", pad_with_end=False, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, start_token=1, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
def state_dict(self):
return {"tekken_model": self.tekken_data}
@@ -176,12 +176,12 @@ def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False):
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
class Qwen3Tokenizer8B(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=4096, embedding_key='qwen3_8b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='qwen3_8b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
class KleinTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, name="qwen3_4b"):

View File

@@ -6,7 +6,6 @@ import math
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.model_management
import comfy.ops
import comfy.ldm.common_dit
import comfy.clip_model
@@ -104,52 +103,6 @@ class Qwen3_06BConfig:
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_06B_ACE15_Config:
vocab_size: int = 151669
hidden_size: int = 1024
intermediate_size: int = 3072
num_hidden_layers: int = 28
num_attention_heads: int = 16
num_key_value_heads: int = 8
max_position_embeddings: int = 32768
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_2B_ACE15_lm_Config:
vocab_size: int = 217204
hidden_size: int = 2048
intermediate_size: int = 6144
num_hidden_layers: int = 28
num_attention_heads: int = 16
num_key_value_heads: int = 8
max_position_embeddings: int = 40960
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_4BConfig:
vocab_size: int = 151936
@@ -628,10 +581,10 @@ class Llama2_(nn.Module):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, seq_len, attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), torch.finfo(x.dtype).min)
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
if seq_len > 1:
causal_mask = torch.empty(past_len + seq_len, past_len + seq_len, dtype=x.dtype, device=x.device).fill_(torch.finfo(x.dtype).min).triu_(1)
causal_mask = torch.empty(past_len + seq_len, past_len + seq_len, dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
if mask is not None:
mask += causal_mask
else:
@@ -776,39 +729,6 @@ class Qwen3_06B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_06B_ACE15(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_06B_ACE15_Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_2B_ACE15_lm(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_2B_ACE15_lm_Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
def logits(self, x):
input = x[:, -1:]
module = self.model.embed_tokens
offload_stream = None
if module.comfy_cast_weights:
weight, _, offload_stream = comfy.ops.cast_bias_weight(module, input, offloadable=True)
else:
weight = self.model.embed_tokens.weight.to(x)
x = torch.nn.functional.linear(input, weight, None)
comfy.ops.uncast_bias_weight(module, weight, None, offload_stream)
return x
class Qwen3_4B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()

View File

@@ -125,7 +125,7 @@ class LTXAVTEModel(torch.nn.Module):
for prefix, component in [("text_embedding_projection.", self.text_embedding_projection), ("video_embeddings_connector.", self.video_embeddings_connector), ("audio_embeddings_connector.", self.audio_embeddings_connector)]:
component_sd = {k.replace(prefix, ""): v for k, v in sdo.items() if k.startswith(prefix)}
if component_sd:
missing, unexpected = component.load_state_dict(component_sd, strict=False, assign=getattr(self, "can_assign_sd", False))
missing, unexpected = component.load_state_dict(component_sd, strict=False)
missing_all.extend([f"{prefix}{k}" for k in missing])
unexpected_all.extend([f"{prefix}{k}" for k in unexpected])

View File

@@ -6,7 +6,7 @@ import os
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class ZImageTokenizer(sd1_clip.SD1Tokenizer):

View File

@@ -28,11 +28,9 @@ import logging
import itertools
from torch.nn.functional import interpolate
from einops import rearrange
from comfy.cli_args import args, enables_dynamic_vram
from comfy.cli_args import args
import json
import time
import mmap
import warnings
MMAP_TORCH_FILES = args.mmap_torch_files
DISABLE_MMAP = args.disable_mmap
@@ -58,70 +56,21 @@ if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in
else:
logging.warning("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended as older versions of pytorch are no longer supported.")
# Current as of safetensors 0.7.0
_TYPES = {
"F64": torch.float64,
"F32": torch.float32,
"F16": torch.float16,
"BF16": torch.bfloat16,
"I64": torch.int64,
"I32": torch.int32,
"I16": torch.int16,
"I8": torch.int8,
"U8": torch.uint8,
"BOOL": torch.bool,
"F8_E4M3": torch.float8_e4m3fn,
"F8_E5M2": torch.float8_e5m2,
"C64": torch.complex64,
"U64": torch.uint64,
"U32": torch.uint32,
"U16": torch.uint16,
}
def load_safetensors(ckpt):
f = open(ckpt, "rb")
mapping = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
header_size = struct.unpack("<Q", mapping[:8])[0]
header = json.loads(mapping[8:8+header_size].decode("utf-8"))
with warnings.catch_warnings():
#We are working with read-only RAM by design
warnings.filterwarnings("ignore", message="The given buffer is not writable")
data_area = torch.frombuffer(mapping, dtype=torch.uint8)[8 + header_size:]
sd = {}
for name, info in header.items():
if name == "__metadata__":
continue
start, end = info["data_offsets"]
sd[name] = data_area[start:end].view(_TYPES[info["dtype"]]).view(info["shape"])
return sd, header.get("__metadata__", {}),
def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
if device is None:
device = torch.device("cpu")
metadata = None
if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
try:
if enables_dynamic_vram():
sd, metadata = load_safetensors(ckpt)
if not return_metadata:
metadata = None
else:
with safetensors.safe_open(ckpt, framework="pt", device=device.type) as f:
sd = {}
for k in f.keys():
tensor = f.get_tensor(k)
if DISABLE_MMAP: # TODO: Not sure if this is the best way to bypass the mmap issues
tensor = tensor.to(device=device, copy=True)
sd[k] = tensor
if return_metadata:
metadata = f.metadata()
with safetensors.safe_open(ckpt, framework="pt", device=device.type) as f:
sd = {}
for k in f.keys():
tensor = f.get_tensor(k)
if DISABLE_MMAP: # TODO: Not sure if this is the best way to bypass the mmap issues
tensor = tensor.to(device=device, copy=True)
sd[k] = tensor
if return_metadata:
metadata = f.metadata()
except Exception as e:
if len(e.args) > 0:
message = e.args[0]
@@ -1359,16 +1308,3 @@ def convert_old_quants(state_dict, model_prefix="", metadata={}):
state_dict["{}.comfy_quant".format(k)] = torch.tensor(list(json.dumps(v).encode('utf-8')), dtype=torch.uint8)
return state_dict, metadata
def string_to_seed(data):
crc = 0xFFFFFFFF
for byte in data:
if isinstance(byte, str):
byte = ord(byte)
crc ^= byte
for _ in range(8):
if crc & 1:
crc = (crc >> 1) ^ 0xEDB88320
else:
crc >>= 1
return crc ^ 0xFFFFFFFF

View File

@@ -1,52 +0,0 @@
import ctypes
import logging
import psutil
from ctypes import wintypes
import comfy_aimdo.control
psapi = ctypes.WinDLL("psapi")
kernel32 = ctypes.WinDLL("kernel32")
class PERFORMANCE_INFORMATION(ctypes.Structure):
_fields_ = [
("cb", wintypes.DWORD),
("CommitTotal", ctypes.c_size_t),
("CommitLimit", ctypes.c_size_t),
("CommitPeak", ctypes.c_size_t),
("PhysicalTotal", ctypes.c_size_t),
("PhysicalAvailable", ctypes.c_size_t),
("SystemCache", ctypes.c_size_t),
("KernelTotal", ctypes.c_size_t),
("KernelPaged", ctypes.c_size_t),
("KernelNonpaged", ctypes.c_size_t),
("PageSize", ctypes.c_size_t),
("HandleCount", wintypes.DWORD),
("ProcessCount", wintypes.DWORD),
("ThreadCount", wintypes.DWORD),
]
def get_free_ram():
#Windows is way too conservative and chalks recently used uncommitted model RAM
#as "in-use". So, calculate free RAM for the sake of general use as the greater of:
#
#1: What psutil says
#2: Total Memory - (Committed Memory - VRAM in use)
#
#We have to subtract VRAM in use from the comitted memory as WDDM creates a naked
#commit charge for all VRAM used just incase it wants to page it all out. This just
#isn't realistic so "overcommit" on our calculations by just subtracting it off.
pi = PERFORMANCE_INFORMATION()
pi.cb = ctypes.sizeof(pi)
if not psapi.GetPerformanceInfo(ctypes.byref(pi), pi.cb):
logging.warning("WARNING: Failed to query windows performance info. RAM usage may be sub optimal")
return psutil.virtual_memory().available
committed = pi.CommitTotal * pi.PageSize
total = pi.PhysicalTotal * pi.PageSize
return max(psutil.virtual_memory().available,
total - (committed - comfy_aimdo.control.get_total_vram_usage()))

