Compare commits

..

10 Commits

Author SHA1 Message Date
comfyanonymous
cb459573c8 ComfyUI v0.12.3 2026-02-05 01:13:35 -05:00
comfyanonymous
35183543e0 Add VAE tiled decode node for audio. (#12299) 2026-02-05 01:12:04 -05:00
blepping
a246cc02b2 Improvements to ACE-Steps 1.5 text encoding (#12283) 2026-02-05 00:17:37 -05:00
comfyanonymous
a50c32d63f Disable sage attention on ace step 1.5 (#12297) 2026-02-04 22:15:30 -05:00
comfyanonymous
6125b80979 Add llm sampling options and make reference audio work on ace step 1.5 (#12295) 2026-02-04 21:29:22 -05:00
comfyanonymous
c8fcbd66ee Try to fix ace text encoder slowness on some configs. (#12290) 2026-02-04 19:37:05 -05:00
comfyanonymous
26dd7eb421 Fix ace step nan issue on some hardware/pytorch configs. (#12289) 2026-02-04 18:25:06 -05:00
Alexander Piskun
e77b34dfea add File3DAny output to Load3D node; extend SaveGLB to accept File3DAny as input (#12276)
* add File3DAny output to Load3D node; extend SaveGLB node to accept File3DAny as input

* fix(grammar): capitalize letter
2026-02-04 11:35:38 -08:00
rattus
ef73070ea4 mp: Fix checkpoint saving (#12268)
Fix regression in the recent model saving refactor. Pass the non unet
pieces down the layers so that checkpoints are complete.
2026-02-04 02:08:45 -05:00
rattus
d30c609f5a utils: safetensors: dont slice data on torch level (#12266)
Torch has alignment enforcement when viewing with data type changes
but only relative to itself. Do all tensor constructions straight
off the memory-view individually so pytorch doesnt see an alignment
problem.

The is needed for handling misaligned safetensors weights, which are
reasonably common in third party models.

This limits usage of this safetensors loader to GPU compute only
as CPUs kernnel are very likely to bus error. But it works for
dynamic_vram, where we really dont want to take a deep copy and we
always use GPU copy_ which disentangles the misalignment.
2026-02-04 01:48:47 -05:00
15 changed files with 163 additions and 54 deletions

View File

@@ -183,7 +183,7 @@ class AceStepAttention(nn.Module):
else:
attn_bias = window_bias
attn_output = optimized_attention(query_states, key_states, value_states, self.num_heads, attn_bias, skip_reshape=True)
attn_output = optimized_attention(query_states, key_states, value_states, self.num_heads, attn_bias, skip_reshape=True, low_precision_attention=False)
attn_output = self.o_proj(attn_output)
return attn_output
@@ -1035,8 +1035,7 @@ class AceStepConditionGenerationModel(nn.Module):
audio_codes = torch.nn.functional.pad(audio_codes, (0, math.ceil(src_latents.shape[1] / 5) - audio_codes.shape[1]), "constant", 35847)
lm_hints_5Hz = self.tokenizer.quantizer.get_output_from_indices(audio_codes, dtype=text_hidden_states.dtype)
else:
assert False
# TODO ?
lm_hints_5Hz, indices = self.tokenizer.tokenize(refer_audio_acoustic_hidden_states_packed)
lm_hints = self.detokenizer(lm_hints_5Hz)

View File

@@ -524,6 +524,9 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
@wrap_attn
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
if kwargs.get("low_precision_attention", True) is False:
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=skip_reshape, skip_output_reshape=skip_output_reshape, **kwargs)
exception_fallback = False
if skip_reshape:
b, _, _, dim_head = q.shape