View File

@@ -7,7 +7,7 @@ from comfy_api.internal.singleton import ProxiedSingleton
from comfy_api.internal.async_to_sync import create_sync_class
from ._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput
from ._input_impl import VideoFromFile, VideoFromComponents
from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL, File3D
from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL
from . import _io_public as io
from . import _ui_public as ui
from comfy_execution.utils import get_executing_context
@@ -105,7 +105,6 @@ class Types:
VideoComponents = VideoComponents
MESH = MESH
VOXEL = VOXEL
File3D = File3D
ComfyAPI = ComfyAPI_latest

View File

@@ -27,7 +27,7 @@ if TYPE_CHECKING:
from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classproperty, copy_class, first_real_override, is_class,
prune_dict, shallow_clone_class)
from comfy_execution.graph_utils import ExecutionBlocker
from ._util import MESH, VOXEL, SVG as _SVG, File3D
from ._util import MESH, VOXEL, SVG as _SVG
class FolderType(str, Enum):
@@ -667,49 +667,6 @@ class Voxel(ComfyTypeIO):
class Mesh(ComfyTypeIO):
Type = MESH
@comfytype(io_type="FILE_3D")
class File3DAny(ComfyTypeIO):
"""General 3D file type - accepts any supported 3D format."""
Type = File3D
@comfytype(io_type="FILE_3D_GLB")
class File3DGLB(ComfyTypeIO):
"""GLB format 3D file - binary glTF, best for web and cross-platform."""
Type = File3D
@comfytype(io_type="FILE_3D_GLTF")
class File3DGLTF(ComfyTypeIO):
"""GLTF format 3D file - JSON-based glTF with external resources."""
Type = File3D
@comfytype(io_type="FILE_3D_FBX")
class File3DFBX(ComfyTypeIO):
"""FBX format 3D file - best for game engines and animation."""
Type = File3D
@comfytype(io_type="FILE_3D_OBJ")
class File3DOBJ(ComfyTypeIO):
"""OBJ format 3D file - simple geometry format."""
Type = File3D
@comfytype(io_type="FILE_3D_STL")
class File3DSTL(ComfyTypeIO):
"""STL format 3D file - best for 3D printing."""
Type = File3D
@comfytype(io_type="FILE_3D_USDZ")
class File3DUSDZ(ComfyTypeIO):
"""USDZ format 3D file - Apple AR format."""
Type = File3D
@comfytype(io_type="HOOKS")
class Hooks(ComfyTypeIO):
if TYPE_CHECKING:
@@ -2080,13 +2037,6 @@ __all__ = [
"LossMap",
"Voxel",
"Mesh",
"File3DAny",
"File3DGLB",
"File3DGLTF",
"File3DFBX",
"File3DOBJ",
"File3DSTL",
"File3DUSDZ",
"Hooks",
"HookKeyframes",
"TimestepsRange",

View File

@@ -1,5 +1,5 @@
from .video_types import VideoContainer, VideoCodec, VideoComponents
from .geometry_types import VOXEL, MESH, File3D
from .geometry_types import VOXEL, MESH
from .image_types import SVG
__all__ = [
@@ -9,6 +9,5 @@ __all__ = [
"VideoComponents",
"VOXEL",
"MESH",
"File3D",
"SVG",
]

View File

@@ -1,8 +1,3 @@
import shutil
from io import BytesIO
from pathlib import Path
from typing import IO
import torch
@@ -15,75 +10,3 @@ class MESH:
def __init__(self, vertices: torch.Tensor, faces: torch.Tensor):
self.vertices = vertices
self.faces = faces
class File3D:
"""Class representing a 3D file from a file path or binary stream.
Supports both disk-backed (file path) and memory-backed (BytesIO) storage.
"""
def __init__(self, source: str | IO[bytes], file_format: str = ""):
self._source = source
self._format = file_format or self._infer_format()
def _infer_format(self) -> str:
if isinstance(self._source, str):
return Path(self._source).suffix.lstrip(".").lower()
return ""
@property
def format(self) -> str:
return self._format
@format.setter
def format(self, value: str) -> None:
self._format = value.lstrip(".").lower() if value else ""
@property
def is_disk_backed(self) -> bool:
return isinstance(self._source, str)
def get_source(self) -> str | IO[bytes]:
if isinstance(self._source, str):
return self._source
if hasattr(self._source, "seek"):
self._source.seek(0)
return self._source
def get_data(self) -> BytesIO:
if isinstance(self._source, str):
with open(self._source, "rb") as f:
result = BytesIO(f.read())
return result
if hasattr(self._source, "seek"):
self._source.seek(0)
if isinstance(self._source, BytesIO):
return self._source
return BytesIO(self._source.read())
def save_to(self, path: str) -> str:
dest = Path(path)
dest.parent.mkdir(parents=True, exist_ok=True)
if isinstance(self._source, str):
if Path(self._source).resolve() != dest.resolve():
shutil.copy2(self._source, dest)
else:
if hasattr(self._source, "seek"):
self._source.seek(0)
with open(dest, "wb") as f:
f.write(self._source.read())
return str(dest)
def get_bytes(self) -> bytes:
if isinstance(self._source, str):
return Path(self._source).read_bytes()
if hasattr(self._source, "seek"):
self._source.seek(0)
return self._source.read()
def __repr__(self) -> str:
if isinstance(self._source, str):
return f"File3D(source={self._source!r}, format={self._format!r})"
return f"File3D(<stream>, format={self._format!r})"

View File

@@ -1,51 +0,0 @@
from typing import TypedDict
from pydantic import BaseModel, Field
class InputVideoModel(TypedDict):
model: str
resolution: str
class ImageEnhanceTaskCreateRequest(BaseModel):
model_name: str = Field(...)
img_url: str = Field(...)
extension: str = Field(".png")
exif: bool = Field(False)
DPI: int | None = Field(None)
class VideoEnhanceTaskCreateRequest(BaseModel):
video_url: str = Field(...)
extension: str = Field(".mp4")
model_name: str | None = Field(...)
resolution: list[int] = Field(..., description="Target resolution [width, height]")
original_resolution: list[int] = Field(..., description="Original video resolution [width, height]")
class TaskCreateDataResponse(BaseModel):
job_id: str = Field(...)
consume_coins: int | None = Field(None)
class TaskStatusPollRequest(BaseModel):
job_id: str = Field(...)
class TaskCreateResponse(BaseModel):
code: int = Field(...)
message: str = Field(...)
data: TaskCreateDataResponse | None = Field(None)
class TaskStatusDataResponse(BaseModel):
job_id: str = Field(...)
status: str = Field(...)
res_url: str = Field("")
class TaskStatusResponse(BaseModel):
code: int = Field(...)
message: str = Field(...)
data: TaskStatusDataResponse = Field(...)

View File

@@ -109,19 +109,14 @@ class MeshyTextureRequest(BaseModel):
class MeshyModelsUrls(BaseModel):
glb: str = Field("")
fbx: str = Field("")
usdz: str = Field("")
obj: str = Field("")
class MeshyRiggedModelsUrls(BaseModel):
rigged_character_glb_url: str = Field("")
rigged_character_fbx_url: str = Field("")
class MeshyAnimatedModelsUrls(BaseModel):
animation_glb_url: str = Field("")
animation_fbx_url: str = Field("")
class MeshyResultTextureUrls(BaseModel):

View File

@@ -1,342 +0,0 @@
import math
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api_nodes.apis.hitpaw import (
ImageEnhanceTaskCreateRequest,
InputVideoModel,
TaskCreateDataResponse,
TaskCreateResponse,
TaskStatusPollRequest,
TaskStatusResponse,
VideoEnhanceTaskCreateRequest,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_image_tensor,
download_url_to_video_output,
downscale_image_tensor,
get_image_dimensions,
poll_op,
sync_op,
upload_image_to_comfyapi,
upload_video_to_comfyapi,
validate_video_duration,
)
VIDEO_MODELS_MODELS_MAP = {
"Portrait Restore Model (1x)": "portrait_restore_1x",
"Portrait Restore Model (2x)": "portrait_restore_2x",
"General Restore Model (1x)": "general_restore_1x",
"General Restore Model (2x)": "general_restore_2x",
"General Restore Model (4x)": "general_restore_4x",
"Ultra HD Model (2x)": "ultrahd_restore_2x",
"Generative Model (1x)": "generative_1x",
}
# Resolution name to target dimension (shorter side) in pixels
RESOLUTION_TARGET_MAP = {
"720p": 720,
"1080p": 1080,
"2K/QHD": 1440,
"4K/UHD": 2160,
"8K": 4320,
}
# Square (1:1) resolutions use standard square dimensions
RESOLUTION_SQUARE_MAP = {
"720p": 720,
"1080p": 1080,
"2K/QHD": 1440,
"4K/UHD": 2048, # DCI 4K square
"8K": 4096, # DCI 8K square
}
# Models with limited resolution support (no 8K)
LIMITED_RESOLUTION_MODELS = {"Generative Model (1x)"}
# Resolution options for different model types
RESOLUTIONS_LIMITED = ["original", "720p", "1080p", "2K/QHD", "4K/UHD"]
RESOLUTIONS_FULL = ["original", "720p", "1080p", "2K/QHD", "4K/UHD", "8K"]
# Maximum output resolution in pixels
MAX_PIXELS_GENERATIVE = 32_000_000
MAX_MP_GENERATIVE = MAX_PIXELS_GENERATIVE // 1_000_000
class HitPawGeneralImageEnhance(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="HitPawGeneralImageEnhance",
display_name="HitPaw General Image Enhance",
category="api node/image/HitPaw",
description="Upscale low-resolution images to super-resolution, eliminate artifacts and noise. "
f"Maximum output: {MAX_MP_GENERATIVE} megapixels.",
inputs=[
IO.Combo.Input("model", options=["generative_portrait", "generative"]),
IO.Image.Input("image"),
IO.Combo.Input("upscale_factor", options=[1, 2, 4]),
IO.Boolean.Input(
"auto_downscale",
default=False,
tooltip="Automatically downscale input image if output would exceed the limit.",
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["model"]),
expr="""
(
$prices := {
"generative_portrait": {"min": 0.02, "max": 0.06},
"generative": {"min": 0.05, "max": 0.15}
};
$price := $lookup($prices, widgets.model);
{
"type": "range_usd",
"min_usd": $price.min,
"max_usd": $price.max
}
)
""",
),
)
@classmethod
async def execute(
cls,
model: str,
image: Input.Image,
upscale_factor: int,
auto_downscale: bool,
) -> IO.NodeOutput:
height, width = get_image_dimensions(image)
requested_scale = upscale_factor
output_pixels = height * width * requested_scale * requested_scale
if output_pixels > MAX_PIXELS_GENERATIVE:
if auto_downscale:
input_pixels = width * height
scale = 1
max_input_pixels = MAX_PIXELS_GENERATIVE
for candidate in [4, 2, 1]:
if candidate > requested_scale:
continue
scale_output_pixels = input_pixels * candidate * candidate
if scale_output_pixels <= MAX_PIXELS_GENERATIVE:
scale = candidate
max_input_pixels = None
break
# Check if we can downscale input by at most 2x to fit
downscale_ratio = math.sqrt(scale_output_pixels / MAX_PIXELS_GENERATIVE)
if downscale_ratio <= 2.0:
scale = candidate
max_input_pixels = MAX_PIXELS_GENERATIVE // (candidate * candidate)
break
if max_input_pixels is not None:
image = downscale_image_tensor(image, total_pixels=max_input_pixels)
upscale_factor = scale
else:
output_width = width * requested_scale
output_height = height * requested_scale
raise ValueError(
f"Output size ({output_width}x{output_height} = {output_pixels:,} pixels) "
f"exceeds maximum allowed size of {MAX_PIXELS_GENERATIVE:,} pixels ({MAX_MP_GENERATIVE}MP). "
f"Enable auto_downscale or use a smaller input image or a lower upscale factor."
)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/hitpaw/api/photo-enhancer", method="POST"),
response_model=TaskCreateResponse,
data=ImageEnhanceTaskCreateRequest(
model_name=f"{model}_{upscale_factor}x",
img_url=await upload_image_to_comfyapi(cls, image, total_pixels=None),
),
wait_label="Creating task",
final_label_on_success="Task created",
)
if initial_res.code != 200:
raise ValueError(f"Task creation failed with code {initial_res.code}: {initial_res.message}")
request_price = initial_res.data.consume_coins / 1000
final_response = await poll_op(
cls,
ApiEndpoint(path="/proxy/hitpaw/api/task-status", method="POST"),
data=TaskCreateDataResponse(job_id=initial_res.data.job_id),
response_model=TaskStatusResponse,
status_extractor=lambda x: x.data.status,
price_extractor=lambda x: request_price,
poll_interval=10.0,
max_poll_attempts=480,
)
return IO.NodeOutput(await download_url_to_image_tensor(final_response.data.res_url))
class HitPawVideoEnhance(IO.ComfyNode):
@classmethod
def define_schema(cls):
model_options = []
for model_name in VIDEO_MODELS_MODELS_MAP:
if model_name in LIMITED_RESOLUTION_MODELS:
resolutions = RESOLUTIONS_LIMITED
else:
resolutions = RESOLUTIONS_FULL
model_options.append(
IO.DynamicCombo.Option(
model_name,
[IO.Combo.Input("resolution", options=resolutions)],
)
)
return IO.Schema(
node_id="HitPawVideoEnhance",
display_name="HitPaw Video Enhance",
category="api node/video/HitPaw",
description="Upscale low-resolution videos to high resolution, eliminate artifacts and noise. "
"Prices shown are per second of video.",
inputs=[
IO.DynamicCombo.Input("model", options=model_options),
IO.Video.Input("video"),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["model", "model.resolution"]),
expr="""
(
$m := $lookup(widgets, "model");
$res := $lookup(widgets, "model.resolution");
$standard_model_prices := {
"original": {"min": 0.01, "max": 0.198},
"720p": {"min": 0.01, "max": 0.06},
"1080p": {"min": 0.015, "max": 0.09},
"2k/qhd": {"min": 0.02, "max": 0.117},
"4k/uhd": {"min": 0.025, "max": 0.152},
"8k": {"min": 0.033, "max": 0.198}
};
$ultra_hd_model_prices := {
"original": {"min": 0.015, "max": 0.264},
"720p": {"min": 0.015, "max": 0.092},
"1080p": {"min": 0.02, "max": 0.12},
"2k/qhd": {"min": 0.026, "max": 0.156},
"4k/uhd": {"min": 0.034, "max": 0.203},
"8k": {"min": 0.044, "max": 0.264}
};
$generative_model_prices := {
"original": {"min": 0.015, "max": 0.338},
"720p": {"min": 0.008, "max": 0.090},
"1080p": {"min": 0.05, "max": 0.15},
"2k/qhd": {"min": 0.038, "max": 0.225},
"4k/uhd": {"min": 0.056, "max": 0.338}
};
$prices := $contains($m, "ultra hd") ? $ultra_hd_model_prices :
$contains($m, "generative") ? $generative_model_prices :
$standard_model_prices;
$price := $lookup($prices, $res);
{
"type": "range_usd",
"min_usd": $price.min,
"max_usd": $price.max,
"format": {"approximate": true, "suffix": "/second"}
}
)
""",
),
)
@classmethod
async def execute(
cls,
model: InputVideoModel,
video: Input.Video,
) -> IO.NodeOutput:
validate_video_duration(video, min_duration=0.5, max_duration=60 * 60)
resolution = model["resolution"]
src_width, src_height = video.get_dimensions()
if resolution == "original":
output_width = src_width
output_height = src_height
else:
if src_width == src_height:
target_size = RESOLUTION_SQUARE_MAP[resolution]
if target_size < src_width:
raise ValueError(
f"Selected resolution {resolution} ({target_size}x{target_size}) is smaller than "
f"the input video ({src_width}x{src_height}). Please select a higher resolution or 'original'."
)
output_width = target_size
output_height = target_size
else:
min_dimension = min(src_width, src_height)
target_size = RESOLUTION_TARGET_MAP[resolution]
if target_size < min_dimension:
raise ValueError(
f"Selected resolution {resolution} ({target_size}p) is smaller than "
f"the input video's shorter dimension ({min_dimension}p). "
f"Please select a higher resolution or 'original'."
)
if src_width > src_height:
output_height = target_size
output_width = int(target_size * (src_width / src_height))
else:
output_width = target_size
output_height = int(target_size * (src_height / src_width))
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/hitpaw/api/video-enhancer", method="POST"),
response_model=TaskCreateResponse,
data=VideoEnhanceTaskCreateRequest(
video_url=await upload_video_to_comfyapi(cls, video),
resolution=[output_width, output_height],
original_resolution=[src_width, src_height],
model_name=VIDEO_MODELS_MODELS_MAP[model["model"]],
),
wait_label="Creating task",
final_label_on_success="Task created",
)
request_price = initial_res.data.consume_coins / 1000
if initial_res.code != 200:
raise ValueError(f"Task creation failed with code {initial_res.code}: {initial_res.message}")
final_response = await poll_op(
cls,
ApiEndpoint(path="/proxy/hitpaw/api/task-status", method="POST"),
data=TaskStatusPollRequest(job_id=initial_res.data.job_id),
response_model=TaskStatusResponse,
status_extractor=lambda x: x.data.status,
price_extractor=lambda x: request_price,
poll_interval=10.0,
max_poll_attempts=320,
)
return IO.NodeOutput(await download_url_to_video_output(final_response.data.res_url))
class HitPawExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
HitPawGeneralImageEnhance,
HitPawVideoEnhance,
]
async def comfy_entrypoint() -> HitPawExtension:
return HitPawExtension()