View File

@@ -1548,6 +1548,7 @@ class ACEStep15(BaseModel):
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
device = kwargs["device"]
noise = kwargs["noise"]
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
@@ -1571,15 +1572,19 @@ class ACEStep15(BaseModel):
1.4844e-01, 9.4727e-02, 3.8477e-01, -1.2578e+00, -3.3203e-01,
-8.5547e-01, 4.3359e-01, 4.2383e-01, -8.9453e-01, -5.0391e-01,
-5.6152e-02, -2.9219e+00, -2.4658e-02, 5.0391e-01, 9.8438e-01,
7.2754e-02, -2.1582e-01, 6.3672e-01, 1.0000e+00]]], device=device).movedim(-1, 1).repeat(1, 1, 750)
7.2754e-02, -2.1582e-01, 6.3672e-01, 1.0000e+00]]], device=device).movedim(-1, 1).repeat(1, 1, noise.shape[2])
pass_audio_codes = True
else:
refer_audio = refer_audio[-1]
refer_audio = refer_audio[-1][:, :, :noise.shape[2]]
pass_audio_codes = False
if pass_audio_codes:
audio_codes = kwargs.get("audio_codes", None)
if audio_codes is not None:
out['audio_codes'] = comfy.conds.CONDRegular(torch.tensor(audio_codes, device=device))
refer_audio = refer_audio[:, :, :750]
out['refer_audio'] = comfy.conds.CONDRegular(refer_audio)
audio_codes = kwargs.get("audio_codes", None)
if audio_codes is not None:
out['audio_codes'] = comfy.conds.CONDRegular(torch.tensor(audio_codes, device=device))
return out
class Omnigen2(BaseModel):

View File

@@ -1400,7 +1400,7 @@ class ModelPatcher:
continue
key = "diffusion_model." + k
unet_state_dict[k] = LazyCastingParam(self, key, comfy.utils.get_attr(self.model, key))
return self.model.state_dict_for_saving(unet_state_dict)
return self.model.state_dict_for_saving(unet_state_dict, clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict)
def __del__(self):
self.unpin_all_weights()

View File

@@ -54,6 +54,8 @@ try:
SDPA_BACKEND_PRIORITY.insert(0, SDPBackend.CUDNN_ATTENTION)
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
if q.nelement() < 1024 * 128: # arbitrary number, for small inputs cudnn attention seems slower
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
with sdpa_kernel(SDPA_BACKEND_PRIORITY, set_priority=True):
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
else:

View File

@@ -976,7 +976,7 @@ class VAE:
if overlap is not None:
args["overlap"] = overlap
if dims == 1:
if dims == 1 or self.extra_1d_channel is not None:
args.pop("tile_y")
output = self.decode_tiled_1d(samples, **args)
elif dims == 2:

View File

@@ -3,6 +3,7 @@ import comfy.text_encoders.llama
from comfy import sd1_clip
import torch
import math
import yaml
import comfy.utils
@@ -101,9 +102,7 @@ def sample_manual_loop_no_classes(
return output_audio_codes
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0):
cfg_scale = 2.0
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0):
positive = [[token for token, _ in inner_list] for inner_list in positive]
negative = [[token for token, _ in inner_list] for inner_list in negative]
positive = positive[0]
@@ -120,34 +119,80 @@ def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=102
positive = [model.special_tokens["pad"]] * pos_pad + positive
paddings = [pos_pad, neg_pad]
return sample_manual_loop_no_classes(model, [positive, negative], paddings, cfg_scale=cfg_scale, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
return sample_manual_loop_no_classes(model, [positive, negative], paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_06b", tokenizer=Qwen3Tokenizer)
def _metas_to_cot(self, *, return_yaml: bool = False, **kwargs) -> str:
user_metas = {
k: kwargs.pop(k)
for k in ("bpm", "duration", "keyscale", "timesignature", "language", "caption")
if k in kwargs
}
timesignature = user_metas.get("timesignature")
if isinstance(timesignature, str) and timesignature.endswith("/4"):
user_metas["timesignature"] = timesignature.rsplit("/", 1)[0]
user_metas = {
k: v if not isinstance(v, str) or not v.isdigit() else int(v)
for k, v in user_metas.items()
if v not in {"unspecified", None}
}
if len(user_metas):
meta_yaml = yaml.dump(user_metas, allow_unicode=True, sort_keys=True).strip()
else:
meta_yaml = ""
return f"<think>\n{meta_yaml}\n</think>" if not return_yaml else meta_yaml
def _metas_to_cap(self, **kwargs) -> str:
use_keys = ("bpm", "duration", "keyscale", "timesignature")
user_metas = { k: kwargs.pop(k, "N/A") for k in use_keys }
duration = user_metas["duration"]
if duration == "N/A":
user_metas["duration"] = "30 seconds"
elif isinstance(duration, (str, int, float)):
user_metas["duration"] = f"{math.ceil(float(duration))} seconds"
else:
raise TypeError("Unexpected type for duration key, must be str, int or float")
return "\n".join(f"- {k}: {user_metas[k]}" for k in use_keys)
def tokenize_with_weights(self, text, return_word_ids=False, **kwargs):
out = {}
lyrics = kwargs.get("lyrics", "")
bpm = kwargs.get("bpm", 120)
duration = kwargs.get("duration", 120)
keyscale = kwargs.get("keyscale", "C major")
timesignature = kwargs.get("timesignature", 2)
language = kwargs.get("language", "en")
language = kwargs.get("language")
seed = kwargs.get("seed", 0)
generate_audio_codes = kwargs.get("generate_audio_codes", True)
cfg_scale = kwargs.get("cfg_scale", 2.0)
temperature = kwargs.get("temperature", 0.85)
top_p = kwargs.get("top_p", 0.9)
top_k = kwargs.get("top_k", 0.0)
duration = math.ceil(duration)
meta_lm = 'bpm: {}\nduration: {}\nkeyscale: {}\ntimesignature: {}'.format(bpm, duration, keyscale, timesignature)
lm_template = "<|im_start|>system\n# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n<|im_end|>\n<|im_start|>user\n# Caption\n{}\n{}\n<|im_end|>\n<|im_start|>assistant\n<think>\n{}\n</think>\n\n<|im_end|>\n"
kwargs["duration"] = duration
meta_cap = '- bpm: {}\n- timesignature: {}\n- keyscale: {}\n- duration: {}\n'.format(bpm, timesignature, keyscale, duration)
out["lm_prompt"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, meta_lm), disable_weights=True)
out["lm_prompt_negative"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, ""), disable_weights=True)
cot_text = self._metas_to_cot(caption = text, **kwargs)
meta_cap = self._metas_to_cap(**kwargs)
out["lyrics"] = self.qwen3_06b.tokenize_with_weights("# Languages\n{}\n\n# Lyric{}<|endoftext|><|endoftext|>".format(language, lyrics), return_word_ids, disable_weights=True, **kwargs)
out["qwen3_06b"] = self.qwen3_06b.tokenize_with_weights("# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n# Caption\n{}# Metas\n{}<|endoftext|>\n<|endoftext|>".format(text, meta_cap), return_word_ids, **kwargs)
out["lm_metadata"] = {"min_tokens": duration * 5, "seed": seed}
lm_template = "<|im_start|>system\n# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n<|im_end|>\n<|im_start|>user\n# Caption\n{}\n# Lyric\n{}\n<|im_end|>\n<|im_start|>assistant\n{}\n<|im_end|>\n"
out["lm_prompt"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, cot_text), disable_weights=True)
out["lm_prompt_negative"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, "<think>\n</think>"), disable_weights=True)
out["lyrics"] = self.qwen3_06b.tokenize_with_weights("# Languages\n{}\n\n# Lyric\n{}<|endoftext|><|endoftext|>".format(language if language is not None else "", lyrics), return_word_ids, disable_weights=True, **kwargs)
out["qwen3_06b"] = self.qwen3_06b.tokenize_with_weights("# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n# Caption\n{}\n# Metas\n{}\n<|endoftext|>\n<|endoftext|>".format(text, meta_cap), return_word_ids, **kwargs)
out["lm_metadata"] = {"min_tokens": duration * 5,
"seed": seed,
"generate_audio_codes": generate_audio_codes,
"cfg_scale": cfg_scale,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
}
return out
@@ -203,10 +248,14 @@ class ACE15TEModel(torch.nn.Module):
self.qwen3_06b.set_clip_options({"layer": [0]})
lyrics_embeds, _, extra_l = self.qwen3_06b.encode_token_weights(token_weight_pairs_lyrics)
lm_metadata = token_weight_pairs["lm_metadata"]
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"])
out = {"conditioning_lyrics": lyrics_embeds[:, 0]}
return base_out, None, {"conditioning_lyrics": lyrics_embeds[:, 0], "audio_codes": [audio_codes]}
lm_metadata = token_weight_pairs["lm_metadata"]
if lm_metadata["generate_audio_codes"]:
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"])
out["audio_codes"] = [audio_codes]
return base_out, None, out
def set_clip_options(self, options):
self.qwen3_06b.set_clip_options(options)

View File

@@ -651,10 +651,10 @@ class Llama2_(nn.Module):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, seq_len, attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), torch.finfo(x.dtype).min)
mask = mask.masked_fill(mask.to(torch.bool), torch.finfo(x.dtype).min / 4)
if seq_len > 1:
causal_mask = torch.empty(past_len + seq_len, past_len + seq_len, dtype=x.dtype, device=x.device).fill_(torch.finfo(x.dtype).min).triu_(1)
causal_mask = torch.empty(past_len + seq_len, past_len + seq_len, dtype=x.dtype, device=x.device).fill_(torch.finfo(x.dtype).min / 4).triu_(1)
if mask is not None:
mask += causal_mask
else:

View File

@@ -82,14 +82,12 @@ _TYPES = {
def load_safetensors(ckpt):
f = open(ckpt, "rb")
mapping = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
mv = memoryview(mapping)
header_size = struct.unpack("<Q", mapping[:8])[0]
header = json.loads(mapping[8:8+header_size].decode("utf-8"))
with warnings.catch_warnings():
#We are working with read-only RAM by design
warnings.filterwarnings("ignore", message="The given buffer is not writable")
data_area = torch.frombuffer(mapping, dtype=torch.uint8)[8 + header_size:]
mv = mv[8 + header_size:]
sd = {}
for name, info in header.items():
@@ -97,7 +95,13 @@ def load_safetensors(ckpt):
continue
start, end = info["data_offsets"]
sd[name] = data_area[start:end].view(_TYPES[info["dtype"]]).view(info["shape"])
if start == end:
sd[name] = torch.empty(info["shape"], dtype =_TYPES[info["dtype"]])
else:
with warnings.catch_warnings():
#We are working with read-only RAM by design
warnings.filterwarnings("ignore", message="The given buffer is not writable")
sd[name] = torch.frombuffer(mv[start:end], dtype=_TYPES[info["dtype"]]).view(info["shape"])
return sd, header.get("__metadata__", {}),

View File

@@ -44,13 +44,18 @@ class TextEncodeAceStepAudio15(io.ComfyNode):
io.Combo.Input("timesignature", options=['2', '3', '4', '6']),
io.Combo.Input("language", options=["en", "ja", "zh", "es", "de", "fr", "pt", "ru", "it", "nl", "pl", "tr", "vi", "cs", "fa", "id", "ko", "uk", "hu", "ar", "sv", "ro", "el"]),
io.Combo.Input("keyscale", options=[f"{root} {quality}" for quality in ["major", "minor"] for root in ["C", "C#", "Db", "D", "D#", "Eb", "E", "F", "F#", "Gb", "G", "G#", "Ab", "A", "A#", "Bb", "B"]]),
io.Boolean.Input("generate_audio_codes", default=True, tooltip="Enable the LLM that generates audio codes. This can be slow but will increase the quality of the generated audio. Turn this off if you are giving the model an audio reference.", advanced=True),
io.Float.Input("cfg_scale", default=2.0, min=0.0, max=100.0, step=0.1, advanced=True),
io.Float.Input("temperature", default=0.85, min=0.0, max=2.0, step=0.01, advanced=True),
io.Float.Input("top_p", default=0.9, min=0.0, max=2000.0, step=0.01, advanced=True),
io.Int.Input("top_k", default=0, min=0, max=100, advanced=True),
],
outputs=[io.Conditioning.Output()],
)
@classmethod
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed)
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale, generate_audio_codes, cfg_scale, temperature, top_p, top_k) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed, generate_audio_codes=generate_audio_codes, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k)
conditioning = clip.encode_from_tokens_scheduled(tokens)
return io.NodeOutput(conditioning)
@@ -100,14 +105,15 @@ class EmptyAceStep15LatentAudio(io.ComfyNode):
latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device())
return io.NodeOutput({"samples": latent, "type": "audio"})
class ReferenceTimbreAudio(io.ComfyNode):
class ReferenceAudio(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ReferenceTimbreAudio",
display_name="Reference Audio",
category="advanced/conditioning/audio",
is_experimental=True,
description="This node sets the reference audio for timbre (for ace step 1.5)",
description="This node sets the reference audio for ace step 1.5",
inputs=[
io.Conditioning.Input("conditioning"),
io.Latent.Input("latent", optional=True),
@@ -131,7 +137,7 @@ class AceExtension(ComfyExtension):
EmptyAceStepLatentAudio,
TextEncodeAceStepAudio15,
EmptyAceStep15LatentAudio,
ReferenceTimbreAudio,
ReferenceAudio,
]
async def comfy_entrypoint() -> AceExtension:

View File

@@ -94,6 +94,19 @@ class VAEEncodeAudio(IO.ComfyNode):
encode = execute # TODO: remove
def vae_decode_audio(vae, samples, tile=None, overlap=None):
if tile is not None:
audio = vae.decode_tiled(samples["samples"], tile_y=tile, overlap=overlap).movedim(-1, 1)
else:
audio = vae.decode(samples["samples"]).movedim(-1, 1)
std = torch.std(audio, dim=[1, 2], keepdim=True) * 5.0
std[std < 1.0] = 1.0
audio /= std
vae_sample_rate = getattr(vae, "audio_sample_rate", 44100)
return {"waveform": audio, "sample_rate": vae_sample_rate if "sample_rate" not in samples else samples["sample_rate"]}
class VAEDecodeAudio(IO.ComfyNode):
@classmethod
def define_schema(cls):
@@ -111,16 +124,33 @@ class VAEDecodeAudio(IO.ComfyNode):
@classmethod
def execute(cls, vae, samples) -> IO.NodeOutput:
audio = vae.decode(samples["samples"]).movedim(-1, 1)
std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
std[std < 1.0] = 1.0
audio /= std
vae_sample_rate = getattr(vae, "audio_sample_rate", 44100)
return IO.NodeOutput({"waveform": audio, "sample_rate": vae_sample_rate if "sample_rate" not in samples else samples["sample_rate"]})
return IO.NodeOutput(vae_decode_audio(vae, samples))
decode = execute # TODO: remove
class VAEDecodeAudioTiled(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="VAEDecodeAudioTiled",
search_aliases=["latent to audio"],
display_name="VAE Decode Audio (Tiled)",
category="latent/audio",
inputs=[
IO.Latent.Input("samples"),
IO.Vae.Input("vae"),
IO.Int.Input("tile_size", default=512, min=32, max=8192, step=8),
IO.Int.Input("overlap", default=64, min=0, max=1024, step=8),
],
outputs=[IO.Audio.Output()],
)
@classmethod
def execute(cls, vae, samples, tile_size, overlap) -> IO.NodeOutput:
return IO.NodeOutput(vae_decode_audio(vae, samples, tile_size, overlap))
class SaveAudio(IO.ComfyNode):
@classmethod
def define_schema(cls):
@@ -675,6 +705,7 @@ class AudioExtension(ComfyExtension):
EmptyLatentAudio,
VAEEncodeAudio,
VAEDecodeAudio,
VAEDecodeAudioTiled,
SaveAudio,
SaveAudioMP3,
SaveAudioOpus,

View File

@@ -618,6 +618,7 @@ class SaveGLB(IO.ComfyNode):
def define_schema(cls):
return IO.Schema(
node_id="SaveGLB",
display_name="Save 3D Model",
search_aliases=["export 3d model", "save mesh"],
category="3d",
is_output_node=True,
@@ -626,8 +627,14 @@ class SaveGLB(IO.ComfyNode):
IO.Mesh.Input("mesh"),
types=[
IO.File3DGLB,
IO.File3DGLTF,
IO.File3DOBJ,
IO.File3DFBX,
IO.File3DSTL,
IO.File3DUSDZ,
IO.File3DAny,
],
tooltip="Mesh or GLB file to save",
tooltip="Mesh or 3D file to save",
),
IO.String.Input("filename_prefix", default="mesh/ComfyUI"),
],
@@ -649,7 +656,8 @@ class SaveGLB(IO.ComfyNode):
if isinstance(mesh, Types.File3D):
# Handle File3D input - save BytesIO data to output folder
f = f"{filename}_{counter:05}_.glb"
ext = mesh.format or "glb"
f = f"{filename}_{counter:05}_.{ext}"
mesh.save_to(os.path.join(full_output_folder, f))
results.append({
"filename": f,

View File

@@ -45,6 +45,7 @@ class Load3D(IO.ComfyNode):
IO.Image.Output(display_name="normal"),
IO.Load3DCamera.Output(display_name="camera_info"),
IO.Video.Output(display_name="recording_video"),
IO.File3DAny.Output(display_name="model_3d"),
],
)
@@ -66,7 +67,8 @@ class Load3D(IO.ComfyNode):
video = InputImpl.VideoFromFile(recording_video_path)
return IO.NodeOutput(output_image, output_mask, model_file, normal_image, image['camera_info'], video)
file_3d = Types.File3D(folder_paths.get_annotated_filepath(model_file))
return IO.NodeOutput(output_image, output_mask, model_file, normal_image, image['camera_info'], video, file_3d)
process = execute # TODO: remove

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.12.2"
__version__ = "0.12.3"

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.12.2"
version = "0.12.3"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.10"