View File

@@ -1,3 +1,5 @@
import os
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
@@ -12,7 +14,7 @@ from comfy_api_nodes.apis.hunyuan3d import (
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_file_3d,
download_url_to_bytesio,
downscale_image_tensor_by_max_side,
poll_op,
sync_op,
@@ -20,13 +22,14 @@ from comfy_api_nodes.util import (
validate_image_dimensions,
validate_string,
)
from folder_paths import get_output_directory
def get_file_from_response(response_objs: list[ResultFile3D], file_type: str) -> ResultFile3D | None:
def get_glb_obj_from_response(response_objs: list[ResultFile3D]) -> ResultFile3D:
for i in response_objs:
if i.Type.lower() == file_type.lower():
if i.Type.lower() == "glb":
return i
return None
raise ValueError("No GLB file found in response. Please report this to the developers.")
class TencentTextToModelNode(IO.ComfyNode):
@@ -71,9 +74,7 @@ class TencentTextToModelNode(IO.ComfyNode):
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DOBJ.Output(display_name="OBJ"),
IO.String.Output(display_name="model_file"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -123,20 +124,19 @@ class TencentTextToModelNode(IO.ComfyNode):
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
task_id = response.JobId
result = await poll_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-pro/query", method="POST"),
data=To3DProTaskQueryRequest(JobId=task_id),
data=To3DProTaskQueryRequest(JobId=response.JobId),
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
glb_result = get_file_from_response(result.ResultFile3Ds, "glb")
obj_result = get_file_from_response(result.ResultFile3Ds, "obj")
file_glb = await download_url_to_file_3d(glb_result.Url, "glb", task_id=task_id) if glb_result else None
return IO.NodeOutput(
file_glb, file_glb, await download_url_to_file_3d(obj_result.Url, "obj", task_id=task_id) if obj_result else None
model_file = f"hunyuan_model_{response.JobId}.glb"
await download_url_to_bytesio(
get_glb_obj_from_response(result.ResultFile3Ds).Url,
os.path.join(get_output_directory(), model_file),
)
return IO.NodeOutput(model_file)
class TencentImageToModelNode(IO.ComfyNode):
@@ -184,9 +184,7 @@ class TencentImageToModelNode(IO.ComfyNode):
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DOBJ.Output(display_name="OBJ"),
IO.String.Output(display_name="model_file"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -271,20 +269,19 @@ class TencentImageToModelNode(IO.ComfyNode):
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
task_id = response.JobId
result = await poll_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-pro/query", method="POST"),
data=To3DProTaskQueryRequest(JobId=task_id),
data=To3DProTaskQueryRequest(JobId=response.JobId),
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
glb_result = get_file_from_response(result.ResultFile3Ds, "glb")
obj_result = get_file_from_response(result.ResultFile3Ds, "obj")
file_glb = await download_url_to_file_3d(glb_result.Url, "glb", task_id=task_id) if glb_result else None
return IO.NodeOutput(
file_glb, file_glb, await download_url_to_file_3d(obj_result.Url, "obj", task_id=task_id) if obj_result else None
model_file = f"hunyuan_model_{response.JobId}.glb"
await download_url_to_bytesio(
get_glb_obj_from_response(result.ResultFile3Ds).Url,
os.path.join(get_output_directory(), model_file),
)
return IO.NodeOutput(model_file)
class TencentHunyuan3DExtension(ComfyExtension):

View File

@@ -1,3 +1,5 @@
import os
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
@@ -18,12 +20,13 @@ from comfy_api_nodes.apis.meshy import (
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_file_3d,
download_url_to_bytesio,
poll_op,
sync_op,
upload_images_to_comfyapi,
validate_string,
)
from folder_paths import get_output_directory
class MeshyTextToModelNode(IO.ComfyNode):
@@ -76,10 +79,8 @@ class MeshyTextToModelNode(IO.ComfyNode):
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DFBX.Output(display_name="FBX"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -121,20 +122,16 @@ class MeshyTextToModelNode(IO.ComfyNode):
seed=seed,
),
)
task_id = response.result
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{task_id}"),
ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{response.result}"),
response_model=MeshyModelResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
return IO.NodeOutput(
f"{task_id}.glb",
task_id,
await download_url_to_file_3d(result.model_urls.glb, "glb", task_id=task_id),
await download_url_to_file_3d(result.model_urls.fbx, "fbx", task_id=task_id),
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyRefineNode(IO.ComfyNode):
@@ -170,10 +167,8 @@ class MeshyRefineNode(IO.ComfyNode):
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DFBX.Output(display_name="FBX"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -215,20 +210,16 @@ class MeshyRefineNode(IO.ComfyNode):
ai_model=model,
),
)
task_id = response.result
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{task_id}"),
ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{response.result}"),
response_model=MeshyModelResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
return IO.NodeOutput(
f"{task_id}.glb",
task_id,
await download_url_to_file_3d(result.model_urls.glb, "glb", task_id=task_id),
await download_url_to_file_3d(result.model_urls.fbx, "fbx", task_id=task_id),
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyImageToModelNode(IO.ComfyNode):
@@ -312,10 +303,8 @@ class MeshyImageToModelNode(IO.ComfyNode):
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DFBX.Output(display_name="FBX"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -379,20 +368,16 @@ class MeshyImageToModelNode(IO.ComfyNode):
seed=seed,
),
)
task_id = response.result
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/image-to-3d/{task_id}"),
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/image-to-3d/{response.result}"),
response_model=MeshyModelResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
return IO.NodeOutput(
f"{task_id}.glb",
task_id,
await download_url_to_file_3d(result.model_urls.glb, "glb", task_id=task_id),
await download_url_to_file_3d(result.model_urls.fbx, "fbx", task_id=task_id),
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyMultiImageToModelNode(IO.ComfyNode):
@@ -479,10 +464,8 @@ class MeshyMultiImageToModelNode(IO.ComfyNode):
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DFBX.Output(display_name="FBX"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -548,20 +531,16 @@ class MeshyMultiImageToModelNode(IO.ComfyNode):
seed=seed,
),
)
task_id = response.result
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/multi-image-to-3d/{task_id}"),
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/multi-image-to-3d/{response.result}"),
response_model=MeshyModelResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
return IO.NodeOutput(
f"{task_id}.glb",
task_id,
await download_url_to_file_3d(result.model_urls.glb, "glb", task_id=task_id),
await download_url_to_file_3d(result.model_urls.fbx, "fbx", task_id=task_id),
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyRigModelNode(IO.ComfyNode):
@@ -592,10 +571,8 @@ class MeshyRigModelNode(IO.ComfyNode):
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("MESHY_RIGGED_TASK_ID").Output(display_name="rig_task_id"),
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DFBX.Output(display_name="FBX"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -629,20 +606,18 @@ class MeshyRigModelNode(IO.ComfyNode):
texture_image_url=texture_image_url,
),
)
task_id = response.result
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/rigging/{task_id}"),
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/rigging/{response.result}"),
response_model=MeshyRiggedResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
return IO.NodeOutput(
f"{task_id}.glb",
task_id,
await download_url_to_file_3d(result.result.rigged_character_glb_url, "glb", task_id=task_id),
await download_url_to_file_3d(result.result.rigged_character_fbx_url, "fbx", task_id=task_id),
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(
result.result.rigged_character_glb_url, os.path.join(get_output_directory(), model_file)
)
return IO.NodeOutput(model_file, response.result)
class MeshyAnimateModelNode(IO.ComfyNode):
@@ -665,9 +640,7 @@ class MeshyAnimateModelNode(IO.ComfyNode):
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DFBX.Output(display_name="FBX"),
IO.String.Output(display_name="model_file"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -696,19 +669,16 @@ class MeshyAnimateModelNode(IO.ComfyNode):
action_id=action_id,
),
)
task_id = response.result
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/animations/{task_id}"),
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/animations/{response.result}"),
response_model=MeshyAnimationResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
return IO.NodeOutput(
f"{task_id}.glb",
await download_url_to_file_3d(result.result.animation_glb_url, "glb", task_id=task_id),
await download_url_to_file_3d(result.result.animation_fbx_url, "fbx", task_id=task_id),
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.result.animation_glb_url, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyTextureNode(IO.ComfyNode):
@@ -745,10 +715,8 @@ class MeshyTextureNode(IO.ComfyNode):
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="meshy_task_id"),
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DFBX.Output(display_name="FBX"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -792,20 +760,16 @@ class MeshyTextureNode(IO.ComfyNode):
image_style_url=image_style_url,
),
)
task_id = response.result
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/retexture/{task_id}"),
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/retexture/{response.result}"),
response_model=MeshyModelResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
return IO.NodeOutput(
f"{task_id}.glb",
task_id,
await download_url_to_file_3d(result.model_urls.glb, "glb", task_id=task_id),
await download_url_to_file_3d(result.model_urls.fbx, "fbx", task_id=task_id),
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyExtension(ComfyExtension):

View File

@@ -10,6 +10,7 @@ import folder_paths as comfy_paths
import os
import logging
import math
from typing import Optional
from io import BytesIO
from typing_extensions import override
from PIL import Image
@@ -27,9 +28,8 @@ from comfy_api_nodes.util import (
poll_op,
ApiEndpoint,
download_url_to_bytesio,
download_url_to_file_3d,
)
from comfy_api.latest import ComfyExtension, IO, Types
from comfy_api.latest import ComfyExtension, IO
COMMON_PARAMETERS = [
@@ -177,7 +177,7 @@ def check_rodin_status(response: Rodin3DCheckStatusResponse) -> str:
return "DONE"
return "Generating"
def extract_progress(response: Rodin3DCheckStatusResponse) -> int | None:
def extract_progress(response: Rodin3DCheckStatusResponse) -> Optional[int]:
if not response.jobs:
return None
completed_count = sum(1 for job in response.jobs if job.status == JobStatus.Done)
@@ -207,25 +207,17 @@ async def get_rodin_download_list(uuid: str, cls: type[IO.ComfyNode]) -> Rodin3D
)
async def download_files(url_list, task_uuid: str) -> tuple[str | None, Types.File3D | None]:
async def download_files(url_list, task_uuid: str):
result_folder_name = f"Rodin3D_{task_uuid}"
save_path = os.path.join(comfy_paths.get_output_directory(), result_folder_name)
os.makedirs(save_path, exist_ok=True)
model_file_path = None
file_3d = None
for i in url_list.list:
file_path = os.path.join(save_path, i.name)
if i.name.lower().endswith(".glb"):
if file_path.endswith(".glb"):
model_file_path = os.path.join(result_folder_name, i.name)
file_3d = await download_url_to_file_3d(i.url, "glb")
# Save to disk for backward compatibility
with open(file_path, "wb") as f:
f.write(file_3d.get_bytes())
else:
await download_url_to_bytesio(i.url, file_path)
return model_file_path, file_3d
await download_url_to_bytesio(i.url, file_path)
return model_file_path
class Rodin3D_Regular(IO.ComfyNode):
@@ -242,10 +234,7 @@ class Rodin3D_Regular(IO.ComfyNode):
IO.Image.Input("Images"),
*COMMON_PARAMETERS,
],
outputs=[
IO.String.Output(display_name="3D Model Path"), # for backward compatibility only
IO.File3DGLB.Output(display_name="GLB"),
],
outputs=[IO.String.Output(display_name="3D Model Path")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
@@ -282,9 +271,9 @@ class Rodin3D_Regular(IO.ComfyNode):
)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model_path, file_3d = await download_files(download_list, task_uuid)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model_path, file_3d)
return IO.NodeOutput(model)
class Rodin3D_Detail(IO.ComfyNode):
@@ -301,10 +290,7 @@ class Rodin3D_Detail(IO.ComfyNode):
IO.Image.Input("Images"),
*COMMON_PARAMETERS,
],
outputs=[
IO.String.Output(display_name="3D Model Path"), # for backward compatibility only
IO.File3DGLB.Output(display_name="GLB"),
],
outputs=[IO.String.Output(display_name="3D Model Path")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
@@ -341,9 +327,9 @@ class Rodin3D_Detail(IO.ComfyNode):
)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model_path, file_3d = await download_files(download_list, task_uuid)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model_path, file_3d)
return IO.NodeOutput(model)
class Rodin3D_Smooth(IO.ComfyNode):
@@ -360,10 +346,7 @@ class Rodin3D_Smooth(IO.ComfyNode):
IO.Image.Input("Images"),
*COMMON_PARAMETERS,
],
outputs=[
IO.String.Output(display_name="3D Model Path"), # for backward compatibility only
IO.File3DGLB.Output(display_name="GLB"),
],
outputs=[IO.String.Output(display_name="3D Model Path")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
@@ -399,9 +382,9 @@ class Rodin3D_Smooth(IO.ComfyNode):
)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model_path, file_3d = await download_files(download_list, task_uuid)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model_path, file_3d)
return IO.NodeOutput(model)
class Rodin3D_Sketch(IO.ComfyNode):
@@ -425,10 +408,7 @@ class Rodin3D_Sketch(IO.ComfyNode):
optional=True,
),
],
outputs=[
IO.String.Output(display_name="3D Model Path"), # for backward compatibility only
IO.File3DGLB.Output(display_name="GLB"),
],
outputs=[IO.String.Output(display_name="3D Model Path")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
@@ -461,9 +441,9 @@ class Rodin3D_Sketch(IO.ComfyNode):
)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model_path, file_3d = await download_files(download_list, task_uuid)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model_path, file_3d)
return IO.NodeOutput(model)
class Rodin3D_Gen2(IO.ComfyNode):
@@ -495,10 +475,7 @@ class Rodin3D_Gen2(IO.ComfyNode):
),
IO.Boolean.Input("TAPose", default=False),
],
outputs=[
IO.String.Output(display_name="3D Model Path"), # for backward compatibility only
IO.File3DGLB.Output(display_name="GLB"),
],
outputs=[IO.String.Output(display_name="3D Model Path")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
@@ -534,9 +511,9 @@ class Rodin3D_Gen2(IO.ComfyNode):
)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model_path, file_3d = await download_files(download_list, task_uuid)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model_path, file_3d)
return IO.NodeOutput(model)
class Rodin3DExtension(ComfyExtension):

View File

@@ -1,6 +1,10 @@
import os
from typing import Optional
import torch
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api.latest import IO, ComfyExtension
from comfy_api_nodes.apis.tripo import (
TripoAnimateRetargetRequest,
TripoAnimateRigRequest,
@@ -22,11 +26,12 @@ from comfy_api_nodes.apis.tripo import (
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_file_3d,
download_url_as_bytesio,
poll_op,
sync_op,
upload_images_to_comfyapi,
)
from folder_paths import get_output_directory
def get_model_url_from_response(response: TripoTaskResponse) -> str:
@@ -40,7 +45,7 @@ def get_model_url_from_response(response: TripoTaskResponse) -> str:
async def poll_until_finished(
node_cls: type[IO.ComfyNode],
response: TripoTaskResponse,
average_duration: int | None = None,
average_duration: Optional[int] = None,
) -> IO.NodeOutput:
"""Polls the Tripo API endpoint until the task reaches a terminal state, then returns the response."""
if response.code != 0:
@@ -64,8 +69,12 @@ async def poll_until_finished(
)
if response_poll.data.status == TripoTaskStatus.SUCCESS:
url = get_model_url_from_response(response_poll)
file_glb = await download_url_to_file_3d(url, "glb", task_id=task_id)
return IO.NodeOutput(f"{task_id}.glb", task_id, file_glb)
bytesio = await download_url_as_bytesio(url)
# Save the downloaded model file
model_file = f"tripo_model_{task_id}.glb"
with open(os.path.join(get_output_directory(), model_file), "wb") as f:
f.write(bytesio.getvalue())
return IO.NodeOutput(model_file, task_id)
raise RuntimeError(f"Failed to generate mesh: {response_poll}")
@@ -98,9 +107,8 @@ class TripoTextToModelNode(IO.ComfyNode):
IO.Combo.Input("geometry_quality", default="standard", options=["standard", "detailed"], optional=True),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
IO.File3DGLB.Output(display_name="GLB"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -147,18 +155,18 @@ class TripoTextToModelNode(IO.ComfyNode):
async def execute(
cls,
prompt: str,
negative_prompt: str | None = None,
negative_prompt: Optional[str] = None,
model_version=None,
style: str | None = None,
texture: bool | None = None,
pbr: bool | None = None,
image_seed: int | None = None,
model_seed: int | None = None,
texture_seed: int | None = None,
texture_quality: str | None = None,
geometry_quality: str | None = None,
face_limit: int | None = None,
quad: bool | None = None,
style: Optional[str] = None,
texture: Optional[bool] = None,
pbr: Optional[bool] = None,
image_seed: Optional[int] = None,
model_seed: Optional[int] = None,
texture_seed: Optional[int] = None,
texture_quality: Optional[str] = None,
geometry_quality: Optional[str] = None,
face_limit: Optional[int] = None,
quad: Optional[bool] = None,
) -> IO.NodeOutput:
style_enum = None if style == "None" else style
if not prompt:
@@ -224,9 +232,8 @@ class TripoImageToModelNode(IO.ComfyNode):
IO.Combo.Input("geometry_quality", default="standard", options=["standard", "detailed"], optional=True),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
IO.File3DGLB.Output(display_name="GLB"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -272,19 +279,19 @@ class TripoImageToModelNode(IO.ComfyNode):
@classmethod
async def execute(
cls,
image: Input.Image,
model_version: str | None = None,
style: str | None = None,
texture: bool | None = None,
pbr: bool | None = None,
model_seed: int | None = None,
image: torch.Tensor,
model_version: Optional[str] = None,
style: Optional[str] = None,
texture: Optional[bool] = None,
pbr: Optional[bool] = None,
model_seed: Optional[int] = None,
orientation=None,
texture_seed: int | None = None,
texture_quality: str | None = None,
geometry_quality: str | None = None,
texture_alignment: str | None = None,
face_limit: int | None = None,
quad: bool | None = None,
texture_seed: Optional[int] = None,
texture_quality: Optional[str] = None,
geometry_quality: Optional[str] = None,
texture_alignment: Optional[str] = None,
face_limit: Optional[int] = None,
quad: Optional[bool] = None,
) -> IO.NodeOutput:
style_enum = None if style == "None" else style
if image is None:
@@ -361,9 +368,8 @@ class TripoMultiviewToModelNode(IO.ComfyNode):
IO.Combo.Input("geometry_quality", default="standard", options=["standard", "detailed"], optional=True),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
IO.File3DGLB.Output(display_name="GLB"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -405,21 +411,21 @@ class TripoMultiviewToModelNode(IO.ComfyNode):
@classmethod
async def execute(
cls,
image: Input.Image,
image_left: Input.Image | None = None,
image_back: Input.Image | None = None,
image_right: Input.Image | None = None,
model_version: str | None = None,
orientation: str | None = None,
texture: bool | None = None,
pbr: bool | None = None,
model_seed: int | None = None,
texture_seed: int | None = None,
texture_quality: str | None = None,
geometry_quality: str | None = None,
texture_alignment: str | None = None,
face_limit: int | None = None,
quad: bool | None = None,
image: torch.Tensor,
image_left: Optional[torch.Tensor] = None,
image_back: Optional[torch.Tensor] = None,
image_right: Optional[torch.Tensor] = None,
model_version: Optional[str] = None,
orientation: Optional[str] = None,
texture: Optional[bool] = None,
pbr: Optional[bool] = None,
model_seed: Optional[int] = None,
texture_seed: Optional[int] = None,
texture_quality: Optional[str] = None,
geometry_quality: Optional[str] = None,
texture_alignment: Optional[str] = None,
face_limit: Optional[int] = None,
quad: Optional[bool] = None,
) -> IO.NodeOutput:
if image is None:
raise RuntimeError("front image for multiview is required")
@@ -481,9 +487,8 @@ class TripoTextureNode(IO.ComfyNode):
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
IO.File3DGLB.Output(display_name="GLB"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -507,11 +512,11 @@ class TripoTextureNode(IO.ComfyNode):
async def execute(
cls,
model_task_id,
texture: bool | None = None,
pbr: bool | None = None,
texture_seed: int | None = None,
texture_quality: str | None = None,
texture_alignment: str | None = None,
texture: Optional[bool] = None,
pbr: Optional[bool] = None,
texture_seed: Optional[int] = None,
texture_quality: Optional[str] = None,
texture_alignment: Optional[str] = None,
) -> IO.NodeOutput:
response = await sync_op(
cls,
@@ -542,9 +547,8 @@ class TripoRefineNode(IO.ComfyNode):
IO.Custom("MODEL_TASK_ID").Input("model_task_id", tooltip="Must be a v1.4 Tripo model"),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
IO.File3DGLB.Output(display_name="GLB"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -579,9 +583,8 @@ class TripoRigNode(IO.ComfyNode):
category="api node/3d/Tripo",
inputs=[IO.Custom("MODEL_TASK_ID").Input("original_model_task_id")],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("RIG_TASK_ID").Output(display_name="rig task_id"),
IO.File3DGLB.Output(display_name="GLB"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
@@ -639,9 +642,8 @@ class TripoRetargetNode(IO.ComfyNode):
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.String.Output(display_name="model_file"),
IO.Custom("RETARGET_TASK_ID").Output(display_name="retarget task_id"),
IO.File3DGLB.Output(display_name="GLB"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,

View File

@@ -28,7 +28,6 @@ from .conversions import (
from .download_helpers import (
download_url_as_bytesio,
download_url_to_bytesio,
download_url_to_file_3d,
download_url_to_image_tensor,
download_url_to_video_output,
)
@@ -70,7 +69,6 @@ __all__ = [
# Download helpers
"download_url_as_bytesio",
"download_url_to_bytesio",
"download_url_to_file_3d",
"download_url_to_image_tensor",
"download_url_to_video_output",
# Conversions

View File

@@ -11,8 +11,7 @@ import torch
from aiohttp.client_exceptions import ClientError, ContentTypeError
from comfy_api.latest import IO as COMFY_IO
from comfy_api.latest import InputImpl, Types
from folder_paths import get_output_directory
from comfy_api.latest import InputImpl
from . import request_logger
from ._helpers import (
@@ -262,38 +261,3 @@ def _generate_operation_id(method: str, url: str, attempt: int) -> str:
except Exception:
slug = "download"
return f"{method}_{slug}_try{attempt}_{uuid.uuid4().hex[:8]}"
async def download_url_to_file_3d(
url: str,
file_format: str,
*,
task_id: str | None = None,
timeout: float | None = None,
max_retries: int = 5,
cls: type[COMFY_IO.ComfyNode] = None,
) -> Types.File3D:
"""Downloads a 3D model file from a URL into memory as BytesIO.
If task_id is provided, also writes the file to disk in the output directory
for backward compatibility with the old save-to-disk behavior.
"""
file_format = file_format.lstrip(".").lower()
data = BytesIO()
await download_url_to_bytesio(
url,
data,
timeout=timeout,
max_retries=max_retries,
cls=cls,
)
if task_id is not None:
# This is only for backward compatability with current behavior when every 3D node is output node
# All new API nodes should not use "task_id" and instead users should use "SaveGLB" node to save results
output_dir = Path(get_output_directory())
output_path = output_dir / f"{task_id}.{file_format}"
output_path.write_bytes(data.getvalue())
data.seek(0)
return Types.File3D(source=data, file_format=file_format)

View File

@@ -94,7 +94,7 @@ async def upload_image_to_comfyapi(
*,
mime_type: str | None = None,
wait_label: str | None = "Uploading",
total_pixels: int | None = 2048 * 2048,
total_pixels: int = 2048 * 2048,
) -> str:
"""Uploads a single image to ComfyUI API and returns its download URL."""
return (

View File

@@ -28,39 +28,12 @@ class TextEncodeAceStepAudio(io.ComfyNode):
conditioning = node_helpers.conditioning_set_values(conditioning, {"lyrics_strength": lyrics_strength})
return io.NodeOutput(conditioning)
class TextEncodeAceStepAudio15(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="TextEncodeAceStepAudio1.5",
category="conditioning",
inputs=[
io.Clip.Input("clip"),
io.String.Input("tags", multiline=True, dynamic_prompts=True),
io.String.Input("lyrics", multiline=True, dynamic_prompts=True),
io.Int.Input("seed", default=0, min=0, max=0xffffffffffffffff, control_after_generate=True),
io.Int.Input("bpm", default=120, min=10, max=300),
io.Float.Input("duration", default=120.0, min=0.0, max=2000.0, step=0.1),
io.Combo.Input("timesignature", options=['2', '3', '4', '6']),
io.Combo.Input("language", options=["en", "ja", "zh", "es", "de", "fr", "pt", "ru", "it", "nl", "pl", "tr", "vi", "cs", "fa", "id", "ko", "uk", "hu", "ar", "sv", "ro", "el"]),
io.Combo.Input("keyscale", options=[f"{root} {quality}" for quality in ["major", "minor"] for root in ["C", "C#", "Db", "D", "D#", "Eb", "E", "F", "F#", "Gb", "G", "G#", "Ab", "A", "A#", "Bb", "B"]]),
],
outputs=[io.Conditioning.Output()],
)
@classmethod
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed)
conditioning = clip.encode_from_tokens_scheduled(tokens)
return io.NodeOutput(conditioning)
class EmptyAceStepLatentAudio(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="EmptyAceStepLatentAudio",
display_name="Empty Ace Step 1.0 Latent Audio",
category="latent/audio",
inputs=[
io.Float.Input("seconds", default=120.0, min=1.0, max=1000.0, step=0.1),
@@ -78,60 +51,12 @@ class EmptyAceStepLatentAudio(io.ComfyNode):
return io.NodeOutput({"samples": latent, "type": "audio"})
class EmptyAceStep15LatentAudio(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="EmptyAceStep1.5LatentAudio",
display_name="Empty Ace Step 1.5 Latent Audio",
category="latent/audio",
inputs=[
io.Float.Input("seconds", default=120.0, min=1.0, max=1000.0, step=0.01),
io.Int.Input(
"batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."
),
],
outputs=[io.Latent.Output()],
)
@classmethod
def execute(cls, seconds, batch_size) -> io.NodeOutput:
length = round((seconds * 48000 / 1920))
latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device())
return io.NodeOutput({"samples": latent, "type": "audio"})
class ReferenceTimbreAudio(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ReferenceTimbreAudio",
category="advanced/conditioning/audio",
is_experimental=True,
description="This node sets the reference audio for timbre (for ace step 1.5)",
inputs=[
io.Conditioning.Input("conditioning"),
io.Latent.Input("latent", optional=True),
],
outputs=[
io.Conditioning.Output(),
]
)
@classmethod
def execute(cls, conditioning, latent=None) -> io.NodeOutput:
if latent is not None:
conditioning = node_helpers.conditioning_set_values(conditioning, {"reference_audio_timbre_latents": [latent["samples"]]}, append=True)
return io.NodeOutput(conditioning)
class AceExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
TextEncodeAceStepAudio,
EmptyAceStepLatentAudio,
TextEncodeAceStepAudio15,
EmptyAceStep15LatentAudio,
ReferenceTimbreAudio,
]
async def comfy_entrypoint() -> AceExtension:

View File

@@ -82,14 +82,13 @@ class VAEEncodeAudio(IO.ComfyNode):
@classmethod
def execute(cls, vae, audio) -> IO.NodeOutput:
sample_rate = audio["sample_rate"]
vae_sample_rate = getattr(vae, "audio_sample_rate", 44100)
if vae_sample_rate != sample_rate:
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, vae_sample_rate)
if 44100 != sample_rate:
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
else:
waveform = audio["waveform"]
t = vae.encode(waveform.movedim(1, -1))
return IO.NodeOutput({"samples": t})
return IO.NodeOutput({"samples":t})
encode = execute # TODO: remove
@@ -115,8 +114,7 @@ class VAEDecodeAudio(IO.ComfyNode):
std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
std[std < 1.0] = 1.0
audio /= std
vae_sample_rate = getattr(vae, "audio_sample_rate", 44100)
return IO.NodeOutput({"waveform": audio, "sample_rate": vae_sample_rate if "sample_rate" not in samples else samples["sample_rate"]})
return IO.NodeOutput({"waveform": audio, "sample_rate": 44100 if "sample_rate" not in samples else samples["sample_rate"]})
decode = execute # TODO: remove

View File

@@ -622,20 +622,14 @@ class SaveGLB(IO.ComfyNode):
category="3d",
is_output_node=True,
inputs=[
IO.MultiType.Input(
IO.Mesh.Input("mesh"),
types=[
IO.File3DGLB,
],
tooltip="Mesh or GLB file to save",
),
IO.Mesh.Input("mesh"),
IO.String.Input("filename_prefix", default="mesh/ComfyUI"),
],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo]
)
@classmethod
def execute(cls, mesh: Types.MESH | Types.File3D, filename_prefix: str) -> IO.NodeOutput:
def execute(cls, mesh, filename_prefix) -> IO.NodeOutput:
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
results = []
@@ -647,26 +641,15 @@ class SaveGLB(IO.ComfyNode):
for x in cls.hidden.extra_pnginfo:
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
if isinstance(mesh, Types.File3D):
# Handle File3D input - save BytesIO data to output folder
for i in range(mesh.vertices.shape[0]):
f = f"{filename}_{counter:05}_.glb"
mesh.save_to(os.path.join(full_output_folder, f))
save_glb(mesh.vertices[i], mesh.faces[i], os.path.join(full_output_folder, f), metadata)
results.append({
"filename": f,
"subfolder": subfolder,
"type": "output"
})
else:
# Handle Mesh input - save vertices and faces as GLB
for i in range(mesh.vertices.shape[0]):
f = f"{filename}_{counter:05}_.glb"
save_glb(mesh.vertices[i], mesh.faces[i], os.path.join(full_output_folder, f), metadata)
results.append({
"filename": f,
"subfolder": subfolder,
"type": "output"
})
counter += 1
counter += 1
return IO.NodeOutput(ui={"3d": results})

View File

@@ -1,10 +1,9 @@
import nodes
import folder_paths
import os
import uuid
from typing_extensions import override
from comfy_api.latest import IO, UI, ComfyExtension, InputImpl, Types
from comfy_api.latest import IO, ComfyExtension, InputImpl, UI
from pathlib import Path
@@ -82,19 +81,7 @@ class Preview3D(IO.ComfyNode):
is_experimental=True,
is_output_node=True,
inputs=[
IO.MultiType.Input(
IO.String.Input("model_file", default="", multiline=False),
types=[
IO.File3DGLB,
IO.File3DGLTF,
IO.File3DFBX,
IO.File3DOBJ,
IO.File3DSTL,
IO.File3DUSDZ,
IO.File3DAny,
],
tooltip="3D model file or path string",
),
IO.String.Input("model_file", default="", multiline=False),
IO.Load3DCamera.Input("camera_info", optional=True),
IO.Image.Input("bg_image", optional=True),
],
@@ -102,15 +89,10 @@ class Preview3D(IO.ComfyNode):
)
@classmethod
def execute(cls, model_file: str | Types.File3D, **kwargs) -> IO.NodeOutput:
if isinstance(model_file, Types.File3D):
filename = f"preview3d_{uuid.uuid4().hex}.{model_file.format}"
model_file.save_to(os.path.join(folder_paths.get_output_directory(), filename))
else:
filename = model_file
def execute(cls, model_file, **kwargs) -> IO.NodeOutput:
camera_info = kwargs.get("camera_info", None)
bg_image = kwargs.get("bg_image", None)
return IO.NodeOutput(ui=UI.PreviewUI3D(filename, camera_info, bg_image=bg_image))
return IO.NodeOutput(ui=UI.PreviewUI3D(model_file, camera_info, bg_image=bg_image))
process = execute # TODO: remove

View File

@@ -267,9 +267,9 @@ class ModelPatchLoader:
device=comfy.model_management.unet_offload_device(),
operations=comfy.ops.manual_cast)
model_patcher = comfy.model_patcher.CoreModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
model.load_state_dict(sd, assign=model_patcher.is_dynamic())
return (model_patcher,)
model.load_state_dict(sd)
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
return (model,)
class DiffSynthCnetPatch:

View File

@@ -0,0 +1,132 @@
from __future__ import annotations
import hashlib
import os
import numpy as np
import torch
from PIL import Image
import folder_paths
import node_helpers
from comfy_api.latest import ComfyExtension, io
from typing_extensions import override
def hex_to_rgb(hex_color: str) -> tuple[float, float, float]:
hex_color = hex_color.lstrip("#")
if len(hex_color) != 6:
return (0.0, 0.0, 0.0)
r = int(hex_color[0:2], 16) / 255.0
g = int(hex_color[2:4], 16) / 255.0
b = int(hex_color[4:6], 16) / 255.0
return (r, g, b)
class PainterNode(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="Painter",
display_name="Painter",
category="image",
inputs=[
io.Image.Input(
"image",
optional=True,
tooltip="Optional base image to paint over",
),
io.String.Input(
"mask",
default="",
socketless=True,
extra_dict={"widgetType": "PAINTER", "image_upload": True},
),
io.Int.Input(
"width",
default=512,
min=64,
max=4096,
step=64,
socketless=True,
extra_dict={"hidden": True},
),
io.Int.Input(
"height",
default=512,
min=64,
max=4096,
step=64,
socketless=True,
extra_dict={"hidden": True},
),
io.String.Input(
"bg_color",
default="#000000",
socketless=True,
extra_dict={"hidden": True, "widgetType": "COLOR"},
),
],
outputs=[
io.Image.Output("IMAGE"),
io.Mask.Output("MASK"),
],
)
@classmethod
def execute(cls, mask, width, height, bg_color="#000000", image=None) -> io.NodeOutput:
if image is not None:
h, w = image.shape[1], image.shape[2]
base_image = image
else:
h, w = height, width
r, g, b = hex_to_rgb(bg_color)
base_image = torch.zeros((1, h, w, 3), dtype=torch.float32)
base_image[0, :, :, 0] = r
base_image[0, :, :, 1] = g
base_image[0, :, :, 2] = b
if mask and mask.strip():
mask_path = folder_paths.get_annotated_filepath(mask)
painter_img = node_helpers.pillow(Image.open, mask_path)
painter_img = painter_img.convert("RGBA")
if painter_img.size != (w, h):
painter_img = painter_img.resize((w, h), Image.LANCZOS)
painter_np = np.array(painter_img).astype(np.float32) / 255.0
painter_rgb = painter_np[:, :, :3]
painter_alpha = painter_np[:, :, 3:4]
mask_tensor = torch.from_numpy(painter_np[:, :, 3]).unsqueeze(0)
base_np = base_image[0].cpu().numpy()
composited = painter_rgb * painter_alpha + base_np * (1.0 - painter_alpha)
out_image = torch.from_numpy(composited).unsqueeze(0)
else:
mask_tensor = torch.zeros((1, h, w), dtype=torch.float32)
out_image = base_image
return io.NodeOutput(out_image, mask_tensor)
@classmethod
def fingerprint_inputs(cls, mask, width, height, bg_color="#000000", image=None):
if mask and mask.strip():
mask_path = folder_paths.get_annotated_filepath(mask)
if os.path.exists(mask_path):
m = hashlib.sha256()
with open(mask_path, "rb") as f:
m.update(f.read())
return m.digest().hex()
return ""
class PainterExtension(ComfyExtension):
@override
async def get_node_list(self):
return [PainterNode]
async def comfy_entrypoint():
return PainterExtension()

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.12.1"
__version__ = "0.11.1"

View File

@@ -1,10 +1,8 @@
import os
import importlib.util
from comfy.cli_args import args, PerformanceFeature, enables_dynamic_vram
from comfy.cli_args import args, PerformanceFeature
import subprocess
import comfy_aimdo.control
#Can't use pytorch to get the GPU names because the cuda malloc has to be set before the first import.
def get_gpu_names():
if os.name == 'nt':
@@ -87,14 +85,8 @@ if not args.cuda_malloc:
except:
pass
if enables_dynamic_vram() and comfy_aimdo.control.init():
args.cuda_malloc = False
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ""
if args.disable_cuda_malloc:
args.cuda_malloc = False
if args.cuda_malloc:
if args.cuda_malloc and not args.disable_cuda_malloc:
env_var = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', None)
if env_var is None:
env_var = "backend:cudaMallocAsync"

View File

@@ -9,11 +9,9 @@ import traceback
from enum import Enum
from typing import List, Literal, NamedTuple, Optional, Union
import asyncio
from contextlib import nullcontext
import torch
import comfy.memory_management
import comfy.model_management
from latent_preview import set_preview_method
import nodes
@@ -517,19 +515,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
def pre_execute_cb(call_index):
# TODO - How to handle this with async functions without contextvars (which requires Python 3.12)?
GraphBuilder.set_default_prefix(unique_id, call_index, 0)
#Do comfy_aimdo mempool chunking here on the per-node level. Multi-model workflows
#will cause all sorts of incompatible memory shapes to fragment the pytorch alloc
#that we just want to cull out each model run.
allocator = comfy.memory_management.aimdo_allocator
with nullcontext() if allocator is None else torch.cuda.use_mem_pool(torch.cuda.MemPool(allocator.allocator())):
try:
output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data)
finally:
if allocator is not None:
comfy.model_management.reset_cast_buffers()
torch.cuda.synchronize()
output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data)
if has_pending_tasks:
pending_async_nodes[unique_id] = output_data
unblock = execution_list.add_external_block(unique_id)
@@ -1014,34 +1000,22 @@ async def validate_prompt(prompt_id, prompt, partial_execution_list: Union[list[
outputs = set()
for x in prompt:
if 'class_type' not in prompt[x]:
node_data = prompt[x]
node_title = node_data.get('_meta', {}).get('title')
error = {
"type": "missing_node_type",
"message": f"Node '{node_title or f'ID #{x}'}' has no class_type. The workflow may be corrupted or a custom node is missing.",
"type": "invalid_prompt",
"message": "Cannot execute because a node is missing the class_type property.",
"details": f"Node ID '#{x}'",
"extra_info": {
"node_id": x,
"class_type": None,
"node_title": node_title
}
"extra_info": {}
}
return (False, error, [], {})
class_type = prompt[x]['class_type']
class_ = nodes.NODE_CLASS_MAPPINGS.get(class_type, None)
if class_ is None:
node_data = prompt[x]
node_title = node_data.get('_meta', {}).get('title', class_type)
error = {
"type": "missing_node_type",
"message": f"Node '{node_title}' not found. The custom node may not be installed.",
"type": "invalid_prompt",
"message": f"Cannot execute because node {class_type} does not exist.",
"details": f"Node ID '#{x}'",
"extra_info": {
"node_id": x,
"class_type": class_type,
"node_title": node_title
}
"extra_info": {}
}
return (False, error, [], {})

30
main.py
View File

@@ -5,7 +5,7 @@ import os
import importlib.util
import folder_paths
import time
from comfy.cli_args import args, enables_dynamic_vram
from comfy.cli_args import args
from app.logger import setup_logger
from app.assets.scanner import seed_assets
import itertools
@@ -173,7 +173,6 @@ import gc
if 'torch' in sys.modules:
logging.warning("WARNING: Potential Error in code: Torch already imported, torch should never be imported before this point.")
import comfy.utils
import execution
@@ -185,33 +184,6 @@ import comfyui_version
import app.logger
import hook_breaker_ac10a0
import comfy.memory_management
import comfy.model_patcher
import comfy_aimdo.control
import comfy_aimdo.torch
if enables_dynamic_vram():
if comfy_aimdo.control.init_device(comfy.model_management.get_torch_device().index):
if args.verbose == 'DEBUG':
comfy_aimdo.control.set_log_debug()
elif args.verbose == 'CRITICAL':
comfy_aimdo.control.set_log_critical()
elif args.verbose == 'ERROR':
comfy_aimdo.control.set_log_error()
elif args.verbose == 'WARNING':
comfy_aimdo.control.set_log_warning()
else: #INFO
comfy_aimdo.control.set_log_info()
comfy.model_patcher.CoreModelPatcher = comfy.model_patcher.ModelPatcherDynamic
comfy.memory_management.aimdo_allocator = comfy_aimdo.torch.get_torch_allocator()
logging.info("DynamicVRAM support detected and enabled")
else:
logging.info("No working comfy-aimdo install detected. DynamicVRAM support disabled. Falling back to legacy ModelPatcher. VRAM estimates may be unreliable especially on Windows")
comfy.memory_management.aimdo_allocator = None
def cuda_malloc_warning():
device = comfy.model_management.get_torch_device()
device_name = comfy.model_management.get_torch_device_name(device)

View File

@@ -1001,7 +1001,7 @@ class DualCLIPLoader:
def INPUT_TYPES(s):
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "ltxv", "newbie", "ace"], ),
"type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "ltxv", "newbie"], ),
},
"optional": {
"device": (["default", "cpu"], {"advanced": True}),
@@ -2433,7 +2433,8 @@ async def init_builtin_extra_nodes():
"nodes_image_compare.py",
"nodes_zimage.py",
"nodes_lora_debug.py",
"nodes_color.py"
"nodes_color.py",
"nodes_painter.py"
]
import_failed = []

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.12.1"
version = "0.11.1"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.10"

View File

@@ -1,5 +1,5 @@
comfyui-frontend-package==1.37.11
comfyui-workflow-templates==0.8.31
comfyui-workflow-templates==0.8.27
comfyui-embedded-docs==0.4.0
torch
torchsde
@@ -22,7 +22,6 @@ alembic
SQLAlchemy
av>=14.2.0
comfy-kitchen>=0.2.7
comfy-aimdo>=0.1.7
requests
#non essential dependencies: