mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-13 11:40:02 +00:00
Compare commits
345 Commits
v0.3.33
...
node-memor
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6c611b0b99 | ||
|
|
cd54d502fc | ||
|
|
63571c6c3d | ||
|
|
bae0c31a68 | ||
|
|
34b1f51f4a | ||
|
|
bd2ab73976 | ||
|
|
da2efeaec6 | ||
|
|
7f3b9b16c6 | ||
|
|
d4e353a94e | ||
|
|
ed43784b0d | ||
|
|
0f2b8525bc | ||
|
|
20a84166d0 | ||
|
|
ed2e33c69a | ||
|
|
1702e6df16 | ||
|
|
c308a8840a | ||
|
|
027c63f63a | ||
|
|
e08ecfbd8a | ||
|
|
4e5c230f6a | ||
|
|
f0d5d0111f | ||
|
|
ad19a069f6 | ||
|
|
5d65d6753b | ||
|
|
deebee4ff6 | ||
|
|
fa570cbf59 | ||
|
|
644b23ac0b | ||
|
|
72fd4d22b6 | ||
|
|
e4f7ea105f | ||
|
|
c991a5da65 | ||
|
|
9df8792d4b | ||
|
|
3da5a07510 | ||
|
|
afa0a45206 | ||
|
|
615eb52049 | ||
|
|
d5c1954d5c | ||
|
|
e400f26c8f | ||
|
|
5ca8e2fac3 | ||
|
|
3294782d19 | ||
|
|
898d88e10e | ||
|
|
560d38f34c | ||
|
|
e1d4f36d8d | ||
|
|
1e3ae1eed8 | ||
|
|
f4231a80b1 | ||
|
|
2208aa616d | ||
|
|
629b173837 | ||
|
|
fa340add55 | ||
|
|
966f3a5206 | ||
|
|
0552de7c7d | ||
|
|
5828607ccf | ||
|
|
735bb4bdb1 | ||
|
|
bf2a1b5b1e | ||
|
|
42974a448c | ||
|
|
05df2df489 | ||
|
|
37d620a6b8 | ||
|
|
32691b16f4 | ||
|
|
4c3e57b0ae | ||
|
|
9126c0cfe4 | ||
|
|
d8c51ba15a | ||
|
|
32a95bba8a | ||
|
|
da1ad9b516 | ||
|
|
d044a24398 | ||
|
|
5be6fd09ff | ||
|
|
f69609bbd6 | ||
|
|
c012400240 | ||
|
|
03895dea7c | ||
|
|
84f9759424 | ||
|
|
7991341e89 | ||
|
|
140ffc7fdc | ||
|
|
182f90b5ec | ||
|
|
aebac22193 | ||
|
|
13aaa66ec2 | ||
|
|
5f582a9757 | ||
|
|
fbcc23945d | ||
|
|
3dfefc88d0 | ||
|
|
bff60b5cfc | ||
|
|
1e638a140b | ||
|
|
4696d74305 | ||
|
|
5ee381c058 | ||
|
|
4887743a2a | ||
|
|
97b8a2c26a | ||
|
|
97eb256a35 | ||
|
|
61b08d4ba6 | ||
|
|
da9dab7edd | ||
|
|
d2aaef029c | ||
|
|
0a3d062e06 | ||
|
|
2f74e17975 | ||
|
|
dca6bdd4fa | ||
|
|
7d593baf91 | ||
|
|
c60dc4177c | ||
|
|
5d4cc3ba1b | ||
|
|
9f1388c0a3 | ||
|
|
a88788dce6 | ||
|
|
d0210fe2e5 | ||
|
|
e6d9f62744 | ||
|
|
78672d0ee6 | ||
|
|
1ef70fcde4 | ||
|
|
0621d73a9c | ||
|
|
b850d9a8bb | ||
|
|
c60467a148 | ||
|
|
c0207b473f | ||
|
|
93bc2f8e4d | ||
|
|
e6e5d33b35 | ||
|
|
4293e4da21 | ||
|
|
69cb57b342 | ||
|
|
d03ae077b4 | ||
|
|
0ccc88b03f | ||
|
|
eb2f78b4e0 | ||
|
|
e729a5cc11 | ||
|
|
e78d230496 | ||
|
|
d3504e1778 | ||
|
|
a86a58c308 | ||
|
|
39dda1d40d | ||
|
|
5ad33787de | ||
|
|
255f139863 | ||
|
|
5ac9ec214b | ||
|
|
0aa1c58b04 | ||
|
|
5249e45a1c | ||
|
|
54a45b9967 | ||
|
|
9a470e073e | ||
|
|
7d627f764c | ||
|
|
a0c0785635 | ||
|
|
100c2478ea | ||
|
|
1da5639e86 | ||
|
|
1b96fae1d4 | ||
|
|
7f492522b6 | ||
|
|
650838fd6f | ||
|
|
491fafbd64 | ||
|
|
9bc2798f72 | ||
|
|
50afba747c | ||
|
|
6b8062f414 | ||
|
|
b1ae4126c3 | ||
|
|
9dabda19f0 | ||
|
|
543c24108c | ||
|
|
260a5ca5d9 | ||
|
|
861c3bbb3d | ||
|
|
9ca581c941 | ||
|
|
4831e9c2c4 | ||
|
|
480375f349 | ||
|
|
b40143984c | ||
|
|
b43916a134 | ||
|
|
7bc7dd2aa2 | ||
|
|
938d3e8216 | ||
|
|
8f05fb48ea | ||
|
|
b7ff5bd14d | ||
|
|
2b653e8c18 | ||
|
|
1fd306824d | ||
|
|
1205afc708 | ||
|
|
5612670ee4 | ||
|
|
181a9bf26d | ||
|
|
aac10ad23a | ||
|
|
974254218a | ||
|
|
c5de4955bb | ||
|
|
9fd0cd7cf7 | ||
|
|
b5e97db9ac | ||
|
|
1359c969e4 | ||
|
|
059cd38aa2 | ||
|
|
e740dfd806 | ||
|
|
7eab7d2944 | ||
|
|
75d327abd5 | ||
|
|
ee615ac269 | ||
|
|
27870ec3c3 | ||
|
|
f41f323c52 | ||
|
|
f74fc4d927 | ||
|
|
ae26cd99b5 | ||
|
|
e9af97ba1a | ||
|
|
d9277301d2 | ||
|
|
34c8eeec06 | ||
|
|
9f1069290c | ||
|
|
111f583e00 | ||
|
|
79ed752748 | ||
|
|
772de7c006 | ||
|
|
b22e97dcfa | ||
|
|
f02de13316 | ||
|
|
c46268bf60 | ||
|
|
cf49a2c5b5 | ||
|
|
170c7bb90c | ||
|
|
2a0b138feb | ||
|
|
e195c1b13f | ||
|
|
5b4eb021cb | ||
|
|
396454fa41 | ||
|
|
a3cf272522 | ||
|
|
ba9548f756 | ||
|
|
e18f53cca9 | ||
|
|
c36be0ea09 | ||
|
|
9093301a49 | ||
|
|
bd951a714f | ||
|
|
6493709d6a | ||
|
|
b976f934ae | ||
|
|
7d8cf4cacc | ||
|
|
68f4496b8e | ||
|
|
ef5266b1c1 | ||
|
|
a96e65df18 | ||
|
|
93a49a45de | ||
|
|
ec70ed6aea | ||
|
|
7a13f74220 | ||
|
|
8042eb20c6 | ||
|
|
bd9f166c12 | ||
|
|
dd94416db2 | ||
|
|
ae0e7c4dff | ||
|
|
78f79266a9 | ||
|
|
1883e70b43 | ||
|
|
31ca603ccb | ||
|
|
f7fb193712 | ||
|
|
7e9267fa77 | ||
|
|
91d40086db | ||
|
|
5b12b55e32 | ||
|
|
e9e9a031a8 | ||
|
|
d7430c529a | ||
|
|
cd88f709ab | ||
|
|
4459a17e82 | ||
|
|
483b3e62e0 | ||
|
|
8e81c507d2 | ||
|
|
e1c6dc720e | ||
|
|
7ea79ebb9d | ||
|
|
ae75a084df | ||
|
|
d6a2137fc3 | ||
|
|
53e8d8193c | ||
|
|
29596bd53f | ||
|
|
803af1e0c3 | ||
|
|
6673939e76 | ||
|
|
f74778e75d | ||
|
|
520eb77b72 | ||
|
|
5bf69bde35 | ||
|
|
c69af655aa | ||
|
|
251f54a2ad | ||
|
|
c6529c0d77 | ||
|
|
baa8c8cdd3 | ||
|
|
40fd39c7cb | ||
|
|
4d1c4b9797 | ||
|
|
d2566eb4b2 | ||
|
|
ef7e885fe4 | ||
|
|
ecb8d15e7a | ||
|
|
365f9ed157 | ||
|
|
50c605e957 | ||
|
|
9685d4f3c3 | ||
|
|
8a4ff747bd | ||
|
|
af1eb58be8 | ||
|
|
373a9386a4 | ||
|
|
6e28a46454 | ||
|
|
c7b25784b1 | ||
|
|
7f800d04fa | ||
|
|
97755eed46 | ||
|
|
daf9d25ee2 | ||
|
|
3b4b171e18 | ||
|
|
d8759c772b | ||
|
|
4248b1618f | ||
|
|
866f6cdab4 | ||
|
|
3aa83feeec | ||
|
|
871749c208 | ||
|
|
fcc1643c52 | ||
|
|
20687293fe | ||
|
|
47d55b8b45 | ||
|
|
310f4b6ef8 | ||
|
|
856448060c | ||
|
|
312d511630 | ||
|
|
4f4f1c642a | ||
|
|
010954d277 | ||
|
|
6d46bb4b4c | ||
|
|
67f57c5bcc | ||
|
|
fd943c928f | ||
|
|
d3bd983b91 | ||
|
|
fb4754624d | ||
|
|
180db6753f | ||
|
|
d062fcc5c0 | ||
|
|
456abad834 | ||
|
|
19e45e9b0e | ||
|
|
97f23b81f3 | ||
|
|
08b7cc7506 | ||
|
|
6c319cbb4e | ||
|
|
df1aebe52e | ||
|
|
704fc78854 | ||
|
|
1d9fee79fd | ||
|
|
aeba0b3a26 | ||
|
|
094306b626 | ||
|
|
31260f0275 | ||
|
|
f1c9ca816a | ||
|
|
f2289a1f59 | ||
|
|
fb83eda287 | ||
|
|
5e5e46d40c | ||
|
|
4eba3161cf | ||
|
|
592d056100 | ||
|
|
1c1687ab1c | ||
|
|
e6609dacde | ||
|
|
ba37e67964 | ||
|
|
06c661004e | ||
|
|
c9e1821a7b | ||
|
|
f58f0f5696 | ||
|
|
3a10b9641c | ||
|
|
89a84e32d2 | ||
|
|
e5799c4899 | ||
|
|
a0651359d7 | ||
|
|
ad3bd8aa49 | ||
|
|
5a87757ef9 | ||
|
|
464aece92b | ||
|
|
0b50d4c0db | ||
|
|
30b2eb8a93 | ||
|
|
f85c08df06 | ||
|
|
4202e956a0 | ||
|
|
b838c36720 | ||
|
|
fc39184ea9 | ||
|
|
ded60c33a0 | ||
|
|
8bb858e4d3 | ||
|
|
57893c843f | ||
|
|
65da29aaa9 | ||
|
|
10024a38ea | ||
|
|
87f9130778 | ||
|
|
7e84bf5373 | ||
|
|
4f3b50ba51 | ||
|
|
e930a387d6 | ||
|
|
d8e5662822 | ||
|
|
3d44a09812 | ||
|
|
62690eddec | ||
|
|
05eb10b43a | ||
|
|
f5e4e976f4 | ||
|
|
aee2908d03 | ||
|
|
dc46db7aa4 | ||
|
|
7046983d95 | ||
|
|
1c2d45d2b5 | ||
|
|
c820ef950d | ||
|
|
6a2e4bb9e0 | ||
|
|
f1f9763b4c | ||
|
|
08368f8e00 | ||
|
|
f3ff5c40db | ||
|
|
98ff01e148 | ||
|
|
bab836d88d | ||
|
|
4a9014e201 | ||
|
|
8a7c894d54 | ||
|
|
a814f2e8cc | ||
|
|
481732a0ed | ||
|
|
2156ce9453 | ||
|
|
4136502b7a | ||
|
|
9ad287ff20 | ||
|
|
f5cacaeb14 | ||
|
|
b7ed5f57bd | ||
|
|
b4abca828e | ||
|
|
158419f3a0 | ||
|
|
640c47e7de | ||
|
|
31e9e36c94 | ||
|
|
577de83ca9 | ||
|
|
3535909eb8 | ||
|
|
235d3901fc | ||
|
|
d42613686f | ||
|
|
1b3bf0a5da | ||
|
|
ae60b150e5 | ||
|
|
42da274717 | ||
|
|
28f178a840 | ||
|
|
8ab15c863c | ||
|
|
924d771e18 |
@@ -4,6 +4,9 @@ if you have a NVIDIA gpu:
|
||||
|
||||
run_nvidia_gpu.bat
|
||||
|
||||
if you want to enable the fast fp16 accumulation (faster for fp16 models with slightly less quality):
|
||||
|
||||
run_nvidia_gpu_fast_fp16_accumulation.bat
|
||||
|
||||
|
||||
To run it in slow CPU mode:
|
||||
|
||||
1
.gitattributes
vendored
1
.gitattributes
vendored
@@ -1,2 +1,3 @@
|
||||
/web/assets/** linguist-generated
|
||||
/web/** linguist-vendored
|
||||
comfy_api_nodes/apis/__init__.py linguist-generated
|
||||
|
||||
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -15,6 +15,14 @@ body:
|
||||
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
|
||||
|
||||
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
|
||||
- type: checkboxes
|
||||
id: custom-nodes-test
|
||||
attributes:
|
||||
label: Custom Node Testing
|
||||
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
|
||||
options:
|
||||
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Expected Behavior
|
||||
|
||||
8
.github/ISSUE_TEMPLATE/user-support.yml
vendored
8
.github/ISSUE_TEMPLATE/user-support.yml
vendored
@@ -11,6 +11,14 @@ body:
|
||||
**2:** You have made an effort to find public answers to your question before asking here. In other words, you googled it first, and scrolled through recent help topics.
|
||||
|
||||
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
|
||||
- type: checkboxes
|
||||
id: custom-nodes-test
|
||||
attributes:
|
||||
label: Custom Node Testing
|
||||
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
|
||||
options:
|
||||
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Your question
|
||||
|
||||
40
.github/workflows/check-line-endings.yml
vendored
Normal file
40
.github/workflows/check-line-endings.yml
vendored
Normal file
@@ -0,0 +1,40 @@
|
||||
name: Check for Windows Line Endings
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches: ['*'] # Trigger on all pull requests to any branch
|
||||
|
||||
jobs:
|
||||
check-line-endings:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0 # Fetch all history to compare changes
|
||||
|
||||
- name: Check for Windows line endings (CRLF)
|
||||
run: |
|
||||
# Get the list of changed files in the PR
|
||||
CHANGED_FILES=$(git diff --name-only ${{ github.event.pull_request.base.sha }}..${{ github.event.pull_request.head.sha }})
|
||||
|
||||
# Flag to track if CRLF is found
|
||||
CRLF_FOUND=false
|
||||
|
||||
# Loop through each changed file
|
||||
for FILE in $CHANGED_FILES; do
|
||||
# Check if the file exists and is a text file
|
||||
if [ -f "$FILE" ] && file "$FILE" | grep -q "text"; then
|
||||
# Check for CRLF line endings
|
||||
if grep -UP '\r$' "$FILE"; then
|
||||
echo "Error: Windows line endings (CRLF) detected in $FILE"
|
||||
CRLF_FOUND=true
|
||||
fi
|
||||
fi
|
||||
done
|
||||
|
||||
# Exit with error if CRLF was found
|
||||
if [ "$CRLF_FOUND" = true ]; then
|
||||
exit 1
|
||||
fi
|
||||
108
.github/workflows/release-webhook.yml
vendored
Normal file
108
.github/workflows/release-webhook.yml
vendored
Normal file
@@ -0,0 +1,108 @@
|
||||
name: Release Webhook
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [published]
|
||||
|
||||
jobs:
|
||||
send-webhook:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Send release webhook
|
||||
env:
|
||||
WEBHOOK_URL: ${{ secrets.RELEASE_GITHUB_WEBHOOK_URL }}
|
||||
WEBHOOK_SECRET: ${{ secrets.RELEASE_GITHUB_WEBHOOK_SECRET }}
|
||||
run: |
|
||||
# Generate UUID for delivery ID
|
||||
DELIVERY_ID=$(uuidgen)
|
||||
HOOK_ID="release-webhook-$(date +%s)"
|
||||
|
||||
# Create webhook payload matching GitHub release webhook format
|
||||
PAYLOAD=$(cat <<EOF
|
||||
{
|
||||
"action": "published",
|
||||
"release": {
|
||||
"id": ${{ github.event.release.id }},
|
||||
"node_id": "${{ github.event.release.node_id }}",
|
||||
"url": "${{ github.event.release.url }}",
|
||||
"html_url": "${{ github.event.release.html_url }}",
|
||||
"assets_url": "${{ github.event.release.assets_url }}",
|
||||
"upload_url": "${{ github.event.release.upload_url }}",
|
||||
"tag_name": "${{ github.event.release.tag_name }}",
|
||||
"target_commitish": "${{ github.event.release.target_commitish }}",
|
||||
"name": ${{ toJSON(github.event.release.name) }},
|
||||
"body": ${{ toJSON(github.event.release.body) }},
|
||||
"draft": ${{ github.event.release.draft }},
|
||||
"prerelease": ${{ github.event.release.prerelease }},
|
||||
"created_at": "${{ github.event.release.created_at }}",
|
||||
"published_at": "${{ github.event.release.published_at }}",
|
||||
"author": {
|
||||
"login": "${{ github.event.release.author.login }}",
|
||||
"id": ${{ github.event.release.author.id }},
|
||||
"node_id": "${{ github.event.release.author.node_id }}",
|
||||
"avatar_url": "${{ github.event.release.author.avatar_url }}",
|
||||
"url": "${{ github.event.release.author.url }}",
|
||||
"html_url": "${{ github.event.release.author.html_url }}",
|
||||
"type": "${{ github.event.release.author.type }}",
|
||||
"site_admin": ${{ github.event.release.author.site_admin }}
|
||||
},
|
||||
"tarball_url": "${{ github.event.release.tarball_url }}",
|
||||
"zipball_url": "${{ github.event.release.zipball_url }}",
|
||||
"assets": ${{ toJSON(github.event.release.assets) }}
|
||||
},
|
||||
"repository": {
|
||||
"id": ${{ github.event.repository.id }},
|
||||
"node_id": "${{ github.event.repository.node_id }}",
|
||||
"name": "${{ github.event.repository.name }}",
|
||||
"full_name": "${{ github.event.repository.full_name }}",
|
||||
"private": ${{ github.event.repository.private }},
|
||||
"owner": {
|
||||
"login": "${{ github.event.repository.owner.login }}",
|
||||
"id": ${{ github.event.repository.owner.id }},
|
||||
"node_id": "${{ github.event.repository.owner.node_id }}",
|
||||
"avatar_url": "${{ github.event.repository.owner.avatar_url }}",
|
||||
"url": "${{ github.event.repository.owner.url }}",
|
||||
"html_url": "${{ github.event.repository.owner.html_url }}",
|
||||
"type": "${{ github.event.repository.owner.type }}",
|
||||
"site_admin": ${{ github.event.repository.owner.site_admin }}
|
||||
},
|
||||
"html_url": "${{ github.event.repository.html_url }}",
|
||||
"clone_url": "${{ github.event.repository.clone_url }}",
|
||||
"git_url": "${{ github.event.repository.git_url }}",
|
||||
"ssh_url": "${{ github.event.repository.ssh_url }}",
|
||||
"url": "${{ github.event.repository.url }}",
|
||||
"created_at": "${{ github.event.repository.created_at }}",
|
||||
"updated_at": "${{ github.event.repository.updated_at }}",
|
||||
"pushed_at": "${{ github.event.repository.pushed_at }}",
|
||||
"default_branch": "${{ github.event.repository.default_branch }}",
|
||||
"fork": ${{ github.event.repository.fork }}
|
||||
},
|
||||
"sender": {
|
||||
"login": "${{ github.event.sender.login }}",
|
||||
"id": ${{ github.event.sender.id }},
|
||||
"node_id": "${{ github.event.sender.node_id }}",
|
||||
"avatar_url": "${{ github.event.sender.avatar_url }}",
|
||||
"url": "${{ github.event.sender.url }}",
|
||||
"html_url": "${{ github.event.sender.html_url }}",
|
||||
"type": "${{ github.event.sender.type }}",
|
||||
"site_admin": ${{ github.event.sender.site_admin }}
|
||||
}
|
||||
}
|
||||
EOF
|
||||
)
|
||||
|
||||
# Generate HMAC-SHA256 signature
|
||||
SIGNATURE=$(echo -n "$PAYLOAD" | openssl dgst -sha256 -hmac "$WEBHOOK_SECRET" -hex | cut -d' ' -f2)
|
||||
|
||||
# Send webhook with required headers
|
||||
curl -X POST "$WEBHOOK_URL" \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "X-GitHub-Event: release" \
|
||||
-H "X-GitHub-Delivery: $DELIVERY_ID" \
|
||||
-H "X-GitHub-Hook-ID: $HOOK_ID" \
|
||||
-H "X-Hub-Signature-256: sha256=$SIGNATURE" \
|
||||
-H "User-Agent: GitHub-Actions-Webhook/1.0" \
|
||||
-d "$PAYLOAD" \
|
||||
--fail --silent --show-error
|
||||
|
||||
echo "✅ Release webhook sent successfully"
|
||||
20
.github/workflows/stable-release.yml
vendored
20
.github/workflows/stable-release.yml
vendored
@@ -12,17 +12,17 @@ on:
|
||||
description: 'CUDA version'
|
||||
required: true
|
||||
type: string
|
||||
default: "128"
|
||||
default: "129"
|
||||
python_minor:
|
||||
description: 'Python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "12"
|
||||
default: "13"
|
||||
python_patch:
|
||||
description: 'Python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "10"
|
||||
default: "6"
|
||||
|
||||
|
||||
jobs:
|
||||
@@ -66,8 +66,13 @@ jobs:
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
cd ..
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
|
||||
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
|
||||
rm ./Lib/site-packages/torch/lib/libprotoc.lib
|
||||
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
|
||||
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
|
||||
@@ -85,7 +90,7 @@ jobs:
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=768m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
@@ -102,5 +107,4 @@ jobs:
|
||||
file: ComfyUI_windows_portable_nvidia.7z
|
||||
tag: ${{ inputs.git_tag }}
|
||||
overwrite: true
|
||||
prerelease: true
|
||||
make_latest: false
|
||||
draft: true
|
||||
|
||||
@@ -17,19 +17,19 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "128"
|
||||
default: "129"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "12"
|
||||
default: "13"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "10"
|
||||
default: "6"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
@@ -7,7 +7,7 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "128"
|
||||
default: "129"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
@@ -19,7 +19,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "2"
|
||||
default: "5"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -53,6 +53,8 @@ jobs:
|
||||
ls ../temp_wheel_dir
|
||||
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
|
||||
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
|
||||
12
.github/workflows/windows_release_package.yml
vendored
12
.github/workflows/windows_release_package.yml
vendored
@@ -7,19 +7,19 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "128"
|
||||
default: "129"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
required: true
|
||||
type: string
|
||||
default: "12"
|
||||
default: "13"
|
||||
|
||||
python_patch:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "10"
|
||||
default: "6"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -64,6 +64,10 @@ jobs:
|
||||
./python.exe get-pip.py
|
||||
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
|
||||
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
|
||||
|
||||
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
|
||||
rm ./Lib/site-packages/torch/lib/libprotoc.lib
|
||||
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
|
||||
cd ..
|
||||
|
||||
git clone --depth 1 https://github.com/comfyanonymous/taesd
|
||||
@@ -82,7 +86,7 @@ jobs:
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=768m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
|
||||
27
CODEOWNERS
27
CODEOWNERS
@@ -5,20 +5,21 @@
|
||||
# Inlined the team members for now.
|
||||
|
||||
# Maintainers
|
||||
*.md @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/tests/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/tests-unit/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/notebooks/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/script_examples/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/.github/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/requirements.txt @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
/pyproject.toml @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
|
||||
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
|
||||
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
|
||||
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
|
||||
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
|
||||
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
|
||||
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
|
||||
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
|
||||
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
|
||||
|
||||
# Python web server
|
||||
/api_server/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
/utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @christian-byrne
|
||||
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
|
||||
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
|
||||
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
|
||||
|
||||
# Node developers
|
||||
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
|
||||
/comfy/comfy_types/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
|
||||
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
|
||||
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
|
||||
/comfy_api_nodes/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
|
||||
|
||||
84
README.md
84
README.md
@@ -6,6 +6,7 @@
|
||||
|
||||
[![Website][website-shield]][website-url]
|
||||
[![Dynamic JSON Badge][discord-shield]][discord-url]
|
||||
[![Twitter][twitter-shield]][twitter-url]
|
||||
[![Matrix][matrix-shield]][matrix-url]
|
||||
<br>
|
||||
[![][github-release-shield]][github-release-link]
|
||||
@@ -20,6 +21,8 @@
|
||||
<!-- Workaround to display total user from https://github.com/badges/shields/issues/4500#issuecomment-2060079995 -->
|
||||
[discord-shield]: https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fdiscord.com%2Fapi%2Finvites%2Fcomfyorg%3Fwith_counts%3Dtrue&query=%24.approximate_member_count&logo=discord&logoColor=white&label=Discord&color=green&suffix=%20total
|
||||
[discord-url]: https://www.comfy.org/discord
|
||||
[twitter-shield]: https://img.shields.io/twitter/follow/ComfyUI
|
||||
[twitter-url]: https://x.com/ComfyUI
|
||||
|
||||
[github-release-shield]: https://img.shields.io/github/v/release/comfyanonymous/ComfyUI?style=flat&sort=semver
|
||||
[github-release-link]: https://github.com/comfyanonymous/ComfyUI/releases
|
||||
@@ -36,7 +39,7 @@ ComfyUI lets you design and execute advanced stable diffusion pipelines using a
|
||||
## Get Started
|
||||
|
||||
#### [Desktop Application](https://www.comfy.org/download)
|
||||
- The easiest way to get started.
|
||||
- The easiest way to get started.
|
||||
- Available on Windows & macOS.
|
||||
|
||||
#### [Windows Portable Package](#installing)
|
||||
@@ -52,7 +55,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
## Features
|
||||
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
|
||||
- Image Models
|
||||
- SD1.x, SD2.x,
|
||||
- SD1.x, SD2.x ([unCLIP](https://comfyanonymous.github.io/ComfyUI_examples/unclip/))
|
||||
- [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [SDXL Turbo](https://comfyanonymous.github.io/ComfyUI_examples/sdturbo/)
|
||||
- [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/)
|
||||
- [SD3 and SD3.5](https://comfyanonymous.github.io/ComfyUI_examples/sd3/)
|
||||
@@ -62,21 +65,31 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
|
||||
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
|
||||
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
|
||||
- [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
|
||||
- [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/)
|
||||
- Image Editing Models
|
||||
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
|
||||
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
|
||||
- [HiDream E1.1](https://comfyanonymous.github.io/ComfyUI_examples/hidream/#hidream-e11)
|
||||
- Video Models
|
||||
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
|
||||
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
|
||||
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
|
||||
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
|
||||
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
|
||||
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/) and [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
|
||||
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
|
||||
- [Wan 2.2](https://comfyanonymous.github.io/ComfyUI_examples/wan22/)
|
||||
- Audio Models
|
||||
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- 3D Models
|
||||
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
|
||||
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- Asynchronous Queue system
|
||||
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
|
||||
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
|
||||
- Smart memory management: can automatically run large models on GPUs with as low as 1GB vram with smart offloading.
|
||||
- Works even if you don't have a GPU with: ```--cpu``` (slow)
|
||||
- Can load ckpt, safetensors and diffusers models/checkpoints. Standalone VAEs and CLIP models.
|
||||
- Can load ckpt and safetensors: All in one checkpoints or standalone diffusion models, VAEs and CLIP models.
|
||||
- Safe loading of ckpt, pt, pth, etc.. files.
|
||||
- Embeddings/Textual inversion
|
||||
- [Loras (regular, locon and loha)](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
|
||||
- [Hypernetworks](https://comfyanonymous.github.io/ComfyUI_examples/hypernetworks/)
|
||||
@@ -87,20 +100,19 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [Inpainting](https://comfyanonymous.github.io/ComfyUI_examples/inpaint/) with both regular and inpainting models.
|
||||
- [ControlNet and T2I-Adapter](https://comfyanonymous.github.io/ComfyUI_examples/controlnet/)
|
||||
- [Upscale Models (ESRGAN, ESRGAN variants, SwinIR, Swin2SR, etc...)](https://comfyanonymous.github.io/ComfyUI_examples/upscale_models/)
|
||||
- [unCLIP Models](https://comfyanonymous.github.io/ComfyUI_examples/unclip/)
|
||||
- [GLIGEN](https://comfyanonymous.github.io/ComfyUI_examples/gligen/)
|
||||
- [Model Merging](https://comfyanonymous.github.io/ComfyUI_examples/model_merging/)
|
||||
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
|
||||
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
|
||||
- Starts up very fast.
|
||||
- Works fully offline: will never download anything.
|
||||
- Works fully offline: core will never download anything unless you want to.
|
||||
- Optional API nodes to use paid models from external providers through the online [Comfy API](https://docs.comfy.org/tutorials/api-nodes/overview).
|
||||
- [Config file](extra_model_paths.yaml.example) to set the search paths for models.
|
||||
|
||||
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)
|
||||
|
||||
## Release Process
|
||||
|
||||
ComfyUI follows a weekly release cycle every Friday, with three interconnected repositories:
|
||||
ComfyUI follows a weekly release cycle targeting Friday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
|
||||
|
||||
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
|
||||
- Releases a new stable version (e.g., v0.7.0)
|
||||
@@ -108,7 +120,6 @@ ComfyUI follows a weekly release cycle every Friday, with three interconnected r
|
||||
|
||||
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
|
||||
- Builds a new release using the latest stable core version
|
||||
- Version numbers match the core release (e.g., Desktop v1.7.0 uses Core v1.7.0)
|
||||
|
||||
3. **[ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend)**
|
||||
- Weekly frontend updates are merged into the core repository
|
||||
@@ -169,10 +180,6 @@ If you have trouble extracting it, right click the file -> properties -> unblock
|
||||
|
||||
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
|
||||
|
||||
## Jupyter Notebook
|
||||
|
||||
To run it on services like paperspace, kaggle or colab you can use my [Jupyter Notebook](notebooks/comfyui_colab.ipynb)
|
||||
|
||||
|
||||
## [comfy-cli](https://docs.comfy.org/comfy-cli/getting-started)
|
||||
|
||||
@@ -196,45 +203,37 @@ Put your VAE in: models/vae
|
||||
### AMD GPUs (Linux only)
|
||||
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
|
||||
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4```
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.4```
|
||||
|
||||
This is the command to install the nightly with ROCm 6.3 which might have some performance improvements:
|
||||
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements:
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.3```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.4```
|
||||
|
||||
### Intel GPUs (Windows and Linux)
|
||||
|
||||
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip (currently available in PyTorch nightly builds). More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
|
||||
|
||||
1. To install PyTorch nightly, use the following command:
|
||||
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
|
||||
|
||||
1. To install PyTorch xpu, use the following command:
|
||||
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/xpu```
|
||||
|
||||
This is the command to install the Pytorch xpu nightly which might have some performance improvements:
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
|
||||
|
||||
2. Launch ComfyUI by running `python main.py`
|
||||
|
||||
|
||||
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
|
||||
|
||||
1. For Intel® Arc™ A-Series Graphics utilizing IPEX, create a conda environment and use the commands below:
|
||||
|
||||
```
|
||||
conda install libuv
|
||||
pip install torch==2.3.1.post0+cxx11.abi torchvision==0.18.1.post0+cxx11.abi torchaudio==2.3.1.post0+cxx11.abi intel-extension-for-pytorch==2.3.110.post0+xpu --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
|
||||
```
|
||||
|
||||
For other supported Intel GPUs with IPEX, visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
|
||||
|
||||
Additional discussion and help can be found [here](https://github.com/comfyanonymous/ComfyUI/discussions/476).
|
||||
1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
|
||||
|
||||
### NVIDIA
|
||||
|
||||
Nvidia users should install stable pytorch using this command:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128```
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu129```
|
||||
|
||||
This is the command to install pytorch nightly instead which might have performance improvements.
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu129```
|
||||
|
||||
#### Troubleshooting
|
||||
|
||||
@@ -267,6 +266,8 @@ You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS ve
|
||||
|
||||
#### DirectML (AMD Cards on Windows)
|
||||
|
||||
This is very badly supported and is not recommended. There are some unofficial builds of pytorch ROCm on windows that exist that will give you a much better experience than this. This readme will be updated once official pytorch ROCm builds for windows come out.
|
||||
|
||||
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
|
||||
|
||||
#### Ascend NPUs
|
||||
@@ -286,6 +287,13 @@ For models compatible with Cambricon Extension for PyTorch (torch_mlu). Here's a
|
||||
2. Next, install the PyTorch(torch_mlu) following the instructions on the [Installation](https://www.cambricon.com/docs/sdk_1.15.0/cambricon_pytorch_1.17.0/user_guide_1.9/index.html)
|
||||
3. Launch ComfyUI by running `python main.py`
|
||||
|
||||
#### Iluvatar Corex
|
||||
|
||||
For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step guide tailored to your platform and installation method:
|
||||
|
||||
1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536)
|
||||
2. Launch ComfyUI by running `python main.py`
|
||||
|
||||
# Running
|
||||
|
||||
```python main.py```
|
||||
@@ -300,7 +308,7 @@ For AMD 7600 and maybe other RDNA3 cards: ```HSA_OVERRIDE_GFX_VERSION=11.0.0 pyt
|
||||
|
||||
### AMD ROCm Tips
|
||||
|
||||
You can enable experimental memory efficient attention on pytorch 2.5 in ComfyUI on RDNA3 and potentially other AMD GPUs using this command:
|
||||
You can enable experimental memory efficient attention on recent pytorch in ComfyUI on some AMD GPUs using this command, it should already be enabled by default on RDNA3. If this improves speed for you on latest pytorch on your GPU please report it so that I can enable it by default.
|
||||
|
||||
```TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1 python main.py --use-pytorch-cross-attention```
|
||||
|
||||
@@ -336,7 +344,7 @@ Generate a self-signed certificate (not appropriate for shared/production use) a
|
||||
|
||||
Use `--tls-keyfile key.pem --tls-certfile cert.pem` to enable TLS/SSL, the app will now be accessible with `https://...` instead of `http://...`.
|
||||
|
||||
> Note: Windows users can use [alexisrolland/docker-openssl](https://github.com/alexisrolland/docker-openssl) or one of the [3rd party binary distributions](https://wiki.openssl.org/index.php/Binaries) to run the command example above.
|
||||
> Note: Windows users can use [alexisrolland/docker-openssl](https://github.com/alexisrolland/docker-openssl) or one of the [3rd party binary distributions](https://wiki.openssl.org/index.php/Binaries) to run the command example above.
|
||||
<br/><br/>If you use a container, note that the volume mount `-v` can be a relative path so `... -v ".\:/openssl-certs" ...` would create the key & cert files in the current directory of your command prompt or powershell terminal.
|
||||
|
||||
## Support and dev channel
|
||||
|
||||
84
alembic.ini
Normal file
84
alembic.ini
Normal file
@@ -0,0 +1,84 @@
|
||||
# A generic, single database configuration.
|
||||
|
||||
[alembic]
|
||||
# path to migration scripts
|
||||
# Use forward slashes (/) also on windows to provide an os agnostic path
|
||||
script_location = alembic_db
|
||||
|
||||
# template used to generate migration file names; The default value is %%(rev)s_%%(slug)s
|
||||
# Uncomment the line below if you want the files to be prepended with date and time
|
||||
# see https://alembic.sqlalchemy.org/en/latest/tutorial.html#editing-the-ini-file
|
||||
# for all available tokens
|
||||
# file_template = %%(year)d_%%(month).2d_%%(day).2d_%%(hour).2d%%(minute).2d-%%(rev)s_%%(slug)s
|
||||
|
||||
# sys.path path, will be prepended to sys.path if present.
|
||||
# defaults to the current working directory.
|
||||
prepend_sys_path = .
|
||||
|
||||
# timezone to use when rendering the date within the migration file
|
||||
# as well as the filename.
|
||||
# If specified, requires the python>=3.9 or backports.zoneinfo library and tzdata library.
|
||||
# Any required deps can installed by adding `alembic[tz]` to the pip requirements
|
||||
# string value is passed to ZoneInfo()
|
||||
# leave blank for localtime
|
||||
# timezone =
|
||||
|
||||
# max length of characters to apply to the "slug" field
|
||||
# truncate_slug_length = 40
|
||||
|
||||
# set to 'true' to run the environment during
|
||||
# the 'revision' command, regardless of autogenerate
|
||||
# revision_environment = false
|
||||
|
||||
# set to 'true' to allow .pyc and .pyo files without
|
||||
# a source .py file to be detected as revisions in the
|
||||
# versions/ directory
|
||||
# sourceless = false
|
||||
|
||||
# version location specification; This defaults
|
||||
# to alembic_db/versions. When using multiple version
|
||||
# directories, initial revisions must be specified with --version-path.
|
||||
# The path separator used here should be the separator specified by "version_path_separator" below.
|
||||
# version_locations = %(here)s/bar:%(here)s/bat:alembic_db/versions
|
||||
|
||||
# version path separator; As mentioned above, this is the character used to split
|
||||
# version_locations. The default within new alembic.ini files is "os", which uses os.pathsep.
|
||||
# If this key is omitted entirely, it falls back to the legacy behavior of splitting on spaces and/or commas.
|
||||
# Valid values for version_path_separator are:
|
||||
#
|
||||
# version_path_separator = :
|
||||
# version_path_separator = ;
|
||||
# version_path_separator = space
|
||||
# version_path_separator = newline
|
||||
#
|
||||
# Use os.pathsep. Default configuration used for new projects.
|
||||
version_path_separator = os
|
||||
|
||||
# set to 'true' to search source files recursively
|
||||
# in each "version_locations" directory
|
||||
# new in Alembic version 1.10
|
||||
# recursive_version_locations = false
|
||||
|
||||
# the output encoding used when revision files
|
||||
# are written from script.py.mako
|
||||
# output_encoding = utf-8
|
||||
|
||||
sqlalchemy.url = sqlite:///user/comfyui.db
|
||||
|
||||
|
||||
[post_write_hooks]
|
||||
# post_write_hooks defines scripts or Python functions that are run
|
||||
# on newly generated revision scripts. See the documentation for further
|
||||
# detail and examples
|
||||
|
||||
# format using "black" - use the console_scripts runner, against the "black" entrypoint
|
||||
# hooks = black
|
||||
# black.type = console_scripts
|
||||
# black.entrypoint = black
|
||||
# black.options = -l 79 REVISION_SCRIPT_FILENAME
|
||||
|
||||
# lint with attempts to fix using "ruff" - use the exec runner, execute a binary
|
||||
# hooks = ruff
|
||||
# ruff.type = exec
|
||||
# ruff.executable = %(here)s/.venv/bin/ruff
|
||||
# ruff.options = check --fix REVISION_SCRIPT_FILENAME
|
||||
4
alembic_db/README.md
Normal file
4
alembic_db/README.md
Normal file
@@ -0,0 +1,4 @@
|
||||
## Generate new revision
|
||||
|
||||
1. Update models in `/app/database/models.py`
|
||||
2. Run `alembic revision --autogenerate -m "{your message}"`
|
||||
64
alembic_db/env.py
Normal file
64
alembic_db/env.py
Normal file
@@ -0,0 +1,64 @@
|
||||
from sqlalchemy import engine_from_config
|
||||
from sqlalchemy import pool
|
||||
|
||||
from alembic import context
|
||||
|
||||
# this is the Alembic Config object, which provides
|
||||
# access to the values within the .ini file in use.
|
||||
config = context.config
|
||||
|
||||
|
||||
from app.database.models import Base
|
||||
target_metadata = Base.metadata
|
||||
|
||||
# other values from the config, defined by the needs of env.py,
|
||||
# can be acquired:
|
||||
# my_important_option = config.get_main_option("my_important_option")
|
||||
# ... etc.
|
||||
|
||||
|
||||
def run_migrations_offline() -> None:
|
||||
"""Run migrations in 'offline' mode.
|
||||
This configures the context with just a URL
|
||||
and not an Engine, though an Engine is acceptable
|
||||
here as well. By skipping the Engine creation
|
||||
we don't even need a DBAPI to be available.
|
||||
Calls to context.execute() here emit the given string to the
|
||||
script output.
|
||||
"""
|
||||
url = config.get_main_option("sqlalchemy.url")
|
||||
context.configure(
|
||||
url=url,
|
||||
target_metadata=target_metadata,
|
||||
literal_binds=True,
|
||||
dialect_opts={"paramstyle": "named"},
|
||||
)
|
||||
|
||||
with context.begin_transaction():
|
||||
context.run_migrations()
|
||||
|
||||
|
||||
def run_migrations_online() -> None:
|
||||
"""Run migrations in 'online' mode.
|
||||
In this scenario we need to create an Engine
|
||||
and associate a connection with the context.
|
||||
"""
|
||||
connectable = engine_from_config(
|
||||
config.get_section(config.config_ini_section, {}),
|
||||
prefix="sqlalchemy.",
|
||||
poolclass=pool.NullPool,
|
||||
)
|
||||
|
||||
with connectable.connect() as connection:
|
||||
context.configure(
|
||||
connection=connection, target_metadata=target_metadata
|
||||
)
|
||||
|
||||
with context.begin_transaction():
|
||||
context.run_migrations()
|
||||
|
||||
|
||||
if context.is_offline_mode():
|
||||
run_migrations_offline()
|
||||
else:
|
||||
run_migrations_online()
|
||||
28
alembic_db/script.py.mako
Normal file
28
alembic_db/script.py.mako
Normal file
@@ -0,0 +1,28 @@
|
||||
"""${message}
|
||||
|
||||
Revision ID: ${up_revision}
|
||||
Revises: ${down_revision | comma,n}
|
||||
Create Date: ${create_date}
|
||||
|
||||
"""
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
${imports if imports else ""}
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = ${repr(up_revision)}
|
||||
down_revision: Union[str, None] = ${repr(down_revision)}
|
||||
branch_labels: Union[str, Sequence[str], None] = ${repr(branch_labels)}
|
||||
depends_on: Union[str, Sequence[str], None] = ${repr(depends_on)}
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
"""Upgrade schema."""
|
||||
${upgrades if upgrades else "pass"}
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
"""Downgrade schema."""
|
||||
${downgrades if downgrades else "pass"}
|
||||
112
app/database/db.py
Normal file
112
app/database/db.py
Normal file
@@ -0,0 +1,112 @@
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
from app.logger import log_startup_warning
|
||||
from utils.install_util import get_missing_requirements_message
|
||||
from comfy.cli_args import args
|
||||
|
||||
_DB_AVAILABLE = False
|
||||
Session = None
|
||||
|
||||
|
||||
try:
|
||||
from alembic import command
|
||||
from alembic.config import Config
|
||||
from alembic.runtime.migration import MigrationContext
|
||||
from alembic.script import ScriptDirectory
|
||||
from sqlalchemy import create_engine
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
|
||||
_DB_AVAILABLE = True
|
||||
except ImportError as e:
|
||||
log_startup_warning(
|
||||
f"""
|
||||
------------------------------------------------------------------------
|
||||
Error importing dependencies: {e}
|
||||
{get_missing_requirements_message()}
|
||||
This error is happening because ComfyUI now uses a local sqlite database.
|
||||
------------------------------------------------------------------------
|
||||
""".strip()
|
||||
)
|
||||
|
||||
|
||||
def dependencies_available():
|
||||
"""
|
||||
Temporary function to check if the dependencies are available
|
||||
"""
|
||||
return _DB_AVAILABLE
|
||||
|
||||
|
||||
def can_create_session():
|
||||
"""
|
||||
Temporary function to check if the database is available to create a session
|
||||
During initial release there may be environmental issues (or missing dependencies) that prevent the database from being created
|
||||
"""
|
||||
return dependencies_available() and Session is not None
|
||||
|
||||
|
||||
def get_alembic_config():
|
||||
root_path = os.path.join(os.path.dirname(__file__), "../..")
|
||||
config_path = os.path.abspath(os.path.join(root_path, "alembic.ini"))
|
||||
scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
|
||||
|
||||
config = Config(config_path)
|
||||
config.set_main_option("script_location", scripts_path)
|
||||
config.set_main_option("sqlalchemy.url", args.database_url)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def get_db_path():
|
||||
url = args.database_url
|
||||
if url.startswith("sqlite:///"):
|
||||
return url.split("///")[1]
|
||||
else:
|
||||
raise ValueError(f"Unsupported database URL '{url}'.")
|
||||
|
||||
|
||||
def init_db():
|
||||
db_url = args.database_url
|
||||
logging.debug(f"Database URL: {db_url}")
|
||||
db_path = get_db_path()
|
||||
db_exists = os.path.exists(db_path)
|
||||
|
||||
config = get_alembic_config()
|
||||
|
||||
# Check if we need to upgrade
|
||||
engine = create_engine(db_url)
|
||||
conn = engine.connect()
|
||||
|
||||
context = MigrationContext.configure(conn)
|
||||
current_rev = context.get_current_revision()
|
||||
|
||||
script = ScriptDirectory.from_config(config)
|
||||
target_rev = script.get_current_head()
|
||||
|
||||
if target_rev is None:
|
||||
logging.warning("No target revision found.")
|
||||
elif current_rev != target_rev:
|
||||
# Backup the database pre upgrade
|
||||
backup_path = db_path + ".bkp"
|
||||
if db_exists:
|
||||
shutil.copy(db_path, backup_path)
|
||||
else:
|
||||
backup_path = None
|
||||
|
||||
try:
|
||||
command.upgrade(config, target_rev)
|
||||
logging.info(f"Database upgraded from {current_rev} to {target_rev}")
|
||||
except Exception as e:
|
||||
if backup_path:
|
||||
# Restore the database from backup if upgrade fails
|
||||
shutil.copy(backup_path, db_path)
|
||||
os.remove(backup_path)
|
||||
logging.exception("Error upgrading database: ")
|
||||
raise e
|
||||
|
||||
global Session
|
||||
Session = sessionmaker(bind=engine)
|
||||
|
||||
|
||||
def create_session():
|
||||
return Session()
|
||||
14
app/database/models.py
Normal file
14
app/database/models.py
Normal file
@@ -0,0 +1,14 @@
|
||||
from sqlalchemy.orm import declarative_base
|
||||
|
||||
Base = declarative_base()
|
||||
|
||||
|
||||
def to_dict(obj):
|
||||
fields = obj.__table__.columns.keys()
|
||||
return {
|
||||
field: (val.to_dict() if hasattr(val, "to_dict") else val)
|
||||
for field in fields
|
||||
if (val := getattr(obj, field))
|
||||
}
|
||||
|
||||
# TODO: Define models here
|
||||
@@ -16,40 +16,61 @@ from importlib.metadata import version
|
||||
import requests
|
||||
from typing_extensions import NotRequired
|
||||
|
||||
from utils.install_util import get_missing_requirements_message, requirements_path
|
||||
|
||||
from comfy.cli_args import DEFAULT_VERSION_STRING
|
||||
import app.logger
|
||||
|
||||
# The path to the requirements.txt file
|
||||
req_path = Path(__file__).parents[1] / "requirements.txt"
|
||||
|
||||
|
||||
def frontend_install_warning_message():
|
||||
"""The warning message to display when the frontend version is not up to date."""
|
||||
|
||||
extra = ""
|
||||
if sys.flags.no_user_site:
|
||||
extra = "-s "
|
||||
return f"""
|
||||
Please install the updated requirements.txt file by running:
|
||||
{sys.executable} {extra}-m pip install -r {req_path}
|
||||
{get_missing_requirements_message()}
|
||||
|
||||
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
|
||||
|
||||
If you are on the portable package you can run: update\\update_comfyui.bat to solve this problem
|
||||
""".strip()
|
||||
|
||||
def parse_version(version: str) -> tuple[int, int, int]:
|
||||
return tuple(map(int, version.split(".")))
|
||||
|
||||
def is_valid_version(version: str) -> bool:
|
||||
"""Validate if a string is a valid semantic version (X.Y.Z format)."""
|
||||
pattern = r"^(\d+)\.(\d+)\.(\d+)$"
|
||||
return bool(re.match(pattern, version))
|
||||
|
||||
def get_installed_frontend_version():
|
||||
"""Get the currently installed frontend package version."""
|
||||
frontend_version_str = version("comfyui-frontend-package")
|
||||
return frontend_version_str
|
||||
|
||||
def get_required_frontend_version():
|
||||
"""Get the required frontend version from requirements.txt."""
|
||||
try:
|
||||
with open(requirements_path, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if line.startswith("comfyui-frontend-package=="):
|
||||
version_str = line.split("==")[-1]
|
||||
if not is_valid_version(version_str):
|
||||
logging.error(f"Invalid version format in requirements.txt: {version_str}")
|
||||
return None
|
||||
return version_str
|
||||
logging.error("comfyui-frontend-package not found in requirements.txt")
|
||||
return None
|
||||
except FileNotFoundError:
|
||||
logging.error("requirements.txt not found. Cannot determine required frontend version.")
|
||||
return None
|
||||
except Exception as e:
|
||||
logging.error(f"Error reading requirements.txt: {e}")
|
||||
return None
|
||||
|
||||
def check_frontend_version():
|
||||
"""Check if the frontend version is up to date."""
|
||||
|
||||
def parse_version(version: str) -> tuple[int, int, int]:
|
||||
return tuple(map(int, version.split(".")))
|
||||
|
||||
try:
|
||||
frontend_version_str = version("comfyui-frontend-package")
|
||||
frontend_version_str = get_installed_frontend_version()
|
||||
frontend_version = parse_version(frontend_version_str)
|
||||
with open(req_path, "r", encoding="utf-8") as f:
|
||||
required_frontend = parse_version(f.readline().split("=")[-1])
|
||||
required_frontend_str = get_required_frontend_version()
|
||||
required_frontend = parse_version(required_frontend_str)
|
||||
if frontend_version < required_frontend:
|
||||
app.logger.log_startup_warning(
|
||||
f"""
|
||||
@@ -121,9 +142,22 @@ class FrontEndProvider:
|
||||
response.raise_for_status() # Raises an HTTPError if the response was an error
|
||||
return response.json()
|
||||
|
||||
@cached_property
|
||||
def latest_prerelease(self) -> Release:
|
||||
"""Get the latest pre-release version - even if it's older than the latest release"""
|
||||
release = [release for release in self.all_releases if release["prerelease"]]
|
||||
|
||||
if not release:
|
||||
raise ValueError("No pre-releases found")
|
||||
|
||||
# GitHub returns releases in reverse chronological order, so first is latest
|
||||
return release[0]
|
||||
|
||||
def get_release(self, version: str) -> Release:
|
||||
if version == "latest":
|
||||
return self.latest_release
|
||||
elif version == "prerelease":
|
||||
return self.latest_prerelease
|
||||
else:
|
||||
for release in self.all_releases:
|
||||
if release["tag_name"] in [version, f"v{version}"]:
|
||||
@@ -164,6 +198,11 @@ def download_release_asset_zip(release: Release, destination_path: str) -> None:
|
||||
class FrontendManager:
|
||||
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
|
||||
|
||||
@classmethod
|
||||
def get_required_frontend_version(cls) -> str:
|
||||
"""Get the required frontend package version."""
|
||||
return get_required_frontend_version()
|
||||
|
||||
@classmethod
|
||||
def default_frontend_path(cls) -> str:
|
||||
try:
|
||||
@@ -205,6 +244,19 @@ comfyui-workflow-templates is not installed.
|
||||
""".strip()
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def embedded_docs_path(cls) -> str:
|
||||
"""Get the path to embedded documentation"""
|
||||
try:
|
||||
import comfyui_embedded_docs
|
||||
|
||||
return str(
|
||||
importlib.resources.files(comfyui_embedded_docs) / "docs"
|
||||
)
|
||||
except ImportError:
|
||||
logging.info("comfyui-embedded-docs package not found")
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
|
||||
"""
|
||||
@@ -217,7 +269,7 @@ comfyui-workflow-templates is not installed.
|
||||
Raises:
|
||||
argparse.ArgumentTypeError: If the version string is invalid.
|
||||
"""
|
||||
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+|latest)$"
|
||||
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+[-._a-zA-Z0-9]*|latest|prerelease)$"
|
||||
match_result = re.match(VERSION_PATTERN, value)
|
||||
if match_result is None:
|
||||
raise argparse.ArgumentTypeError(f"Invalid version string: {value}")
|
||||
|
||||
@@ -130,10 +130,21 @@ class ModelFileManager:
|
||||
|
||||
for file_name in filenames:
|
||||
try:
|
||||
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
|
||||
result.append(relative_path)
|
||||
except:
|
||||
logging.warning(f"Warning: Unable to access {file_name}. Skipping this file.")
|
||||
full_path = os.path.join(dirpath, file_name)
|
||||
relative_path = os.path.relpath(full_path, directory)
|
||||
|
||||
# Get file metadata
|
||||
file_info = {
|
||||
"name": relative_path,
|
||||
"pathIndex": pathIndex,
|
||||
"modified": os.path.getmtime(full_path), # Add modification time
|
||||
"created": os.path.getctime(full_path), # Add creation time
|
||||
"size": os.path.getsize(full_path) # Add file size
|
||||
}
|
||||
result.append(file_info)
|
||||
|
||||
except Exception as e:
|
||||
logging.warning(f"Warning: Unable to access {file_name}. Error: {e}. Skipping this file.")
|
||||
continue
|
||||
|
||||
for d in subdirs:
|
||||
@@ -144,7 +155,7 @@ class ModelFileManager:
|
||||
logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
|
||||
continue
|
||||
|
||||
return [{"name": f, "pathIndex": pathIndex} for f in result], dirs, time.perf_counter()
|
||||
return result, dirs, time.perf_counter()
|
||||
|
||||
def get_model_previews(self, filepath: str) -> list[str | BytesIO]:
|
||||
dirname = os.path.dirname(filepath)
|
||||
|
||||
@@ -20,13 +20,15 @@ class FileInfo(TypedDict):
|
||||
path: str
|
||||
size: int
|
||||
modified: int
|
||||
created: int
|
||||
|
||||
|
||||
def get_file_info(path: str, relative_to: str) -> FileInfo:
|
||||
return {
|
||||
"path": os.path.relpath(path, relative_to).replace(os.sep, '/'),
|
||||
"size": os.path.getsize(path),
|
||||
"modified": os.path.getmtime(path)
|
||||
"modified": os.path.getmtime(path),
|
||||
"created": os.path.getctime(path)
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -49,7 +49,8 @@ parser.add_argument("--temp-directory", type=str, default=None, help="Set the Co
|
||||
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
|
||||
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
||||
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
||||
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
||||
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use. All other devices will not be visible.")
|
||||
parser.add_argument("--default-device", type=int, default=None, metavar="DEFAULT_DEVICE_ID", help="Set the id of the default device, all other devices will stay visible.")
|
||||
cm_group = parser.add_mutually_exclusive_group()
|
||||
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
||||
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
||||
@@ -88,6 +89,7 @@ parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE"
|
||||
|
||||
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
|
||||
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
|
||||
parser.add_argument("--supports-fp8-compute", action="store_true", help="ComfyUI will act like if the device supports fp8 compute.")
|
||||
|
||||
class LatentPreviewMethod(enum.Enum):
|
||||
NoPreviews = "none"
|
||||
@@ -130,6 +132,8 @@ parser.add_argument("--reserve-vram", type=float, default=None, help="Set the am
|
||||
|
||||
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
|
||||
|
||||
parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.")
|
||||
|
||||
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
||||
|
||||
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
||||
@@ -142,12 +146,16 @@ class PerformanceFeature(enum.Enum):
|
||||
|
||||
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
|
||||
|
||||
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
|
||||
parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")
|
||||
|
||||
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
||||
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
||||
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
|
||||
|
||||
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
||||
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
|
||||
parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.")
|
||||
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
|
||||
|
||||
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
||||
@@ -200,6 +208,11 @@ parser.add_argument(
|
||||
help="Set the base URL for the ComfyUI API. (default: https://api.comfy.org)",
|
||||
)
|
||||
|
||||
database_default_path = os.path.abspath(
|
||||
os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db")
|
||||
)
|
||||
parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.")
|
||||
|
||||
if comfy.options.args_parsing:
|
||||
args = parser.parse_args()
|
||||
else:
|
||||
|
||||
@@ -37,6 +37,8 @@ class IO(StrEnum):
|
||||
CONTROL_NET = "CONTROL_NET"
|
||||
VAE = "VAE"
|
||||
MODEL = "MODEL"
|
||||
LORA_MODEL = "LORA_MODEL"
|
||||
LOSS_MAP = "LOSS_MAP"
|
||||
CLIP_VISION = "CLIP_VISION"
|
||||
CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
|
||||
STYLE_MODEL = "STYLE_MODEL"
|
||||
@@ -235,7 +237,7 @@ class ComfyNodeABC(ABC):
|
||||
DEPRECATED: bool
|
||||
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
|
||||
API_NODE: Optional[bool]
|
||||
"""Flags a node as an API node."""
|
||||
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import math
|
||||
import comfy.utils
|
||||
import logging
|
||||
|
||||
|
||||
class CONDRegular:
|
||||
@@ -10,12 +11,15 @@ class CONDRegular:
|
||||
def _copy_with(self, cond):
|
||||
return self.__class__(cond)
|
||||
|
||||
def process_cond(self, batch_size, device, **kwargs):
|
||||
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
|
||||
def process_cond(self, batch_size, **kwargs):
|
||||
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size))
|
||||
|
||||
def can_concat(self, other):
|
||||
if self.cond.shape != other.cond.shape:
|
||||
return False
|
||||
if self.cond.device != other.cond.device:
|
||||
logging.warning("WARNING: conds not on same device, skipping concat.")
|
||||
return False
|
||||
return True
|
||||
|
||||
def concat(self, others):
|
||||
@@ -24,15 +28,19 @@ class CONDRegular:
|
||||
conds.append(x.cond)
|
||||
return torch.cat(conds)
|
||||
|
||||
def size(self):
|
||||
return list(self.cond.size())
|
||||
|
||||
|
||||
class CONDNoiseShape(CONDRegular):
|
||||
def process_cond(self, batch_size, device, area, **kwargs):
|
||||
def process_cond(self, batch_size, area, **kwargs):
|
||||
data = self.cond
|
||||
if area is not None:
|
||||
dims = len(area) // 2
|
||||
for i in range(dims):
|
||||
data = data.narrow(i + 2, area[i + dims], area[i])
|
||||
|
||||
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
|
||||
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size))
|
||||
|
||||
|
||||
class CONDCrossAttn(CONDRegular):
|
||||
@@ -47,6 +55,9 @@ class CONDCrossAttn(CONDRegular):
|
||||
diff = mult_min // min(s1[1], s2[1])
|
||||
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
|
||||
return False
|
||||
if self.cond.device != other.cond.device:
|
||||
logging.warning("WARNING: conds not on same device: skipping concat.")
|
||||
return False
|
||||
return True
|
||||
|
||||
def concat(self, others):
|
||||
@@ -64,11 +75,12 @@ class CONDCrossAttn(CONDRegular):
|
||||
out.append(c)
|
||||
return torch.cat(out)
|
||||
|
||||
|
||||
class CONDConstant(CONDRegular):
|
||||
def __init__(self, cond):
|
||||
self.cond = cond
|
||||
|
||||
def process_cond(self, batch_size, device, **kwargs):
|
||||
def process_cond(self, batch_size, **kwargs):
|
||||
return self._copy_with(self.cond)
|
||||
|
||||
def can_concat(self, other):
|
||||
@@ -78,3 +90,48 @@ class CONDConstant(CONDRegular):
|
||||
|
||||
def concat(self, others):
|
||||
return self.cond
|
||||
|
||||
def size(self):
|
||||
return [1]
|
||||
|
||||
|
||||
class CONDList(CONDRegular):
|
||||
def __init__(self, cond):
|
||||
self.cond = cond
|
||||
|
||||
def process_cond(self, batch_size, **kwargs):
|
||||
out = []
|
||||
for c in self.cond:
|
||||
out.append(comfy.utils.repeat_to_batch_size(c, batch_size))
|
||||
|
||||
return self._copy_with(out)
|
||||
|
||||
def can_concat(self, other):
|
||||
if len(self.cond) != len(other.cond):
|
||||
return False
|
||||
for i in range(len(self.cond)):
|
||||
if self.cond[i].shape != other.cond[i].shape:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def concat(self, others):
|
||||
out = []
|
||||
for i in range(len(self.cond)):
|
||||
o = [self.cond[i]]
|
||||
for x in others:
|
||||
o.append(x.cond[i])
|
||||
out.append(torch.cat(o))
|
||||
|
||||
return out
|
||||
|
||||
def size(self): # hackish implementation to make the mem estimation work
|
||||
o = 0
|
||||
c = 1
|
||||
for c in self.cond:
|
||||
size = c.size()
|
||||
o += math.prod(size)
|
||||
if len(size) > 1:
|
||||
c = size[1]
|
||||
|
||||
return [1, c, o // c]
|
||||
|
||||
540
comfy/context_windows.py
Normal file
540
comfy/context_windows.py
Normal file
@@ -0,0 +1,540 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING, Callable
|
||||
import torch
|
||||
import numpy as np
|
||||
import collections
|
||||
from dataclasses import dataclass
|
||||
from abc import ABC, abstractmethod
|
||||
import logging
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
if TYPE_CHECKING:
|
||||
from comfy.model_base import BaseModel
|
||||
from comfy.model_patcher import ModelPatcher
|
||||
from comfy.controlnet import ControlBase
|
||||
|
||||
|
||||
class ContextWindowABC(ABC):
|
||||
def __init__(self):
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def get_tensor(self, full: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Get torch.Tensor applicable to current window.
|
||||
"""
|
||||
raise NotImplementedError("Not implemented.")
|
||||
|
||||
@abstractmethod
|
||||
def add_window(self, full: torch.Tensor, to_add: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Apply torch.Tensor of window to the full tensor, in place. Returns reference to updated full tensor, not a copy.
|
||||
"""
|
||||
raise NotImplementedError("Not implemented.")
|
||||
|
||||
class ContextHandlerABC(ABC):
|
||||
def __init__(self):
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
|
||||
raise NotImplementedError("Not implemented.")
|
||||
|
||||
@abstractmethod
|
||||
def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: ContextWindowABC, device=None) -> list:
|
||||
raise NotImplementedError("Not implemented.")
|
||||
|
||||
@abstractmethod
|
||||
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
|
||||
raise NotImplementedError("Not implemented.")
|
||||
|
||||
|
||||
|
||||
class IndexListContextWindow(ContextWindowABC):
|
||||
def __init__(self, index_list: list[int], dim: int=0):
|
||||
self.index_list = index_list
|
||||
self.context_length = len(index_list)
|
||||
self.dim = dim
|
||||
|
||||
def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor:
|
||||
if dim is None:
|
||||
dim = self.dim
|
||||
if dim == 0 and full.shape[dim] == 1:
|
||||
return full
|
||||
idx = [slice(None)] * dim + [self.index_list]
|
||||
return full[idx].to(device)
|
||||
|
||||
def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor:
|
||||
if dim is None:
|
||||
dim = self.dim
|
||||
idx = [slice(None)] * dim + [self.index_list]
|
||||
full[idx] += to_add
|
||||
return full
|
||||
|
||||
|
||||
class IndexListCallbacks:
|
||||
EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows"
|
||||
COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results"
|
||||
EXECUTE_START = "execute_start"
|
||||
EXECUTE_CLEANUP = "execute_cleanup"
|
||||
|
||||
def init_callbacks(self):
|
||||
return {}
|
||||
|
||||
|
||||
@dataclass
|
||||
class ContextSchedule:
|
||||
name: str
|
||||
func: Callable
|
||||
|
||||
@dataclass
|
||||
class ContextFuseMethod:
|
||||
name: str
|
||||
func: Callable
|
||||
|
||||
ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window'])
|
||||
class IndexListContextHandler(ContextHandlerABC):
|
||||
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0):
|
||||
self.context_schedule = context_schedule
|
||||
self.fuse_method = fuse_method
|
||||
self.context_length = context_length
|
||||
self.context_overlap = context_overlap
|
||||
self.context_stride = context_stride
|
||||
self.closed_loop = closed_loop
|
||||
self.dim = dim
|
||||
self._step = 0
|
||||
|
||||
self.callbacks = {}
|
||||
|
||||
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
|
||||
# for now, assume first dim is batch - should have stored on BaseModel in actual implementation
|
||||
if x_in.size(self.dim) > self.context_length:
|
||||
logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.")
|
||||
return True
|
||||
return False
|
||||
|
||||
def prepare_control_objects(self, control: ControlBase, device=None) -> ControlBase:
|
||||
if control.previous_controlnet is not None:
|
||||
self.prepare_control_objects(control.previous_controlnet, device)
|
||||
return control
|
||||
|
||||
def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: IndexListContextWindow, device=None) -> list:
|
||||
if cond_in is None:
|
||||
return None
|
||||
# reuse or resize cond items to match context requirements
|
||||
resized_cond = []
|
||||
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
|
||||
for actual_cond in cond_in:
|
||||
resized_actual_cond = actual_cond.copy()
|
||||
# now we are in the inner dict - "pooled_output" is a tensor, "control" is a ControlBase object, "model_conds" is dictionary
|
||||
for key in actual_cond:
|
||||
try:
|
||||
cond_item = actual_cond[key]
|
||||
if isinstance(cond_item, torch.Tensor):
|
||||
# check that tensor is the expected length - x.size(0)
|
||||
if self.dim < cond_item.ndim and cond_item.size(self.dim) == x_in.size(self.dim):
|
||||
# if so, it's subsetting time - tell controls the expected indeces so they can handle them
|
||||
actual_cond_item = window.get_tensor(cond_item)
|
||||
resized_actual_cond[key] = actual_cond_item.to(device)
|
||||
else:
|
||||
resized_actual_cond[key] = cond_item.to(device)
|
||||
# look for control
|
||||
elif key == "control":
|
||||
resized_actual_cond[key] = self.prepare_control_objects(cond_item, device)
|
||||
elif isinstance(cond_item, dict):
|
||||
new_cond_item = cond_item.copy()
|
||||
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
|
||||
for cond_key, cond_value in new_cond_item.items():
|
||||
if isinstance(cond_value, torch.Tensor):
|
||||
if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
|
||||
new_cond_item[cond_key] = window.get_tensor(cond_value, device)
|
||||
# if has cond that is a Tensor, check if needs to be subset
|
||||
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
|
||||
if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
|
||||
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
|
||||
elif cond_key == "num_video_frames": # for SVD
|
||||
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
|
||||
new_cond_item[cond_key].cond = window.context_length
|
||||
resized_actual_cond[key] = new_cond_item
|
||||
else:
|
||||
resized_actual_cond[key] = cond_item
|
||||
finally:
|
||||
del cond_item # just in case to prevent VRAM issues
|
||||
resized_cond.append(resized_actual_cond)
|
||||
return resized_cond
|
||||
|
||||
def set_step(self, timestep: torch.Tensor, model_options: dict[str]):
|
||||
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001)
|
||||
matches = torch.nonzero(mask)
|
||||
if torch.numel(matches) == 0:
|
||||
raise Exception("No sample_sigmas matched current timestep; something went wrong.")
|
||||
self._step = int(matches[0].item())
|
||||
|
||||
def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]:
|
||||
full_length = x_in.size(self.dim) # TODO: choose dim based on model
|
||||
context_windows = self.context_schedule.func(full_length, self, model_options)
|
||||
context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows]
|
||||
return context_windows
|
||||
|
||||
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
|
||||
self.set_step(timestep, model_options)
|
||||
context_windows = self.get_context_windows(model, x_in, model_options)
|
||||
enumerated_context_windows = list(enumerate(context_windows))
|
||||
|
||||
conds_final = [torch.zeros_like(x_in) for _ in conds]
|
||||
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
|
||||
counts_final = [torch.ones(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
|
||||
else:
|
||||
counts_final = [torch.zeros(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
|
||||
biases_final = [([0.0] * x_in.shape[self.dim]) for _ in conds]
|
||||
|
||||
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_START, self.callbacks):
|
||||
callback(self, model, x_in, conds, timestep, model_options)
|
||||
|
||||
for enum_window in enumerated_context_windows:
|
||||
results = self.evaluate_context_windows(calc_cond_batch, model, x_in, conds, timestep, [enum_window], model_options)
|
||||
for result in results:
|
||||
self.combine_context_window_results(x_in, result.sub_conds_out, result.sub_conds, result.window, result.window_idx, len(enumerated_context_windows), timestep,
|
||||
conds_final, counts_final, biases_final)
|
||||
try:
|
||||
# finalize conds
|
||||
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
|
||||
# relative is already normalized, so return as is
|
||||
del counts_final
|
||||
return conds_final
|
||||
else:
|
||||
# normalize conds via division by context usage counts
|
||||
for i in range(len(conds_final)):
|
||||
conds_final[i] /= counts_final[i]
|
||||
del counts_final
|
||||
return conds_final
|
||||
finally:
|
||||
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_CLEANUP, self.callbacks):
|
||||
callback(self, model, x_in, conds, timestep, model_options)
|
||||
|
||||
def evaluate_context_windows(self, calc_cond_batch: Callable, model: BaseModel, x_in: torch.Tensor, conds, timestep: torch.Tensor, enumerated_context_windows: list[tuple[int, IndexListContextWindow]],
|
||||
model_options, device=None, first_device=None):
|
||||
results: list[ContextResults] = []
|
||||
for window_idx, window in enumerated_context_windows:
|
||||
# allow processing to end between context window executions for faster Cancel
|
||||
comfy.model_management.throw_exception_if_processing_interrupted()
|
||||
|
||||
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EVALUATE_CONTEXT_WINDOWS, self.callbacks):
|
||||
callback(self, model, x_in, conds, timestep, model_options, window_idx, window, model_options, device, first_device)
|
||||
|
||||
# update exposed params
|
||||
model_options["transformer_options"]["context_window"] = window
|
||||
# get subsections of x, timestep, conds
|
||||
sub_x = window.get_tensor(x_in, device)
|
||||
sub_timestep = window.get_tensor(timestep, device, dim=0)
|
||||
sub_conds = [self.get_resized_cond(cond, x_in, window, device) for cond in conds]
|
||||
|
||||
sub_conds_out = calc_cond_batch(model, sub_conds, sub_x, sub_timestep, model_options)
|
||||
if device is not None:
|
||||
for i in range(len(sub_conds_out)):
|
||||
sub_conds_out[i] = sub_conds_out[i].to(x_in.device)
|
||||
results.append(ContextResults(window_idx, sub_conds_out, sub_conds, window))
|
||||
return results
|
||||
|
||||
|
||||
def combine_context_window_results(self, x_in: torch.Tensor, sub_conds_out, sub_conds, window: IndexListContextWindow, window_idx: int, total_windows: int, timestep: torch.Tensor,
|
||||
conds_final: list[torch.Tensor], counts_final: list[torch.Tensor], biases_final: list[torch.Tensor]):
|
||||
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
|
||||
for pos, idx in enumerate(window.index_list):
|
||||
# bias is the influence of a specific index in relation to the whole context window
|
||||
bias = 1 - abs(idx - (window.index_list[0] + window.index_list[-1]) / 2) / ((window.index_list[-1] - window.index_list[0] + 1e-2) / 2)
|
||||
bias = max(1e-2, bias)
|
||||
# take weighted average relative to total bias of current idx
|
||||
for i in range(len(sub_conds_out)):
|
||||
bias_total = biases_final[i][idx]
|
||||
prev_weight = (bias_total / (bias_total + bias))
|
||||
new_weight = (bias / (bias_total + bias))
|
||||
# account for dims of tensors
|
||||
idx_window = [slice(None)] * self.dim + [idx]
|
||||
pos_window = [slice(None)] * self.dim + [pos]
|
||||
# apply new values
|
||||
conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight
|
||||
biases_final[i][idx] = bias_total + bias
|
||||
else:
|
||||
# add conds and counts based on weights of fuse method
|
||||
weights = get_context_weights(window.context_length, x_in.shape[self.dim], window.index_list, self, sigma=timestep)
|
||||
weights_tensor = match_weights_to_dim(weights, x_in, self.dim, device=x_in.device)
|
||||
for i in range(len(sub_conds_out)):
|
||||
window.add_window(conds_final[i], sub_conds_out[i] * weights_tensor)
|
||||
window.add_window(counts_final[i], weights_tensor)
|
||||
|
||||
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.COMBINE_CONTEXT_WINDOW_RESULTS, self.callbacks):
|
||||
callback(self, x_in, sub_conds_out, sub_conds, window, window_idx, total_windows, timestep, conds_final, counts_final, biases_final)
|
||||
|
||||
|
||||
def _prepare_sampling_wrapper(executor, model, noise_shape: torch.Tensor, *args, **kwargs):
|
||||
# limit noise_shape length to context_length for more accurate vram use estimation
|
||||
model_options = kwargs.get("model_options", None)
|
||||
if model_options is None:
|
||||
raise Exception("model_options not found in prepare_sampling_wrapper; this should never happen, something went wrong.")
|
||||
handler: IndexListContextHandler = model_options.get("context_handler", None)
|
||||
if handler is not None:
|
||||
noise_shape = list(noise_shape)
|
||||
noise_shape[handler.dim] = min(noise_shape[handler.dim], handler.context_length)
|
||||
return executor(model, noise_shape, *args, **kwargs)
|
||||
|
||||
|
||||
def create_prepare_sampling_wrapper(model: ModelPatcher):
|
||||
model.add_wrapper_with_key(
|
||||
comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING,
|
||||
"ContextWindows_prepare_sampling",
|
||||
_prepare_sampling_wrapper
|
||||
)
|
||||
|
||||
|
||||
def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor:
|
||||
total_dims = len(x_in.shape)
|
||||
weights_tensor = torch.Tensor(weights).to(device=device)
|
||||
for _ in range(dim):
|
||||
weights_tensor = weights_tensor.unsqueeze(0)
|
||||
for _ in range(total_dims - dim - 1):
|
||||
weights_tensor = weights_tensor.unsqueeze(-1)
|
||||
return weights_tensor
|
||||
|
||||
def get_shape_for_dim(x_in: torch.Tensor, dim: int) -> list[int]:
|
||||
total_dims = len(x_in.shape)
|
||||
shape = []
|
||||
for _ in range(dim):
|
||||
shape.append(1)
|
||||
shape.append(x_in.shape[dim])
|
||||
for _ in range(total_dims - dim - 1):
|
||||
shape.append(1)
|
||||
return shape
|
||||
|
||||
class ContextSchedules:
|
||||
UNIFORM_LOOPED = "looped_uniform"
|
||||
UNIFORM_STANDARD = "standard_uniform"
|
||||
STATIC_STANDARD = "standard_static"
|
||||
BATCHED = "batched"
|
||||
|
||||
|
||||
# from https://github.com/neggles/animatediff-cli/blob/main/src/animatediff/pipelines/context.py
|
||||
def create_windows_uniform_looped(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
|
||||
windows = []
|
||||
if num_frames < handler.context_length:
|
||||
windows.append(list(range(num_frames)))
|
||||
return windows
|
||||
|
||||
context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
|
||||
# obtain uniform windows as normal, looping and all
|
||||
for context_step in 1 << np.arange(context_stride):
|
||||
pad = int(round(num_frames * ordered_halving(handler._step)))
|
||||
for j in range(
|
||||
int(ordered_halving(handler._step) * context_step) + pad,
|
||||
num_frames + pad + (0 if handler.closed_loop else -handler.context_overlap),
|
||||
(handler.context_length * context_step - handler.context_overlap),
|
||||
):
|
||||
windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])
|
||||
|
||||
return windows
|
||||
|
||||
def create_windows_uniform_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
|
||||
# unlike looped, uniform_straight does NOT allow windows that loop back to the beginning;
|
||||
# instead, they get shifted to the corresponding end of the frames.
|
||||
# in the case that a window (shifted or not) is identical to the previous one, it gets skipped.
|
||||
windows = []
|
||||
if num_frames <= handler.context_length:
|
||||
windows.append(list(range(num_frames)))
|
||||
return windows
|
||||
|
||||
context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
|
||||
# first, obtain uniform windows as normal, looping and all
|
||||
for context_step in 1 << np.arange(context_stride):
|
||||
pad = int(round(num_frames * ordered_halving(handler._step)))
|
||||
for j in range(
|
||||
int(ordered_halving(handler._step) * context_step) + pad,
|
||||
num_frames + pad + (-handler.context_overlap),
|
||||
(handler.context_length * context_step - handler.context_overlap),
|
||||
):
|
||||
windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])
|
||||
|
||||
# now that windows are created, shift any windows that loop, and delete duplicate windows
|
||||
delete_idxs = []
|
||||
win_i = 0
|
||||
while win_i < len(windows):
|
||||
# if window is rolls over itself, need to shift it
|
||||
is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
|
||||
if is_roll:
|
||||
roll_val = windows[win_i][roll_idx] # roll_val might not be 0 for windows of higher strides
|
||||
shift_window_to_end(windows[win_i], num_frames=num_frames)
|
||||
# check if next window (cyclical) is missing roll_val
|
||||
if roll_val not in windows[(win_i+1) % len(windows)]:
|
||||
# need to insert new window here - just insert window starting at roll_val
|
||||
windows.insert(win_i+1, list(range(roll_val, roll_val + handler.context_length)))
|
||||
# delete window if it's not unique
|
||||
for pre_i in range(0, win_i):
|
||||
if windows[win_i] == windows[pre_i]:
|
||||
delete_idxs.append(win_i)
|
||||
break
|
||||
win_i += 1
|
||||
|
||||
# reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
|
||||
delete_idxs.reverse()
|
||||
for i in delete_idxs:
|
||||
windows.pop(i)
|
||||
|
||||
return windows
|
||||
|
||||
|
||||
def create_windows_static_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
|
||||
windows = []
|
||||
if num_frames <= handler.context_length:
|
||||
windows.append(list(range(num_frames)))
|
||||
return windows
|
||||
# always return the same set of windows
|
||||
delta = handler.context_length - handler.context_overlap
|
||||
for start_idx in range(0, num_frames, delta):
|
||||
# if past the end of frames, move start_idx back to allow same context_length
|
||||
ending = start_idx + handler.context_length
|
||||
if ending >= num_frames:
|
||||
final_delta = ending - num_frames
|
||||
final_start_idx = start_idx - final_delta
|
||||
windows.append(list(range(final_start_idx, final_start_idx + handler.context_length)))
|
||||
break
|
||||
windows.append(list(range(start_idx, start_idx + handler.context_length)))
|
||||
return windows
|
||||
|
||||
|
||||
def create_windows_batched(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
|
||||
windows = []
|
||||
if num_frames <= handler.context_length:
|
||||
windows.append(list(range(num_frames)))
|
||||
return windows
|
||||
# always return the same set of windows;
|
||||
# no overlap, just cut up based on context_length;
|
||||
# last window size will be different if num_frames % opts.context_length != 0
|
||||
for start_idx in range(0, num_frames, handler.context_length):
|
||||
windows.append(list(range(start_idx, min(start_idx + handler.context_length, num_frames))))
|
||||
return windows
|
||||
|
||||
|
||||
def create_windows_default(num_frames: int, handler: IndexListContextHandler):
|
||||
return [list(range(num_frames))]
|
||||
|
||||
|
||||
CONTEXT_MAPPING = {
|
||||
ContextSchedules.UNIFORM_LOOPED: create_windows_uniform_looped,
|
||||
ContextSchedules.UNIFORM_STANDARD: create_windows_uniform_standard,
|
||||
ContextSchedules.STATIC_STANDARD: create_windows_static_standard,
|
||||
ContextSchedules.BATCHED: create_windows_batched,
|
||||
}
|
||||
|
||||
|
||||
def get_matching_context_schedule(context_schedule: str) -> ContextSchedule:
|
||||
func = CONTEXT_MAPPING.get(context_schedule, None)
|
||||
if func is None:
|
||||
raise ValueError(f"Unknown context_schedule '{context_schedule}'.")
|
||||
return ContextSchedule(context_schedule, func)
|
||||
|
||||
|
||||
def get_context_weights(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, sigma: torch.Tensor=None):
|
||||
return handler.fuse_method.func(length, sigma=sigma, handler=handler, full_length=full_length, idxs=idxs)
|
||||
|
||||
|
||||
def create_weights_flat(length: int, **kwargs) -> list[float]:
|
||||
# weight is the same for all
|
||||
return [1.0] * length
|
||||
|
||||
def create_weights_pyramid(length: int, **kwargs) -> list[float]:
|
||||
# weight is based on the distance away from the edge of the context window;
|
||||
# based on weighted average concept in FreeNoise paper
|
||||
if length % 2 == 0:
|
||||
max_weight = length // 2
|
||||
weight_sequence = list(range(1, max_weight + 1, 1)) + list(range(max_weight, 0, -1))
|
||||
else:
|
||||
max_weight = (length + 1) // 2
|
||||
weight_sequence = list(range(1, max_weight, 1)) + [max_weight] + list(range(max_weight - 1, 0, -1))
|
||||
return weight_sequence
|
||||
|
||||
def create_weights_overlap_linear(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, **kwargs):
|
||||
# based on code in Kijai's WanVideoWrapper: https://github.com/kijai/ComfyUI-WanVideoWrapper/blob/dbb2523b37e4ccdf45127e5ae33e31362f755c8e/nodes.py#L1302
|
||||
# only expected overlap is given different weights
|
||||
weights_torch = torch.ones((length))
|
||||
# blend left-side on all except first window
|
||||
if min(idxs) > 0:
|
||||
ramp_up = torch.linspace(1e-37, 1, handler.context_overlap)
|
||||
weights_torch[:handler.context_overlap] = ramp_up
|
||||
# blend right-side on all except last window
|
||||
if max(idxs) < full_length-1:
|
||||
ramp_down = torch.linspace(1, 1e-37, handler.context_overlap)
|
||||
weights_torch[-handler.context_overlap:] = ramp_down
|
||||
return weights_torch
|
||||
|
||||
class ContextFuseMethods:
|
||||
FLAT = "flat"
|
||||
PYRAMID = "pyramid"
|
||||
RELATIVE = "relative"
|
||||
OVERLAP_LINEAR = "overlap-linear"
|
||||
|
||||
LIST = [PYRAMID, FLAT, OVERLAP_LINEAR]
|
||||
LIST_STATIC = [PYRAMID, RELATIVE, FLAT, OVERLAP_LINEAR]
|
||||
|
||||
|
||||
FUSE_MAPPING = {
|
||||
ContextFuseMethods.FLAT: create_weights_flat,
|
||||
ContextFuseMethods.PYRAMID: create_weights_pyramid,
|
||||
ContextFuseMethods.RELATIVE: create_weights_pyramid,
|
||||
ContextFuseMethods.OVERLAP_LINEAR: create_weights_overlap_linear,
|
||||
}
|
||||
|
||||
def get_matching_fuse_method(fuse_method: str) -> ContextFuseMethod:
|
||||
func = FUSE_MAPPING.get(fuse_method, None)
|
||||
if func is None:
|
||||
raise ValueError(f"Unknown fuse_method '{fuse_method}'.")
|
||||
return ContextFuseMethod(fuse_method, func)
|
||||
|
||||
# Returns fraction that has denominator that is a power of 2
|
||||
def ordered_halving(val):
|
||||
# get binary value, padded with 0s for 64 bits
|
||||
bin_str = f"{val:064b}"
|
||||
# flip binary value, padding included
|
||||
bin_flip = bin_str[::-1]
|
||||
# convert binary to int
|
||||
as_int = int(bin_flip, 2)
|
||||
# divide by 1 << 64, equivalent to 2**64, or 18446744073709551616,
|
||||
# or b10000000000000000000000000000000000000000000000000000000000000000 (1 with 64 zero's)
|
||||
return as_int / (1 << 64)
|
||||
|
||||
|
||||
def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
|
||||
all_indexes = list(range(num_frames))
|
||||
for w in windows:
|
||||
for val in w:
|
||||
try:
|
||||
all_indexes.remove(val)
|
||||
except ValueError:
|
||||
pass
|
||||
return all_indexes
|
||||
|
||||
|
||||
def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
|
||||
prev_val = -1
|
||||
for i, val in enumerate(window):
|
||||
val = val % num_frames
|
||||
if val < prev_val:
|
||||
return True, i
|
||||
prev_val = val
|
||||
return False, -1
|
||||
|
||||
|
||||
def shift_window_to_start(window: list[int], num_frames: int):
|
||||
start_val = window[0]
|
||||
for i in range(len(window)):
|
||||
# 1) subtract each element by start_val to move vals relative to the start of all frames
|
||||
# 2) add num_frames and take modulus to get adjusted vals
|
||||
window[i] = ((window[i] - start_val) + num_frames) % num_frames
|
||||
|
||||
|
||||
def shift_window_to_end(window: list[int], num_frames: int):
|
||||
# 1) shift window to start
|
||||
shift_window_to_start(window, num_frames)
|
||||
end_val = window[-1]
|
||||
end_delta = num_frames - end_val - 1
|
||||
for i in range(len(window)):
|
||||
# 2) add end_delta to each val to slide windows to end
|
||||
window[i] = window[i] + end_delta
|
||||
@@ -28,6 +28,7 @@ import comfy.model_detection
|
||||
import comfy.model_patcher
|
||||
import comfy.ops
|
||||
import comfy.latent_formats
|
||||
import comfy.model_base
|
||||
|
||||
import comfy.cldm.cldm
|
||||
import comfy.t2i_adapter.adapter
|
||||
@@ -43,7 +44,6 @@ if TYPE_CHECKING:
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
current_batch_size = tensor.shape[0]
|
||||
#print(current_batch_size, target_batch_size)
|
||||
if current_batch_size == 1:
|
||||
return tensor
|
||||
|
||||
@@ -265,12 +265,12 @@ class ControlNet(ControlBase):
|
||||
for c in self.extra_conds:
|
||||
temp = cond.get(c, None)
|
||||
if temp is not None:
|
||||
extra[c] = temp.to(dtype)
|
||||
extra[c] = comfy.model_base.convert_tensor(temp, dtype, x_noisy.device)
|
||||
|
||||
timestep = self.model_sampling_current.timestep(t)
|
||||
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
||||
|
||||
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
|
||||
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=comfy.model_management.cast_to_device(context, x_noisy.device, dtype), **extra)
|
||||
return self.control_merge(control, control_prev, output_dtype=None)
|
||||
|
||||
def copy(self):
|
||||
@@ -390,8 +390,9 @@ class ControlLora(ControlNet):
|
||||
pass
|
||||
|
||||
for k in self.control_weights:
|
||||
if k not in {"lora_controlnet"}:
|
||||
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
||||
if (k not in {"lora_controlnet"}):
|
||||
if (k.endswith(".up") or k.endswith(".down") or k.endswith(".weight") or k.endswith(".bias")) and ("__" not in k):
|
||||
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
||||
|
||||
def copy(self):
|
||||
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
||||
|
||||
@@ -1,55 +1,10 @@
|
||||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from .ldm.modules.attention import CrossAttention
|
||||
from inspect import isfunction
|
||||
from .ldm.modules.attention import CrossAttention, FeedForward
|
||||
import comfy.ops
|
||||
ops = comfy.ops.manual_cast
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def uniq(arr):
|
||||
return{el: True for el in arr}.keys()
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
super().__init__()
|
||||
self.proj = ops.Linear(dim_in, dim_out * 2)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
return x * torch.nn.functional.gelu(gate)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = nn.Sequential(
|
||||
ops.Linear(dim, inner_dim),
|
||||
nn.GELU()
|
||||
) if not glu else GEGLU(dim, inner_dim)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
ops.Linear(inner_dim, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class GatedCrossAttentionDense(nn.Module):
|
||||
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
||||
|
||||
121
comfy/k_diffusion/sa_solver.py
Normal file
121
comfy/k_diffusion/sa_solver.py
Normal file
@@ -0,0 +1,121 @@
|
||||
# SA-Solver: Stochastic Adams Solver (NeurIPS 2023, arXiv:2309.05019)
|
||||
# Conference: https://proceedings.neurips.cc/paper_files/paper/2023/file/f4a6806490d31216a3ba667eb240c897-Paper-Conference.pdf
|
||||
# Codebase ref: https://github.com/scxue/SA-Solver
|
||||
|
||||
import math
|
||||
from typing import Union, Callable
|
||||
import torch
|
||||
|
||||
|
||||
def compute_exponential_coeffs(s: torch.Tensor, t: torch.Tensor, solver_order: int, tau_t: float) -> torch.Tensor:
|
||||
"""Compute (1 + tau^2) * integral of exp((1 + tau^2) * x) * x^p dx from s to t with exp((1 + tau^2) * t) factored out, using integration by parts.
|
||||
|
||||
Integral of exp((1 + tau^2) * x) * x^p dx
|
||||
= product_terms[p] - (p / (1 + tau^2)) * integral of exp((1 + tau^2) * x) * x^(p-1) dx,
|
||||
with base case p=0 where integral equals product_terms[0].
|
||||
|
||||
where
|
||||
product_terms[p] = x^p * exp((1 + tau^2) * x) / (1 + tau^2).
|
||||
|
||||
Construct a recursive coefficient matrix following the above recursive relation to compute all integral terms up to p = (solver_order - 1).
|
||||
Return coefficients used by the SA-Solver in data prediction mode.
|
||||
|
||||
Args:
|
||||
s: Start time s.
|
||||
t: End time t.
|
||||
solver_order: Current order of the solver.
|
||||
tau_t: Stochastic strength parameter in the SDE.
|
||||
|
||||
Returns:
|
||||
Exponential coefficients used in data prediction, with exp((1 + tau^2) * t) factored out, ordered from p=0 to p=solver_order−1, shape (solver_order,).
|
||||
"""
|
||||
tau_mul = 1 + tau_t ** 2
|
||||
h = t - s
|
||||
p = torch.arange(solver_order, dtype=s.dtype, device=s.device)
|
||||
|
||||
# product_terms after factoring out exp((1 + tau^2) * t)
|
||||
# Includes (1 + tau^2) factor from outside the integral
|
||||
product_terms_factored = (t ** p - s ** p * (-tau_mul * h).exp())
|
||||
|
||||
# Lower triangular recursive coefficient matrix
|
||||
# Accumulates recursive coefficients based on p / (1 + tau^2)
|
||||
recursive_depth_mat = p.unsqueeze(1) - p.unsqueeze(0)
|
||||
log_factorial = (p + 1).lgamma()
|
||||
recursive_coeff_mat = log_factorial.unsqueeze(1) - log_factorial.unsqueeze(0)
|
||||
if tau_t > 0:
|
||||
recursive_coeff_mat = recursive_coeff_mat - (recursive_depth_mat * math.log(tau_mul))
|
||||
signs = torch.where(recursive_depth_mat % 2 == 0, 1.0, -1.0)
|
||||
recursive_coeff_mat = (recursive_coeff_mat.exp() * signs).tril()
|
||||
|
||||
return recursive_coeff_mat @ product_terms_factored
|
||||
|
||||
|
||||
def compute_simple_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, is_corrector_step: bool = False) -> torch.Tensor:
|
||||
"""Compute simple order-2 b coefficients from SA-Solver paper (Appendix D. Implementation Details)."""
|
||||
tau_mul = 1 + tau_t ** 2
|
||||
h = lambda_t - lambda_s
|
||||
alpha_t = sigma_next * lambda_t.exp()
|
||||
if is_corrector_step:
|
||||
# Simplified 1-step (order-2) corrector
|
||||
b_1 = alpha_t * (0.5 * tau_mul * h)
|
||||
b_2 = alpha_t * (-h * tau_mul).expm1().neg() - b_1
|
||||
else:
|
||||
# Simplified 2-step predictor
|
||||
b_2 = alpha_t * (0.5 * tau_mul * h ** 2) / (curr_lambdas[-2] - lambda_s)
|
||||
b_1 = alpha_t * (-h * tau_mul).expm1().neg() - b_2
|
||||
return torch.stack([b_2, b_1])
|
||||
|
||||
|
||||
def compute_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, simple_order_2: bool = False, is_corrector_step: bool = False) -> torch.Tensor:
|
||||
"""Compute b_i coefficients for the SA-Solver (see eqs. 15 and 18).
|
||||
|
||||
The solver order corresponds to the number of input lambdas (half-logSNR points).
|
||||
|
||||
Args:
|
||||
sigma_next: Sigma at end time t.
|
||||
curr_lambdas: Lambda time points used to construct the Lagrange basis, shape (N,).
|
||||
lambda_s: Lambda at start time s.
|
||||
lambda_t: Lambda at end time t.
|
||||
tau_t: Stochastic strength parameter in the SDE.
|
||||
simple_order_2: Whether to enable the simple order-2 scheme.
|
||||
is_corrector_step: Flag for corrector step in simple order-2 mode.
|
||||
|
||||
Returns:
|
||||
b_i coefficients for the SA-Solver, shape (N,), where N is the solver order.
|
||||
"""
|
||||
num_timesteps = curr_lambdas.shape[0]
|
||||
|
||||
if simple_order_2 and num_timesteps == 2:
|
||||
return compute_simple_stochastic_adams_b_coeffs(sigma_next, curr_lambdas, lambda_s, lambda_t, tau_t, is_corrector_step)
|
||||
|
||||
# Compute coefficients by solving a linear system from Lagrange basis interpolation
|
||||
exp_integral_coeffs = compute_exponential_coeffs(lambda_s, lambda_t, num_timesteps, tau_t)
|
||||
vandermonde_matrix_T = torch.vander(curr_lambdas, num_timesteps, increasing=True).T
|
||||
lagrange_integrals = torch.linalg.solve(vandermonde_matrix_T, exp_integral_coeffs)
|
||||
|
||||
# (sigma_t * exp(-tau^2 * lambda_t)) * exp((1 + tau^2) * lambda_t)
|
||||
# = sigma_t * exp(lambda_t) = alpha_t
|
||||
# exp((1 + tau^2) * lambda_t) is extracted from the integral
|
||||
alpha_t = sigma_next * lambda_t.exp()
|
||||
return alpha_t * lagrange_integrals
|
||||
|
||||
|
||||
def get_tau_interval_func(start_sigma: float, end_sigma: float, eta: float = 1.0) -> Callable[[Union[torch.Tensor, float]], float]:
|
||||
"""Return a function that controls the stochasticity of SA-Solver.
|
||||
|
||||
When eta = 0, SA-Solver runs as ODE. The official approach uses
|
||||
time t to determine the SDE interval, while here we use sigma instead.
|
||||
|
||||
See:
|
||||
https://github.com/scxue/SA-Solver/blob/main/README.md
|
||||
"""
|
||||
|
||||
def tau_func(sigma: Union[torch.Tensor, float]) -> float:
|
||||
if eta <= 0:
|
||||
return 0.0 # ODE
|
||||
|
||||
if isinstance(sigma, torch.Tensor):
|
||||
sigma = sigma.item()
|
||||
return eta if start_sigma >= sigma >= end_sigma else 0.0
|
||||
|
||||
return tau_func
|
||||
@@ -1,4 +1,5 @@
|
||||
import math
|
||||
from functools import partial
|
||||
|
||||
from scipy import integrate
|
||||
import torch
|
||||
@@ -8,6 +9,7 @@ from tqdm.auto import trange, tqdm
|
||||
|
||||
from . import utils
|
||||
from . import deis
|
||||
from . import sa_solver
|
||||
import comfy.model_patcher
|
||||
import comfy.model_sampling
|
||||
|
||||
@@ -142,6 +144,33 @@ class BrownianTreeNoiseSampler:
|
||||
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
|
||||
|
||||
|
||||
def sigma_to_half_log_snr(sigma, model_sampling):
|
||||
"""Convert sigma to half-logSNR log(alpha_t / sigma_t)."""
|
||||
if isinstance(model_sampling, comfy.model_sampling.CONST):
|
||||
# log((1 - t) / t) = log((1 - sigma) / sigma)
|
||||
return sigma.logit().neg()
|
||||
return sigma.log().neg()
|
||||
|
||||
|
||||
def half_log_snr_to_sigma(half_log_snr, model_sampling):
|
||||
"""Convert half-logSNR log(alpha_t / sigma_t) to sigma."""
|
||||
if isinstance(model_sampling, comfy.model_sampling.CONST):
|
||||
# 1 / (1 + exp(half_log_snr))
|
||||
return half_log_snr.neg().sigmoid()
|
||||
return half_log_snr.neg().exp()
|
||||
|
||||
|
||||
def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4):
|
||||
"""Adjust the first sigma to avoid invalid logSNR."""
|
||||
if len(sigmas) <= 1:
|
||||
return sigmas
|
||||
if isinstance(model_sampling, comfy.model_sampling.CONST):
|
||||
if sigmas[0] >= 1:
|
||||
sigmas = sigmas.clone()
|
||||
sigmas[0] = model_sampling.percent_to_sigma(percent_offset)
|
||||
return sigmas
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
||||
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
|
||||
@@ -384,9 +413,13 @@ def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, o
|
||||
ds.pop(0)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
cur_order = min(i + 1, order)
|
||||
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
|
||||
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
||||
if sigmas[i + 1] == 0:
|
||||
# Denoising step
|
||||
x = denoised
|
||||
else:
|
||||
cur_order = min(i + 1, order)
|
||||
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
|
||||
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
||||
return x
|
||||
|
||||
|
||||
@@ -682,6 +715,7 @@ def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=Non
|
||||
# logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
||||
"""DPM-Solver++ (stochastic)."""
|
||||
@@ -693,38 +727,49 @@ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=N
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
sigma_fn = lambda t: t.neg().exp()
|
||||
t_fn = lambda sigma: sigma.log().neg()
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
|
||||
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
|
||||
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigmas[i + 1] == 0:
|
||||
# Euler method
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
dt = sigmas[i + 1] - sigmas[i]
|
||||
x = x + d * dt
|
||||
# Denoising step
|
||||
x = denoised
|
||||
else:
|
||||
# DPM-Solver++
|
||||
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
||||
h = t_next - t
|
||||
s = t + h * r
|
||||
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||
h = lambda_t - lambda_s
|
||||
lambda_s_1 = lambda_s + r * h
|
||||
fac = 1 / (2 * r)
|
||||
|
||||
sigma_s_1 = sigma_fn(lambda_s_1)
|
||||
|
||||
alpha_s = sigmas[i] * lambda_s.exp()
|
||||
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
|
||||
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||
|
||||
# Step 1
|
||||
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
|
||||
s_ = t_fn(sd)
|
||||
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
|
||||
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
|
||||
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
||||
sd, su = get_ancestral_step(lambda_s.neg().exp(), lambda_s_1.neg().exp(), eta)
|
||||
lambda_s_1_ = sd.log().neg()
|
||||
h_ = lambda_s_1_ - lambda_s
|
||||
x_2 = (alpha_s_1 / alpha_s) * (-h_).exp() * x - alpha_s_1 * (-h_).expm1() * denoised
|
||||
if eta > 0 and s_noise > 0:
|
||||
x_2 = x_2 + alpha_s_1 * noise_sampler(sigmas[i], sigma_s_1) * s_noise * su
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
|
||||
t_next_ = t_fn(sd)
|
||||
sd, su = get_ancestral_step(lambda_s.neg().exp(), lambda_t.neg().exp(), eta)
|
||||
lambda_t_ = sd.log().neg()
|
||||
h_ = lambda_t_ - lambda_s
|
||||
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
||||
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
|
||||
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
|
||||
x = (alpha_t / alpha_s) * (-h_).exp() * x - alpha_t * (-h_).expm1() * denoised_d
|
||||
if eta > 0 and s_noise > 0:
|
||||
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * su
|
||||
return x
|
||||
|
||||
|
||||
@@ -753,6 +798,7 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
|
||||
old_denoised = denoised
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
||||
"""DPM-Solver++(2M) SDE."""
|
||||
@@ -768,9 +814,12 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
|
||||
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||
|
||||
old_denoised = None
|
||||
h_last = None
|
||||
h = None
|
||||
h, h_last = None, None
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
@@ -781,26 +830,29 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
x = denoised
|
||||
else:
|
||||
# DPM-Solver++(2M) SDE
|
||||
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
||||
h = s - t
|
||||
eta_h = eta * h
|
||||
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||
h = lambda_t - lambda_s
|
||||
h_eta = h * (eta + 1)
|
||||
|
||||
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
|
||||
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
|
||||
|
||||
if old_denoised is not None:
|
||||
r = h_last / h
|
||||
if solver_type == 'heun':
|
||||
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
|
||||
x = x + alpha_t * ((-h_eta).expm1().neg() / (-h_eta) + 1) * (1 / r) * (denoised - old_denoised)
|
||||
elif solver_type == 'midpoint':
|
||||
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
||||
x = x + 0.5 * alpha_t * (-h_eta).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
||||
|
||||
if eta:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
||||
if eta > 0 and s_noise > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
|
||||
|
||||
old_denoised = denoised
|
||||
h_last = h
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""DPM-Solver++(3M) SDE."""
|
||||
@@ -814,6 +866,10 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
|
||||
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||
|
||||
denoised_1, denoised_2 = None, None
|
||||
h, h_1, h_2 = None, None, None
|
||||
|
||||
@@ -825,13 +881,16 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
# Denoising step
|
||||
x = denoised
|
||||
else:
|
||||
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
||||
h = s - t
|
||||
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||
h = lambda_t - lambda_s
|
||||
h_eta = h * (eta + 1)
|
||||
|
||||
x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
|
||||
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
|
||||
|
||||
if h_2 is not None:
|
||||
# DPM-Solver++(3M) SDE
|
||||
r0 = h_1 / h
|
||||
r1 = h_2 / h
|
||||
d1_0 = (denoised - denoised_1) / r0
|
||||
@@ -840,20 +899,22 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
d2 = (d1_0 - d1_1) / (r0 + r1)
|
||||
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
||||
phi_3 = phi_2 / h_eta - 0.5
|
||||
x = x + phi_2 * d1 - phi_3 * d2
|
||||
x = x + (alpha_t * phi_2) * d1 - (alpha_t * phi_3) * d2
|
||||
elif h_1 is not None:
|
||||
# DPM-Solver++(2M) SDE
|
||||
r = h_1 / h
|
||||
d = (denoised - denoised_1) / r
|
||||
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
||||
x = x + phi_2 * d
|
||||
x = x + (alpha_t * phi_2) * d
|
||||
|
||||
if eta:
|
||||
if eta > 0 and s_noise > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
|
||||
|
||||
denoised_1, denoised_2 = denoised, denoised_1
|
||||
h_1, h_2 = h, h_1
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
if len(sigmas) <= 1:
|
||||
@@ -863,6 +924,7 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
||||
if len(sigmas) <= 1:
|
||||
@@ -872,6 +934,7 @@ def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
||||
if len(sigmas) <= 1:
|
||||
@@ -1009,7 +1072,9 @@ def sample_ipndm(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
d_cur = (x_cur - denoised) / t_cur
|
||||
|
||||
order = min(max_order, i+1)
|
||||
if order == 1: # First Euler step.
|
||||
if t_next == 0: # Denoising step
|
||||
x_next = denoised
|
||||
elif order == 1: # First Euler step.
|
||||
x_next = x_cur + (t_next - t_cur) * d_cur
|
||||
elif order == 2: # Use one history point.
|
||||
x_next = x_cur + (t_next - t_cur) * (3 * d_cur - buffer_model[-1]) / 2
|
||||
@@ -1027,6 +1092,7 @@ def sample_ipndm(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
|
||||
return x_next
|
||||
|
||||
|
||||
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
|
||||
#under Apache 2 license
|
||||
def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=4):
|
||||
@@ -1050,7 +1116,9 @@ def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
d_cur = (x_cur - denoised) / t_cur
|
||||
|
||||
order = min(max_order, i+1)
|
||||
if order == 1: # First Euler step.
|
||||
if t_next == 0: # Denoising step
|
||||
x_next = denoised
|
||||
elif order == 1: # First Euler step.
|
||||
x_next = x_cur + (t_next - t_cur) * d_cur
|
||||
elif order == 2: # Use one history point.
|
||||
h_n = (t_next - t_cur)
|
||||
@@ -1090,6 +1158,7 @@ def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
|
||||
return x_next
|
||||
|
||||
|
||||
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
|
||||
#under Apache 2 license
|
||||
@torch.no_grad()
|
||||
@@ -1140,39 +1209,22 @@ def sample_deis(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
||||
|
||||
return x_next
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
|
||||
temp = [0]
|
||||
def post_cfg_function(args):
|
||||
temp[0] = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
sigma_hat = sigmas[i]
|
||||
denoised = model(x, sigma_hat * s_in, **extra_args)
|
||||
d = to_d(x, sigma_hat, temp[0])
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
||||
# Euler method
|
||||
x = denoised + d * sigmas[i + 1]
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""Ancestral sampling with Euler method steps."""
|
||||
"""Ancestral sampling with Euler method steps (CFG++)."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
|
||||
temp = [0]
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
|
||||
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
|
||||
|
||||
uncond_denoised = None
|
||||
|
||||
def post_cfg_function(args):
|
||||
temp[0] = args["uncond_denoised"]
|
||||
nonlocal uncond_denoised
|
||||
uncond_denoised = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
@@ -1181,15 +1233,33 @@ def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=No
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
d = to_d(x, sigmas[i], temp[0])
|
||||
# Euler method
|
||||
x = denoised + d * sigma_down
|
||||
if sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
if sigmas[i + 1] == 0:
|
||||
# Denoising step
|
||||
x = denoised
|
||||
else:
|
||||
alpha_s = sigmas[i] * lambda_fn(sigmas[i]).exp()
|
||||
alpha_t = sigmas[i + 1] * lambda_fn(sigmas[i + 1]).exp()
|
||||
d = to_d(x, sigmas[i], alpha_s * uncond_denoised) # to noise
|
||||
|
||||
# DDIM stochastic sampling
|
||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i] / alpha_s, sigmas[i + 1] / alpha_t, eta=eta)
|
||||
sigma_down = alpha_t * sigma_down
|
||||
|
||||
# Euler method
|
||||
x = alpha_t * denoised + sigma_down * d
|
||||
if eta > 0 and s_noise > 0:
|
||||
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
||||
"""Euler method steps (CFG++)."""
|
||||
return sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=0.0, s_noise=0.0, noise_sampler=None)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
||||
@@ -1277,6 +1347,7 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
phi1_fn = lambda t: torch.expm1(t) / t
|
||||
phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t
|
||||
|
||||
old_sigma_down = None
|
||||
old_denoised = None
|
||||
uncond_denoised = None
|
||||
def post_cfg_function(args):
|
||||
@@ -1304,9 +1375,9 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
x = x + d * dt
|
||||
else:
|
||||
# Second order multistep method in https://arxiv.org/pdf/2308.02157
|
||||
t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigma_down), t_fn(sigmas[i - 1])
|
||||
t, t_old, t_next, t_prev = t_fn(sigmas[i]), t_fn(old_sigma_down), t_fn(sigma_down), t_fn(sigmas[i - 1])
|
||||
h = t_next - t
|
||||
c2 = (t_prev - t) / h
|
||||
c2 = (t_prev - t_old) / h
|
||||
|
||||
phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
|
||||
b1 = torch.nan_to_num(phi1_val - phi2_val / c2, nan=0.0)
|
||||
@@ -1326,6 +1397,7 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
old_denoised = uncond_denoised
|
||||
else:
|
||||
old_denoised = denoised
|
||||
old_sigma_down = sigma_down
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -1344,6 +1416,7 @@ def sample_res_multistep_ancestral(model, x, sigmas, extra_args=None, callback=N
|
||||
def sample_res_multistep_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2., cfg_pp=False):
|
||||
"""Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK"""
|
||||
@@ -1370,31 +1443,32 @@ def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None,
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
dt = sigmas[i + 1] - sigmas[i]
|
||||
if i == 0:
|
||||
if sigmas[i + 1] == 0:
|
||||
# Denoising step
|
||||
x = denoised
|
||||
else:
|
||||
# Euler method
|
||||
if cfg_pp:
|
||||
x = denoised + d * sigmas[i + 1]
|
||||
else:
|
||||
x = x + d * dt
|
||||
else:
|
||||
# Gradient estimation
|
||||
if cfg_pp:
|
||||
|
||||
if i >= 1:
|
||||
# Gradient estimation
|
||||
d_bar = (ge_gamma - 1) * (d - old_d)
|
||||
x = denoised + d * sigmas[i + 1] + d_bar * dt
|
||||
else:
|
||||
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
|
||||
x = x + d_bar * dt
|
||||
old_d = d
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_gradient_estimation_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
|
||||
return sample_gradient_estimation(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, ge_gamma=ge_gamma, cfg_pp=True)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, noise_scaler=None, max_stage=3):
|
||||
"""
|
||||
Extended Reverse-Time SDE solver (VE ER-SDE-Solver-3). Arxiv: https://arxiv.org/abs/2309.06169.
|
||||
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1.0, noise_sampler=None, noise_scaler=None, max_stage=3):
|
||||
"""Extended Reverse-Time SDE solver (VP ER-SDE-Solver-3). arXiv: https://arxiv.org/abs/2309.06169.
|
||||
Code reference: https://github.com/QinpengCui/ER-SDE-Solver/blob/main/er_sde_solver.py.
|
||||
"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
@@ -1402,12 +1476,18 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
def default_noise_scaler(sigma):
|
||||
return sigma * ((sigma ** 0.3).exp() + 10.0)
|
||||
noise_scaler = default_noise_scaler if noise_scaler is None else noise_scaler
|
||||
def default_er_sde_noise_scaler(x):
|
||||
return x * ((x ** 0.3).exp() + 10.0)
|
||||
|
||||
noise_scaler = default_er_sde_noise_scaler if noise_scaler is None else noise_scaler
|
||||
num_integration_points = 200.0
|
||||
point_indice = torch.arange(0, num_integration_points, dtype=torch.float32, device=x.device)
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
|
||||
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||
half_log_snrs = sigma_to_half_log_snr(sigmas, model_sampling)
|
||||
er_lambdas = half_log_snrs.neg().exp() # er_lambda_t = sigma_t / alpha_t
|
||||
|
||||
old_denoised = None
|
||||
old_denoised_d = None
|
||||
|
||||
@@ -1418,41 +1498,45 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
stage_used = min(max_stage, i + 1)
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
elif stage_used == 1:
|
||||
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
|
||||
x = r * x + (1 - r) * denoised
|
||||
else:
|
||||
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
|
||||
x = r * x + (1 - r) * denoised
|
||||
er_lambda_s, er_lambda_t = er_lambdas[i], er_lambdas[i + 1]
|
||||
alpha_s = sigmas[i] / er_lambda_s
|
||||
alpha_t = sigmas[i + 1] / er_lambda_t
|
||||
r_alpha = alpha_t / alpha_s
|
||||
r = noise_scaler(er_lambda_t) / noise_scaler(er_lambda_s)
|
||||
|
||||
dt = sigmas[i + 1] - sigmas[i]
|
||||
sigma_step_size = -dt / num_integration_points
|
||||
sigma_pos = sigmas[i + 1] + point_indice * sigma_step_size
|
||||
scaled_pos = noise_scaler(sigma_pos)
|
||||
# Stage 1 Euler
|
||||
x = r_alpha * r * x + alpha_t * (1 - r) * denoised
|
||||
|
||||
# Stage 2
|
||||
s = torch.sum(1 / scaled_pos) * sigma_step_size
|
||||
denoised_d = (denoised - old_denoised) / (sigmas[i] - sigmas[i - 1])
|
||||
x = x + (dt + s * noise_scaler(sigmas[i + 1])) * denoised_d
|
||||
if stage_used >= 2:
|
||||
dt = er_lambda_t - er_lambda_s
|
||||
lambda_step_size = -dt / num_integration_points
|
||||
lambda_pos = er_lambda_t + point_indice * lambda_step_size
|
||||
scaled_pos = noise_scaler(lambda_pos)
|
||||
|
||||
if stage_used >= 3:
|
||||
# Stage 3
|
||||
s_u = torch.sum((sigma_pos - sigmas[i]) / scaled_pos) * sigma_step_size
|
||||
denoised_u = (denoised_d - old_denoised_d) / ((sigmas[i] - sigmas[i - 2]) / 2)
|
||||
x = x + ((dt ** 2) / 2 + s_u * noise_scaler(sigmas[i + 1])) * denoised_u
|
||||
old_denoised_d = denoised_d
|
||||
# Stage 2
|
||||
s = torch.sum(1 / scaled_pos) * lambda_step_size
|
||||
denoised_d = (denoised - old_denoised) / (er_lambda_s - er_lambdas[i - 1])
|
||||
x = x + alpha_t * (dt + s * noise_scaler(er_lambda_t)) * denoised_d
|
||||
|
||||
if s_noise != 0 and sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
|
||||
if stage_used >= 3:
|
||||
# Stage 3
|
||||
s_u = torch.sum((lambda_pos - er_lambda_s) / scaled_pos) * lambda_step_size
|
||||
denoised_u = (denoised_d - old_denoised_d) / ((er_lambda_s - er_lambdas[i - 2]) / 2)
|
||||
x = x + alpha_t * ((dt ** 2) / 2 + s_u * noise_scaler(er_lambda_t)) * denoised_u
|
||||
old_denoised_d = denoised_d
|
||||
|
||||
if s_noise > 0:
|
||||
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (er_lambda_t ** 2 - er_lambda_s ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
|
||||
old_denoised = denoised
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
|
||||
'''
|
||||
SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 2
|
||||
Arxiv: https://arxiv.org/abs/2305.14267
|
||||
'''
|
||||
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
|
||||
arXiv: https://arxiv.org/abs/2305.14267
|
||||
"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
@@ -1460,6 +1544,11 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
|
||||
inject_noise = eta > 0 and s_noise > 0
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
|
||||
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
|
||||
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
@@ -1467,80 +1556,206 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
|
||||
h = t_next - t
|
||||
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||
h = lambda_t - lambda_s
|
||||
h_eta = h * (eta + 1)
|
||||
s = t + r * h
|
||||
lambda_s_1 = lambda_s + r * h
|
||||
fac = 1 / (2 * r)
|
||||
sigma_s = s.neg().exp()
|
||||
sigma_s_1 = sigma_fn(lambda_s_1)
|
||||
|
||||
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
|
||||
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
|
||||
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||
|
||||
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
|
||||
if inject_noise:
|
||||
# 0 < r < 1
|
||||
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_2 = ((-2 * r * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
|
||||
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s), noise_sampler(sigma_s, sigmas[i + 1])
|
||||
noise_coeff_2 = (-r * h * eta).exp() * (-2 * (1 - r) * h * eta).expm1().neg().sqrt()
|
||||
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigmas[i + 1])
|
||||
|
||||
# Step 1
|
||||
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
|
||||
if inject_noise:
|
||||
x_2 = x_2 + sigma_s * (noise_coeff_1 * noise_1) * s_noise
|
||||
denoised_2 = model(x_2, sigma_s * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
||||
x = (coeff_2 + 1) * x - coeff_2 * denoised_d
|
||||
if inject_noise:
|
||||
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
|
||||
'''
|
||||
SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VE Data Prediction) stage 3
|
||||
Arxiv: https://arxiv.org/abs/2305.14267
|
||||
'''
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
inject_noise = eta > 0 and s_noise > 0
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
t, t_next = -sigmas[i].log(), -sigmas[i + 1].log()
|
||||
h = t_next - t
|
||||
h_eta = h * (eta + 1)
|
||||
s_1 = t + r_1 * h
|
||||
s_2 = t + r_2 * h
|
||||
sigma_s_1, sigma_s_2 = s_1.neg().exp(), s_2.neg().exp()
|
||||
|
||||
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
|
||||
if inject_noise:
|
||||
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_2 = ((-2 * r_1 * h * eta).expm1() - (-2 * r_2 * h * eta).expm1()).sqrt()
|
||||
noise_coeff_3 = ((-2 * r_2 * h * eta).expm1() - (-2 * h * eta).expm1()).sqrt()
|
||||
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
|
||||
|
||||
# Step 1
|
||||
x_2 = (coeff_1 + 1) * x - coeff_1 * denoised
|
||||
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
|
||||
if inject_noise:
|
||||
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
x_3 = (coeff_2 + 1) * x - coeff_2 * denoised + (r_2 / r_1) * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
|
||||
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_2 * denoised_d
|
||||
if inject_noise:
|
||||
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
|
||||
"""SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 3.
|
||||
arXiv: https://arxiv.org/abs/2305.14267
|
||||
"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
inject_noise = eta > 0 and s_noise > 0
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
|
||||
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
|
||||
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
|
||||
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
|
||||
h = lambda_t - lambda_s
|
||||
h_eta = h * (eta + 1)
|
||||
lambda_s_1 = lambda_s + r_1 * h
|
||||
lambda_s_2 = lambda_s + r_2 * h
|
||||
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
|
||||
|
||||
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
|
||||
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
|
||||
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
|
||||
alpha_t = sigmas[i + 1] * lambda_t.exp()
|
||||
|
||||
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
|
||||
if inject_noise:
|
||||
# 0 < r_1 < r_2 < 1
|
||||
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_2 = (-r_1 * h * eta).exp() * (-2 * (r_2 - r_1) * h * eta).expm1().neg().sqrt()
|
||||
noise_coeff_3 = (-r_2 * h * eta).exp() * (-2 * (1 - r_2) * h * eta).expm1().neg().sqrt()
|
||||
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
|
||||
|
||||
# Step 1
|
||||
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
|
||||
if inject_noise:
|
||||
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * coeff_2 * denoised + (r_2 / r_1) * alpha_s_2 * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
|
||||
if inject_noise:
|
||||
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
|
||||
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
|
||||
|
||||
# Step 3
|
||||
x = (coeff_3 + 1) * x - coeff_3 * denoised + (1. / r_2) * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_3 * denoised + (1. / r_2) * alpha_t * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
|
||||
if inject_noise:
|
||||
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=False, tau_func=None, s_noise=1.0, noise_sampler=None, predictor_order=3, corrector_order=4, use_pece=False, simple_order_2=False):
|
||||
"""Stochastic Adams Solver with predictor-corrector method (NeurIPS 2023)."""
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
|
||||
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
|
||||
lambdas = sigma_to_half_log_snr(sigmas, model_sampling=model_sampling)
|
||||
|
||||
if tau_func is None:
|
||||
# Use default interval for stochastic sampling
|
||||
start_sigma = model_sampling.percent_to_sigma(0.2)
|
||||
end_sigma = model_sampling.percent_to_sigma(0.8)
|
||||
tau_func = sa_solver.get_tau_interval_func(start_sigma, end_sigma, eta=1.0)
|
||||
|
||||
max_used_order = max(predictor_order, corrector_order)
|
||||
x_pred = x # x: current state, x_pred: predicted next state
|
||||
|
||||
h = 0.0
|
||||
tau_t = 0.0
|
||||
noise = 0.0
|
||||
pred_list = []
|
||||
|
||||
# Lower order near the end to improve stability
|
||||
lower_order_to_end = sigmas[-1].item() == 0
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
# Evaluation
|
||||
denoised = model(x_pred, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({"x": x_pred, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
|
||||
pred_list.append(denoised)
|
||||
pred_list = pred_list[-max_used_order:]
|
||||
|
||||
predictor_order_used = min(predictor_order, len(pred_list))
|
||||
if i == 0 or (sigmas[i + 1] == 0 and not use_pece):
|
||||
corrector_order_used = 0
|
||||
else:
|
||||
corrector_order_used = min(corrector_order, len(pred_list))
|
||||
|
||||
if lower_order_to_end:
|
||||
predictor_order_used = min(predictor_order_used, len(sigmas) - 2 - i)
|
||||
corrector_order_used = min(corrector_order_used, len(sigmas) - 1 - i)
|
||||
|
||||
# Corrector
|
||||
if corrector_order_used == 0:
|
||||
# Update by the predicted state
|
||||
x = x_pred
|
||||
else:
|
||||
curr_lambdas = lambdas[i - corrector_order_used + 1:i + 1]
|
||||
b_coeffs = sa_solver.compute_stochastic_adams_b_coeffs(
|
||||
sigmas[i],
|
||||
curr_lambdas,
|
||||
lambdas[i - 1],
|
||||
lambdas[i],
|
||||
tau_t,
|
||||
simple_order_2,
|
||||
is_corrector_step=True,
|
||||
)
|
||||
pred_mat = torch.stack(pred_list[-corrector_order_used:], dim=1) # (B, K, ...)
|
||||
corr_res = torch.tensordot(pred_mat, b_coeffs, dims=([1], [0])) # (B, ...)
|
||||
x = sigmas[i] / sigmas[i - 1] * (-(tau_t ** 2) * h).exp() * x + corr_res
|
||||
|
||||
if tau_t > 0 and s_noise > 0:
|
||||
# The noise from the previous predictor step
|
||||
x = x + noise
|
||||
|
||||
if use_pece:
|
||||
# Evaluate the corrected state
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
pred_list[-1] = denoised
|
||||
|
||||
# Predictor
|
||||
if sigmas[i + 1] == 0:
|
||||
# Denoising step
|
||||
x = denoised
|
||||
else:
|
||||
tau_t = tau_func(sigmas[i + 1])
|
||||
curr_lambdas = lambdas[i - predictor_order_used + 1:i + 1]
|
||||
b_coeffs = sa_solver.compute_stochastic_adams_b_coeffs(
|
||||
sigmas[i + 1],
|
||||
curr_lambdas,
|
||||
lambdas[i],
|
||||
lambdas[i + 1],
|
||||
tau_t,
|
||||
simple_order_2,
|
||||
is_corrector_step=False,
|
||||
)
|
||||
pred_mat = torch.stack(pred_list[-predictor_order_used:], dim=1) # (B, K, ...)
|
||||
pred_res = torch.tensordot(pred_mat, b_coeffs, dims=([1], [0])) # (B, ...)
|
||||
h = lambdas[i + 1] - lambdas[i]
|
||||
x_pred = sigmas[i + 1] / sigmas[i] * (-(tau_t ** 2) * h).exp() * x + pred_res
|
||||
|
||||
if tau_t > 0 and s_noise > 0:
|
||||
noise = noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * tau_t ** 2 * h).expm1().neg().sqrt() * s_noise
|
||||
x_pred = x_pred + noise
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_sa_solver_pece(model, x, sigmas, extra_args=None, callback=None, disable=False, tau_func=None, s_noise=1.0, noise_sampler=None, predictor_order=3, corrector_order=4, simple_order_2=False):
|
||||
"""Stochastic Adams Solver with PECE (Predict–Evaluate–Correct–Evaluate) mode (NeurIPS 2023)."""
|
||||
return sample_sa_solver(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, tau_func=tau_func, s_noise=s_noise, noise_sampler=noise_sampler, predictor_order=predictor_order, corrector_order=corrector_order, use_pece=True, simple_order_2=simple_order_2)
|
||||
|
||||
@@ -457,6 +457,82 @@ class Wan21(LatentFormat):
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return latent * latents_std / self.scale_factor + latents_mean
|
||||
|
||||
class Wan22(Wan21):
|
||||
latent_channels = 48
|
||||
latent_dimensions = 3
|
||||
|
||||
latent_rgb_factors = [
|
||||
[ 0.0119, 0.0103, 0.0046],
|
||||
[-0.1062, -0.0504, 0.0165],
|
||||
[ 0.0140, 0.0409, 0.0491],
|
||||
[-0.0813, -0.0677, 0.0607],
|
||||
[ 0.0656, 0.0851, 0.0808],
|
||||
[ 0.0264, 0.0463, 0.0912],
|
||||
[ 0.0295, 0.0326, 0.0590],
|
||||
[-0.0244, -0.0270, 0.0025],
|
||||
[ 0.0443, -0.0102, 0.0288],
|
||||
[-0.0465, -0.0090, -0.0205],
|
||||
[ 0.0359, 0.0236, 0.0082],
|
||||
[-0.0776, 0.0854, 0.1048],
|
||||
[ 0.0564, 0.0264, 0.0561],
|
||||
[ 0.0006, 0.0594, 0.0418],
|
||||
[-0.0319, -0.0542, -0.0637],
|
||||
[-0.0268, 0.0024, 0.0260],
|
||||
[ 0.0539, 0.0265, 0.0358],
|
||||
[-0.0359, -0.0312, -0.0287],
|
||||
[-0.0285, -0.1032, -0.1237],
|
||||
[ 0.1041, 0.0537, 0.0622],
|
||||
[-0.0086, -0.0374, -0.0051],
|
||||
[ 0.0390, 0.0670, 0.2863],
|
||||
[ 0.0069, 0.0144, 0.0082],
|
||||
[ 0.0006, -0.0167, 0.0079],
|
||||
[ 0.0313, -0.0574, -0.0232],
|
||||
[-0.1454, -0.0902, -0.0481],
|
||||
[ 0.0714, 0.0827, 0.0447],
|
||||
[-0.0304, -0.0574, -0.0196],
|
||||
[ 0.0401, 0.0384, 0.0204],
|
||||
[-0.0758, -0.0297, -0.0014],
|
||||
[ 0.0568, 0.1307, 0.1372],
|
||||
[-0.0055, -0.0310, -0.0380],
|
||||
[ 0.0239, -0.0305, 0.0325],
|
||||
[-0.0663, -0.0673, -0.0140],
|
||||
[-0.0416, -0.0047, -0.0023],
|
||||
[ 0.0166, 0.0112, -0.0093],
|
||||
[-0.0211, 0.0011, 0.0331],
|
||||
[ 0.1833, 0.1466, 0.2250],
|
||||
[-0.0368, 0.0370, 0.0295],
|
||||
[-0.3441, -0.3543, -0.2008],
|
||||
[-0.0479, -0.0489, -0.0420],
|
||||
[-0.0660, -0.0153, 0.0800],
|
||||
[-0.0101, 0.0068, 0.0156],
|
||||
[-0.0690, -0.0452, -0.0927],
|
||||
[-0.0145, 0.0041, 0.0015],
|
||||
[ 0.0421, 0.0451, 0.0373],
|
||||
[ 0.0504, -0.0483, -0.0356],
|
||||
[-0.0837, 0.0168, 0.0055]
|
||||
]
|
||||
|
||||
latent_rgb_factors_bias = [0.0317, -0.0878, -0.1388]
|
||||
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.0
|
||||
self.latents_mean = torch.tensor([
|
||||
-0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557,
|
||||
-0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825,
|
||||
-0.2246, -0.1207, -0.0698, 0.5109, 0.2665, -0.2108, -0.2158, 0.2502,
|
||||
-0.2055, -0.0322, 0.1109, 0.1567, -0.0729, 0.0899, -0.2799, -0.1230,
|
||||
-0.0313, -0.1649, 0.0117, 0.0723, -0.2839, -0.2083, -0.0520, 0.3748,
|
||||
0.0152, 0.1957, 0.1433, -0.2944, 0.3573, -0.0548, -0.1681, -0.0667,
|
||||
]).view(1, self.latent_channels, 1, 1, 1)
|
||||
self.latents_std = torch.tensor([
|
||||
0.4765, 1.0364, 0.4514, 1.1677, 0.5313, 0.4990, 0.4818, 0.5013,
|
||||
0.8158, 1.0344, 0.5894, 1.0901, 0.6885, 0.6165, 0.8454, 0.4978,
|
||||
0.5759, 0.3523, 0.7135, 0.6804, 0.5833, 1.4146, 0.8986, 0.5659,
|
||||
0.7069, 0.5338, 0.4889, 0.4917, 0.4069, 0.4999, 0.6866, 0.4093,
|
||||
0.5709, 0.6065, 0.6415, 0.4944, 0.5726, 1.2042, 0.5458, 1.6887,
|
||||
0.3971, 1.0600, 0.3943, 0.5537, 0.5444, 0.4089, 0.7468, 0.7744
|
||||
]).view(1, self.latent_channels, 1, 1, 1)
|
||||
|
||||
class Hunyuan3Dv2(LatentFormat):
|
||||
latent_channels = 64
|
||||
latent_dimensions = 1
|
||||
|
||||
@@ -19,6 +19,7 @@ import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
import comfy.model_management
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
@@ -326,10 +327,6 @@ class CustomerAttnProcessor2_0:
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def apply_rotary_emb(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
@@ -435,13 +432,9 @@ class CustomerAttnProcessor2_0:
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
hidden_states = optimized_attention(
|
||||
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
|
||||
).to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
|
||||
@@ -8,11 +8,7 @@ from typing import Callable, Tuple, List
|
||||
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.utils import weight_norm
|
||||
from torch.nn.utils.parametrize import remove_parametrizations as remove_weight_norm
|
||||
# from diffusers.models.modeling_utils import ModelMixin
|
||||
# from diffusers.loaders import FromOriginalModelMixin
|
||||
# from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
|
||||
from .music_log_mel import LogMelSpectrogram
|
||||
|
||||
@@ -259,7 +255,7 @@ class ResBlock1(torch.nn.Module):
|
||||
|
||||
self.convs1 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
@@ -269,7 +265,7 @@ class ResBlock1(torch.nn.Module):
|
||||
padding=get_padding(kernel_size, dilation[0]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
@@ -279,7 +275,7 @@ class ResBlock1(torch.nn.Module):
|
||||
padding=get_padding(kernel_size, dilation[1]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
@@ -294,7 +290,7 @@ class ResBlock1(torch.nn.Module):
|
||||
|
||||
self.convs2 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
@@ -304,7 +300,7 @@ class ResBlock1(torch.nn.Module):
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
@@ -314,7 +310,7 @@ class ResBlock1(torch.nn.Module):
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
@@ -366,7 +362,7 @@ class HiFiGANGenerator(nn.Module):
|
||||
prod(upsample_rates) == hop_length
|
||||
), f"hop_length must be {prod(upsample_rates)}"
|
||||
|
||||
self.conv_pre = weight_norm(
|
||||
self.conv_pre = torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
num_mels,
|
||||
upsample_initial_channel,
|
||||
@@ -386,7 +382,7 @@ class HiFiGANGenerator(nn.Module):
|
||||
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
||||
self.ups.append(
|
||||
weight_norm(
|
||||
torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.ConvTranspose1d(
|
||||
upsample_initial_channel // (2**i),
|
||||
upsample_initial_channel // (2 ** (i + 1)),
|
||||
@@ -421,7 +417,7 @@ class HiFiGANGenerator(nn.Module):
|
||||
self.resblocks.append(ResBlock1(ch, k, d))
|
||||
|
||||
self.activation_post = post_activation()
|
||||
self.conv_post = weight_norm(
|
||||
self.conv_post = torch.nn.utils.parametrizations.weight_norm(
|
||||
ops.Conv1d(
|
||||
ch,
|
||||
1,
|
||||
|
||||
@@ -75,16 +75,10 @@ class SnakeBeta(nn.Module):
|
||||
return x
|
||||
|
||||
def WNConv1d(*args, **kwargs):
|
||||
try:
|
||||
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
|
||||
except:
|
||||
return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older
|
||||
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
|
||||
|
||||
def WNConvTranspose1d(*args, **kwargs):
|
||||
try:
|
||||
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
|
||||
except:
|
||||
return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older
|
||||
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
|
||||
|
||||
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
|
||||
if activation == "elu":
|
||||
|
||||
@@ -80,15 +80,13 @@ class DoubleStreamBlock(nn.Module):
|
||||
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
@@ -102,12 +100,12 @@ class DoubleStreamBlock(nn.Module):
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
|
||||
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
|
||||
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
@@ -152,7 +150,7 @@ class SingleStreamBlock(nn.Module):
|
||||
|
||||
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
|
||||
mod = vec
|
||||
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
||||
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
|
||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
@@ -162,7 +160,7 @@ class SingleStreamBlock(nn.Module):
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x += mod.gate * output
|
||||
x.addcmul_(mod.gate, output)
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
@@ -178,6 +176,6 @@ class LastLayer(nn.Module):
|
||||
shift, scale = vec
|
||||
shift = shift.squeeze(1)
|
||||
scale = scale.squeeze(1)
|
||||
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
||||
x = torch.addcmul(shift[:, None, :], 1 + scale[:, None, :], self.norm_final(x))
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
@@ -163,7 +163,7 @@ class Chroma(nn.Module):
|
||||
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
|
||||
|
||||
# get all modulation index
|
||||
modulation_index = timestep_embedding(torch.arange(mod_index_length), 32).to(img.device, img.dtype)
|
||||
modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
|
||||
# we need to broadcast the modulation index here so each batch has all of the index
|
||||
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
|
||||
# and we need to broadcast timestep and guidance along too
|
||||
@@ -254,13 +254,12 @@ class Chroma(nn.Module):
|
||||
|
||||
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = 2
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=self.patch_size, pw=self.patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
h_len = ((h + (self.patch_size // 2)) // self.patch_size)
|
||||
w_len = ((w + (self.patch_size // 2)) // self.patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
@@ -268,4 +267,4 @@ class Chroma(nn.Module):
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h,:w]
|
||||
|
||||
@@ -26,16 +26,6 @@ from torch import nn
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(
|
||||
t: torch.Tensor,
|
||||
freqs: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
|
||||
t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
|
||||
t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
|
||||
return t_out
|
||||
|
||||
|
||||
def get_normalization(name: str, channels: int, weight_args={}, operations=None):
|
||||
if name == "I":
|
||||
return nn.Identity()
|
||||
|
||||
@@ -58,7 +58,8 @@ def is_odd(n: int) -> bool:
|
||||
|
||||
|
||||
def nonlinearity(x):
|
||||
return x * torch.sigmoid(x)
|
||||
# x * sigmoid(x)
|
||||
return torch.nn.functional.silu(x)
|
||||
|
||||
|
||||
def Normalize(in_channels, num_groups=32):
|
||||
|
||||
@@ -66,15 +66,16 @@ class VideoRopePosition3DEmb(VideoPositionEmb):
|
||||
h_extrapolation_ratio: float = 1.0,
|
||||
w_extrapolation_ratio: float = 1.0,
|
||||
t_extrapolation_ratio: float = 1.0,
|
||||
enable_fps_modulation: bool = True,
|
||||
device=None,
|
||||
**kwargs, # used for compatibility with other positional embeddings; unused in this class
|
||||
):
|
||||
del kwargs
|
||||
super().__init__()
|
||||
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float, device=device))
|
||||
self.base_fps = base_fps
|
||||
self.max_h = len_h
|
||||
self.max_w = len_w
|
||||
self.enable_fps_modulation = enable_fps_modulation
|
||||
|
||||
dim = head_dim
|
||||
dim_h = dim // 6 * 2
|
||||
@@ -132,21 +133,19 @@ class VideoRopePosition3DEmb(VideoPositionEmb):
|
||||
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range.to(device=device))
|
||||
|
||||
B, T, H, W, _ = B_T_H_W_C
|
||||
seq = torch.arange(max(H, W, T), dtype=torch.float, device=device)
|
||||
uniform_fps = (fps is None) or isinstance(fps, (int, float)) or (fps.min() == fps.max())
|
||||
assert (
|
||||
uniform_fps or B == 1 or T == 1
|
||||
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1"
|
||||
assert (
|
||||
H <= self.max_h and W <= self.max_w
|
||||
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w})"
|
||||
half_emb_h = torch.outer(self.seq[:H].to(device=device), h_spatial_freqs)
|
||||
half_emb_w = torch.outer(self.seq[:W].to(device=device), w_spatial_freqs)
|
||||
half_emb_h = torch.outer(seq[:H].to(device=device), h_spatial_freqs)
|
||||
half_emb_w = torch.outer(seq[:W].to(device=device), w_spatial_freqs)
|
||||
|
||||
# apply sequence scaling in temporal dimension
|
||||
if fps is None: # image case
|
||||
half_emb_t = torch.outer(self.seq[:T].to(device=device), temporal_freqs)
|
||||
if fps is None or self.enable_fps_modulation is False: # image case
|
||||
half_emb_t = torch.outer(seq[:T].to(device=device), temporal_freqs)
|
||||
else:
|
||||
half_emb_t = torch.outer(self.seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs)
|
||||
half_emb_t = torch.outer(seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs)
|
||||
|
||||
half_emb_h = torch.stack([torch.cos(half_emb_h), -torch.sin(half_emb_h), torch.sin(half_emb_h), torch.cos(half_emb_h)], dim=-1)
|
||||
half_emb_w = torch.stack([torch.cos(half_emb_w), -torch.sin(half_emb_w), torch.sin(half_emb_w), torch.cos(half_emb_w)], dim=-1)
|
||||
|
||||
864
comfy/ldm/cosmos/predict2.py
Normal file
864
comfy/ldm/cosmos/predict2.py
Normal file
@@ -0,0 +1,864 @@
|
||||
# original code from: https://github.com/nvidia-cosmos/cosmos-predict2
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from einops import rearrange
|
||||
from einops.layers.torch import Rearrange
|
||||
import logging
|
||||
from typing import Callable, Optional, Tuple
|
||||
import math
|
||||
|
||||
from .position_embedding import VideoRopePosition3DEmb, LearnablePosEmbAxis
|
||||
from torchvision import transforms
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
def apply_rotary_pos_emb(
|
||||
t: torch.Tensor,
|
||||
freqs: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
|
||||
t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
|
||||
t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
|
||||
return t_out
|
||||
|
||||
|
||||
# ---------------------- Feed Forward Network -----------------------
|
||||
class GPT2FeedForward(nn.Module):
|
||||
def __init__(self, d_model: int, d_ff: int, device=None, dtype=None, operations=None) -> None:
|
||||
super().__init__()
|
||||
self.activation = nn.GELU()
|
||||
self.layer1 = operations.Linear(d_model, d_ff, bias=False, device=device, dtype=dtype)
|
||||
self.layer2 = operations.Linear(d_ff, d_model, bias=False, device=device, dtype=dtype)
|
||||
|
||||
self._layer_id = None
|
||||
self._dim = d_model
|
||||
self._hidden_dim = d_ff
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.layer1(x)
|
||||
|
||||
x = self.activation(x)
|
||||
x = self.layer2(x)
|
||||
return x
|
||||
|
||||
|
||||
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor) -> torch.Tensor:
|
||||
"""Computes multi-head attention using PyTorch's native implementation.
|
||||
|
||||
This function provides a PyTorch backend alternative to Transformer Engine's attention operation.
|
||||
It rearranges the input tensors to match PyTorch's expected format, computes scaled dot-product
|
||||
attention, and rearranges the output back to the original format.
|
||||
|
||||
The input tensor names use the following dimension conventions:
|
||||
|
||||
- B: batch size
|
||||
- S: sequence length
|
||||
- H: number of attention heads
|
||||
- D: head dimension
|
||||
|
||||
Args:
|
||||
q_B_S_H_D: Query tensor with shape (batch, seq_len, n_heads, head_dim)
|
||||
k_B_S_H_D: Key tensor with shape (batch, seq_len, n_heads, head_dim)
|
||||
v_B_S_H_D: Value tensor with shape (batch, seq_len, n_heads, head_dim)
|
||||
|
||||
Returns:
|
||||
Attention output tensor with shape (batch, seq_len, n_heads * head_dim)
|
||||
"""
|
||||
in_q_shape = q_B_S_H_D.shape
|
||||
in_k_shape = k_B_S_H_D.shape
|
||||
q_B_H_S_D = rearrange(q_B_S_H_D, "b ... h k -> b h ... k").view(in_q_shape[0], in_q_shape[-2], -1, in_q_shape[-1])
|
||||
k_B_H_S_D = rearrange(k_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
|
||||
v_B_H_S_D = rearrange(v_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
|
||||
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""
|
||||
A flexible attention module supporting both self-attention and cross-attention mechanisms.
|
||||
|
||||
This module implements a multi-head attention layer that can operate in either self-attention
|
||||
or cross-attention mode. The mode is determined by whether a context dimension is provided.
|
||||
The implementation uses scaled dot-product attention and supports optional bias terms and
|
||||
dropout regularization.
|
||||
|
||||
Args:
|
||||
query_dim (int): The dimensionality of the query vectors.
|
||||
context_dim (int, optional): The dimensionality of the context (key/value) vectors.
|
||||
If None, the module operates in self-attention mode using query_dim. Default: None
|
||||
n_heads (int, optional): Number of attention heads for multi-head attention. Default: 8
|
||||
head_dim (int, optional): The dimension of each attention head. Default: 64
|
||||
dropout (float, optional): Dropout probability applied to the output. Default: 0.0
|
||||
qkv_format (str, optional): Format specification for QKV tensors. Default: "bshd"
|
||||
backend (str, optional): Backend to use for the attention operation. Default: "transformer_engine"
|
||||
|
||||
Examples:
|
||||
>>> # Self-attention with 512 dimensions and 8 heads
|
||||
>>> self_attn = Attention(query_dim=512)
|
||||
>>> x = torch.randn(32, 16, 512) # (batch_size, seq_len, dim)
|
||||
>>> out = self_attn(x) # (32, 16, 512)
|
||||
|
||||
>>> # Cross-attention
|
||||
>>> cross_attn = Attention(query_dim=512, context_dim=256)
|
||||
>>> query = torch.randn(32, 16, 512)
|
||||
>>> context = torch.randn(32, 8, 256)
|
||||
>>> out = cross_attn(query, context) # (32, 16, 512)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
context_dim: Optional[int] = None,
|
||||
n_heads: int = 8,
|
||||
head_dim: int = 64,
|
||||
dropout: float = 0.0,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
logging.debug(
|
||||
f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
||||
f"{n_heads} heads with a dimension of {head_dim}."
|
||||
)
|
||||
self.is_selfattn = context_dim is None # self attention
|
||||
|
||||
context_dim = query_dim if context_dim is None else context_dim
|
||||
inner_dim = head_dim * n_heads
|
||||
|
||||
self.n_heads = n_heads
|
||||
self.head_dim = head_dim
|
||||
self.query_dim = query_dim
|
||||
self.context_dim = context_dim
|
||||
|
||||
self.q_proj = operations.Linear(query_dim, inner_dim, bias=False, device=device, dtype=dtype)
|
||||
self.q_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
|
||||
|
||||
self.k_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
|
||||
self.k_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
|
||||
|
||||
self.v_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
|
||||
self.v_norm = nn.Identity()
|
||||
|
||||
self.output_proj = operations.Linear(inner_dim, query_dim, bias=False, device=device, dtype=dtype)
|
||||
self.output_dropout = nn.Dropout(dropout) if dropout > 1e-4 else nn.Identity()
|
||||
|
||||
self.attn_op = torch_attention_op
|
||||
|
||||
self._query_dim = query_dim
|
||||
self._context_dim = context_dim
|
||||
self._inner_dim = inner_dim
|
||||
|
||||
def compute_qkv(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
rope_emb: Optional[torch.Tensor] = None,
|
||||
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
q = self.q_proj(x)
|
||||
context = x if context is None else context
|
||||
k = self.k_proj(context)
|
||||
v = self.v_proj(context)
|
||||
q, k, v = map(
|
||||
lambda t: rearrange(t, "b ... (h d) -> b ... h d", h=self.n_heads, d=self.head_dim),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
def apply_norm_and_rotary_pos_emb(
|
||||
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, rope_emb: Optional[torch.Tensor]
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
q = self.q_norm(q)
|
||||
k = self.k_norm(k)
|
||||
v = self.v_norm(v)
|
||||
if self.is_selfattn and rope_emb is not None: # only apply to self-attention!
|
||||
q = apply_rotary_pos_emb(q, rope_emb)
|
||||
k = apply_rotary_pos_emb(k, rope_emb)
|
||||
return q, k, v
|
||||
|
||||
q, k, v = apply_norm_and_rotary_pos_emb(q, k, v, rope_emb)
|
||||
|
||||
return q, k, v
|
||||
|
||||
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
|
||||
result = self.attn_op(q, k, v) # [B, S, H, D]
|
||||
return self.output_dropout(self.output_proj(result))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
rope_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x (Tensor): The query tensor of shape [B, Mq, K]
|
||||
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
|
||||
"""
|
||||
q, k, v = self.compute_qkv(x, context, rope_emb=rope_emb)
|
||||
return self.compute_attention(q, k, v)
|
||||
|
||||
|
||||
class Timesteps(nn.Module):
|
||||
def __init__(self, num_channels: int):
|
||||
super().__init__()
|
||||
self.num_channels = num_channels
|
||||
|
||||
def forward(self, timesteps_B_T: torch.Tensor) -> torch.Tensor:
|
||||
assert timesteps_B_T.ndim == 2, f"Expected 2D input, got {timesteps_B_T.ndim}"
|
||||
timesteps = timesteps_B_T.flatten().float()
|
||||
half_dim = self.num_channels // 2
|
||||
exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device)
|
||||
exponent = exponent / (half_dim - 0.0)
|
||||
|
||||
emb = torch.exp(exponent)
|
||||
emb = timesteps[:, None].float() * emb[None, :]
|
||||
|
||||
sin_emb = torch.sin(emb)
|
||||
cos_emb = torch.cos(emb)
|
||||
emb = torch.cat([cos_emb, sin_emb], dim=-1)
|
||||
|
||||
return rearrange(emb, "(b t) d -> b t d", b=timesteps_B_T.shape[0], t=timesteps_B_T.shape[1])
|
||||
|
||||
|
||||
class TimestepEmbedding(nn.Module):
|
||||
def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False, device=None, dtype=None, operations=None):
|
||||
super().__init__()
|
||||
logging.debug(
|
||||
f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility."
|
||||
)
|
||||
self.in_dim = in_features
|
||||
self.out_dim = out_features
|
||||
self.linear_1 = operations.Linear(in_features, out_features, bias=not use_adaln_lora, device=device, dtype=dtype)
|
||||
self.activation = nn.SiLU()
|
||||
self.use_adaln_lora = use_adaln_lora
|
||||
if use_adaln_lora:
|
||||
self.linear_2 = operations.Linear(out_features, 3 * out_features, bias=False, device=device, dtype=dtype)
|
||||
else:
|
||||
self.linear_2 = operations.Linear(out_features, out_features, bias=False, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, sample: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
emb = self.linear_1(sample)
|
||||
emb = self.activation(emb)
|
||||
emb = self.linear_2(emb)
|
||||
|
||||
if self.use_adaln_lora:
|
||||
adaln_lora_B_T_3D = emb
|
||||
emb_B_T_D = sample
|
||||
else:
|
||||
adaln_lora_B_T_3D = None
|
||||
emb_B_T_D = emb
|
||||
|
||||
return emb_B_T_D, adaln_lora_B_T_3D
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""
|
||||
PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers,
|
||||
depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions,
|
||||
making it suitable for video and image processing tasks. It supports dividing the input into patches
|
||||
and embedding each patch into a vector of size `out_channels`.
|
||||
|
||||
Parameters:
|
||||
- spatial_patch_size (int): The size of each spatial patch.
|
||||
- temporal_patch_size (int): The size of each temporal patch.
|
||||
- in_channels (int): Number of input channels. Default: 3.
|
||||
- out_channels (int): The dimension of the embedding vector for each patch. Default: 768.
|
||||
- bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
spatial_patch_size: int,
|
||||
temporal_patch_size: int,
|
||||
in_channels: int = 3,
|
||||
out_channels: int = 768,
|
||||
device=None, dtype=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.spatial_patch_size = spatial_patch_size
|
||||
self.temporal_patch_size = temporal_patch_size
|
||||
|
||||
self.proj = nn.Sequential(
|
||||
Rearrange(
|
||||
"b c (t r) (h m) (w n) -> b t h w (c r m n)",
|
||||
r=temporal_patch_size,
|
||||
m=spatial_patch_size,
|
||||
n=spatial_patch_size,
|
||||
),
|
||||
operations.Linear(
|
||||
in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=False, device=device, dtype=dtype
|
||||
),
|
||||
)
|
||||
self.dim = in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass of the PatchEmbed module.
|
||||
|
||||
Parameters:
|
||||
- x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where
|
||||
B is the batch size,
|
||||
C is the number of channels,
|
||||
T is the temporal dimension,
|
||||
H is the height, and
|
||||
W is the width of the input.
|
||||
|
||||
Returns:
|
||||
- torch.Tensor: The embedded patches as a tensor, with shape b t h w c.
|
||||
"""
|
||||
assert x.dim() == 5
|
||||
_, _, T, H, W = x.shape
|
||||
assert (
|
||||
H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0
|
||||
), f"H,W {(H, W)} should be divisible by spatial_patch_size {self.spatial_patch_size}"
|
||||
assert T % self.temporal_patch_size == 0
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class FinalLayer(nn.Module):
|
||||
"""
|
||||
The final layer of video DiT.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
spatial_patch_size: int,
|
||||
temporal_patch_size: int,
|
||||
out_channels: int,
|
||||
use_adaln_lora: bool = False,
|
||||
adaln_lora_dim: int = 256,
|
||||
device=None, dtype=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.layer_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.linear = operations.Linear(
|
||||
hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, device=device, dtype=dtype
|
||||
)
|
||||
self.hidden_size = hidden_size
|
||||
self.n_adaln_chunks = 2
|
||||
self.use_adaln_lora = use_adaln_lora
|
||||
self.adaln_lora_dim = adaln_lora_dim
|
||||
if use_adaln_lora:
|
||||
self.adaln_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, adaln_lora_dim, bias=False, device=device, dtype=dtype),
|
||||
operations.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False, device=device, dtype=dtype),
|
||||
)
|
||||
else:
|
||||
self.adaln_modulation = nn.Sequential(
|
||||
nn.SiLU(), operations.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False, device=device, dtype=dtype)
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x_B_T_H_W_D: torch.Tensor,
|
||||
emb_B_T_D: torch.Tensor,
|
||||
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
|
||||
):
|
||||
if self.use_adaln_lora:
|
||||
assert adaln_lora_B_T_3D is not None
|
||||
shift_B_T_D, scale_B_T_D = (
|
||||
self.adaln_modulation(emb_B_T_D) + adaln_lora_B_T_3D[:, :, : 2 * self.hidden_size]
|
||||
).chunk(2, dim=-1)
|
||||
else:
|
||||
shift_B_T_D, scale_B_T_D = self.adaln_modulation(emb_B_T_D).chunk(2, dim=-1)
|
||||
|
||||
shift_B_T_1_1_D, scale_B_T_1_1_D = rearrange(shift_B_T_D, "b t d -> b t 1 1 d"), rearrange(
|
||||
scale_B_T_D, "b t d -> b t 1 1 d"
|
||||
)
|
||||
|
||||
def _fn(
|
||||
_x_B_T_H_W_D: torch.Tensor,
|
||||
_norm_layer: nn.Module,
|
||||
_scale_B_T_1_1_D: torch.Tensor,
|
||||
_shift_B_T_1_1_D: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
return _norm_layer(_x_B_T_H_W_D) * (1 + _scale_B_T_1_1_D) + _shift_B_T_1_1_D
|
||||
|
||||
x_B_T_H_W_D = _fn(x_B_T_H_W_D, self.layer_norm, scale_B_T_1_1_D, shift_B_T_1_1_D)
|
||||
x_B_T_H_W_O = self.linear(x_B_T_H_W_D)
|
||||
return x_B_T_H_W_O
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
"""
|
||||
A transformer block that combines self-attention, cross-attention and MLP layers with AdaLN modulation.
|
||||
Each component (self-attention, cross-attention, MLP) has its own layer normalization and AdaLN modulation.
|
||||
|
||||
Parameters:
|
||||
x_dim (int): Dimension of input features
|
||||
context_dim (int): Dimension of context features for cross-attention
|
||||
num_heads (int): Number of attention heads
|
||||
mlp_ratio (float): Multiplier for MLP hidden dimension. Default: 4.0
|
||||
use_adaln_lora (bool): Whether to use AdaLN-LoRA modulation. Default: False
|
||||
adaln_lora_dim (int): Hidden dimension for AdaLN-LoRA layers. Default: 256
|
||||
|
||||
The block applies the following sequence:
|
||||
1. Self-attention with AdaLN modulation
|
||||
2. Cross-attention with AdaLN modulation
|
||||
3. MLP with AdaLN modulation
|
||||
|
||||
Each component uses skip connections and layer normalization.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
x_dim: int,
|
||||
context_dim: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
use_adaln_lora: bool = False,
|
||||
adaln_lora_dim: int = 256,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.x_dim = x_dim
|
||||
self.layer_norm_self_attn = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
|
||||
self.self_attn = Attention(x_dim, None, num_heads, x_dim // num_heads, device=device, dtype=dtype, operations=operations)
|
||||
|
||||
self.layer_norm_cross_attn = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
|
||||
self.cross_attn = Attention(
|
||||
x_dim, context_dim, num_heads, x_dim // num_heads, device=device, dtype=dtype, operations=operations
|
||||
)
|
||||
|
||||
self.layer_norm_mlp = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
|
||||
self.mlp = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), device=device, dtype=dtype, operations=operations)
|
||||
|
||||
self.use_adaln_lora = use_adaln_lora
|
||||
if self.use_adaln_lora:
|
||||
self.adaln_modulation_self_attn = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
|
||||
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
|
||||
)
|
||||
self.adaln_modulation_cross_attn = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
|
||||
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
|
||||
)
|
||||
self.adaln_modulation_mlp = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
|
||||
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
|
||||
)
|
||||
else:
|
||||
self.adaln_modulation_self_attn = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
|
||||
self.adaln_modulation_cross_attn = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
|
||||
self.adaln_modulation_mlp = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x_B_T_H_W_D: torch.Tensor,
|
||||
emb_B_T_D: torch.Tensor,
|
||||
crossattn_emb: torch.Tensor,
|
||||
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
|
||||
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
|
||||
extra_per_block_pos_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
if extra_per_block_pos_emb is not None:
|
||||
x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb
|
||||
|
||||
if self.use_adaln_lora:
|
||||
shift_self_attn_B_T_D, scale_self_attn_B_T_D, gate_self_attn_B_T_D = (
|
||||
self.adaln_modulation_self_attn(emb_B_T_D) + adaln_lora_B_T_3D
|
||||
).chunk(3, dim=-1)
|
||||
shift_cross_attn_B_T_D, scale_cross_attn_B_T_D, gate_cross_attn_B_T_D = (
|
||||
self.adaln_modulation_cross_attn(emb_B_T_D) + adaln_lora_B_T_3D
|
||||
).chunk(3, dim=-1)
|
||||
shift_mlp_B_T_D, scale_mlp_B_T_D, gate_mlp_B_T_D = (
|
||||
self.adaln_modulation_mlp(emb_B_T_D) + adaln_lora_B_T_3D
|
||||
).chunk(3, dim=-1)
|
||||
else:
|
||||
shift_self_attn_B_T_D, scale_self_attn_B_T_D, gate_self_attn_B_T_D = self.adaln_modulation_self_attn(
|
||||
emb_B_T_D
|
||||
).chunk(3, dim=-1)
|
||||
shift_cross_attn_B_T_D, scale_cross_attn_B_T_D, gate_cross_attn_B_T_D = self.adaln_modulation_cross_attn(
|
||||
emb_B_T_D
|
||||
).chunk(3, dim=-1)
|
||||
shift_mlp_B_T_D, scale_mlp_B_T_D, gate_mlp_B_T_D = self.adaln_modulation_mlp(emb_B_T_D).chunk(3, dim=-1)
|
||||
|
||||
# Reshape tensors from (B, T, D) to (B, T, 1, 1, D) for broadcasting
|
||||
shift_self_attn_B_T_1_1_D = rearrange(shift_self_attn_B_T_D, "b t d -> b t 1 1 d")
|
||||
scale_self_attn_B_T_1_1_D = rearrange(scale_self_attn_B_T_D, "b t d -> b t 1 1 d")
|
||||
gate_self_attn_B_T_1_1_D = rearrange(gate_self_attn_B_T_D, "b t d -> b t 1 1 d")
|
||||
|
||||
shift_cross_attn_B_T_1_1_D = rearrange(shift_cross_attn_B_T_D, "b t d -> b t 1 1 d")
|
||||
scale_cross_attn_B_T_1_1_D = rearrange(scale_cross_attn_B_T_D, "b t d -> b t 1 1 d")
|
||||
gate_cross_attn_B_T_1_1_D = rearrange(gate_cross_attn_B_T_D, "b t d -> b t 1 1 d")
|
||||
|
||||
shift_mlp_B_T_1_1_D = rearrange(shift_mlp_B_T_D, "b t d -> b t 1 1 d")
|
||||
scale_mlp_B_T_1_1_D = rearrange(scale_mlp_B_T_D, "b t d -> b t 1 1 d")
|
||||
gate_mlp_B_T_1_1_D = rearrange(gate_mlp_B_T_D, "b t d -> b t 1 1 d")
|
||||
|
||||
B, T, H, W, D = x_B_T_H_W_D.shape
|
||||
|
||||
def _fn(_x_B_T_H_W_D, _norm_layer, _scale_B_T_1_1_D, _shift_B_T_1_1_D):
|
||||
return _norm_layer(_x_B_T_H_W_D) * (1 + _scale_B_T_1_1_D) + _shift_B_T_1_1_D
|
||||
|
||||
normalized_x_B_T_H_W_D = _fn(
|
||||
x_B_T_H_W_D,
|
||||
self.layer_norm_self_attn,
|
||||
scale_self_attn_B_T_1_1_D,
|
||||
shift_self_attn_B_T_1_1_D,
|
||||
)
|
||||
result_B_T_H_W_D = rearrange(
|
||||
self.self_attn(
|
||||
# normalized_x_B_T_HW_D,
|
||||
rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
|
||||
None,
|
||||
rope_emb=rope_emb_L_1_1_D,
|
||||
),
|
||||
"b (t h w) d -> b t h w d",
|
||||
t=T,
|
||||
h=H,
|
||||
w=W,
|
||||
)
|
||||
x_B_T_H_W_D = x_B_T_H_W_D + gate_self_attn_B_T_1_1_D * result_B_T_H_W_D
|
||||
|
||||
def _x_fn(
|
||||
_x_B_T_H_W_D: torch.Tensor,
|
||||
layer_norm_cross_attn: Callable,
|
||||
_scale_cross_attn_B_T_1_1_D: torch.Tensor,
|
||||
_shift_cross_attn_B_T_1_1_D: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
_normalized_x_B_T_H_W_D = _fn(
|
||||
_x_B_T_H_W_D, layer_norm_cross_attn, _scale_cross_attn_B_T_1_1_D, _shift_cross_attn_B_T_1_1_D
|
||||
)
|
||||
_result_B_T_H_W_D = rearrange(
|
||||
self.cross_attn(
|
||||
rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
|
||||
crossattn_emb,
|
||||
rope_emb=rope_emb_L_1_1_D,
|
||||
),
|
||||
"b (t h w) d -> b t h w d",
|
||||
t=T,
|
||||
h=H,
|
||||
w=W,
|
||||
)
|
||||
return _result_B_T_H_W_D
|
||||
|
||||
result_B_T_H_W_D = _x_fn(
|
||||
x_B_T_H_W_D,
|
||||
self.layer_norm_cross_attn,
|
||||
scale_cross_attn_B_T_1_1_D,
|
||||
shift_cross_attn_B_T_1_1_D,
|
||||
)
|
||||
x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D
|
||||
|
||||
normalized_x_B_T_H_W_D = _fn(
|
||||
x_B_T_H_W_D,
|
||||
self.layer_norm_mlp,
|
||||
scale_mlp_B_T_1_1_D,
|
||||
shift_mlp_B_T_1_1_D,
|
||||
)
|
||||
result_B_T_H_W_D = self.mlp(normalized_x_B_T_H_W_D)
|
||||
x_B_T_H_W_D = x_B_T_H_W_D + gate_mlp_B_T_1_1_D * result_B_T_H_W_D
|
||||
return x_B_T_H_W_D
|
||||
|
||||
|
||||
class MiniTrainDIT(nn.Module):
|
||||
"""
|
||||
A clean impl of DIT that can load and reproduce the training results of the original DIT model in~(cosmos 1)
|
||||
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
|
||||
|
||||
Args:
|
||||
max_img_h (int): Maximum height of the input images.
|
||||
max_img_w (int): Maximum width of the input images.
|
||||
max_frames (int): Maximum number of frames in the video sequence.
|
||||
in_channels (int): Number of input channels (e.g., RGB channels for color images).
|
||||
out_channels (int): Number of output channels.
|
||||
patch_spatial (tuple): Spatial resolution of patches for input processing.
|
||||
patch_temporal (int): Temporal resolution of patches for input processing.
|
||||
concat_padding_mask (bool): If True, includes a mask channel in the input to handle padding.
|
||||
model_channels (int): Base number of channels used throughout the model.
|
||||
num_blocks (int): Number of transformer blocks.
|
||||
num_heads (int): Number of heads in the multi-head attention layers.
|
||||
mlp_ratio (float): Expansion ratio for MLP blocks.
|
||||
crossattn_emb_channels (int): Number of embedding channels for cross-attention.
|
||||
pos_emb_cls (str): Type of positional embeddings.
|
||||
pos_emb_learnable (bool): Whether positional embeddings are learnable.
|
||||
pos_emb_interpolation (str): Method for interpolating positional embeddings.
|
||||
min_fps (int): Minimum frames per second.
|
||||
max_fps (int): Maximum frames per second.
|
||||
use_adaln_lora (bool): Whether to use AdaLN-LoRA.
|
||||
adaln_lora_dim (int): Dimension for AdaLN-LoRA.
|
||||
rope_h_extrapolation_ratio (float): Height extrapolation ratio for RoPE.
|
||||
rope_w_extrapolation_ratio (float): Width extrapolation ratio for RoPE.
|
||||
rope_t_extrapolation_ratio (float): Temporal extrapolation ratio for RoPE.
|
||||
extra_per_block_abs_pos_emb (bool): Whether to use extra per-block absolute positional embeddings.
|
||||
extra_h_extrapolation_ratio (float): Height extrapolation ratio for extra embeddings.
|
||||
extra_w_extrapolation_ratio (float): Width extrapolation ratio for extra embeddings.
|
||||
extra_t_extrapolation_ratio (float): Temporal extrapolation ratio for extra embeddings.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_img_h: int,
|
||||
max_img_w: int,
|
||||
max_frames: int,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
patch_spatial: int, # tuple,
|
||||
patch_temporal: int,
|
||||
concat_padding_mask: bool = True,
|
||||
# attention settings
|
||||
model_channels: int = 768,
|
||||
num_blocks: int = 10,
|
||||
num_heads: int = 16,
|
||||
mlp_ratio: float = 4.0,
|
||||
# cross attention settings
|
||||
crossattn_emb_channels: int = 1024,
|
||||
# positional embedding settings
|
||||
pos_emb_cls: str = "sincos",
|
||||
pos_emb_learnable: bool = False,
|
||||
pos_emb_interpolation: str = "crop",
|
||||
min_fps: int = 1,
|
||||
max_fps: int = 30,
|
||||
use_adaln_lora: bool = False,
|
||||
adaln_lora_dim: int = 256,
|
||||
rope_h_extrapolation_ratio: float = 1.0,
|
||||
rope_w_extrapolation_ratio: float = 1.0,
|
||||
rope_t_extrapolation_ratio: float = 1.0,
|
||||
extra_per_block_abs_pos_emb: bool = False,
|
||||
extra_h_extrapolation_ratio: float = 1.0,
|
||||
extra_w_extrapolation_ratio: float = 1.0,
|
||||
extra_t_extrapolation_ratio: float = 1.0,
|
||||
rope_enable_fps_modulation: bool = True,
|
||||
image_model=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
self.max_img_h = max_img_h
|
||||
self.max_img_w = max_img_w
|
||||
self.max_frames = max_frames
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.patch_spatial = patch_spatial
|
||||
self.patch_temporal = patch_temporal
|
||||
self.num_heads = num_heads
|
||||
self.num_blocks = num_blocks
|
||||
self.model_channels = model_channels
|
||||
self.concat_padding_mask = concat_padding_mask
|
||||
# positional embedding settings
|
||||
self.pos_emb_cls = pos_emb_cls
|
||||
self.pos_emb_learnable = pos_emb_learnable
|
||||
self.pos_emb_interpolation = pos_emb_interpolation
|
||||
self.min_fps = min_fps
|
||||
self.max_fps = max_fps
|
||||
self.rope_h_extrapolation_ratio = rope_h_extrapolation_ratio
|
||||
self.rope_w_extrapolation_ratio = rope_w_extrapolation_ratio
|
||||
self.rope_t_extrapolation_ratio = rope_t_extrapolation_ratio
|
||||
self.extra_per_block_abs_pos_emb = extra_per_block_abs_pos_emb
|
||||
self.extra_h_extrapolation_ratio = extra_h_extrapolation_ratio
|
||||
self.extra_w_extrapolation_ratio = extra_w_extrapolation_ratio
|
||||
self.extra_t_extrapolation_ratio = extra_t_extrapolation_ratio
|
||||
self.rope_enable_fps_modulation = rope_enable_fps_modulation
|
||||
|
||||
self.build_pos_embed(device=device, dtype=dtype)
|
||||
self.use_adaln_lora = use_adaln_lora
|
||||
self.adaln_lora_dim = adaln_lora_dim
|
||||
self.t_embedder = nn.Sequential(
|
||||
Timesteps(model_channels),
|
||||
TimestepEmbedding(model_channels, model_channels, use_adaln_lora=use_adaln_lora, device=device, dtype=dtype, operations=operations,),
|
||||
)
|
||||
|
||||
in_channels = in_channels + 1 if concat_padding_mask else in_channels
|
||||
self.x_embedder = PatchEmbed(
|
||||
spatial_patch_size=patch_spatial,
|
||||
temporal_patch_size=patch_temporal,
|
||||
in_channels=in_channels,
|
||||
out_channels=model_channels,
|
||||
device=device, dtype=dtype, operations=operations,
|
||||
)
|
||||
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
Block(
|
||||
x_dim=model_channels,
|
||||
context_dim=crossattn_emb_channels,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
use_adaln_lora=use_adaln_lora,
|
||||
adaln_lora_dim=adaln_lora_dim,
|
||||
device=device, dtype=dtype, operations=operations,
|
||||
)
|
||||
for _ in range(num_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
self.final_layer = FinalLayer(
|
||||
hidden_size=self.model_channels,
|
||||
spatial_patch_size=self.patch_spatial,
|
||||
temporal_patch_size=self.patch_temporal,
|
||||
out_channels=self.out_channels,
|
||||
use_adaln_lora=self.use_adaln_lora,
|
||||
adaln_lora_dim=self.adaln_lora_dim,
|
||||
device=device, dtype=dtype, operations=operations,
|
||||
)
|
||||
|
||||
self.t_embedding_norm = operations.RMSNorm(model_channels, eps=1e-6, device=device, dtype=dtype)
|
||||
|
||||
def build_pos_embed(self, device=None, dtype=None) -> None:
|
||||
if self.pos_emb_cls == "rope3d":
|
||||
cls_type = VideoRopePosition3DEmb
|
||||
else:
|
||||
raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")
|
||||
|
||||
logging.debug(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
|
||||
kwargs = dict(
|
||||
model_channels=self.model_channels,
|
||||
len_h=self.max_img_h // self.patch_spatial,
|
||||
len_w=self.max_img_w // self.patch_spatial,
|
||||
len_t=self.max_frames // self.patch_temporal,
|
||||
max_fps=self.max_fps,
|
||||
min_fps=self.min_fps,
|
||||
is_learnable=self.pos_emb_learnable,
|
||||
interpolation=self.pos_emb_interpolation,
|
||||
head_dim=self.model_channels // self.num_heads,
|
||||
h_extrapolation_ratio=self.rope_h_extrapolation_ratio,
|
||||
w_extrapolation_ratio=self.rope_w_extrapolation_ratio,
|
||||
t_extrapolation_ratio=self.rope_t_extrapolation_ratio,
|
||||
enable_fps_modulation=self.rope_enable_fps_modulation,
|
||||
device=device,
|
||||
)
|
||||
self.pos_embedder = cls_type(
|
||||
**kwargs, # type: ignore
|
||||
)
|
||||
|
||||
if self.extra_per_block_abs_pos_emb:
|
||||
kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio
|
||||
kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio
|
||||
kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio
|
||||
kwargs["device"] = device
|
||||
kwargs["dtype"] = dtype
|
||||
self.extra_pos_embedder = LearnablePosEmbAxis(
|
||||
**kwargs, # type: ignore
|
||||
)
|
||||
|
||||
def prepare_embedded_sequence(
|
||||
self,
|
||||
x_B_C_T_H_W: torch.Tensor,
|
||||
fps: Optional[torch.Tensor] = None,
|
||||
padding_mask: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
"""
|
||||
Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks.
|
||||
|
||||
Args:
|
||||
x_B_C_T_H_W (torch.Tensor): video
|
||||
fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required.
|
||||
If None, a default value (`self.base_fps`) will be used.
|
||||
padding_mask (Optional[torch.Tensor]): current it is not used
|
||||
|
||||
Returns:
|
||||
Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
- A tensor of shape (B, T, H, W, D) with the embedded sequence.
|
||||
- An optional positional embedding tensor, returned only if the positional embedding class
|
||||
(`self.pos_emb_cls`) includes 'rope'. Otherwise, None.
|
||||
|
||||
Notes:
|
||||
- If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor.
|
||||
- The method of applying positional embeddings depends on the value of `self.pos_emb_cls`.
|
||||
- If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using
|
||||
the `self.pos_embedder` with the shape [T, H, W].
|
||||
- If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the
|
||||
`self.pos_embedder` with the fps tensor.
|
||||
- Otherwise, the positional embeddings are generated without considering fps.
|
||||
"""
|
||||
if self.concat_padding_mask:
|
||||
if padding_mask is None:
|
||||
padding_mask = torch.zeros(x_B_C_T_H_W.shape[0], 1, x_B_C_T_H_W.shape[3], x_B_C_T_H_W.shape[4], dtype=x_B_C_T_H_W.dtype, device=x_B_C_T_H_W.device)
|
||||
else:
|
||||
padding_mask = transforms.functional.resize(
|
||||
padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
|
||||
)
|
||||
x_B_C_T_H_W = torch.cat(
|
||||
[x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1
|
||||
)
|
||||
x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W)
|
||||
|
||||
if self.extra_per_block_abs_pos_emb:
|
||||
extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device, dtype=x_B_C_T_H_W.dtype)
|
||||
else:
|
||||
extra_pos_emb = None
|
||||
|
||||
if "rope" in self.pos_emb_cls.lower():
|
||||
return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device), extra_pos_emb
|
||||
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, device=x_B_C_T_H_W.device) # [B, T, H, W, D]
|
||||
|
||||
return x_B_T_H_W_D, None, extra_pos_emb
|
||||
|
||||
def unpatchify(self, x_B_T_H_W_M: torch.Tensor) -> torch.Tensor:
|
||||
x_B_C_Tt_Hp_Wp = rearrange(
|
||||
x_B_T_H_W_M,
|
||||
"B T H W (p1 p2 t C) -> B C (T t) (H p1) (W p2)",
|
||||
p1=self.patch_spatial,
|
||||
p2=self.patch_spatial,
|
||||
t=self.patch_temporal,
|
||||
)
|
||||
return x_B_C_Tt_Hp_Wp
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timesteps: torch.Tensor,
|
||||
context: torch.Tensor,
|
||||
fps: Optional[torch.Tensor] = None,
|
||||
padding_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
):
|
||||
x_B_C_T_H_W = x
|
||||
timesteps_B_T = timesteps
|
||||
crossattn_emb = context
|
||||
"""
|
||||
Args:
|
||||
x: (B, C, T, H, W) tensor of spatial-temp inputs
|
||||
timesteps: (B, ) tensor of timesteps
|
||||
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
|
||||
"""
|
||||
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
|
||||
x_B_C_T_H_W,
|
||||
fps=fps,
|
||||
padding_mask=padding_mask,
|
||||
)
|
||||
|
||||
if timesteps_B_T.ndim == 1:
|
||||
timesteps_B_T = timesteps_B_T.unsqueeze(1)
|
||||
t_embedding_B_T_D, adaln_lora_B_T_3D = self.t_embedder[1](self.t_embedder[0](timesteps_B_T).to(x_B_T_H_W_D.dtype))
|
||||
t_embedding_B_T_D = self.t_embedding_norm(t_embedding_B_T_D)
|
||||
|
||||
# for logging purpose
|
||||
affline_scale_log_info = {}
|
||||
affline_scale_log_info["t_embedding_B_T_D"] = t_embedding_B_T_D.detach()
|
||||
self.affline_scale_log_info = affline_scale_log_info
|
||||
self.affline_emb = t_embedding_B_T_D
|
||||
self.crossattn_emb = crossattn_emb
|
||||
|
||||
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
|
||||
assert (
|
||||
x_B_T_H_W_D.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
|
||||
), f"{x_B_T_H_W_D.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape}"
|
||||
|
||||
block_kwargs = {
|
||||
"rope_emb_L_1_1_D": rope_emb_L_1_1_D.unsqueeze(1).unsqueeze(0),
|
||||
"adaln_lora_B_T_3D": adaln_lora_B_T_3D,
|
||||
"extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
|
||||
}
|
||||
for block in self.blocks:
|
||||
x_B_T_H_W_D = block(
|
||||
x_B_T_H_W_D,
|
||||
t_embedding_B_T_D,
|
||||
crossattn_emb,
|
||||
**block_kwargs,
|
||||
)
|
||||
|
||||
x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D, t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D)
|
||||
x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)
|
||||
return x_B_C_Tt_Hp_Wp
|
||||
@@ -121,6 +121,11 @@ class ControlNetFlux(Flux):
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
if y is None:
|
||||
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
|
||||
else:
|
||||
y = y[:, :self.params.vec_in_dim]
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
|
||||
@@ -174,7 +179,7 @@ class ControlNetFlux(Flux):
|
||||
out["output"] = out_output[:self.main_model_single]
|
||||
return out
|
||||
|
||||
def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
|
||||
def forward(self, x, timesteps, context, y=None, guidance=None, hint=None, **kwargs):
|
||||
patch_size = 2
|
||||
if self.latent_input:
|
||||
hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size))
|
||||
|
||||
@@ -118,7 +118,7 @@ class Modulation(nn.Module):
|
||||
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
|
||||
if modulation_dims is None:
|
||||
if m_add is not None:
|
||||
return tensor * m_mult + m_add
|
||||
return torch.addcmul(m_add, tensor, m_mult)
|
||||
else:
|
||||
return tensor * m_mult
|
||||
else:
|
||||
|
||||
@@ -101,6 +101,10 @@ class Flux(nn.Module):
|
||||
transformer_options={},
|
||||
attn_mask: Tensor = None,
|
||||
) -> Tensor:
|
||||
|
||||
if y is None:
|
||||
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
@@ -155,6 +159,9 @@ class Flux(nn.Module):
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
if img.dtype == torch.float16:
|
||||
img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504)
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
@@ -188,20 +195,58 @@ class Flux(nn.Module):
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance=None, control=None, transformer_options={}, **kwargs):
|
||||
def process_img(self, x, index=0, h_offset=0, w_offset=0):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
|
||||
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
|
||||
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
|
||||
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
img_ids[:, :, 0] = img_ids[:, :, 1] + index
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, h_orig, w_orig = x.shape
|
||||
patch_size = self.patch_size
|
||||
|
||||
h_len = ((h_orig + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w_orig + (patch_size // 2)) // patch_size)
|
||||
img, img_ids = self.process_img(x)
|
||||
img_tokens = img.shape[1]
|
||||
if ref_latents is not None:
|
||||
h = 0
|
||||
w = 0
|
||||
index = 0
|
||||
index_ref_method = kwargs.get("ref_latents_method", "offset") == "index"
|
||||
for ref in ref_latents:
|
||||
if index_ref_method:
|
||||
index += 1
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
else:
|
||||
index = 1
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
if ref.shape[-2] + h > ref.shape[-1] + w:
|
||||
w_offset = w
|
||||
else:
|
||||
h_offset = h
|
||||
h = max(h, ref.shape[-2] + h_offset)
|
||||
w = max(w, ref.shape[-1] + w_offset)
|
||||
|
||||
kontext, kontext_ids = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
|
||||
img = torch.cat([img, kontext], dim=1)
|
||||
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|
||||
out = out[:, :img_tokens]
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig]
|
||||
|
||||
@@ -178,7 +178,7 @@ class FourierEmbedder(nn.Module):
|
||||
|
||||
class CrossAttentionProcessor:
|
||||
def __call__(self, attn, q, k, v):
|
||||
out = F.scaled_dot_product_attention(q, k, v)
|
||||
out = comfy.ops.scaled_dot_product_attention(q, k, v)
|
||||
return out
|
||||
|
||||
|
||||
|
||||
@@ -228,6 +228,7 @@ class HunyuanVideo(nn.Module):
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
guiding_frame_index=None,
|
||||
ref_latent=None,
|
||||
control=None,
|
||||
transformer_options={},
|
||||
) -> Tensor:
|
||||
@@ -238,6 +239,14 @@ class HunyuanVideo(nn.Module):
|
||||
img = self.img_in(img)
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
|
||||
|
||||
if ref_latent is not None:
|
||||
ref_latent_ids = self.img_ids(ref_latent)
|
||||
ref_latent = self.img_in(ref_latent)
|
||||
img = torch.cat([ref_latent, img], dim=-2)
|
||||
ref_latent_ids[..., 0] = -1
|
||||
ref_latent_ids[..., 2] += (initial_shape[-1] // self.patch_size[-1])
|
||||
img_ids = torch.cat([ref_latent_ids, img_ids], dim=-2)
|
||||
|
||||
if guiding_frame_index is not None:
|
||||
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
|
||||
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
@@ -313,6 +322,8 @@ class HunyuanVideo(nn.Module):
|
||||
img[:, : img_len] += add
|
||||
|
||||
img = img[:, : img_len]
|
||||
if ref_latent is not None:
|
||||
img = img[:, ref_latent.shape[1]:]
|
||||
|
||||
img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels)
|
||||
|
||||
@@ -324,7 +335,7 @@ class HunyuanVideo(nn.Module):
|
||||
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, control=None, transformer_options={}, **kwargs):
|
||||
def img_ids(self, x):
|
||||
bs, c, t, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||
@@ -334,7 +345,11 @@ class HunyuanVideo(nn.Module):
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
|
||||
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||
return repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, t, h, w = x.shape
|
||||
img_ids = self.img_ids(x)
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, control, transformer_options)
|
||||
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, ref_latent, control=control, transformer_options=transformer_options)
|
||||
return out
|
||||
|
||||
@@ -261,8 +261,8 @@ class CrossAttention(nn.Module):
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.q_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.k_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.q_norm = operations.RMSNorm(inner_dim, eps=1e-5, dtype=dtype, device=device)
|
||||
self.k_norm = operations.RMSNorm(inner_dim, eps=1e-5, dtype=dtype, device=device)
|
||||
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
@@ -973,7 +973,7 @@ class VideoVAE(nn.Module):
|
||||
norm_layer=config.get("norm_layer", "group_norm"),
|
||||
causal=config.get("causal_decoder", False),
|
||||
timestep_conditioning=self.timestep_conditioning,
|
||||
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
|
||||
spatial_padding_mode=config.get("spatial_padding_mode", "reflect"),
|
||||
)
|
||||
|
||||
self.per_channel_statistics = processor()
|
||||
|
||||
@@ -11,7 +11,7 @@ from comfy.ldm.modules.ema import LitEma
|
||||
import comfy.ops
|
||||
|
||||
class DiagonalGaussianRegularizer(torch.nn.Module):
|
||||
def __init__(self, sample: bool = True):
|
||||
def __init__(self, sample: bool = False):
|
||||
super().__init__()
|
||||
self.sample = sample
|
||||
|
||||
@@ -19,16 +19,12 @@ class DiagonalGaussianRegularizer(torch.nn.Module):
|
||||
yield from ()
|
||||
|
||||
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
||||
log = dict()
|
||||
posterior = DiagonalGaussianDistribution(z)
|
||||
if self.sample:
|
||||
z = posterior.sample()
|
||||
else:
|
||||
z = posterior.mode()
|
||||
kl_loss = posterior.kl()
|
||||
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
||||
log["kl_loss"] = kl_loss
|
||||
return z, log
|
||||
return z, None
|
||||
|
||||
|
||||
class AbstractAutoencoder(torch.nn.Module):
|
||||
|
||||
@@ -20,8 +20,11 @@ if model_management.xformers_enabled():
|
||||
if model_management.sage_attention_enabled():
|
||||
try:
|
||||
from sageattention import sageattn
|
||||
except ModuleNotFoundError:
|
||||
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
|
||||
except ModuleNotFoundError as e:
|
||||
if e.name == "sageattention":
|
||||
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
|
||||
else:
|
||||
raise e
|
||||
exit(-1)
|
||||
|
||||
if model_management.flash_attention_enabled():
|
||||
@@ -445,7 +448,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
if SDP_BATCH_LIMIT >= b:
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
||||
out = comfy.ops.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
||||
if not skip_output_reshape:
|
||||
out = (
|
||||
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
||||
@@ -458,7 +461,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
|
||||
if mask.shape[0] > 1:
|
||||
m = mask[i : i + SDP_BATCH_LIMIT]
|
||||
|
||||
out[i : i + SDP_BATCH_LIMIT] = torch.nn.functional.scaled_dot_product_attention(
|
||||
out[i : i + SDP_BATCH_LIMIT] = comfy.ops.scaled_dot_product_attention(
|
||||
q[i : i + SDP_BATCH_LIMIT],
|
||||
k[i : i + SDP_BATCH_LIMIT],
|
||||
v[i : i + SDP_BATCH_LIMIT],
|
||||
@@ -750,7 +753,7 @@ class BasicTransformerBlock(nn.Module):
|
||||
for p in patch:
|
||||
n = p(n, extra_options)
|
||||
|
||||
x += n
|
||||
x = n + x
|
||||
if "middle_patch" in transformer_patches:
|
||||
patch = transformer_patches["middle_patch"]
|
||||
for p in patch:
|
||||
@@ -790,12 +793,12 @@ class BasicTransformerBlock(nn.Module):
|
||||
for p in patch:
|
||||
n = p(n, extra_options)
|
||||
|
||||
x += n
|
||||
x = n + x
|
||||
if self.is_res:
|
||||
x_skip = x
|
||||
x = self.ff(self.norm3(x))
|
||||
if self.is_res:
|
||||
x += x_skip
|
||||
x = x_skip + x
|
||||
|
||||
return x
|
||||
|
||||
|
||||
@@ -36,7 +36,7 @@ def get_timestep_embedding(timesteps, embedding_dim):
|
||||
|
||||
def nonlinearity(x):
|
||||
# swish
|
||||
return x*torch.sigmoid(x)
|
||||
return torch.nn.functional.silu(x)
|
||||
|
||||
|
||||
def Normalize(in_channels, num_groups=32):
|
||||
@@ -285,7 +285,7 @@ def pytorch_attention(q, k, v):
|
||||
)
|
||||
|
||||
try:
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
out = comfy.ops.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
out = out.transpose(2, 3).reshape(orig_shape)
|
||||
except model_management.OOM_EXCEPTION:
|
||||
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
|
||||
|
||||
@@ -31,7 +31,7 @@ def dynamic_slice(
|
||||
starts: List[int],
|
||||
sizes: List[int],
|
||||
) -> Tensor:
|
||||
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
|
||||
slicing = tuple(slice(start, start + size) for start, size in zip(starts, sizes))
|
||||
return x[slicing]
|
||||
|
||||
class AttnChunk(NamedTuple):
|
||||
|
||||
469
comfy/ldm/omnigen/omnigen2.py
Normal file
469
comfy/ldm/omnigen/omnigen2.py
Normal file
@@ -0,0 +1,469 @@
|
||||
# Original code: https://github.com/VectorSpaceLab/OmniGen2
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
from comfy.ldm.lightricks.model import Timesteps
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
import comfy.model_management
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
def apply_rotary_emb(x, freqs_cis):
|
||||
if x.shape[1] == 0:
|
||||
return x
|
||||
|
||||
t_ = x.reshape(*x.shape[:-1], -1, 1, 2)
|
||||
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
|
||||
return t_out.reshape(*x.shape).to(dtype=x.dtype)
|
||||
|
||||
|
||||
def swiglu(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
|
||||
return F.silu(x) * y
|
||||
|
||||
|
||||
class TimestepEmbedding(nn.Module):
|
||||
def __init__(self, in_channels: int, time_embed_dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.linear_1 = operations.Linear(in_channels, time_embed_dim, dtype=dtype, device=device)
|
||||
self.act = nn.SiLU()
|
||||
self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, sample: torch.Tensor) -> torch.Tensor:
|
||||
sample = self.linear_1(sample)
|
||||
sample = self.act(sample)
|
||||
sample = self.linear_2(sample)
|
||||
return sample
|
||||
|
||||
|
||||
class LuminaRMSNormZero(nn.Module):
|
||||
def __init__(self, embedding_dim: int, norm_eps: float = 1e-5, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = operations.Linear(min(embedding_dim, 1024), 4 * embedding_dim, dtype=dtype, device=device)
|
||||
self.norm = operations.RMSNorm(embedding_dim, eps=norm_eps, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
emb = self.linear(self.silu(emb))
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
|
||||
x = self.norm(x) * (1 + scale_msa[:, None])
|
||||
return x, gate_msa, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
class LuminaLayerNormContinuous(nn.Module):
|
||||
def __init__(self, embedding_dim: int, conditioning_embedding_dim: int, elementwise_affine: bool = False, eps: float = 1e-6, out_dim: Optional[int] = None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.silu = nn.SiLU()
|
||||
self.linear_1 = operations.Linear(conditioning_embedding_dim, embedding_dim, dtype=dtype, device=device)
|
||||
self.norm = operations.LayerNorm(embedding_dim, eps, elementwise_affine, dtype=dtype, device=device)
|
||||
self.linear_2 = operations.Linear(embedding_dim, out_dim, bias=True, dtype=dtype, device=device) if out_dim is not None else None
|
||||
|
||||
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
|
||||
emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
|
||||
x = self.norm(x) * (1 + emb)[:, None, :]
|
||||
if self.linear_2 is not None:
|
||||
x = self.linear_2(x)
|
||||
return x
|
||||
|
||||
|
||||
class LuminaFeedForward(nn.Module):
|
||||
def __init__(self, dim: int, inner_dim: int, multiple_of: int = 256, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)
|
||||
self.linear_1 = operations.Linear(dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.linear_2 = operations.Linear(inner_dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.linear_3 = operations.Linear(dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
h1, h2 = self.linear_1(x), self.linear_3(x)
|
||||
return self.linear_2(swiglu(h1, h2))
|
||||
|
||||
|
||||
class Lumina2CombinedTimestepCaptionEmbedding(nn.Module):
|
||||
def __init__(self, hidden_size: int = 4096, text_feat_dim: int = 2048, frequency_embedding_size: int = 256, norm_eps: float = 1e-5, timestep_scale: float = 1.0, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=timestep_scale)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=min(hidden_size, 1024), dtype=dtype, device=device, operations=operations)
|
||||
self.caption_embedder = nn.Sequential(
|
||||
operations.RMSNorm(text_feat_dim, eps=norm_eps, dtype=dtype, device=device),
|
||||
operations.Linear(text_feat_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
def forward(self, timestep: torch.Tensor, text_hidden_states: torch.Tensor, dtype: torch.dtype) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
timestep_proj = self.time_proj(timestep).to(dtype=dtype)
|
||||
time_embed = self.timestep_embedder(timestep_proj)
|
||||
caption_embed = self.caption_embedder(text_hidden_states)
|
||||
return time_embed, caption_embed
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, query_dim: int, dim_head: int, heads: int, kv_heads: int, eps: float = 1e-5, bias: bool = False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.kv_heads = kv_heads
|
||||
self.dim_head = dim_head
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.to_q = operations.Linear(query_dim, heads * dim_head, bias=bias, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(query_dim, kv_heads * dim_head, bias=bias, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(query_dim, kv_heads * dim_head, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
self.norm_q = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
|
||||
self.norm_k = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
operations.Linear(heads * dim_head, query_dim, bias=bias, dtype=dtype, device=device),
|
||||
nn.Dropout(0.0)
|
||||
)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
batch_size, sequence_length, _ = hidden_states.shape
|
||||
|
||||
query = self.to_q(hidden_states)
|
||||
key = self.to_k(encoder_hidden_states)
|
||||
value = self.to_v(encoder_hidden_states)
|
||||
|
||||
query = query.view(batch_size, -1, self.heads, self.dim_head)
|
||||
key = key.view(batch_size, -1, self.kv_heads, self.dim_head)
|
||||
value = value.view(batch_size, -1, self.kv_heads, self.dim_head)
|
||||
|
||||
query = self.norm_q(query)
|
||||
key = self.norm_k(key)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
query = query.transpose(1, 2)
|
||||
key = key.transpose(1, 2)
|
||||
value = value.transpose(1, 2)
|
||||
|
||||
if self.kv_heads < self.heads:
|
||||
key = key.repeat_interleave(self.heads // self.kv_heads, dim=1)
|
||||
value = value.repeat_interleave(self.heads // self.kv_heads, dim=1)
|
||||
|
||||
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True)
|
||||
hidden_states = self.to_out[0](hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class OmniGen2TransformerBlock(nn.Module):
|
||||
def __init__(self, dim: int, num_attention_heads: int, num_kv_heads: int, multiple_of: int, ffn_dim_multiplier: float, norm_eps: float, modulation: bool = True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.modulation = modulation
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
dim_head=dim // num_attention_heads,
|
||||
heads=num_attention_heads,
|
||||
kv_heads=num_kv_heads,
|
||||
eps=1e-5,
|
||||
bias=False,
|
||||
dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
|
||||
self.feed_forward = LuminaFeedForward(
|
||||
dim=dim,
|
||||
inner_dim=4 * dim,
|
||||
multiple_of=multiple_of,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
if modulation:
|
||||
self.norm1 = LuminaRMSNormZero(embedding_dim=dim, norm_eps=norm_eps, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.norm1 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
|
||||
|
||||
self.ffn_norm1 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
|
||||
self.norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
|
||||
self.ffn_norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
if self.modulation:
|
||||
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
|
||||
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
|
||||
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
|
||||
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
|
||||
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
|
||||
else:
|
||||
norm_hidden_states = self.norm1(hidden_states)
|
||||
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
|
||||
hidden_states = hidden_states + self.norm2(attn_output)
|
||||
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
|
||||
hidden_states = hidden_states + self.ffn_norm2(mlp_output)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class OmniGen2RotaryPosEmbed(nn.Module):
|
||||
def __init__(self, theta: int, axes_dim: Tuple[int, int, int], axes_lens: Tuple[int, int, int] = (300, 512, 512), patch_size: int = 2):
|
||||
super().__init__()
|
||||
self.theta = theta
|
||||
self.axes_dim = axes_dim
|
||||
self.axes_lens = axes_lens
|
||||
self.patch_size = patch_size
|
||||
self.rope_embedder = EmbedND(dim=sum(axes_dim), theta=self.theta, axes_dim=axes_dim)
|
||||
|
||||
def forward(self, batch_size, encoder_seq_len, l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, ref_img_sizes, img_sizes, device):
|
||||
p = self.patch_size
|
||||
|
||||
seq_lengths = [cap_len + sum(ref_img_len) + img_len for cap_len, ref_img_len, img_len in zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len)]
|
||||
|
||||
max_seq_len = max(seq_lengths)
|
||||
max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len])
|
||||
max_img_len = max(l_effective_img_len)
|
||||
|
||||
position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device)
|
||||
|
||||
for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)):
|
||||
position_ids[i, :cap_seq_len] = repeat(torch.arange(cap_seq_len, dtype=torch.int32, device=device), "l -> l 3")
|
||||
|
||||
pe_shift = cap_seq_len
|
||||
pe_shift_len = cap_seq_len
|
||||
|
||||
if ref_img_sizes[i] is not None:
|
||||
for ref_img_size, ref_img_len in zip(ref_img_sizes[i], l_effective_ref_img_len[i]):
|
||||
H, W = ref_img_size
|
||||
ref_H_tokens, ref_W_tokens = H // p, W // p
|
||||
|
||||
row_ids = repeat(torch.arange(ref_H_tokens, dtype=torch.int32, device=device), "h -> h w", w=ref_W_tokens).flatten()
|
||||
col_ids = repeat(torch.arange(ref_W_tokens, dtype=torch.int32, device=device), "w -> h w", h=ref_H_tokens).flatten()
|
||||
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 0] = pe_shift
|
||||
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 1] = row_ids
|
||||
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 2] = col_ids
|
||||
|
||||
pe_shift += max(ref_H_tokens, ref_W_tokens)
|
||||
pe_shift_len += ref_img_len
|
||||
|
||||
H, W = img_sizes[i]
|
||||
H_tokens, W_tokens = H // p, W // p
|
||||
|
||||
row_ids = repeat(torch.arange(H_tokens, dtype=torch.int32, device=device), "h -> h w", w=W_tokens).flatten()
|
||||
col_ids = repeat(torch.arange(W_tokens, dtype=torch.int32, device=device), "w -> h w", h=H_tokens).flatten()
|
||||
|
||||
position_ids[i, pe_shift_len: seq_len, 0] = pe_shift
|
||||
position_ids[i, pe_shift_len: seq_len, 1] = row_ids
|
||||
position_ids[i, pe_shift_len: seq_len, 2] = col_ids
|
||||
|
||||
freqs_cis = self.rope_embedder(position_ids).movedim(1, 2)
|
||||
|
||||
cap_freqs_cis_shape = list(freqs_cis.shape)
|
||||
cap_freqs_cis_shape[1] = encoder_seq_len
|
||||
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
||||
|
||||
ref_img_freqs_cis_shape = list(freqs_cis.shape)
|
||||
ref_img_freqs_cis_shape[1] = max_ref_img_len
|
||||
ref_img_freqs_cis = torch.zeros(*ref_img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
||||
|
||||
img_freqs_cis_shape = list(freqs_cis.shape)
|
||||
img_freqs_cis_shape[1] = max_img_len
|
||||
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
||||
|
||||
for i, (cap_seq_len, ref_img_len, img_len, seq_len) in enumerate(zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, seq_lengths)):
|
||||
cap_freqs_cis[i, :cap_seq_len] = freqs_cis[i, :cap_seq_len]
|
||||
ref_img_freqs_cis[i, :sum(ref_img_len)] = freqs_cis[i, cap_seq_len:cap_seq_len + sum(ref_img_len)]
|
||||
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_seq_len + sum(ref_img_len):cap_seq_len + sum(ref_img_len) + img_len]
|
||||
|
||||
return cap_freqs_cis, ref_img_freqs_cis, img_freqs_cis, freqs_cis, l_effective_cap_len, seq_lengths
|
||||
|
||||
|
||||
class OmniGen2Transformer2DModel(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 16,
|
||||
out_channels: Optional[int] = None,
|
||||
hidden_size: int = 2304,
|
||||
num_layers: int = 26,
|
||||
num_refiner_layers: int = 2,
|
||||
num_attention_heads: int = 24,
|
||||
num_kv_heads: int = 8,
|
||||
multiple_of: int = 256,
|
||||
ffn_dim_multiplier: Optional[float] = None,
|
||||
norm_eps: float = 1e-5,
|
||||
axes_dim_rope: Tuple[int, int, int] = (32, 32, 32),
|
||||
axes_lens: Tuple[int, int, int] = (300, 512, 512),
|
||||
text_feat_dim: int = 1024,
|
||||
timestep_scale: float = 1.0,
|
||||
image_model=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.patch_size = patch_size
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.hidden_size = hidden_size
|
||||
self.dtype = dtype
|
||||
|
||||
self.rope_embedder = OmniGen2RotaryPosEmbed(
|
||||
theta=10000,
|
||||
axes_dim=axes_dim_rope,
|
||||
axes_lens=axes_lens,
|
||||
patch_size=patch_size,
|
||||
)
|
||||
|
||||
self.x_embedder = operations.Linear(patch_size * patch_size * in_channels, hidden_size, dtype=dtype, device=device)
|
||||
self.ref_image_patch_embedder = operations.Linear(patch_size * patch_size * in_channels, hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding(
|
||||
hidden_size=hidden_size,
|
||||
text_feat_dim=text_feat_dim,
|
||||
norm_eps=norm_eps,
|
||||
timestep_scale=timestep_scale, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
self.noise_refiner = nn.ModuleList([
|
||||
OmniGen2TransformerBlock(
|
||||
hidden_size, num_attention_heads, num_kv_heads,
|
||||
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
|
||||
) for _ in range(num_refiner_layers)
|
||||
])
|
||||
|
||||
self.ref_image_refiner = nn.ModuleList([
|
||||
OmniGen2TransformerBlock(
|
||||
hidden_size, num_attention_heads, num_kv_heads,
|
||||
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
|
||||
) for _ in range(num_refiner_layers)
|
||||
])
|
||||
|
||||
self.context_refiner = nn.ModuleList([
|
||||
OmniGen2TransformerBlock(
|
||||
hidden_size, num_attention_heads, num_kv_heads,
|
||||
multiple_of, ffn_dim_multiplier, norm_eps, modulation=False, dtype=dtype, device=device, operations=operations
|
||||
) for _ in range(num_refiner_layers)
|
||||
])
|
||||
|
||||
self.layers = nn.ModuleList([
|
||||
OmniGen2TransformerBlock(
|
||||
hidden_size, num_attention_heads, num_kv_heads,
|
||||
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
|
||||
) for _ in range(num_layers)
|
||||
])
|
||||
|
||||
self.norm_out = LuminaLayerNormContinuous(
|
||||
embedding_dim=hidden_size,
|
||||
conditioning_embedding_dim=min(hidden_size, 1024),
|
||||
elementwise_affine=False,
|
||||
eps=1e-6,
|
||||
out_dim=patch_size * patch_size * self.out_channels, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
self.image_index_embedding = nn.Parameter(torch.empty(5, hidden_size, device=device, dtype=dtype))
|
||||
|
||||
def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states):
|
||||
batch_size = len(hidden_states)
|
||||
p = self.patch_size
|
||||
|
||||
img_sizes = [(img.size(1), img.size(2)) for img in hidden_states]
|
||||
l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes]
|
||||
|
||||
if ref_image_hidden_states is not None:
|
||||
ref_image_hidden_states = list(map(lambda ref: comfy.ldm.common_dit.pad_to_patch_size(ref, (p, p)), ref_image_hidden_states))
|
||||
ref_img_sizes = [[(imgs.size(2), imgs.size(3)) if imgs is not None else None for imgs in ref_image_hidden_states]] * batch_size
|
||||
l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes]
|
||||
else:
|
||||
ref_img_sizes = [None for _ in range(batch_size)]
|
||||
l_effective_ref_img_len = [[0] for _ in range(batch_size)]
|
||||
|
||||
flat_ref_img_hidden_states = None
|
||||
if ref_image_hidden_states is not None:
|
||||
imgs = []
|
||||
for ref_img in ref_image_hidden_states:
|
||||
B, C, H, W = ref_img.size()
|
||||
ref_img = rearrange(ref_img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
|
||||
imgs.append(ref_img)
|
||||
flat_ref_img_hidden_states = torch.cat(imgs, dim=1)
|
||||
|
||||
img = hidden_states
|
||||
B, C, H, W = img.size()
|
||||
flat_hidden_states = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
|
||||
|
||||
return (
|
||||
flat_hidden_states, flat_ref_img_hidden_states,
|
||||
None, None,
|
||||
l_effective_ref_img_len, l_effective_img_len,
|
||||
ref_img_sizes, img_sizes,
|
||||
)
|
||||
|
||||
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb):
|
||||
batch_size = len(hidden_states)
|
||||
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
if ref_image_hidden_states is not None:
|
||||
ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states)
|
||||
image_index_embedding = comfy.model_management.cast_to(self.image_index_embedding, dtype=hidden_states.dtype, device=hidden_states.device)
|
||||
|
||||
for i in range(batch_size):
|
||||
shift = 0
|
||||
for j, ref_img_len in enumerate(l_effective_ref_img_len[i]):
|
||||
ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + image_index_embedding[j]
|
||||
shift += ref_img_len
|
||||
|
||||
for layer in self.noise_refiner:
|
||||
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)
|
||||
|
||||
if ref_image_hidden_states is not None:
|
||||
for layer in self.ref_image_refiner:
|
||||
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb)
|
||||
|
||||
hidden_states = torch.cat([ref_image_hidden_states, hidden_states], dim=1)
|
||||
|
||||
return hidden_states
|
||||
|
||||
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, **kwargs):
|
||||
B, C, H, W = x.shape
|
||||
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
_, _, H_padded, W_padded = hidden_states.shape
|
||||
timestep = 1.0 - timesteps
|
||||
text_hidden_states = context
|
||||
text_attention_mask = attention_mask
|
||||
ref_image_hidden_states = ref_latents
|
||||
device = hidden_states.device
|
||||
|
||||
temb, text_hidden_states = self.time_caption_embed(timestep, text_hidden_states, hidden_states[0].dtype)
|
||||
|
||||
(
|
||||
hidden_states, ref_image_hidden_states,
|
||||
img_mask, ref_img_mask,
|
||||
l_effective_ref_img_len, l_effective_img_len,
|
||||
ref_img_sizes, img_sizes,
|
||||
) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states)
|
||||
|
||||
(
|
||||
context_rotary_emb, ref_img_rotary_emb, noise_rotary_emb,
|
||||
rotary_emb, encoder_seq_lengths, seq_lengths,
|
||||
) = self.rope_embedder(
|
||||
hidden_states.shape[0], text_hidden_states.shape[1], [num_tokens] * text_hidden_states.shape[0],
|
||||
l_effective_ref_img_len, l_effective_img_len,
|
||||
ref_img_sizes, img_sizes, device,
|
||||
)
|
||||
|
||||
for layer in self.context_refiner:
|
||||
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
|
||||
|
||||
img_len = hidden_states.shape[1]
|
||||
combined_img_hidden_states = self.img_patch_embed_and_refine(
|
||||
hidden_states, ref_image_hidden_states,
|
||||
img_mask, ref_img_mask,
|
||||
noise_rotary_emb, ref_img_rotary_emb,
|
||||
l_effective_ref_img_len, l_effective_img_len,
|
||||
temb,
|
||||
)
|
||||
|
||||
hidden_states = torch.cat([text_hidden_states, combined_img_hidden_states], dim=1)
|
||||
attention_mask = None
|
||||
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
|
||||
p = self.patch_size
|
||||
output = rearrange(hidden_states[:, -img_len:], 'b (h w) (p1 p2 c) -> b c (h p1) (w p2)', h=H_padded // p, w=W_padded// p, p1=p, p2=p)[:, :, :H, :W]
|
||||
|
||||
return -output
|
||||
@@ -1,256 +1,256 @@
|
||||
# Based on:
|
||||
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
|
||||
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .blocks import (
|
||||
t2i_modulate,
|
||||
CaptionEmbedder,
|
||||
AttentionKVCompress,
|
||||
MultiHeadCrossAttention,
|
||||
T2IFinalLayer,
|
||||
SizeEmbedder,
|
||||
)
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32):
|
||||
grid_h, grid_w = torch.meshgrid(
|
||||
torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation,
|
||||
torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation,
|
||||
indexing='ij'
|
||||
)
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype)
|
||||
emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
class PixArtMSBlock(nn.Module):
|
||||
"""
|
||||
A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
||||
"""
|
||||
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None,
|
||||
sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.attn = AttentionKVCompress(
|
||||
hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
|
||||
qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.cross_attn = MultiHeadCrossAttention(
|
||||
hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
# to be compatible with lower version pytorch
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.mlp = Mlp(
|
||||
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
|
||||
|
||||
def forward(self, x, y, t, mask=None, HW=None, **kwargs):
|
||||
B, N, C = x.shape
|
||||
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1)
|
||||
x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
|
||||
x = x + self.cross_attn(x, y, mask)
|
||||
x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
### Core PixArt Model ###
|
||||
class PixArtMS(nn.Module):
|
||||
"""
|
||||
Diffusion model with a Transformer backbone.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
input_size=32,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
hidden_size=1152,
|
||||
depth=28,
|
||||
num_heads=16,
|
||||
mlp_ratio=4.0,
|
||||
class_dropout_prob=0.1,
|
||||
learn_sigma=True,
|
||||
pred_sigma=True,
|
||||
drop_path: float = 0.,
|
||||
caption_channels=4096,
|
||||
pe_interpolation=None,
|
||||
pe_precision=None,
|
||||
config=None,
|
||||
model_max_length=120,
|
||||
micro_condition=True,
|
||||
qk_norm=False,
|
||||
kv_compress_config=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
nn.Module.__init__(self)
|
||||
self.dtype = dtype
|
||||
self.pred_sigma = pred_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if pred_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.pe_interpolation = pe_interpolation
|
||||
self.pe_precision = pe_precision
|
||||
self.hidden_size = hidden_size
|
||||
self.depth = depth
|
||||
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.t_block = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
self.x_embedder = PatchEmbed(
|
||||
patch_size=patch_size,
|
||||
in_chans=in_channels,
|
||||
embed_dim=hidden_size,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
self.t_embedder = TimestepEmbedder(
|
||||
hidden_size, dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
self.y_embedder = CaptionEmbedder(
|
||||
in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
|
||||
act_layer=approx_gelu, token_num=model_max_length,
|
||||
dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
|
||||
self.micro_conditioning = micro_condition
|
||||
if self.micro_conditioning:
|
||||
self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# For fixed sin-cos embedding:
|
||||
# num_patches = (input_size // patch_size) * (input_size // patch_size)
|
||||
# self.base_size = input_size // self.patch_size
|
||||
# self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
|
||||
|
||||
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
|
||||
if kv_compress_config is None:
|
||||
kv_compress_config = {
|
||||
'sampling': None,
|
||||
'scale_factor': 1,
|
||||
'kv_compress_layer': [],
|
||||
}
|
||||
self.blocks = nn.ModuleList([
|
||||
PixArtMSBlock(
|
||||
hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
|
||||
sampling=kv_compress_config['sampling'],
|
||||
sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1,
|
||||
qk_norm=qk_norm,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for i in range(depth)
|
||||
])
|
||||
self.final_layer = T2IFinalLayer(
|
||||
hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs):
|
||||
"""
|
||||
Original forward pass of PixArt.
|
||||
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
||||
t: (N,) tensor of diffusion timesteps
|
||||
y: (N, 1, 120, C) conditioning
|
||||
ar: (N, 1): aspect ratio
|
||||
cs: (N ,2) size conditioning for height/width
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
c_res = (H + W) // 2
|
||||
pe_interpolation = self.pe_interpolation
|
||||
if pe_interpolation is None or self.pe_precision is not None:
|
||||
# calculate pe_interpolation on-the-fly
|
||||
pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0)
|
||||
|
||||
pos_embed = get_2d_sincos_pos_embed_torch(
|
||||
self.hidden_size,
|
||||
h=(H // self.patch_size),
|
||||
w=(W // self.patch_size),
|
||||
pe_interpolation=pe_interpolation,
|
||||
base_size=((round(c_res / 64) * 64) // self.patch_size),
|
||||
device=x.device,
|
||||
dtype=x.dtype,
|
||||
).unsqueeze(0)
|
||||
|
||||
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
|
||||
t = self.t_embedder(timestep, x.dtype) # (N, D)
|
||||
|
||||
if self.micro_conditioning and (c_size is not None and c_ar is not None):
|
||||
bs = x.shape[0]
|
||||
c_size = self.csize_embedder(c_size, bs) # (N, D)
|
||||
c_ar = self.ar_embedder(c_ar, bs) # (N, D)
|
||||
t = t + torch.cat([c_size, c_ar], dim=1)
|
||||
|
||||
t0 = self.t_block(t)
|
||||
y = self.y_embedder(y, self.training) # (N, D)
|
||||
|
||||
if mask is not None:
|
||||
if mask.shape[0] != y.shape[0]:
|
||||
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
|
||||
mask = mask.squeeze(1).squeeze(1)
|
||||
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
|
||||
y_lens = mask.sum(dim=1).tolist()
|
||||
else:
|
||||
y_lens = None
|
||||
y = y.squeeze(1).view(1, -1, x.shape[-1])
|
||||
for block in self.blocks:
|
||||
x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D)
|
||||
|
||||
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
|
||||
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs):
|
||||
B, C, H, W = x.shape
|
||||
|
||||
# Fallback for missing microconds
|
||||
if self.micro_conditioning:
|
||||
if c_size is None:
|
||||
c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
if c_ar is None:
|
||||
c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
## Still accepts the input w/o that dim but returns garbage
|
||||
if len(context.shape) == 3:
|
||||
context = context.unsqueeze(1)
|
||||
|
||||
## run original forward pass
|
||||
out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar)
|
||||
|
||||
## only return EPS
|
||||
if self.pred_sigma:
|
||||
return out[:, :self.in_channels]
|
||||
return out
|
||||
|
||||
def unpatchify(self, x, h, w):
|
||||
"""
|
||||
x: (N, T, patch_size**2 * C)
|
||||
imgs: (N, H, W, C)
|
||||
"""
|
||||
c = self.out_channels
|
||||
p = self.x_embedder.patch_size[0]
|
||||
h = h // self.patch_size
|
||||
w = w // self.patch_size
|
||||
assert h * w == x.shape[1]
|
||||
|
||||
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
||||
x = torch.einsum('nhwpqc->nchpwq', x)
|
||||
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
||||
return imgs
|
||||
# Based on:
|
||||
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
|
||||
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .blocks import (
|
||||
t2i_modulate,
|
||||
CaptionEmbedder,
|
||||
AttentionKVCompress,
|
||||
MultiHeadCrossAttention,
|
||||
T2IFinalLayer,
|
||||
SizeEmbedder,
|
||||
)
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32):
|
||||
grid_h, grid_w = torch.meshgrid(
|
||||
torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation,
|
||||
torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation,
|
||||
indexing='ij'
|
||||
)
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype)
|
||||
emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
class PixArtMSBlock(nn.Module):
|
||||
"""
|
||||
A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
||||
"""
|
||||
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None,
|
||||
sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.attn = AttentionKVCompress(
|
||||
hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
|
||||
qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.cross_attn = MultiHeadCrossAttention(
|
||||
hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
# to be compatible with lower version pytorch
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.mlp = Mlp(
|
||||
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
|
||||
|
||||
def forward(self, x, y, t, mask=None, HW=None, **kwargs):
|
||||
B, N, C = x.shape
|
||||
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1)
|
||||
x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
|
||||
x = x + self.cross_attn(x, y, mask)
|
||||
x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
### Core PixArt Model ###
|
||||
class PixArtMS(nn.Module):
|
||||
"""
|
||||
Diffusion model with a Transformer backbone.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
input_size=32,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
hidden_size=1152,
|
||||
depth=28,
|
||||
num_heads=16,
|
||||
mlp_ratio=4.0,
|
||||
class_dropout_prob=0.1,
|
||||
learn_sigma=True,
|
||||
pred_sigma=True,
|
||||
drop_path: float = 0.,
|
||||
caption_channels=4096,
|
||||
pe_interpolation=None,
|
||||
pe_precision=None,
|
||||
config=None,
|
||||
model_max_length=120,
|
||||
micro_condition=True,
|
||||
qk_norm=False,
|
||||
kv_compress_config=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
nn.Module.__init__(self)
|
||||
self.dtype = dtype
|
||||
self.pred_sigma = pred_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if pred_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.pe_interpolation = pe_interpolation
|
||||
self.pe_precision = pe_precision
|
||||
self.hidden_size = hidden_size
|
||||
self.depth = depth
|
||||
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.t_block = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
self.x_embedder = PatchEmbed(
|
||||
patch_size=patch_size,
|
||||
in_chans=in_channels,
|
||||
embed_dim=hidden_size,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
self.t_embedder = TimestepEmbedder(
|
||||
hidden_size, dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
self.y_embedder = CaptionEmbedder(
|
||||
in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
|
||||
act_layer=approx_gelu, token_num=model_max_length,
|
||||
dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
|
||||
self.micro_conditioning = micro_condition
|
||||
if self.micro_conditioning:
|
||||
self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# For fixed sin-cos embedding:
|
||||
# num_patches = (input_size // patch_size) * (input_size // patch_size)
|
||||
# self.base_size = input_size // self.patch_size
|
||||
# self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
|
||||
|
||||
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
|
||||
if kv_compress_config is None:
|
||||
kv_compress_config = {
|
||||
'sampling': None,
|
||||
'scale_factor': 1,
|
||||
'kv_compress_layer': [],
|
||||
}
|
||||
self.blocks = nn.ModuleList([
|
||||
PixArtMSBlock(
|
||||
hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
|
||||
sampling=kv_compress_config['sampling'],
|
||||
sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1,
|
||||
qk_norm=qk_norm,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for i in range(depth)
|
||||
])
|
||||
self.final_layer = T2IFinalLayer(
|
||||
hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs):
|
||||
"""
|
||||
Original forward pass of PixArt.
|
||||
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
||||
t: (N,) tensor of diffusion timesteps
|
||||
y: (N, 1, 120, C) conditioning
|
||||
ar: (N, 1): aspect ratio
|
||||
cs: (N ,2) size conditioning for height/width
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
c_res = (H + W) // 2
|
||||
pe_interpolation = self.pe_interpolation
|
||||
if pe_interpolation is None or self.pe_precision is not None:
|
||||
# calculate pe_interpolation on-the-fly
|
||||
pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0)
|
||||
|
||||
pos_embed = get_2d_sincos_pos_embed_torch(
|
||||
self.hidden_size,
|
||||
h=(H // self.patch_size),
|
||||
w=(W // self.patch_size),
|
||||
pe_interpolation=pe_interpolation,
|
||||
base_size=((round(c_res / 64) * 64) // self.patch_size),
|
||||
device=x.device,
|
||||
dtype=x.dtype,
|
||||
).unsqueeze(0)
|
||||
|
||||
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
|
||||
t = self.t_embedder(timestep, x.dtype) # (N, D)
|
||||
|
||||
if self.micro_conditioning and (c_size is not None and c_ar is not None):
|
||||
bs = x.shape[0]
|
||||
c_size = self.csize_embedder(c_size, bs) # (N, D)
|
||||
c_ar = self.ar_embedder(c_ar, bs) # (N, D)
|
||||
t = t + torch.cat([c_size, c_ar], dim=1)
|
||||
|
||||
t0 = self.t_block(t)
|
||||
y = self.y_embedder(y, self.training) # (N, D)
|
||||
|
||||
if mask is not None:
|
||||
if mask.shape[0] != y.shape[0]:
|
||||
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
|
||||
mask = mask.squeeze(1).squeeze(1)
|
||||
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
|
||||
y_lens = mask.sum(dim=1).tolist()
|
||||
else:
|
||||
y_lens = None
|
||||
y = y.squeeze(1).view(1, -1, x.shape[-1])
|
||||
for block in self.blocks:
|
||||
x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D)
|
||||
|
||||
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
|
||||
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs):
|
||||
B, C, H, W = x.shape
|
||||
|
||||
# Fallback for missing microconds
|
||||
if self.micro_conditioning:
|
||||
if c_size is None:
|
||||
c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
if c_ar is None:
|
||||
c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
## Still accepts the input w/o that dim but returns garbage
|
||||
if len(context.shape) == 3:
|
||||
context = context.unsqueeze(1)
|
||||
|
||||
## run original forward pass
|
||||
out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar)
|
||||
|
||||
## only return EPS
|
||||
if self.pred_sigma:
|
||||
return out[:, :self.in_channels]
|
||||
return out
|
||||
|
||||
def unpatchify(self, x, h, w):
|
||||
"""
|
||||
x: (N, T, patch_size**2 * C)
|
||||
imgs: (N, H, W, C)
|
||||
"""
|
||||
c = self.out_channels
|
||||
p = self.x_embedder.patch_size[0]
|
||||
h = h // self.patch_size
|
||||
w = w // self.patch_size
|
||||
assert h * w == x.shape[1]
|
||||
|
||||
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
||||
x = torch.einsum('nhwpqc->nchpwq', x)
|
||||
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
||||
return imgs
|
||||
|
||||
443
comfy/ldm/qwen_image/model.py
Normal file
443
comfy/ldm/qwen_image/model.py
Normal file
@@ -0,0 +1,443 @@
|
||||
# https://github.com/QwenLM/Qwen-Image (Apache 2.0)
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from typing import Optional, Tuple
|
||||
from einops import repeat
|
||||
|
||||
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
|
||||
from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
class GELU(nn.Module):
|
||||
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.proj = operations.Linear(dim_in, dim_out, bias=bias, dtype=dtype, device=device)
|
||||
self.approximate = approximate
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.proj(hidden_states)
|
||||
hidden_states = F.gelu(hidden_states, approximate=self.approximate)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
dim_out: Optional[int] = None,
|
||||
mult: int = 4,
|
||||
dropout: float = 0.0,
|
||||
inner_dim=None,
|
||||
bias: bool = True,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
if inner_dim is None:
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = dim_out if dim_out is not None else dim
|
||||
|
||||
self.net = nn.ModuleList([])
|
||||
self.net.append(GELU(dim, inner_dim, approximate="tanh", bias=bias, dtype=dtype, device=device, operations=operations))
|
||||
self.net.append(nn.Dropout(dropout))
|
||||
self.net.append(operations.Linear(inner_dim, dim_out, bias=bias, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
||||
for module in self.net:
|
||||
hidden_states = module(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
def apply_rotary_emb(x, freqs_cis):
|
||||
if x.shape[1] == 0:
|
||||
return x
|
||||
|
||||
t_ = x.reshape(*x.shape[:-1], -1, 1, 2)
|
||||
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
|
||||
return t_out.reshape(*x.shape)
|
||||
|
||||
|
||||
class QwenTimestepProjEmbeddings(nn.Module):
|
||||
def __init__(self, embedding_dim, pooled_projection_dim, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
|
||||
self.timestep_embedder = TimestepEmbedding(
|
||||
in_channels=256,
|
||||
time_embed_dim=embedding_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
|
||||
def forward(self, timestep, hidden_states):
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype))
|
||||
return timesteps_emb
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
dim_head: int = 64,
|
||||
heads: int = 8,
|
||||
dropout: float = 0.0,
|
||||
bias: bool = False,
|
||||
eps: float = 1e-5,
|
||||
out_bias: bool = True,
|
||||
out_dim: int = None,
|
||||
out_context_dim: int = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
||||
self.inner_kv_dim = self.inner_dim
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
self.out_dim = out_dim if out_dim is not None else query_dim
|
||||
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
|
||||
self.dropout = dropout
|
||||
|
||||
# Q/K normalization
|
||||
self.norm_q = operations.RMSNorm(dim_head, eps=eps, elementwise_affine=True, dtype=dtype, device=device)
|
||||
self.norm_k = operations.RMSNorm(dim_head, eps=eps, elementwise_affine=True, dtype=dtype, device=device)
|
||||
self.norm_added_q = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
|
||||
self.norm_added_k = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
|
||||
|
||||
# Image stream projections
|
||||
self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
# Text stream projections
|
||||
self.add_q_proj = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
|
||||
self.add_k_proj = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
||||
self.add_v_proj = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
# Output projections
|
||||
self.to_out = nn.ModuleList([
|
||||
operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout)
|
||||
])
|
||||
self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor, # Image stream
|
||||
encoder_hidden_states: torch.FloatTensor = None, # Text stream
|
||||
encoder_hidden_states_mask: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
seq_txt = encoder_hidden_states.shape[1]
|
||||
|
||||
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
|
||||
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
|
||||
img_query = self.norm_q(img_query)
|
||||
img_key = self.norm_k(img_key)
|
||||
txt_query = self.norm_added_q(txt_query)
|
||||
txt_key = self.norm_added_k(txt_key)
|
||||
|
||||
joint_query = torch.cat([txt_query, img_query], dim=1)
|
||||
joint_key = torch.cat([txt_key, img_key], dim=1)
|
||||
joint_value = torch.cat([txt_value, img_value], dim=1)
|
||||
|
||||
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
|
||||
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
|
||||
|
||||
joint_query = joint_query.flatten(start_dim=2)
|
||||
joint_key = joint_key.flatten(start_dim=2)
|
||||
joint_value = joint_value.flatten(start_dim=2)
|
||||
|
||||
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask)
|
||||
|
||||
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
|
||||
img_attn_output = joint_hidden_states[:, seq_txt:, :]
|
||||
|
||||
img_attn_output = self.to_out[0](img_attn_output)
|
||||
img_attn_output = self.to_out[1](img_attn_output)
|
||||
txt_attn_output = self.to_add_out(txt_attn_output)
|
||||
|
||||
return img_attn_output, txt_attn_output
|
||||
|
||||
|
||||
class QwenImageTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
eps: float = 1e-6,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.attention_head_dim = attention_head_dim
|
||||
|
||||
self.img_mod = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.img_norm1 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
||||
self.img_norm2 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
||||
self.img_mlp = FeedForward(dim=dim, dim_out=dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_mod = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.txt_norm1 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
||||
self.txt_norm2 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
||||
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
bias=True,
|
||||
eps=eps,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
def _modulate(self, x, mod_params):
|
||||
shift, scale, gate = mod_params.chunk(3, dim=-1)
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
encoder_hidden_states_mask: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
img_mod_params = self.img_mod(temb)
|
||||
txt_mod_params = self.txt_mod(temb)
|
||||
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)
|
||||
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)
|
||||
|
||||
img_normed = self.img_norm1(hidden_states)
|
||||
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
|
||||
txt_normed = self.txt_norm1(encoder_hidden_states)
|
||||
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
|
||||
|
||||
img_attn_output, txt_attn_output = self.attn(
|
||||
hidden_states=img_modulated,
|
||||
encoder_hidden_states=txt_modulated,
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states + img_gate1 * img_attn_output
|
||||
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
|
||||
|
||||
img_normed2 = self.img_norm2(hidden_states)
|
||||
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
|
||||
hidden_states = hidden_states + img_gate2 * self.img_mlp(img_modulated2)
|
||||
|
||||
txt_normed2 = self.txt_norm2(encoder_hidden_states)
|
||||
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
|
||||
encoder_hidden_states = encoder_hidden_states + txt_gate2 * self.txt_mlp(txt_modulated2)
|
||||
|
||||
return encoder_hidden_states, hidden_states
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
conditioning_embedding_dim: int,
|
||||
elementwise_affine=False,
|
||||
eps=1e-6,
|
||||
bias=True,
|
||||
dtype=None, device=None, operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = operations.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias, dtype=dtype, device=device)
|
||||
self.norm = operations.LayerNorm(embedding_dim, eps, elementwise_affine=False, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
|
||||
emb = self.linear(self.silu(conditioning_embedding))
|
||||
scale, shift = torch.chunk(emb, 2, dim=1)
|
||||
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
||||
return x
|
||||
|
||||
|
||||
class QwenImageTransformer2DModel(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 64,
|
||||
out_channels: Optional[int] = 16,
|
||||
num_layers: int = 60,
|
||||
attention_head_dim: int = 128,
|
||||
num_attention_heads: int = 24,
|
||||
joint_attention_dim: int = 3584,
|
||||
pooled_projection_dim: int = 768,
|
||||
guidance_embeds: bool = False,
|
||||
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
||||
image_model=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
self.patch_size = patch_size
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
self.pe_embedder = EmbedND(dim=attention_head_dim, theta=10000, axes_dim=list(axes_dims_rope))
|
||||
|
||||
self.time_text_embed = QwenTimestepProjEmbeddings(
|
||||
embedding_dim=self.inner_dim,
|
||||
pooled_projection_dim=pooled_projection_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
|
||||
self.txt_norm = operations.RMSNorm(joint_attention_dim, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_in = operations.Linear(in_channels, self.inner_dim, dtype=dtype, device=device)
|
||||
self.txt_in = operations.Linear(joint_attention_dim, self.inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList([
|
||||
QwenImageTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
|
||||
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def process_img(self, x, index=0, h_offset=0, w_offset=0):
|
||||
bs, c, t, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (1, self.patch_size, self.patch_size))
|
||||
orig_shape = hidden_states.shape
|
||||
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
|
||||
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
|
||||
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
|
||||
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
|
||||
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
|
||||
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 0] = img_ids[:, :, 1] + index
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
return hidden_states, repeat(img_ids, "h w c -> b (h w) c", b=bs), orig_shape
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
timesteps,
|
||||
context,
|
||||
attention_mask=None,
|
||||
guidance: torch.Tensor = None,
|
||||
ref_latents=None,
|
||||
transformer_options={},
|
||||
**kwargs
|
||||
):
|
||||
timestep = timesteps
|
||||
encoder_hidden_states = context
|
||||
encoder_hidden_states_mask = attention_mask
|
||||
|
||||
hidden_states, img_ids, orig_shape = self.process_img(x)
|
||||
num_embeds = hidden_states.shape[1]
|
||||
|
||||
if ref_latents is not None:
|
||||
h = 0
|
||||
w = 0
|
||||
index = 0
|
||||
index_ref_method = kwargs.get("ref_latents_method", "index") == "index"
|
||||
for ref in ref_latents:
|
||||
if index_ref_method:
|
||||
index += 1
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
else:
|
||||
index = 1
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
if ref.shape[-2] + h > ref.shape[-1] + w:
|
||||
w_offset = w
|
||||
else:
|
||||
h_offset = h
|
||||
h = max(h, ref.shape[-2] + h_offset)
|
||||
w = max(w, ref.shape[-1] + w_offset)
|
||||
|
||||
kontext, kontext_ids, _ = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
|
||||
hidden_states = torch.cat([hidden_states, kontext], dim=1)
|
||||
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
|
||||
|
||||
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size), ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size)))
|
||||
txt_ids = torch.linspace(txt_start, txt_start + context.shape[1], steps=context.shape[1], device=x.device, dtype=x.dtype).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
|
||||
|
||||
hidden_states = self.img_in(hidden_states)
|
||||
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
||||
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
||||
|
||||
if guidance is not None:
|
||||
guidance = guidance * 1000
|
||||
|
||||
temb = (
|
||||
self.time_text_embed(timestep, hidden_states)
|
||||
if guidance is None
|
||||
else self.time_text_embed(timestep, guidance, hidden_states)
|
||||
)
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"])
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb}, {"original_block": block_wrap})
|
||||
hidden_states = out["img"]
|
||||
encoder_hidden_states = out["txt"]
|
||||
else:
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2)
|
||||
hidden_states = hidden_states.permute(0, 3, 1, 4, 2, 5)
|
||||
return hidden_states.reshape(orig_shape)[:, :, :, :x.shape[-2], :x.shape[-1]]
|
||||
@@ -146,6 +146,15 @@ WAN_CROSSATTENTION_CLASSES = {
|
||||
}
|
||||
|
||||
|
||||
def repeat_e(e, x):
|
||||
repeats = 1
|
||||
if e.shape[1] > 1:
|
||||
repeats = x.shape[1] // e.shape[1]
|
||||
if repeats == 1:
|
||||
return e
|
||||
return torch.repeat_interleave(e, repeats, dim=1)
|
||||
|
||||
|
||||
class WanAttentionBlock(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
@@ -202,20 +211,23 @@ class WanAttentionBlock(nn.Module):
|
||||
"""
|
||||
# assert e.dtype == torch.float32
|
||||
|
||||
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1)
|
||||
if e.ndim < 4:
|
||||
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1)
|
||||
else:
|
||||
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device).unsqueeze(0) + e).unbind(2)
|
||||
# assert e[0].dtype == torch.float32
|
||||
|
||||
# self-attention
|
||||
y = self.self_attn(
|
||||
self.norm1(x) * (1 + e[1]) + e[0],
|
||||
self.norm1(x) * (1 + repeat_e(e[1], x)) + repeat_e(e[0], x),
|
||||
freqs)
|
||||
|
||||
x = x + y * e[2]
|
||||
x = x + y * repeat_e(e[2], x)
|
||||
|
||||
# cross-attention & ffn
|
||||
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len)
|
||||
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
|
||||
x = x + y * e[5]
|
||||
y = self.ffn(self.norm2(x) * (1 + repeat_e(e[4], x)) + repeat_e(e[3], x))
|
||||
x = x + y * repeat_e(e[5], x)
|
||||
return x
|
||||
|
||||
|
||||
@@ -247,6 +259,60 @@ class VaceWanAttentionBlock(WanAttentionBlock):
|
||||
return c_skip, c
|
||||
|
||||
|
||||
class WanCamAdapter(nn.Module):
|
||||
def __init__(self, in_dim, out_dim, kernel_size, stride, num_residual_blocks=1, operation_settings={}):
|
||||
super(WanCamAdapter, self).__init__()
|
||||
|
||||
# Pixel Unshuffle: reduce spatial dimensions by a factor of 8
|
||||
self.pixel_unshuffle = nn.PixelUnshuffle(downscale_factor=8)
|
||||
|
||||
# Convolution: reduce spatial dimensions by a factor
|
||||
# of 2 (without overlap)
|
||||
self.conv = operation_settings.get("operations").Conv2d(in_dim * 64, out_dim, kernel_size=kernel_size, stride=stride, padding=0, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
# Residual blocks for feature extraction
|
||||
self.residual_blocks = nn.Sequential(
|
||||
*[WanCamResidualBlock(out_dim, operation_settings = operation_settings) for _ in range(num_residual_blocks)]
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# Reshape to merge the frame dimension into batch
|
||||
bs, c, f, h, w = x.size()
|
||||
x = x.permute(0, 2, 1, 3, 4).contiguous().view(bs * f, c, h, w)
|
||||
|
||||
# Pixel Unshuffle operation
|
||||
x_unshuffled = self.pixel_unshuffle(x)
|
||||
|
||||
# Convolution operation
|
||||
x_conv = self.conv(x_unshuffled)
|
||||
|
||||
# Feature extraction with residual blocks
|
||||
out = self.residual_blocks(x_conv)
|
||||
|
||||
# Reshape to restore original bf dimension
|
||||
out = out.view(bs, f, out.size(1), out.size(2), out.size(3))
|
||||
|
||||
# Permute dimensions to reorder (if needed), e.g., swap channels and feature frames
|
||||
out = out.permute(0, 2, 1, 3, 4)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class WanCamResidualBlock(nn.Module):
|
||||
def __init__(self, dim, operation_settings={}):
|
||||
super(WanCamResidualBlock, self).__init__()
|
||||
self.conv1 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
out = self.relu(self.conv1(x))
|
||||
out = self.conv2(out)
|
||||
out += residual
|
||||
return out
|
||||
|
||||
|
||||
class Head(nn.Module):
|
||||
|
||||
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}):
|
||||
@@ -271,8 +337,12 @@ class Head(nn.Module):
|
||||
e(Tensor): Shape [B, C]
|
||||
"""
|
||||
# assert e.dtype == torch.float32
|
||||
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1)
|
||||
x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
|
||||
if e.ndim < 3:
|
||||
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1)
|
||||
else:
|
||||
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device).unsqueeze(0) + e.unsqueeze(2)).unbind(2)
|
||||
|
||||
x = (self.head(self.norm(x) * (1 + repeat_e(e[1], x)) + repeat_e(e[0], x)))
|
||||
return x
|
||||
|
||||
|
||||
@@ -321,6 +391,7 @@ class WanModel(torch.nn.Module):
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6,
|
||||
flf_pos_embed_token_number=None,
|
||||
in_dim_ref_conv=None,
|
||||
image_model=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
@@ -414,6 +485,11 @@ class WanModel(torch.nn.Module):
|
||||
else:
|
||||
self.img_emb = None
|
||||
|
||||
if in_dim_ref_conv is not None:
|
||||
self.ref_conv = operations.Conv2d(in_dim_ref_conv, dim, kernel_size=patch_size[1:], stride=patch_size[1:], device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
else:
|
||||
self.ref_conv = None
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
x,
|
||||
@@ -452,8 +528,16 @@ class WanModel(torch.nn.Module):
|
||||
|
||||
# time embeddings
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
|
||||
e = e.reshape(t.shape[0], -1, e.shape[-1])
|
||||
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
|
||||
|
||||
full_ref = None
|
||||
if self.ref_conv is not None:
|
||||
full_ref = kwargs.get("reference_latent", None)
|
||||
if full_ref is not None:
|
||||
full_ref = self.ref_conv(full_ref).flatten(2).transpose(1, 2)
|
||||
x = torch.concat((full_ref, x), dim=1)
|
||||
|
||||
# context
|
||||
context = self.text_embedding(context)
|
||||
@@ -481,17 +565,30 @@ class WanModel(torch.nn.Module):
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
if full_ref is not None:
|
||||
x = x[:, full_ref.shape[1]:]
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
def forward(self, x, timestep, context, clip_fea=None, transformer_options={}, **kwargs):
|
||||
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
|
||||
bs, c, t, h, w = x.shape
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
|
||||
|
||||
patch_size = self.patch_size
|
||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
||||
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
|
||||
|
||||
if time_dim_concat is not None:
|
||||
time_dim_concat = comfy.ldm.common_dit.pad_to_patch_size(time_dim_concat, self.patch_size)
|
||||
x = torch.cat([x, time_dim_concat], dim=2)
|
||||
t_len = ((x.shape[2] + (patch_size[0] // 2)) // patch_size[0])
|
||||
|
||||
if self.ref_conv is not None and "reference_latent" in kwargs:
|
||||
t_len += 1
|
||||
|
||||
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
|
||||
@@ -581,7 +678,7 @@ class VaceWanModel(WanModel):
|
||||
t,
|
||||
context,
|
||||
vace_context,
|
||||
vace_strength=1.0,
|
||||
vace_strength,
|
||||
clip_fea=None,
|
||||
freqs=None,
|
||||
transformer_options={},
|
||||
@@ -607,8 +704,11 @@ class VaceWanModel(WanModel):
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
context_img_len = clip_fea.shape[-2]
|
||||
|
||||
orig_shape = list(vace_context.shape)
|
||||
vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:])
|
||||
c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype)
|
||||
c = c.flatten(2).transpose(1, 2)
|
||||
c = list(c.split(orig_shape[0], dim=0))
|
||||
|
||||
# arguments
|
||||
x_orig = x
|
||||
@@ -628,8 +728,9 @@ class VaceWanModel(WanModel):
|
||||
|
||||
ii = self.vace_layers_mapping.get(i, None)
|
||||
if ii is not None:
|
||||
c_skip, c = self.vace_blocks[ii](c, x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
||||
x += c_skip * vace_strength
|
||||
for iii in range(len(c)):
|
||||
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
||||
x += c_skip * vace_strength[iii]
|
||||
del c_skip
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
@@ -637,3 +738,96 @@ class VaceWanModel(WanModel):
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
class CameraWanModel(WanModel):
|
||||
r"""
|
||||
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model_type='camera',
|
||||
patch_size=(1, 2, 2),
|
||||
text_len=512,
|
||||
in_dim=16,
|
||||
dim=2048,
|
||||
ffn_dim=8192,
|
||||
freq_dim=256,
|
||||
text_dim=4096,
|
||||
out_dim=16,
|
||||
num_heads=16,
|
||||
num_layers=32,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6,
|
||||
flf_pos_embed_token_number=None,
|
||||
image_model=None,
|
||||
in_dim_control_adapter=24,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
|
||||
if model_type == 'camera':
|
||||
model_type = 'i2v'
|
||||
else:
|
||||
model_type = 't2v'
|
||||
|
||||
super().__init__(model_type=model_type, patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
|
||||
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
||||
|
||||
self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings)
|
||||
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
x,
|
||||
t,
|
||||
context,
|
||||
clip_fea=None,
|
||||
freqs=None,
|
||||
camera_conditions = None,
|
||||
transformer_options={},
|
||||
**kwargs,
|
||||
):
|
||||
# embeddings
|
||||
x = self.patch_embedding(x.float()).to(x.dtype)
|
||||
if self.control_adapter is not None and camera_conditions is not None:
|
||||
x = x + self.control_adapter(camera_conditions).to(x.dtype)
|
||||
grid_sizes = x.shape[2:]
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
|
||||
# time embeddings
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
|
||||
# context
|
||||
context = self.text_embedding(context)
|
||||
|
||||
context_img_len = None
|
||||
if clip_fea is not None:
|
||||
if self.img_emb is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
context_img_len = clip_fea.shape[-2]
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
@@ -24,12 +24,17 @@ class CausalConv3d(ops.Conv3d):
|
||||
self.padding[1], 2 * self.padding[0], 0)
|
||||
self.padding = (0, 0, 0)
|
||||
|
||||
def forward(self, x, cache_x=None):
|
||||
def forward(self, x, cache_x=None, cache_list=None, cache_idx=None):
|
||||
if cache_list is not None:
|
||||
cache_x = cache_list[cache_idx]
|
||||
cache_list[cache_idx] = None
|
||||
|
||||
padding = list(self._padding)
|
||||
if cache_x is not None and self._padding[4] > 0:
|
||||
cache_x = cache_x.to(x.device)
|
||||
x = torch.cat([cache_x, x], dim=2)
|
||||
padding[4] -= cache_x.shape[2]
|
||||
del cache_x
|
||||
x = F.pad(x, padding)
|
||||
|
||||
return super().forward(x)
|
||||
@@ -52,15 +57,6 @@ class RMS_norm(nn.Module):
|
||||
x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma.to(x) + (self.bias.to(x) if self.bias is not None else 0)
|
||||
|
||||
|
||||
class Upsample(nn.Upsample):
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Fix bfloat16 support for nearest neighbor interpolation.
|
||||
"""
|
||||
return super().forward(x.float()).type_as(x)
|
||||
|
||||
|
||||
class Resample(nn.Module):
|
||||
|
||||
def __init__(self, dim, mode):
|
||||
@@ -73,11 +69,11 @@ class Resample(nn.Module):
|
||||
# layers
|
||||
if mode == 'upsample2d':
|
||||
self.resample = nn.Sequential(
|
||||
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
||||
nn.Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
||||
ops.Conv2d(dim, dim // 2, 3, padding=1))
|
||||
elif mode == 'upsample3d':
|
||||
self.resample = nn.Sequential(
|
||||
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
||||
nn.Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
||||
ops.Conv2d(dim, dim // 2, 3, padding=1))
|
||||
self.time_conv = CausalConv3d(
|
||||
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
||||
@@ -157,29 +153,6 @@ class Resample(nn.Module):
|
||||
feat_idx[0] += 1
|
||||
return x
|
||||
|
||||
def init_weight(self, conv):
|
||||
conv_weight = conv.weight
|
||||
nn.init.zeros_(conv_weight)
|
||||
c1, c2, t, h, w = conv_weight.size()
|
||||
one_matrix = torch.eye(c1, c2)
|
||||
init_matrix = one_matrix
|
||||
nn.init.zeros_(conv_weight)
|
||||
#conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
|
||||
conv_weight.data[:, :, 1, 0, 0] = init_matrix #* 0.5
|
||||
conv.weight.data.copy_(conv_weight)
|
||||
nn.init.zeros_(conv.bias.data)
|
||||
|
||||
def init_weight2(self, conv):
|
||||
conv_weight = conv.weight.data
|
||||
nn.init.zeros_(conv_weight)
|
||||
c1, c2, t, h, w = conv_weight.size()
|
||||
init_matrix = torch.eye(c1 // 2, c2)
|
||||
#init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
|
||||
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
|
||||
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
|
||||
conv.weight.data.copy_(conv_weight)
|
||||
nn.init.zeros_(conv.bias.data)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
|
||||
@@ -198,7 +171,7 @@ class ResidualBlock(nn.Module):
|
||||
if in_dim != out_dim else nn.Identity()
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
h = self.shortcut(x)
|
||||
old_x = x
|
||||
for layer in self.residual:
|
||||
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
@@ -210,12 +183,12 @@ class ResidualBlock(nn.Module):
|
||||
cache_x.device), cache_x
|
||||
],
|
||||
dim=2)
|
||||
x = layer(x, feat_cache[idx])
|
||||
x = layer(x, cache_list=feat_cache, cache_idx=idx)
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = layer(x)
|
||||
return x + h
|
||||
return x + self.shortcut(old_x)
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
@@ -494,12 +467,6 @@ class WanVAE(nn.Module):
|
||||
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
|
||||
attn_scales, self.temperal_upsample, dropout)
|
||||
|
||||
def forward(self, x):
|
||||
mu, log_var = self.encode(x)
|
||||
z = self.reparameterize(mu, log_var)
|
||||
x_recon = self.decode(z)
|
||||
return x_recon, mu, log_var
|
||||
|
||||
def encode(self, x):
|
||||
self.clear_cache()
|
||||
## cache
|
||||
@@ -545,18 +512,6 @@ class WanVAE(nn.Module):
|
||||
self.clear_cache()
|
||||
return out
|
||||
|
||||
def reparameterize(self, mu, log_var):
|
||||
std = torch.exp(0.5 * log_var)
|
||||
eps = torch.randn_like(std)
|
||||
return eps * std + mu
|
||||
|
||||
def sample(self, imgs, deterministic=False):
|
||||
mu, log_var = self.encode(imgs)
|
||||
if deterministic:
|
||||
return mu
|
||||
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
||||
return mu + std * torch.randn_like(std)
|
||||
|
||||
def clear_cache(self):
|
||||
self._conv_num = count_conv3d(self.decoder)
|
||||
self._conv_idx = [0]
|
||||
|
||||
726
comfy/ldm/wan/vae2_2.py
Normal file
726
comfy/ldm/wan/vae2_2.py
Normal file
@@ -0,0 +1,726 @@
|
||||
# original version: https://github.com/Wan-Video/Wan2.2/blob/main/wan/modules/vae2_2.py
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from .vae import AttentionBlock, CausalConv3d, RMS_norm
|
||||
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
CACHE_T = 2
|
||||
|
||||
|
||||
class Resample(nn.Module):
|
||||
|
||||
def __init__(self, dim, mode):
|
||||
assert mode in (
|
||||
"none",
|
||||
"upsample2d",
|
||||
"upsample3d",
|
||||
"downsample2d",
|
||||
"downsample3d",
|
||||
)
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.mode = mode
|
||||
|
||||
# layers
|
||||
if mode == "upsample2d":
|
||||
self.resample = nn.Sequential(
|
||||
nn.Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
||||
ops.Conv2d(dim, dim, 3, padding=1),
|
||||
)
|
||||
elif mode == "upsample3d":
|
||||
self.resample = nn.Sequential(
|
||||
nn.Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
||||
ops.Conv2d(dim, dim, 3, padding=1),
|
||||
# ops.Conv2d(dim, dim//2, 3, padding=1)
|
||||
)
|
||||
self.time_conv = CausalConv3d(
|
||||
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
||||
elif mode == "downsample2d":
|
||||
self.resample = nn.Sequential(
|
||||
nn.ZeroPad2d((0, 1, 0, 1)),
|
||||
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
|
||||
elif mode == "downsample3d":
|
||||
self.resample = nn.Sequential(
|
||||
nn.ZeroPad2d((0, 1, 0, 1)),
|
||||
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
|
||||
self.time_conv = CausalConv3d(
|
||||
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
||||
else:
|
||||
self.resample = nn.Identity()
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
b, c, t, h, w = x.size()
|
||||
if self.mode == "upsample3d":
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
if feat_cache[idx] is None:
|
||||
feat_cache[idx] = "Rep"
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and
|
||||
feat_cache[idx] != "Rep"):
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and
|
||||
feat_cache[idx] == "Rep"):
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
torch.zeros_like(cache_x).to(cache_x.device),
|
||||
cache_x
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
if feat_cache[idx] == "Rep":
|
||||
x = self.time_conv(x)
|
||||
else:
|
||||
x = self.time_conv(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
x = x.reshape(b, 2, c, t, h, w)
|
||||
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
|
||||
3)
|
||||
x = x.reshape(b, c, t * 2, h, w)
|
||||
t = x.shape[2]
|
||||
x = rearrange(x, "b c t h w -> (b t) c h w")
|
||||
x = self.resample(x)
|
||||
x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
|
||||
|
||||
if self.mode == "downsample3d":
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
if feat_cache[idx] is None:
|
||||
feat_cache[idx] = x.clone()
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
cache_x = x[:, :, -1:, :, :].clone()
|
||||
x = self.time_conv(
|
||||
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
return x
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
|
||||
def __init__(self, in_dim, out_dim, dropout=0.0):
|
||||
super().__init__()
|
||||
self.in_dim = in_dim
|
||||
self.out_dim = out_dim
|
||||
|
||||
# layers
|
||||
self.residual = nn.Sequential(
|
||||
RMS_norm(in_dim, images=False),
|
||||
nn.SiLU(),
|
||||
CausalConv3d(in_dim, out_dim, 3, padding=1),
|
||||
RMS_norm(out_dim, images=False),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(dropout),
|
||||
CausalConv3d(out_dim, out_dim, 3, padding=1),
|
||||
)
|
||||
self.shortcut = (
|
||||
CausalConv3d(in_dim, out_dim, 1)
|
||||
if in_dim != out_dim else nn.Identity())
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
old_x = x
|
||||
for layer in self.residual:
|
||||
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
x = layer(x, cache_list=feat_cache, cache_idx=idx)
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = layer(x)
|
||||
return x + self.shortcut(old_x)
|
||||
|
||||
|
||||
def patchify(x, patch_size):
|
||||
if patch_size == 1:
|
||||
return x
|
||||
if x.dim() == 4:
|
||||
x = rearrange(
|
||||
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size, r=patch_size)
|
||||
elif x.dim() == 5:
|
||||
x = rearrange(
|
||||
x,
|
||||
"b c f (h q) (w r) -> b (c r q) f h w",
|
||||
q=patch_size,
|
||||
r=patch_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Invalid input shape: {x.shape}")
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def unpatchify(x, patch_size):
|
||||
if patch_size == 1:
|
||||
return x
|
||||
|
||||
if x.dim() == 4:
|
||||
x = rearrange(
|
||||
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size, r=patch_size)
|
||||
elif x.dim() == 5:
|
||||
x = rearrange(
|
||||
x,
|
||||
"b (c r q) f h w -> b c f (h q) (w r)",
|
||||
q=patch_size,
|
||||
r=patch_size,
|
||||
)
|
||||
return x
|
||||
|
||||
|
||||
class AvgDown3D(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
factor_t,
|
||||
factor_s=1,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.factor_t = factor_t
|
||||
self.factor_s = factor_s
|
||||
self.factor = self.factor_t * self.factor_s * self.factor_s
|
||||
|
||||
assert in_channels * self.factor % out_channels == 0
|
||||
self.group_size = in_channels * self.factor // out_channels
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
pad_t = (self.factor_t - x.shape[2] % self.factor_t) % self.factor_t
|
||||
pad = (0, 0, 0, 0, pad_t, 0)
|
||||
x = F.pad(x, pad)
|
||||
B, C, T, H, W = x.shape
|
||||
x = x.view(
|
||||
B,
|
||||
C,
|
||||
T // self.factor_t,
|
||||
self.factor_t,
|
||||
H // self.factor_s,
|
||||
self.factor_s,
|
||||
W // self.factor_s,
|
||||
self.factor_s,
|
||||
)
|
||||
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous()
|
||||
x = x.view(
|
||||
B,
|
||||
C * self.factor,
|
||||
T // self.factor_t,
|
||||
H // self.factor_s,
|
||||
W // self.factor_s,
|
||||
)
|
||||
x = x.view(
|
||||
B,
|
||||
self.out_channels,
|
||||
self.group_size,
|
||||
T // self.factor_t,
|
||||
H // self.factor_s,
|
||||
W // self.factor_s,
|
||||
)
|
||||
x = x.mean(dim=2)
|
||||
return x
|
||||
|
||||
|
||||
class DupUp3D(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
factor_t,
|
||||
factor_s=1,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
|
||||
self.factor_t = factor_t
|
||||
self.factor_s = factor_s
|
||||
self.factor = self.factor_t * self.factor_s * self.factor_s
|
||||
|
||||
assert out_channels * self.factor % in_channels == 0
|
||||
self.repeats = out_channels * self.factor // in_channels
|
||||
|
||||
def forward(self, x: torch.Tensor, first_chunk=False) -> torch.Tensor:
|
||||
x = x.repeat_interleave(self.repeats, dim=1)
|
||||
x = x.view(
|
||||
x.size(0),
|
||||
self.out_channels,
|
||||
self.factor_t,
|
||||
self.factor_s,
|
||||
self.factor_s,
|
||||
x.size(2),
|
||||
x.size(3),
|
||||
x.size(4),
|
||||
)
|
||||
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
|
||||
x = x.view(
|
||||
x.size(0),
|
||||
self.out_channels,
|
||||
x.size(2) * self.factor_t,
|
||||
x.size(4) * self.factor_s,
|
||||
x.size(6) * self.factor_s,
|
||||
)
|
||||
if first_chunk:
|
||||
x = x[:, :, self.factor_t - 1:, :, :]
|
||||
return x
|
||||
|
||||
|
||||
class Down_ResidualBlock(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
in_dim,
|
||||
out_dim,
|
||||
dropout,
|
||||
mult,
|
||||
temperal_downsample=False,
|
||||
down_flag=False):
|
||||
super().__init__()
|
||||
|
||||
# Shortcut path with downsample
|
||||
self.avg_shortcut = AvgDown3D(
|
||||
in_dim,
|
||||
out_dim,
|
||||
factor_t=2 if temperal_downsample else 1,
|
||||
factor_s=2 if down_flag else 1,
|
||||
)
|
||||
|
||||
# Main path with residual blocks and downsample
|
||||
downsamples = []
|
||||
for _ in range(mult):
|
||||
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
||||
in_dim = out_dim
|
||||
|
||||
# Add the final downsample block
|
||||
if down_flag:
|
||||
mode = "downsample3d" if temperal_downsample else "downsample2d"
|
||||
downsamples.append(Resample(out_dim, mode=mode))
|
||||
|
||||
self.downsamples = nn.Sequential(*downsamples)
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
x_copy = x
|
||||
for module in self.downsamples:
|
||||
x = module(x, feat_cache, feat_idx)
|
||||
|
||||
return x + self.avg_shortcut(x_copy)
|
||||
|
||||
|
||||
class Up_ResidualBlock(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
in_dim,
|
||||
out_dim,
|
||||
dropout,
|
||||
mult,
|
||||
temperal_upsample=False,
|
||||
up_flag=False):
|
||||
super().__init__()
|
||||
# Shortcut path with upsample
|
||||
if up_flag:
|
||||
self.avg_shortcut = DupUp3D(
|
||||
in_dim,
|
||||
out_dim,
|
||||
factor_t=2 if temperal_upsample else 1,
|
||||
factor_s=2 if up_flag else 1,
|
||||
)
|
||||
else:
|
||||
self.avg_shortcut = None
|
||||
|
||||
# Main path with residual blocks and upsample
|
||||
upsamples = []
|
||||
for _ in range(mult):
|
||||
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
||||
in_dim = out_dim
|
||||
|
||||
# Add the final upsample block
|
||||
if up_flag:
|
||||
mode = "upsample3d" if temperal_upsample else "upsample2d"
|
||||
upsamples.append(Resample(out_dim, mode=mode))
|
||||
|
||||
self.upsamples = nn.Sequential(*upsamples)
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
|
||||
x_main = x
|
||||
for module in self.upsamples:
|
||||
x_main = module(x_main, feat_cache, feat_idx)
|
||||
if self.avg_shortcut is not None:
|
||||
x_shortcut = self.avg_shortcut(x, first_chunk)
|
||||
return x_main + x_shortcut
|
||||
else:
|
||||
return x_main
|
||||
|
||||
|
||||
class Encoder3d(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_downsample=[True, True, False],
|
||||
dropout=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_downsample = temperal_downsample
|
||||
|
||||
# dimensions
|
||||
dims = [dim * u for u in [1] + dim_mult]
|
||||
scale = 1.0
|
||||
|
||||
# init block
|
||||
self.conv1 = CausalConv3d(12, dims[0], 3, padding=1)
|
||||
|
||||
# downsample blocks
|
||||
downsamples = []
|
||||
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
||||
t_down_flag = (
|
||||
temperal_downsample[i]
|
||||
if i < len(temperal_downsample) else False)
|
||||
downsamples.append(
|
||||
Down_ResidualBlock(
|
||||
in_dim=in_dim,
|
||||
out_dim=out_dim,
|
||||
dropout=dropout,
|
||||
mult=num_res_blocks,
|
||||
temperal_downsample=t_down_flag,
|
||||
down_flag=i != len(dim_mult) - 1,
|
||||
))
|
||||
scale /= 2.0
|
||||
self.downsamples = nn.Sequential(*downsamples)
|
||||
|
||||
# middle blocks
|
||||
self.middle = nn.Sequential(
|
||||
ResidualBlock(out_dim, out_dim, dropout),
|
||||
AttentionBlock(out_dim),
|
||||
ResidualBlock(out_dim, out_dim, dropout),
|
||||
)
|
||||
|
||||
# # output blocks
|
||||
self.head = nn.Sequential(
|
||||
RMS_norm(out_dim, images=False),
|
||||
nn.SiLU(),
|
||||
CausalConv3d(out_dim, z_dim, 3, padding=1),
|
||||
)
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
x = self.conv1(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv1(x)
|
||||
|
||||
## downsamples
|
||||
for layer in self.downsamples:
|
||||
if feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## middle
|
||||
for layer in self.middle:
|
||||
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## head
|
||||
for layer in self.head:
|
||||
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
x = layer(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Decoder3d(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_upsample=[False, True, True],
|
||||
dropout=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_upsample = temperal_upsample
|
||||
|
||||
# dimensions
|
||||
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
||||
# init block
|
||||
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
|
||||
|
||||
# middle blocks
|
||||
self.middle = nn.Sequential(
|
||||
ResidualBlock(dims[0], dims[0], dropout),
|
||||
AttentionBlock(dims[0]),
|
||||
ResidualBlock(dims[0], dims[0], dropout),
|
||||
)
|
||||
|
||||
# upsample blocks
|
||||
upsamples = []
|
||||
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
||||
t_up_flag = temperal_upsample[i] if i < len(
|
||||
temperal_upsample) else False
|
||||
upsamples.append(
|
||||
Up_ResidualBlock(
|
||||
in_dim=in_dim,
|
||||
out_dim=out_dim,
|
||||
dropout=dropout,
|
||||
mult=num_res_blocks + 1,
|
||||
temperal_upsample=t_up_flag,
|
||||
up_flag=i != len(dim_mult) - 1,
|
||||
))
|
||||
self.upsamples = nn.Sequential(*upsamples)
|
||||
|
||||
# output blocks
|
||||
self.head = nn.Sequential(
|
||||
RMS_norm(out_dim, images=False),
|
||||
nn.SiLU(),
|
||||
CausalConv3d(out_dim, 12, 3, padding=1),
|
||||
)
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
x = self.conv1(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv1(x)
|
||||
|
||||
for layer in self.middle:
|
||||
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## upsamples
|
||||
for layer in self.upsamples:
|
||||
if feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx, first_chunk)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## head
|
||||
for layer in self.head:
|
||||
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat(
|
||||
[
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device),
|
||||
cache_x,
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
x = layer(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
def count_conv3d(model):
|
||||
count = 0
|
||||
for m in model.modules():
|
||||
if isinstance(m, CausalConv3d):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
|
||||
class WanVAE(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim=160,
|
||||
dec_dim=256,
|
||||
z_dim=16,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_downsample=[True, True, False],
|
||||
dropout=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_downsample = temperal_downsample
|
||||
self.temperal_upsample = temperal_downsample[::-1]
|
||||
|
||||
# modules
|
||||
self.encoder = Encoder3d(
|
||||
dim,
|
||||
z_dim * 2,
|
||||
dim_mult,
|
||||
num_res_blocks,
|
||||
attn_scales,
|
||||
self.temperal_downsample,
|
||||
dropout,
|
||||
)
|
||||
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
|
||||
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
|
||||
self.decoder = Decoder3d(
|
||||
dec_dim,
|
||||
z_dim,
|
||||
dim_mult,
|
||||
num_res_blocks,
|
||||
attn_scales,
|
||||
self.temperal_upsample,
|
||||
dropout,
|
||||
)
|
||||
|
||||
def encode(self, x):
|
||||
self.clear_cache()
|
||||
x = patchify(x, patch_size=2)
|
||||
t = x.shape[2]
|
||||
iter_ = 1 + (t - 1) // 4
|
||||
for i in range(iter_):
|
||||
self._enc_conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.encoder(
|
||||
x[:, :, :1, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx,
|
||||
)
|
||||
else:
|
||||
out_ = self.encoder(
|
||||
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx,
|
||||
)
|
||||
out = torch.cat([out, out_], 2)
|
||||
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
||||
self.clear_cache()
|
||||
return mu
|
||||
|
||||
def decode(self, z):
|
||||
self.clear_cache()
|
||||
iter_ = z.shape[2]
|
||||
x = self.conv2(z)
|
||||
for i in range(iter_):
|
||||
self._conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx,
|
||||
first_chunk=True,
|
||||
)
|
||||
else:
|
||||
out_ = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx,
|
||||
)
|
||||
out = torch.cat([out, out_], 2)
|
||||
out = unpatchify(out, patch_size=2)
|
||||
self.clear_cache()
|
||||
return out
|
||||
|
||||
def reparameterize(self, mu, log_var):
|
||||
std = torch.exp(0.5 * log_var)
|
||||
eps = torch.randn_like(std)
|
||||
return eps * std + mu
|
||||
|
||||
def sample(self, imgs, deterministic=False):
|
||||
mu, log_var = self.encode(imgs)
|
||||
if deterministic:
|
||||
return mu
|
||||
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
||||
return mu + std * torch.randn_like(std)
|
||||
|
||||
def clear_cache(self):
|
||||
self._conv_num = count_conv3d(self.decoder)
|
||||
self._conv_idx = [0]
|
||||
self._feat_map = [None] * self._conv_num
|
||||
# cache encode
|
||||
self._enc_conv_num = count_conv3d(self.encoder)
|
||||
self._enc_conv_idx = [0]
|
||||
self._enc_feat_map = [None] * self._enc_conv_num
|
||||
@@ -283,8 +283,25 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model."):
|
||||
if k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lycoris_{}".format(key_lora)] = k #SimpleTuner lycoris format
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
|
||||
key_map["transformer.{}".format(key_lora)] = k #SimpleTuner regular format
|
||||
|
||||
if isinstance(model, comfy.model_base.ACEStep):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official ACE step lora format
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
key_map["{}".format(key_lora)] = k
|
||||
|
||||
if isinstance(model, comfy.model_base.QwenImage):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"): #QwenImage lora format
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
# Direct mapping for transformer_blocks format (QwenImage LoRA format)
|
||||
key_map["{}".format(key_lora)] = k
|
||||
# Support transformer prefix format
|
||||
key_map["transformer.{}".format(key_lora)] = k
|
||||
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
|
||||
|
||||
return key_map
|
||||
|
||||
|
||||
@@ -34,12 +34,15 @@ import comfy.ldm.flux.model
|
||||
import comfy.ldm.lightricks.model
|
||||
import comfy.ldm.hunyuan_video.model
|
||||
import comfy.ldm.cosmos.model
|
||||
import comfy.ldm.cosmos.predict2
|
||||
import comfy.ldm.lumina.model
|
||||
import comfy.ldm.wan.model
|
||||
import comfy.ldm.hunyuan3d.model
|
||||
import comfy.ldm.hidream.model
|
||||
import comfy.ldm.chroma.model
|
||||
import comfy.ldm.ace.model
|
||||
import comfy.ldm.omnigen.omnigen2
|
||||
import comfy.ldm.qwen_image.model
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
@@ -48,6 +51,7 @@ import comfy.ops
|
||||
from enum import Enum
|
||||
from . import utils
|
||||
import comfy.latent_formats
|
||||
import comfy.model_sampling
|
||||
import math
|
||||
from typing import TYPE_CHECKING
|
||||
if TYPE_CHECKING:
|
||||
@@ -63,38 +67,39 @@ class ModelType(Enum):
|
||||
V_PREDICTION_CONTINUOUS = 7
|
||||
FLUX = 8
|
||||
IMG_TO_IMG = 9
|
||||
|
||||
|
||||
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV
|
||||
FLOW_COSMOS = 10
|
||||
|
||||
|
||||
def model_sampling(model_config, model_type):
|
||||
s = ModelSamplingDiscrete
|
||||
s = comfy.model_sampling.ModelSamplingDiscrete
|
||||
|
||||
if model_type == ModelType.EPS:
|
||||
c = EPS
|
||||
c = comfy.model_sampling.EPS
|
||||
elif model_type == ModelType.V_PREDICTION:
|
||||
c = V_PREDICTION
|
||||
c = comfy.model_sampling.V_PREDICTION
|
||||
elif model_type == ModelType.V_PREDICTION_EDM:
|
||||
c = V_PREDICTION
|
||||
s = ModelSamplingContinuousEDM
|
||||
c = comfy.model_sampling.V_PREDICTION
|
||||
s = comfy.model_sampling.ModelSamplingContinuousEDM
|
||||
elif model_type == ModelType.FLOW:
|
||||
c = comfy.model_sampling.CONST
|
||||
s = comfy.model_sampling.ModelSamplingDiscreteFlow
|
||||
elif model_type == ModelType.STABLE_CASCADE:
|
||||
c = EPS
|
||||
s = StableCascadeSampling
|
||||
c = comfy.model_sampling.EPS
|
||||
s = comfy.model_sampling.StableCascadeSampling
|
||||
elif model_type == ModelType.EDM:
|
||||
c = EDM
|
||||
s = ModelSamplingContinuousEDM
|
||||
c = comfy.model_sampling.EDM
|
||||
s = comfy.model_sampling.ModelSamplingContinuousEDM
|
||||
elif model_type == ModelType.V_PREDICTION_CONTINUOUS:
|
||||
c = V_PREDICTION
|
||||
s = ModelSamplingContinuousV
|
||||
c = comfy.model_sampling.V_PREDICTION
|
||||
s = comfy.model_sampling.ModelSamplingContinuousV
|
||||
elif model_type == ModelType.FLUX:
|
||||
c = comfy.model_sampling.CONST
|
||||
s = comfy.model_sampling.ModelSamplingFlux
|
||||
elif model_type == ModelType.IMG_TO_IMG:
|
||||
c = comfy.model_sampling.IMG_TO_IMG
|
||||
elif model_type == ModelType.FLOW_COSMOS:
|
||||
c = comfy.model_sampling.COSMOS_RFLOW
|
||||
s = comfy.model_sampling.ModelSamplingCosmosRFlow
|
||||
|
||||
class ModelSampling(s, c):
|
||||
pass
|
||||
@@ -102,6 +107,15 @@ def model_sampling(model_config, model_type):
|
||||
return ModelSampling(model_config)
|
||||
|
||||
|
||||
def convert_tensor(extra, dtype, device):
|
||||
if hasattr(extra, "dtype"):
|
||||
if extra.dtype != torch.int and extra.dtype != torch.long:
|
||||
extra = comfy.model_management.cast_to_device(extra, device, dtype)
|
||||
else:
|
||||
extra = comfy.model_management.cast_to_device(extra, device, None)
|
||||
return extra
|
||||
|
||||
|
||||
class BaseModel(torch.nn.Module):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel):
|
||||
super().__init__()
|
||||
@@ -135,6 +149,7 @@ class BaseModel(torch.nn.Module):
|
||||
logging.info("model_type {}".format(model_type.name))
|
||||
logging.debug("adm {}".format(self.adm_channels))
|
||||
self.memory_usage_factor = model_config.memory_usage_factor
|
||||
self.memory_usage_factor_conds = ()
|
||||
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
@@ -148,7 +163,7 @@ class BaseModel(torch.nn.Module):
|
||||
xc = self.model_sampling.calculate_input(sigma, x)
|
||||
|
||||
if c_concat is not None:
|
||||
xc = torch.cat([xc] + [c_concat], dim=1)
|
||||
xc = torch.cat([xc] + [comfy.model_management.cast_to_device(c_concat, xc.device, xc.dtype)], dim=1)
|
||||
|
||||
context = c_crossattn
|
||||
dtype = self.get_dtype()
|
||||
@@ -157,16 +172,22 @@ class BaseModel(torch.nn.Module):
|
||||
dtype = self.manual_cast_dtype
|
||||
|
||||
xc = xc.to(dtype)
|
||||
device = xc.device
|
||||
t = self.model_sampling.timestep(t).float()
|
||||
if context is not None:
|
||||
context = context.to(dtype)
|
||||
context = comfy.model_management.cast_to_device(context, device, dtype)
|
||||
|
||||
extra_conds = {}
|
||||
for o in kwargs:
|
||||
extra = kwargs[o]
|
||||
|
||||
if hasattr(extra, "dtype"):
|
||||
if extra.dtype != torch.int and extra.dtype != torch.long:
|
||||
extra = extra.to(dtype)
|
||||
extra = convert_tensor(extra, dtype, device)
|
||||
elif isinstance(extra, list):
|
||||
ex = []
|
||||
for ext in extra:
|
||||
ex.append(convert_tensor(ext, dtype, device))
|
||||
extra = ex
|
||||
extra_conds[o] = extra
|
||||
|
||||
t = self.process_timestep(t, x=x, **extra_conds)
|
||||
@@ -325,19 +346,28 @@ class BaseModel(torch.nn.Module):
|
||||
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
|
||||
return self.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1)), noise, latent_image)
|
||||
|
||||
def memory_required(self, input_shape):
|
||||
def memory_required(self, input_shape, cond_shapes={}):
|
||||
input_shapes = [input_shape]
|
||||
for c in self.memory_usage_factor_conds:
|
||||
shape = cond_shapes.get(c, None)
|
||||
if shape is not None and len(shape) > 0:
|
||||
input_shapes += shape
|
||||
|
||||
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
|
||||
dtype = self.get_dtype()
|
||||
if self.manual_cast_dtype is not None:
|
||||
dtype = self.manual_cast_dtype
|
||||
#TODO: this needs to be tweaked
|
||||
area = input_shape[0] * math.prod(input_shape[2:])
|
||||
area = sum(map(lambda input_shape: input_shape[0] * math.prod(input_shape[2:]), input_shapes))
|
||||
return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024)
|
||||
else:
|
||||
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
|
||||
area = input_shape[0] * math.prod(input_shape[2:])
|
||||
area = sum(map(lambda input_shape: input_shape[0] * math.prod(input_shape[2:]), input_shapes))
|
||||
return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024)
|
||||
|
||||
def extra_conds_shapes(self, **kwargs):
|
||||
return {}
|
||||
|
||||
|
||||
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
|
||||
adm_inputs = []
|
||||
@@ -372,7 +402,7 @@ class SD21UNCLIP(BaseModel):
|
||||
unclip_conditioning = kwargs.get("unclip_conditioning", None)
|
||||
device = kwargs["device"]
|
||||
if unclip_conditioning is None:
|
||||
return torch.zeros((1, self.adm_channels))
|
||||
return torch.zeros((1, self.adm_channels), device=device)
|
||||
else:
|
||||
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10)
|
||||
|
||||
@@ -586,9 +616,11 @@ class IP2P:
|
||||
|
||||
if image is None:
|
||||
image = torch.zeros_like(noise)
|
||||
else:
|
||||
image = image.to(device=device)
|
||||
|
||||
if image.shape[1:] != noise.shape[1:]:
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
image = utils.common_upscale(image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
return self.process_ip2p_image_in(image)
|
||||
@@ -667,7 +699,7 @@ class StableCascade_B(BaseModel):
|
||||
#size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched
|
||||
prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device))
|
||||
|
||||
out["effnet"] = comfy.conds.CONDRegular(prior)
|
||||
out["effnet"] = comfy.conds.CONDRegular(prior.to(device=noise.device))
|
||||
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
|
||||
return out
|
||||
|
||||
@@ -790,6 +822,7 @@ class PixArt(BaseModel):
|
||||
class Flux(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.flux.model.Flux):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=unet_model)
|
||||
self.memory_usage_factor_conds = ("ref_latents",)
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
try:
|
||||
@@ -850,8 +883,27 @@ class Flux(BaseModel):
|
||||
guidance = kwargs.get("guidance", 3.5)
|
||||
if guidance is not None:
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
latents = []
|
||||
for lat in ref_latents:
|
||||
latents.append(self.process_latent_in(lat))
|
||||
out['ref_latents'] = comfy.conds.CONDList(latents)
|
||||
|
||||
ref_latents_method = kwargs.get("reference_latents_method", None)
|
||||
if ref_latents_method is not None:
|
||||
out['ref_latents_method'] = comfy.conds.CONDConstant(ref_latents_method)
|
||||
return out
|
||||
|
||||
def extra_conds_shapes(self, **kwargs):
|
||||
out = {}
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
|
||||
return out
|
||||
|
||||
|
||||
class GenmoMochi(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.genmo.joint_model.asymm_models_joint.AsymmDiTJoint)
|
||||
@@ -924,6 +976,10 @@ class HunyuanVideo(BaseModel):
|
||||
if guiding_frame_index is not None:
|
||||
out['guiding_frame_index'] = comfy.conds.CONDRegular(torch.FloatTensor([guiding_frame_index]))
|
||||
|
||||
ref_latent = kwargs.get("ref_latent", None)
|
||||
if ref_latent is not None:
|
||||
out['ref_latent'] = comfy.conds.CONDRegular(self.process_latent_in(ref_latent))
|
||||
|
||||
return out
|
||||
|
||||
def scale_latent_inpaint(self, latent_image, **kwargs):
|
||||
@@ -972,6 +1028,45 @@ class CosmosVideo(BaseModel):
|
||||
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image)
|
||||
return latent_image * ((sigma ** 2 + self.model_sampling.sigma_data ** 2) ** 0.5)
|
||||
|
||||
class CosmosPredict2(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW_COSMOS, image_to_video=False, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.predict2.MiniTrainDIT)
|
||||
self.image_to_video = image_to_video
|
||||
if self.image_to_video:
|
||||
self.concat_keys = ("mask_inverted",)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
if denoise_mask is not None:
|
||||
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
|
||||
|
||||
out['fps'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", None))
|
||||
return out
|
||||
|
||||
def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
|
||||
if denoise_mask is None:
|
||||
return timestep
|
||||
if denoise_mask.ndim <= 4:
|
||||
return timestep
|
||||
condition_video_mask_B_1_T_1_1 = denoise_mask.mean(dim=[1, 3, 4], keepdim=True)
|
||||
c_noise_B_1_T_1_1 = 0.0 * (1.0 - condition_video_mask_B_1_T_1_1) + timestep.reshape(timestep.shape[0], 1, 1, 1, 1) * condition_video_mask_B_1_T_1_1
|
||||
out = c_noise_B_1_T_1_1.squeeze(dim=[1, 3, 4])
|
||||
return out
|
||||
|
||||
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
|
||||
sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1))
|
||||
sigma_noise_augmentation = 0 #TODO
|
||||
if sigma_noise_augmentation != 0:
|
||||
latent_image = latent_image + noise
|
||||
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image)
|
||||
sigma = (sigma / (sigma + 1))
|
||||
return latent_image / (1.0 - sigma)
|
||||
|
||||
class Lumina2(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lumina.model.NextDiT)
|
||||
@@ -1012,8 +1107,9 @@ class WAN21(BaseModel):
|
||||
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
|
||||
if not self.image_to_video or extra_channels == image.shape[1]:
|
||||
return image
|
||||
if extra_channels != image.shape[1] + 4:
|
||||
if not self.image_to_video or extra_channels == image.shape[1]:
|
||||
return image
|
||||
|
||||
if image.shape[1] > (extra_channels - 4):
|
||||
image = image[:, :(extra_channels - 4)]
|
||||
@@ -1032,7 +1128,11 @@ class WAN21(BaseModel):
|
||||
mask = mask.repeat(1, 4, 1, 1, 1)
|
||||
mask = utils.resize_to_batch_size(mask, noise.shape[0])
|
||||
|
||||
return torch.cat((mask, image), dim=1)
|
||||
concat_mask_index = kwargs.get("concat_mask_index", 0)
|
||||
if concat_mask_index != 0:
|
||||
return torch.cat((image[:, :concat_mask_index], mask, image[:, concat_mask_index:]), dim=1)
|
||||
else:
|
||||
return torch.cat((mask, image), dim=1)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
@@ -1043,6 +1143,15 @@ class WAN21(BaseModel):
|
||||
clip_vision_output = kwargs.get("clip_vision_output", None)
|
||||
if clip_vision_output is not None:
|
||||
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.penultimate_hidden_states)
|
||||
|
||||
time_dim_concat = kwargs.get("time_dim_concat", None)
|
||||
if time_dim_concat is not None:
|
||||
out['time_dim_concat'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_concat))
|
||||
|
||||
reference_latents = kwargs.get("reference_latents", None)
|
||||
if reference_latents is not None:
|
||||
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1])[:, :, 0])
|
||||
|
||||
return out
|
||||
|
||||
|
||||
@@ -1058,23 +1167,64 @@ class WAN21_Vace(WAN21):
|
||||
vace_frames = kwargs.get("vace_frames", None)
|
||||
if vace_frames is None:
|
||||
noise_shape[1] = 32
|
||||
vace_frames = torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)
|
||||
|
||||
for i in range(0, vace_frames.shape[1], 16):
|
||||
vace_frames = vace_frames.clone()
|
||||
vace_frames[:, i:i + 16] = self.process_latent_in(vace_frames[:, i:i + 16])
|
||||
vace_frames = [torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)]
|
||||
|
||||
mask = kwargs.get("vace_mask", None)
|
||||
if mask is None:
|
||||
noise_shape[1] = 64
|
||||
mask = torch.ones(noise_shape, device=noise.device, dtype=noise.dtype)
|
||||
mask = [torch.ones(noise_shape, device=noise.device, dtype=noise.dtype)] * len(vace_frames)
|
||||
|
||||
out['vace_context'] = comfy.conds.CONDRegular(torch.cat([vace_frames.to(noise), mask.to(noise)], dim=1))
|
||||
vace_frames_out = []
|
||||
for j in range(len(vace_frames)):
|
||||
vf = vace_frames[j].to(device=noise.device, dtype=noise.dtype, copy=True)
|
||||
for i in range(0, vf.shape[1], 16):
|
||||
vf[:, i:i + 16] = self.process_latent_in(vf[:, i:i + 16])
|
||||
vf = torch.cat([vf, mask[j].to(device=noise.device, dtype=noise.dtype)], dim=1)
|
||||
vace_frames_out.append(vf)
|
||||
|
||||
vace_strength = kwargs.get("vace_strength", 1.0)
|
||||
vace_frames = torch.stack(vace_frames_out, dim=1)
|
||||
out['vace_context'] = comfy.conds.CONDRegular(vace_frames)
|
||||
|
||||
vace_strength = kwargs.get("vace_strength", [1.0] * len(vace_frames_out))
|
||||
out['vace_strength'] = comfy.conds.CONDConstant(vace_strength)
|
||||
return out
|
||||
|
||||
class WAN21_Camera(WAN21):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
|
||||
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.CameraWanModel)
|
||||
self.image_to_video = image_to_video
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
camera_conditions = kwargs.get("camera_conditions", None)
|
||||
if camera_conditions is not None:
|
||||
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
|
||||
return out
|
||||
|
||||
class WAN22(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
|
||||
self.image_to_video = image_to_video
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
if denoise_mask is not None:
|
||||
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
|
||||
return out
|
||||
|
||||
def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
|
||||
if denoise_mask is None:
|
||||
return timestep
|
||||
temp_ts = (torch.mean(denoise_mask[:, :, :, :, :], dim=(1, 3, 4), keepdim=True) * timestep.view([timestep.shape[0]] + [1] * (denoise_mask.ndim - 1))).reshape(timestep.shape[0], -1)
|
||||
return temp_ts
|
||||
|
||||
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
|
||||
return latent_image
|
||||
|
||||
class Hunyuan3Dv2(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
@@ -1141,3 +1291,54 @@ class ACEStep(BaseModel):
|
||||
out['speaker_embeds'] = comfy.conds.CONDRegular(torch.zeros(noise.shape[0], 512, device=noise.device, dtype=noise.dtype))
|
||||
out['lyrics_strength'] = comfy.conds.CONDConstant(kwargs.get("lyrics_strength", 1.0))
|
||||
return out
|
||||
|
||||
class Omnigen2(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.omnigen.omnigen2.OmniGen2Transformer2DModel)
|
||||
self.memory_usage_factor_conds = ("ref_latents",)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
if attention_mask is not None:
|
||||
if torch.numel(attention_mask) != attention_mask.sum():
|
||||
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item()))
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
latents = []
|
||||
for lat in ref_latents:
|
||||
latents.append(self.process_latent_in(lat))
|
||||
out['ref_latents'] = comfy.conds.CONDList(latents)
|
||||
return out
|
||||
|
||||
def extra_conds_shapes(self, **kwargs):
|
||||
out = {}
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
|
||||
return out
|
||||
|
||||
class QwenImage(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.qwen_image.model.QwenImageTransformer2DModel)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
latents = []
|
||||
for lat in ref_latents:
|
||||
latents.append(self.process_latent_in(lat))
|
||||
out['ref_latents'] = comfy.conds.CONDList(latents)
|
||||
|
||||
ref_latents_method = kwargs.get("reference_latents_method", None)
|
||||
if ref_latents_method is not None:
|
||||
out['ref_latents_method'] = comfy.conds.CONDConstant(ref_latents_method)
|
||||
return out
|
||||
|
||||
@@ -346,7 +346,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "wan2.1"
|
||||
dim = state_dict['{}head.modulation'.format(key_prefix)].shape[-1]
|
||||
out_dim = state_dict['{}head.head.weight'.format(key_prefix)].shape[0] // 4
|
||||
dit_config["dim"] = dim
|
||||
dit_config["out_dim"] = out_dim
|
||||
dit_config["num_heads"] = dim // 128
|
||||
dit_config["ffn_dim"] = state_dict['{}blocks.0.ffn.0.weight'.format(key_prefix)].shape[0]
|
||||
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.')
|
||||
@@ -361,6 +363,11 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["model_type"] = "vace"
|
||||
dit_config["vace_in_dim"] = state_dict['{}vace_patch_embedding.weight'.format(key_prefix)].shape[1]
|
||||
dit_config["vace_layers"] = count_blocks(state_dict_keys, '{}vace_blocks.'.format(key_prefix) + '{}.')
|
||||
elif '{}control_adapter.conv.weight'.format(key_prefix) in state_dict_keys:
|
||||
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "camera"
|
||||
else:
|
||||
dit_config["model_type"] = "camera_2.2"
|
||||
else:
|
||||
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "i2v"
|
||||
@@ -369,6 +376,11 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
flf_weight = state_dict.get('{}img_emb.emb_pos'.format(key_prefix))
|
||||
if flf_weight is not None:
|
||||
dit_config["flf_pos_embed_token_number"] = flf_weight.shape[1]
|
||||
|
||||
ref_conv_weight = state_dict.get('{}ref_conv.weight'.format(key_prefix))
|
||||
if ref_conv_weight is not None:
|
||||
dit_config["in_dim_ref_conv"] = ref_conv_weight.shape[1]
|
||||
|
||||
return dit_config
|
||||
|
||||
if '{}latent_in.weight'.format(key_prefix) in state_dict_keys: # Hunyuan 3D
|
||||
@@ -405,6 +417,83 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["text_emb_dim"] = 2048
|
||||
return dit_config
|
||||
|
||||
if '{}blocks.0.mlp.layer1.weight'.format(key_prefix) in state_dict_keys: # Cosmos predict2
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "cosmos_predict2"
|
||||
dit_config["max_img_h"] = 240
|
||||
dit_config["max_img_w"] = 240
|
||||
dit_config["max_frames"] = 128
|
||||
concat_padding_mask = True
|
||||
dit_config["in_channels"] = (state_dict['{}x_embedder.proj.1.weight'.format(key_prefix)].shape[1] // 4) - int(concat_padding_mask)
|
||||
dit_config["out_channels"] = 16
|
||||
dit_config["patch_spatial"] = 2
|
||||
dit_config["patch_temporal"] = 1
|
||||
dit_config["model_channels"] = state_dict['{}x_embedder.proj.1.weight'.format(key_prefix)].shape[0]
|
||||
dit_config["concat_padding_mask"] = concat_padding_mask
|
||||
dit_config["crossattn_emb_channels"] = 1024
|
||||
dit_config["pos_emb_cls"] = "rope3d"
|
||||
dit_config["pos_emb_learnable"] = True
|
||||
dit_config["pos_emb_interpolation"] = "crop"
|
||||
dit_config["min_fps"] = 1
|
||||
dit_config["max_fps"] = 30
|
||||
|
||||
dit_config["use_adaln_lora"] = True
|
||||
dit_config["adaln_lora_dim"] = 256
|
||||
if dit_config["model_channels"] == 2048:
|
||||
dit_config["num_blocks"] = 28
|
||||
dit_config["num_heads"] = 16
|
||||
elif dit_config["model_channels"] == 5120:
|
||||
dit_config["num_blocks"] = 36
|
||||
dit_config["num_heads"] = 40
|
||||
|
||||
if dit_config["in_channels"] == 16:
|
||||
dit_config["extra_per_block_abs_pos_emb"] = False
|
||||
dit_config["rope_h_extrapolation_ratio"] = 4.0
|
||||
dit_config["rope_w_extrapolation_ratio"] = 4.0
|
||||
dit_config["rope_t_extrapolation_ratio"] = 1.0
|
||||
elif dit_config["in_channels"] == 17: # img to video
|
||||
if dit_config["model_channels"] == 2048:
|
||||
dit_config["extra_per_block_abs_pos_emb"] = False
|
||||
dit_config["rope_h_extrapolation_ratio"] = 3.0
|
||||
dit_config["rope_w_extrapolation_ratio"] = 3.0
|
||||
dit_config["rope_t_extrapolation_ratio"] = 1.0
|
||||
elif dit_config["model_channels"] == 5120:
|
||||
dit_config["rope_h_extrapolation_ratio"] = 2.0
|
||||
dit_config["rope_w_extrapolation_ratio"] = 2.0
|
||||
dit_config["rope_t_extrapolation_ratio"] = 0.8333333333333334
|
||||
|
||||
dit_config["extra_h_extrapolation_ratio"] = 1.0
|
||||
dit_config["extra_w_extrapolation_ratio"] = 1.0
|
||||
dit_config["extra_t_extrapolation_ratio"] = 1.0
|
||||
dit_config["rope_enable_fps_modulation"] = False
|
||||
|
||||
return dit_config
|
||||
|
||||
if '{}time_caption_embed.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: # Omnigen2
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "omnigen2"
|
||||
dit_config["axes_dim_rope"] = [40, 40, 40]
|
||||
dit_config["axes_lens"] = [1024, 1664, 1664]
|
||||
dit_config["ffn_dim_multiplier"] = None
|
||||
dit_config["hidden_size"] = 2520
|
||||
dit_config["in_channels"] = 16
|
||||
dit_config["multiple_of"] = 256
|
||||
dit_config["norm_eps"] = 1e-05
|
||||
dit_config["num_attention_heads"] = 21
|
||||
dit_config["num_kv_heads"] = 7
|
||||
dit_config["num_layers"] = 32
|
||||
dit_config["num_refiner_layers"] = 2
|
||||
dit_config["out_channels"] = None
|
||||
dit_config["patch_size"] = 2
|
||||
dit_config["text_feat_dim"] = 2048
|
||||
dit_config["timestep_scale"] = 1000.0
|
||||
return dit_config
|
||||
|
||||
if '{}txt_norm.weight'.format(key_prefix) in state_dict_keys: # Qwen Image
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "qwen_image"
|
||||
return dit_config
|
||||
|
||||
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
||||
return None
|
||||
|
||||
@@ -618,6 +707,9 @@ def convert_config(unet_config):
|
||||
|
||||
|
||||
def unet_config_from_diffusers_unet(state_dict, dtype=None):
|
||||
if "conv_in.weight" not in state_dict:
|
||||
return None
|
||||
|
||||
match = {}
|
||||
transformer_depth = []
|
||||
|
||||
@@ -788,7 +880,7 @@ def convert_diffusers_mmdit(state_dict, output_prefix=""):
|
||||
depth_single_blocks = count_blocks(state_dict, 'single_transformer_blocks.{}.')
|
||||
hidden_size = state_dict["x_embedder.bias"].shape[0]
|
||||
sd_map = comfy.utils.flux_to_diffusers({"depth": depth, "depth_single_blocks": depth_single_blocks, "hidden_size": hidden_size}, output_prefix=output_prefix)
|
||||
elif 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: #SD3
|
||||
elif 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict and 'pos_embed.proj.weight' in state_dict: #SD3
|
||||
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
|
||||
depth = state_dict["pos_embed.proj.weight"].shape[0] // 64
|
||||
sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix)
|
||||
|
||||
@@ -78,7 +78,6 @@ try:
|
||||
torch_version = torch.version.__version__
|
||||
temp = torch_version.split(".")
|
||||
torch_version_numeric = (int(temp[0]), int(temp[1]))
|
||||
xpu_available = (torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] <= 4)) and torch.xpu.is_available()
|
||||
except:
|
||||
pass
|
||||
|
||||
@@ -101,11 +100,15 @@ if args.directml is not None:
|
||||
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
|
||||
|
||||
try:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
_ = torch.xpu.device_count()
|
||||
xpu_available = xpu_available or torch.xpu.is_available()
|
||||
import intel_extension_for_pytorch as ipex # noqa: F401
|
||||
except:
|
||||
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())
|
||||
pass
|
||||
|
||||
try:
|
||||
_ = torch.xpu.device_count()
|
||||
xpu_available = torch.xpu.is_available()
|
||||
except:
|
||||
xpu_available = False
|
||||
|
||||
try:
|
||||
if torch.backends.mps.is_available():
|
||||
@@ -128,6 +131,11 @@ try:
|
||||
except:
|
||||
mlu_available = False
|
||||
|
||||
try:
|
||||
ixuca_available = hasattr(torch, "corex")
|
||||
except:
|
||||
ixuca_available = False
|
||||
|
||||
if args.cpu:
|
||||
cpu_state = CPUState.CPU
|
||||
|
||||
@@ -151,6 +159,12 @@ def is_mlu():
|
||||
return True
|
||||
return False
|
||||
|
||||
def is_ixuca():
|
||||
global ixuca_available
|
||||
if ixuca_available:
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_torch_device():
|
||||
global directml_enabled
|
||||
global cpu_state
|
||||
@@ -186,8 +200,9 @@ def get_total_memory(dev=None, torch_total_too=False):
|
||||
elif is_intel_xpu():
|
||||
stats = torch.xpu.memory_stats(dev)
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_total_xpu = torch.xpu.get_device_properties(dev).total_memory
|
||||
mem_total_torch = mem_reserved
|
||||
mem_total = torch.xpu.get_device_properties(dev).total_memory
|
||||
mem_total = mem_total_xpu
|
||||
elif is_ascend_npu():
|
||||
stats = torch.npu.memory_stats(dev)
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
@@ -288,21 +303,34 @@ try:
|
||||
if torch_version_numeric[0] >= 2:
|
||||
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
if is_intel_xpu() or is_ascend_npu() or is_mlu():
|
||||
if is_intel_xpu() or is_ascend_npu() or is_mlu() or is_ixuca():
|
||||
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
SUPPORT_FP8_OPS = args.supports_fp8_compute
|
||||
try:
|
||||
if is_amd():
|
||||
try:
|
||||
rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2]))
|
||||
except:
|
||||
rocm_version = (6, -1)
|
||||
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
|
||||
logging.info("AMD arch: {}".format(arch))
|
||||
logging.info("ROCm version: {}".format(rocm_version))
|
||||
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
if torch_version_numeric[0] >= 2 and torch_version_numeric[1] >= 7: # works on 2.6 but doesn't actually seem to improve much
|
||||
if any((a in arch) for a in ["gfx1100", "gfx1101"]): # TODO: more arches
|
||||
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
|
||||
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
# if torch_version_numeric >= (2, 8):
|
||||
# if any((a in arch) for a in ["gfx1201"]):
|
||||
# ENABLE_PYTORCH_ATTENTION = True
|
||||
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
|
||||
if any((a in arch) for a in ["gfx1201", "gfx942", "gfx950"]): # TODO: more arches
|
||||
SUPPORT_FP8_OPS = True
|
||||
|
||||
except:
|
||||
pass
|
||||
|
||||
@@ -315,7 +343,7 @@ if ENABLE_PYTORCH_ATTENTION:
|
||||
|
||||
PRIORITIZE_FP16 = False # TODO: remove and replace with something that shows exactly which dtype is faster than the other
|
||||
try:
|
||||
if is_nvidia() and PerformanceFeature.Fp16Accumulation in args.fast:
|
||||
if (is_nvidia() or is_amd()) and PerformanceFeature.Fp16Accumulation in args.fast:
|
||||
torch.backends.cuda.matmul.allow_fp16_accumulation = True
|
||||
PRIORITIZE_FP16 = True # TODO: limit to cards where it actually boosts performance
|
||||
logging.info("Enabled fp16 accumulation.")
|
||||
@@ -323,7 +351,7 @@ except:
|
||||
pass
|
||||
|
||||
try:
|
||||
if torch_version_numeric[0] == 2 and torch_version_numeric[1] >= 5:
|
||||
if torch_version_numeric >= (2, 5):
|
||||
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
|
||||
except:
|
||||
logging.warning("Warning, could not set allow_fp16_bf16_reduction_math_sdp")
|
||||
@@ -367,6 +395,8 @@ def get_torch_device_name(device):
|
||||
except:
|
||||
allocator_backend = ""
|
||||
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
|
||||
elif device.type == "xpu":
|
||||
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
||||
else:
|
||||
return "{}".format(device.type)
|
||||
elif is_intel_xpu():
|
||||
@@ -502,6 +532,8 @@ WINDOWS = any(platform.win32_ver())
|
||||
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
|
||||
if WINDOWS:
|
||||
EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue
|
||||
if total_vram > (15 * 1024): # more extra reserved vram on 16GB+ cards
|
||||
EXTRA_RESERVED_VRAM += 100 * 1024 * 1024
|
||||
|
||||
if args.reserve_vram is not None:
|
||||
EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024
|
||||
@@ -550,16 +582,23 @@ def free_memory(memory_required, device, keep_loaded=[]):
|
||||
soft_empty_cache()
|
||||
return unloaded_models
|
||||
|
||||
def get_models_memory_reserve(models):
|
||||
total_reserve = 0
|
||||
for model in models:
|
||||
total_reserve += model.get_model_memory_reserve(convert_to_bytes=True)
|
||||
return total_reserve
|
||||
|
||||
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
|
||||
cleanup_models_gc()
|
||||
global vram_state
|
||||
|
||||
inference_memory = minimum_inference_memory()
|
||||
extra_mem = max(inference_memory, memory_required + extra_reserved_memory())
|
||||
models_memory_reserve = get_models_memory_reserve(models)
|
||||
extra_mem = max(inference_memory + models_memory_reserve, memory_required + extra_reserved_memory() + models_memory_reserve)
|
||||
if minimum_memory_required is None:
|
||||
minimum_memory_required = extra_mem
|
||||
else:
|
||||
minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory())
|
||||
minimum_memory_required = max(inference_memory + models_memory_reserve, minimum_memory_required + extra_reserved_memory() + models_memory_reserve)
|
||||
|
||||
models = set(models)
|
||||
|
||||
@@ -695,7 +734,7 @@ def unet_inital_load_device(parameters, dtype):
|
||||
return torch_dev
|
||||
|
||||
cpu_dev = torch.device("cpu")
|
||||
if DISABLE_SMART_MEMORY:
|
||||
if DISABLE_SMART_MEMORY or vram_state == VRAMState.NO_VRAM:
|
||||
return cpu_dev
|
||||
|
||||
model_size = dtype_size(dtype) * parameters
|
||||
@@ -866,6 +905,7 @@ def vae_dtype(device=None, allowed_dtypes=[]):
|
||||
return d
|
||||
|
||||
# NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32
|
||||
# slowness still a problem on pytorch nightly 2.9.0.dev20250720+rocm6.4 tested on RDNA3
|
||||
if d == torch.bfloat16 and (not is_amd()) and should_use_bf16(device):
|
||||
return d
|
||||
|
||||
@@ -916,9 +956,11 @@ def pick_weight_dtype(dtype, fallback_dtype, device=None):
|
||||
return dtype
|
||||
|
||||
def device_supports_non_blocking(device):
|
||||
if args.force_non_blocking:
|
||||
return True
|
||||
if is_device_mps(device):
|
||||
return False #pytorch bug? mps doesn't support non blocking
|
||||
if is_intel_xpu():
|
||||
if is_intel_xpu(): #xpu does support non blocking but it is slower on iGPUs for some reason so disable by default until situation changes
|
||||
return False
|
||||
if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
|
||||
return False
|
||||
@@ -958,6 +1000,8 @@ def get_offload_stream(device):
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
if is_device_cuda(device):
|
||||
ss[stream_counter].wait_stream(torch.cuda.current_stream())
|
||||
elif is_device_xpu(device):
|
||||
ss[stream_counter].wait_stream(torch.xpu.current_stream())
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
elif is_device_cuda(device):
|
||||
@@ -969,6 +1013,15 @@ def get_offload_stream(device):
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
elif is_device_xpu(device):
|
||||
ss = []
|
||||
for k in range(NUM_STREAMS):
|
||||
ss.append(torch.xpu.Stream(device=device, priority=0))
|
||||
STREAMS[device] = ss
|
||||
s = ss[stream_counter]
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
return None
|
||||
|
||||
def sync_stream(device, stream):
|
||||
@@ -976,6 +1029,8 @@ def sync_stream(device, stream):
|
||||
return
|
||||
if is_device_cuda(device):
|
||||
torch.cuda.current_stream().wait_stream(stream)
|
||||
elif is_device_xpu(device):
|
||||
torch.xpu.current_stream().wait_stream(stream)
|
||||
|
||||
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
|
||||
if device is None or weight.device == device:
|
||||
@@ -1017,6 +1072,8 @@ def xformers_enabled():
|
||||
return False
|
||||
if is_mlu():
|
||||
return False
|
||||
if is_ixuca():
|
||||
return False
|
||||
if directml_enabled:
|
||||
return False
|
||||
return XFORMERS_IS_AVAILABLE
|
||||
@@ -1042,7 +1099,7 @@ def pytorch_attention_flash_attention():
|
||||
global ENABLE_PYTORCH_ATTENTION
|
||||
if ENABLE_PYTORCH_ATTENTION:
|
||||
#TODO: more reliable way of checking for flash attention?
|
||||
if is_nvidia(): #pytorch flash attention only works on Nvidia
|
||||
if is_nvidia():
|
||||
return True
|
||||
if is_intel_xpu():
|
||||
return True
|
||||
@@ -1052,13 +1109,15 @@ def pytorch_attention_flash_attention():
|
||||
return True
|
||||
if is_amd():
|
||||
return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention
|
||||
if is_ixuca():
|
||||
return True
|
||||
return False
|
||||
|
||||
def force_upcast_attention_dtype():
|
||||
upcast = args.force_upcast_attention
|
||||
|
||||
macos_version = mac_version()
|
||||
if macos_version is not None and ((14, 5) <= macos_version < (16,)): # black image bug on recent versions of macOS
|
||||
if macos_version is not None and ((14, 5) <= macos_version): # black image bug on recent versions of macOS, I don't think it's ever getting fixed
|
||||
upcast = True
|
||||
|
||||
if upcast:
|
||||
@@ -1082,8 +1141,8 @@ def get_free_memory(dev=None, torch_free_too=False):
|
||||
stats = torch.xpu.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_xpu + mem_free_torch
|
||||
elif is_ascend_npu():
|
||||
stats = torch.npu.memory_stats(dev)
|
||||
@@ -1132,6 +1191,9 @@ def is_device_cpu(device):
|
||||
def is_device_mps(device):
|
||||
return is_device_type(device, 'mps')
|
||||
|
||||
def is_device_xpu(device):
|
||||
return is_device_type(device, 'xpu')
|
||||
|
||||
def is_device_cuda(device):
|
||||
return is_device_type(device, 'cuda')
|
||||
|
||||
@@ -1163,7 +1225,10 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
return False
|
||||
|
||||
if is_intel_xpu():
|
||||
return True
|
||||
if torch_version_numeric < (2, 3):
|
||||
return True
|
||||
else:
|
||||
return torch.xpu.get_device_properties(device).has_fp16
|
||||
|
||||
if is_ascend_npu():
|
||||
return True
|
||||
@@ -1171,6 +1236,9 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
if is_mlu():
|
||||
return True
|
||||
|
||||
if is_ixuca():
|
||||
return True
|
||||
|
||||
if torch.version.hip:
|
||||
return True
|
||||
|
||||
@@ -1226,11 +1294,17 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
return False
|
||||
|
||||
if is_intel_xpu():
|
||||
return True
|
||||
if torch_version_numeric < (2, 3):
|
||||
return True
|
||||
else:
|
||||
return torch.xpu.is_bf16_supported()
|
||||
|
||||
if is_ascend_npu():
|
||||
return True
|
||||
|
||||
if is_ixuca():
|
||||
return True
|
||||
|
||||
if is_amd():
|
||||
arch = torch.cuda.get_device_properties(device).gcnArchName
|
||||
if any((a in arch) for a in ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]): # RDNA2 and older don't support bf16
|
||||
@@ -1257,6 +1331,9 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
return False
|
||||
|
||||
def supports_fp8_compute(device=None):
|
||||
if SUPPORT_FP8_OPS:
|
||||
return True
|
||||
|
||||
if not is_nvidia():
|
||||
return False
|
||||
|
||||
@@ -1268,15 +1345,22 @@ def supports_fp8_compute(device=None):
|
||||
if props.minor < 9:
|
||||
return False
|
||||
|
||||
if torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 3):
|
||||
if torch_version_numeric < (2, 3):
|
||||
return False
|
||||
|
||||
if WINDOWS:
|
||||
if (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 4):
|
||||
if torch_version_numeric < (2, 4):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def extended_fp16_support():
|
||||
# TODO: check why some models work with fp16 on newer torch versions but not on older
|
||||
if torch_version_numeric < (2, 7):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def soft_empty_cache(force=False):
|
||||
global cpu_state
|
||||
if cpu_state == CPUState.MPS:
|
||||
|
||||
@@ -17,23 +17,26 @@
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Optional, Callable
|
||||
import torch
|
||||
|
||||
import collections
|
||||
import copy
|
||||
import inspect
|
||||
import logging
|
||||
import uuid
|
||||
import collections
|
||||
import math
|
||||
import uuid
|
||||
from typing import Callable, Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
import comfy.utils
|
||||
import comfy.float
|
||||
import comfy.model_management
|
||||
import comfy.lora
|
||||
import comfy.hooks
|
||||
import comfy.lora
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
from comfy.patcher_extension import CallbacksMP, WrappersMP, PatcherInjection
|
||||
import comfy.utils
|
||||
from comfy.comfy_types import UnetWrapperFunction
|
||||
from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP
|
||||
|
||||
|
||||
def string_to_seed(data):
|
||||
crc = 0xFFFFFFFF
|
||||
@@ -81,6 +84,12 @@ def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_
|
||||
model_options["disable_cfg1_optimization"] = True
|
||||
return model_options
|
||||
|
||||
def add_model_options_memory_reserve(model_options, memory_reserve_gb: float):
|
||||
if "model_memory_reserve" not in model_options:
|
||||
model_options["model_memory_reserve"] = []
|
||||
model_options["model_memory_reserve"].append(memory_reserve_gb)
|
||||
return model_options
|
||||
|
||||
def create_model_options_clone(orig_model_options: dict):
|
||||
return comfy.patcher_extension.copy_nested_dicts(orig_model_options)
|
||||
|
||||
@@ -376,6 +385,9 @@ class ModelPatcher:
|
||||
def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False):
|
||||
self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization)
|
||||
|
||||
def set_model_sampler_calc_cond_batch_function(self, sampler_calc_cond_batch_function):
|
||||
self.model_options["sampler_calc_cond_batch_function"] = sampler_calc_cond_batch_function
|
||||
|
||||
def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction):
|
||||
self.model_options["model_function_wrapper"] = unet_wrapper_function
|
||||
|
||||
@@ -433,6 +445,17 @@ class ModelPatcher:
|
||||
self.force_cast_weights = True
|
||||
self.patches_uuid = uuid.uuid4() #TODO: optimize by preventing a full model reload for this
|
||||
|
||||
def add_model_memory_reserve(self, memory_reserve_gb: float):
|
||||
"""Adds additional expected memory usage for the model, in gigabytes."""
|
||||
self.model_options = add_model_options_memory_reserve(self.model_options, memory_reserve_gb)
|
||||
|
||||
def get_model_memory_reserve(self, convert_to_bytes: bool = False) -> Union[float, int]:
|
||||
"""Returns the total expected memory usage for the model in gigabytes, or bytes if convert_to_bytes is True."""
|
||||
total_reserve = sum(self.model_options.get("model_memory_reserve", []))
|
||||
if convert_to_bytes:
|
||||
return total_reserve * 1024 * 1024 * 1024
|
||||
return total_reserve
|
||||
|
||||
def add_weight_wrapper(self, name, function):
|
||||
self.weight_wrapper_patches[name] = self.weight_wrapper_patches.get(name, []) + [function]
|
||||
self.patches_uuid = uuid.uuid4()
|
||||
|
||||
@@ -77,6 +77,25 @@ class IMG_TO_IMG(X0):
|
||||
def calculate_input(self, sigma, noise):
|
||||
return noise
|
||||
|
||||
class COSMOS_RFLOW:
|
||||
def calculate_input(self, sigma, noise):
|
||||
sigma = (sigma / (sigma + 1))
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
return noise * (1.0 - sigma)
|
||||
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = (sigma / (sigma + 1))
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
return model_input * (1.0 - sigma) - model_output * sigma
|
||||
|
||||
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
noise = noise * sigma
|
||||
noise += latent_image
|
||||
return noise
|
||||
|
||||
def inverse_noise_scaling(self, sigma, latent):
|
||||
return latent
|
||||
|
||||
class ModelSamplingDiscrete(torch.nn.Module):
|
||||
def __init__(self, model_config=None, zsnr=None):
|
||||
@@ -350,3 +369,15 @@ class ModelSamplingFlux(torch.nn.Module):
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
return flux_time_shift(self.shift, 1.0, 1.0 - percent)
|
||||
|
||||
|
||||
class ModelSamplingCosmosRFlow(ModelSamplingContinuousEDM):
|
||||
def timestep(self, sigma):
|
||||
return sigma / (sigma + 1)
|
||||
|
||||
def sigma(self, timestep):
|
||||
sigma_max = self.sigma_max
|
||||
if timestep >= (sigma_max / (sigma_max + 1)):
|
||||
return sigma_max
|
||||
|
||||
return timestep / (1 - timestep)
|
||||
|
||||
39
comfy/ops.py
39
comfy/ops.py
@@ -24,6 +24,32 @@ import comfy.float
|
||||
import comfy.rmsnorm
|
||||
import contextlib
|
||||
|
||||
|
||||
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
|
||||
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
|
||||
|
||||
|
||||
try:
|
||||
if torch.cuda.is_available():
|
||||
from torch.nn.attention import SDPBackend, sdpa_kernel
|
||||
import inspect
|
||||
if "set_priority" in inspect.signature(sdpa_kernel).parameters:
|
||||
SDPA_BACKEND_PRIORITY = [
|
||||
SDPBackend.FLASH_ATTENTION,
|
||||
SDPBackend.EFFICIENT_ATTENTION,
|
||||
SDPBackend.MATH,
|
||||
]
|
||||
|
||||
SDPA_BACKEND_PRIORITY.insert(0, SDPBackend.CUDNN_ATTENTION)
|
||||
|
||||
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
|
||||
with sdpa_kernel(SDPA_BACKEND_PRIORITY, set_priority=True):
|
||||
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
|
||||
else:
|
||||
logging.warning("Torch version too old to set sdpa backend priority.")
|
||||
except (ModuleNotFoundError, TypeError):
|
||||
logging.warning("Could not set sdpa backend priority.")
|
||||
|
||||
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
||||
|
||||
def cast_to_input(weight, input, non_blocking=False, copy=True):
|
||||
@@ -308,10 +334,10 @@ def fp8_linear(self, input):
|
||||
if scale_input is None:
|
||||
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
input = torch.clamp(input, min=-448, max=448, out=input)
|
||||
input = input.reshape(-1, input_shape[2]).to(dtype)
|
||||
input = input.reshape(-1, input_shape[2]).to(dtype).contiguous()
|
||||
else:
|
||||
scale_input = scale_input.to(input.device)
|
||||
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype)
|
||||
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype).contiguous()
|
||||
|
||||
if bias is not None:
|
||||
o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
|
||||
@@ -336,9 +362,12 @@ class fp8_ops(manual_cast):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
out = fp8_linear(self, input)
|
||||
if out is not None:
|
||||
return out
|
||||
try:
|
||||
out = fp8_linear(self, input)
|
||||
if out is not None:
|
||||
return out
|
||||
except Exception as e:
|
||||
logging.info("Exception during fp8 op: {}".format(e))
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import comfy.model_management
|
||||
import numbers
|
||||
import logging
|
||||
|
||||
RMSNorm = None
|
||||
|
||||
@@ -9,6 +10,7 @@ try:
|
||||
RMSNorm = torch.nn.RMSNorm
|
||||
except:
|
||||
rms_norm_torch = None
|
||||
logging.warning("Please update pytorch to use native RMSNorm")
|
||||
|
||||
|
||||
def rms_norm(x, weight=None, eps=1e-6):
|
||||
@@ -30,7 +32,7 @@ if RMSNorm is None:
|
||||
def __init__(
|
||||
self,
|
||||
normalized_shape,
|
||||
eps=None,
|
||||
eps=1e-6,
|
||||
elementwise_affine=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
from __future__ import annotations
|
||||
import uuid
|
||||
import math
|
||||
import collections
|
||||
import comfy.model_management
|
||||
import comfy.conds
|
||||
import comfy.utils
|
||||
@@ -104,6 +106,21 @@ def cleanup_additional_models(models):
|
||||
if hasattr(m, 'cleanup'):
|
||||
m.cleanup()
|
||||
|
||||
def estimate_memory(model, noise_shape, conds):
|
||||
cond_shapes = collections.defaultdict(list)
|
||||
cond_shapes_min = {}
|
||||
for _, cs in conds.items():
|
||||
for cond in cs:
|
||||
for k, v in model.model.extra_conds_shapes(**cond).items():
|
||||
cond_shapes[k].append(v)
|
||||
if cond_shapes_min.get(k, None) is None:
|
||||
cond_shapes_min[k] = [v]
|
||||
elif math.prod(v) > math.prod(cond_shapes_min[k][0]):
|
||||
cond_shapes_min[k] = [v]
|
||||
|
||||
memory_required = model.model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:]), cond_shapes=cond_shapes)
|
||||
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
|
||||
return memory_required, minimum_memory_required
|
||||
|
||||
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
||||
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
|
||||
@@ -117,9 +134,8 @@ def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=Non
|
||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||
models += get_additional_models_from_model_options(model_options)
|
||||
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
|
||||
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
|
||||
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
|
||||
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
|
||||
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
|
||||
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory)
|
||||
real_model = model.model
|
||||
|
||||
return real_model, conds, models
|
||||
@@ -133,7 +149,7 @@ def cleanup_models(conds, models):
|
||||
|
||||
cleanup_additional_models(set(control_cleanup))
|
||||
|
||||
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
|
||||
def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
|
||||
'''
|
||||
Registers hooks from conds.
|
||||
'''
|
||||
@@ -142,8 +158,8 @@ def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
|
||||
for k in conds:
|
||||
get_hooks_from_cond(conds[k], hooks)
|
||||
# add wrappers and callbacks from ModelPatcher to transformer_options
|
||||
model_options["transformer_options"]["wrappers"] = comfy.patcher_extension.copy_nested_dicts(model.wrappers)
|
||||
model_options["transformer_options"]["callbacks"] = comfy.patcher_extension.copy_nested_dicts(model.callbacks)
|
||||
comfy.patcher_extension.merge_nested_dicts(model_options["transformer_options"].setdefault("wrappers", {}), model.wrappers, copy_dict1=False)
|
||||
comfy.patcher_extension.merge_nested_dicts(model_options["transformer_options"].setdefault("callbacks", {}), model.callbacks, copy_dict1=False)
|
||||
# begin registering hooks
|
||||
registered = comfy.hooks.HookGroup()
|
||||
target_dict = comfy.hooks.create_target_dict(comfy.hooks.EnumWeightTarget.Model)
|
||||
|
||||
@@ -16,6 +16,7 @@ import comfy.sampler_helpers
|
||||
import comfy.model_patcher
|
||||
import comfy.patcher_extension
|
||||
import comfy.hooks
|
||||
import comfy.context_windows
|
||||
import scipy.stats
|
||||
import numpy
|
||||
|
||||
@@ -89,7 +90,7 @@ def get_area_and_mult(conds, x_in, timestep_in):
|
||||
conditioning = {}
|
||||
model_conds = conds["model_conds"]
|
||||
for c in model_conds:
|
||||
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
|
||||
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], area=area)
|
||||
|
||||
hooks = conds.get('hooks', None)
|
||||
control = conds.get('control', None)
|
||||
@@ -198,14 +199,20 @@ def finalize_default_conds(model: 'BaseModel', hooked_to_run: dict[comfy.hooks.H
|
||||
hooked_to_run.setdefault(p.hooks, list())
|
||||
hooked_to_run[p.hooks] += [(p, i)]
|
||||
|
||||
def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
|
||||
def calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options: dict[str]):
|
||||
handler: comfy.context_windows.ContextHandlerABC = model_options.get("context_handler", None)
|
||||
if handler is None or not handler.should_use_context(model, conds, x_in, timestep, model_options):
|
||||
return _calc_cond_batch_outer(model, conds, x_in, timestep, model_options)
|
||||
return handler.execute(_calc_cond_batch_outer, model, conds, x_in, timestep, model_options)
|
||||
|
||||
def _calc_cond_batch_outer(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
|
||||
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
|
||||
_calc_cond_batch,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.CALC_COND_BATCH, model_options, is_model_options=True)
|
||||
)
|
||||
return executor.execute(model, conds, x_in, timestep, model_options)
|
||||
|
||||
def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
|
||||
def _calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
|
||||
out_conds = []
|
||||
out_counts = []
|
||||
# separate conds by matching hooks
|
||||
@@ -256,7 +263,13 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
|
||||
for i in range(1, len(to_batch_temp) + 1):
|
||||
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
|
||||
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
|
||||
if model.memory_required(input_shape) * 1.5 < free_memory:
|
||||
cond_shapes = collections.defaultdict(list)
|
||||
for tt in batch_amount:
|
||||
cond = {k: v.size() for k, v in to_run[tt][0].conditioning.items()}
|
||||
for k, v in to_run[tt][0].conditioning.items():
|
||||
cond_shapes[k].append(v.size())
|
||||
|
||||
if model.memory_required(input_shape, cond_shapes=cond_shapes) * 1.5 < free_memory:
|
||||
to_batch = batch_amount
|
||||
break
|
||||
|
||||
@@ -367,7 +380,11 @@ def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_option
|
||||
uncond_ = uncond
|
||||
|
||||
conds = [cond, uncond_]
|
||||
out = calc_cond_batch(model, conds, x, timestep, model_options)
|
||||
if "sampler_calc_cond_batch_function" in model_options:
|
||||
args = {"conds": conds, "input": x, "sigma": timestep, "model": model, "model_options": model_options}
|
||||
out = model_options["sampler_calc_cond_batch_function"](args)
|
||||
else:
|
||||
out = calc_cond_batch(model, conds, x, timestep, model_options)
|
||||
|
||||
for fn in model_options.get("sampler_pre_cfg_function", []):
|
||||
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
|
||||
@@ -710,7 +727,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
|
||||
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3"]
|
||||
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3", "sa_solver", "sa_solver_pece"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
@@ -1033,13 +1050,13 @@ class SchedulerHandler(NamedTuple):
|
||||
use_ms: bool = True
|
||||
|
||||
SCHEDULER_HANDLERS = {
|
||||
"normal": SchedulerHandler(normal_scheduler),
|
||||
"simple": SchedulerHandler(simple_scheduler),
|
||||
"sgm_uniform": SchedulerHandler(partial(normal_scheduler, sgm=True)),
|
||||
"karras": SchedulerHandler(k_diffusion_sampling.get_sigmas_karras, use_ms=False),
|
||||
"exponential": SchedulerHandler(k_diffusion_sampling.get_sigmas_exponential, use_ms=False),
|
||||
"sgm_uniform": SchedulerHandler(partial(normal_scheduler, sgm=True)),
|
||||
"simple": SchedulerHandler(simple_scheduler),
|
||||
"ddim_uniform": SchedulerHandler(ddim_scheduler),
|
||||
"beta": SchedulerHandler(beta_scheduler),
|
||||
"normal": SchedulerHandler(normal_scheduler),
|
||||
"linear_quadratic": SchedulerHandler(linear_quadratic_schedule),
|
||||
"kl_optimal": SchedulerHandler(kl_optimal_scheduler, use_ms=False),
|
||||
}
|
||||
|
||||
94
comfy/sd.py
94
comfy/sd.py
@@ -14,10 +14,12 @@ import comfy.ldm.genmo.vae.model
|
||||
import comfy.ldm.lightricks.vae.causal_video_autoencoder
|
||||
import comfy.ldm.cosmos.vae
|
||||
import comfy.ldm.wan.vae
|
||||
import comfy.ldm.wan.vae2_2
|
||||
import comfy.ldm.hunyuan3d.vae
|
||||
import comfy.ldm.ace.vae.music_dcae_pipeline
|
||||
import yaml
|
||||
import math
|
||||
import os
|
||||
|
||||
import comfy.utils
|
||||
|
||||
@@ -44,6 +46,8 @@ import comfy.text_encoders.lumina2
|
||||
import comfy.text_encoders.wan
|
||||
import comfy.text_encoders.hidream
|
||||
import comfy.text_encoders.ace
|
||||
import comfy.text_encoders.omnigen2
|
||||
import comfy.text_encoders.qwen_image
|
||||
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
@@ -418,17 +422,30 @@ class VAE:
|
||||
self.memory_used_encode = lambda shape, dtype: (50 * (round((shape[2] + 7) / 8) * 8) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float32]
|
||||
elif "decoder.middle.0.residual.0.gamma" in sd:
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
|
||||
self.upscale_index_formula = (4, 8, 8)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
|
||||
self.downscale_index_formula = (4, 8, 8)
|
||||
self.latent_dim = 3
|
||||
self.latent_channels = 16
|
||||
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
|
||||
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
|
||||
if "decoder.upsamples.0.upsamples.0.residual.2.weight" in sd: # Wan 2.2 VAE
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
|
||||
self.upscale_index_formula = (4, 16, 16)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
|
||||
self.downscale_index_formula = (4, 16, 16)
|
||||
self.latent_dim = 3
|
||||
self.latent_channels = 48
|
||||
ddconfig = {"dim": 160, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
|
||||
self.first_stage_model = comfy.ldm.wan.vae2_2.WanVAE(**ddconfig)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.memory_used_encode = lambda shape, dtype: 3300 * shape[3] * shape[4] * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: 8000 * shape[3] * shape[4] * (16 * 16) * model_management.dtype_size(dtype)
|
||||
else: # Wan 2.1 VAE
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
|
||||
self.upscale_index_formula = (4, 8, 8)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
|
||||
self.downscale_index_formula = (4, 8, 8)
|
||||
self.latent_dim = 3
|
||||
self.latent_channels = 16
|
||||
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
|
||||
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
|
||||
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
|
||||
self.latent_dim = 1
|
||||
ln_post = "geo_decoder.ln_post.weight" in sd
|
||||
@@ -451,7 +468,7 @@ class VAE:
|
||||
self.latent_dim = 2
|
||||
self.process_output = lambda audio: audio
|
||||
self.process_input = lambda audio: audio
|
||||
self.working_dtypes = [torch.bfloat16, torch.float32]
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.disable_offload = True
|
||||
self.extra_1d_channel = 16
|
||||
else:
|
||||
@@ -754,6 +771,8 @@ class CLIPType(Enum):
|
||||
HIDREAM = 14
|
||||
CHROMA = 15
|
||||
ACE = 16
|
||||
OMNIGEN2 = 17
|
||||
QWEN_IMAGE = 18
|
||||
|
||||
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
@@ -773,6 +792,8 @@ class TEModel(Enum):
|
||||
LLAMA3_8 = 7
|
||||
T5_XXL_OLD = 8
|
||||
GEMMA_2_2B = 9
|
||||
QWEN25_3B = 10
|
||||
QWEN25_7B = 11
|
||||
|
||||
def detect_te_model(sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
@@ -793,6 +814,12 @@ def detect_te_model(sd):
|
||||
return TEModel.T5_BASE
|
||||
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
|
||||
return TEModel.GEMMA_2_2B
|
||||
if 'model.layers.0.self_attn.k_proj.bias' in sd:
|
||||
weight = sd['model.layers.0.self_attn.k_proj.bias']
|
||||
if weight.shape[0] == 256:
|
||||
return TEModel.QWEN25_3B
|
||||
if weight.shape[0] == 512:
|
||||
return TEModel.QWEN25_7B
|
||||
if "model.layers.0.post_attention_layernorm.weight" in sd:
|
||||
return TEModel.LLAMA3_8
|
||||
return None
|
||||
@@ -894,6 +921,12 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
|
||||
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
elif te_model == TEModel.QWEN25_3B:
|
||||
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.omnigen2.Omnigen2Tokenizer
|
||||
elif te_model == TEModel.QWEN25_7B:
|
||||
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
|
||||
else:
|
||||
# clip_l
|
||||
if clip_type == CLIPType.SD3:
|
||||
@@ -969,6 +1002,12 @@ def load_gligen(ckpt_path):
|
||||
model = model.half()
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
|
||||
def model_detection_error_hint(path, state_dict):
|
||||
filename = os.path.basename(path)
|
||||
if 'lora' in filename.lower():
|
||||
return "\nHINT: This seems to be a Lora file and Lora files should be put in the lora folder and loaded with a lora loader node.."
|
||||
return ""
|
||||
|
||||
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
|
||||
logging.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.")
|
||||
model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True)
|
||||
@@ -997,7 +1036,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True)
|
||||
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options, metadata=metadata)
|
||||
if out is None:
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(ckpt_path, model_detection_error_hint(ckpt_path, sd)))
|
||||
return out
|
||||
|
||||
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None):
|
||||
@@ -1081,7 +1120,28 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
return (model_patcher, clip, vae, clipvision)
|
||||
|
||||
|
||||
def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffusers or regular format
|
||||
def load_diffusion_model_state_dict(sd, model_options={}):
|
||||
"""
|
||||
Loads a UNet diffusion model from a state dictionary, supporting both diffusers and regular formats.
|
||||
|
||||
Args:
|
||||
sd (dict): State dictionary containing model weights and configuration
|
||||
model_options (dict, optional): Additional options for model loading. Supports:
|
||||
- dtype: Override model data type
|
||||
- custom_operations: Custom model operations
|
||||
- fp8_optimizations: Enable FP8 optimizations
|
||||
|
||||
Returns:
|
||||
ModelPatcher: A wrapped model instance that handles device management and weight loading.
|
||||
Returns None if the model configuration cannot be detected.
|
||||
|
||||
The function:
|
||||
1. Detects and handles different model formats (regular, diffusers, mmdit)
|
||||
2. Configures model dtype based on parameters and device capabilities
|
||||
3. Handles weight conversion and device placement
|
||||
4. Manages model optimization settings
|
||||
5. Loads weights and returns a device-managed model instance
|
||||
"""
|
||||
dtype = model_options.get("dtype", None)
|
||||
|
||||
#Allow loading unets from checkpoint files
|
||||
@@ -1139,7 +1199,7 @@ def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffuse
|
||||
model.load_model_weights(new_sd, "")
|
||||
left_over = sd.keys()
|
||||
if len(left_over) > 0:
|
||||
logging.info("left over keys in unet: {}".format(left_over))
|
||||
logging.info("left over keys in diffusion model: {}".format(left_over))
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
|
||||
|
||||
|
||||
@@ -1147,8 +1207,8 @@ def load_diffusion_model(unet_path, model_options={}):
|
||||
sd = comfy.utils.load_torch_file(unet_path)
|
||||
model = load_diffusion_model_state_dict(sd, model_options=model_options)
|
||||
if model is None:
|
||||
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
||||
logging.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(unet_path, model_detection_error_hint(unet_path, sd)))
|
||||
return model
|
||||
|
||||
def load_unet(unet_path, dtype=None):
|
||||
|
||||
@@ -462,7 +462,7 @@ class SDTokenizer:
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
|
||||
self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length)
|
||||
self.min_length = min_length
|
||||
self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length)
|
||||
self.end_token = None
|
||||
self.min_padding = min_padding
|
||||
|
||||
@@ -482,7 +482,8 @@ class SDTokenizer:
|
||||
if end_token is not None:
|
||||
self.end_token = end_token
|
||||
else:
|
||||
self.end_token = empty[0]
|
||||
if has_end_token:
|
||||
self.end_token = empty[0]
|
||||
|
||||
if pad_token is not None:
|
||||
self.pad_token = pad_token
|
||||
|
||||
@@ -18,7 +18,7 @@
|
||||
"single_word": false
|
||||
},
|
||||
"errors": "replace",
|
||||
"model_max_length": 77,
|
||||
"model_max_length": 8192,
|
||||
"name_or_path": "openai/clip-vit-large-patch14",
|
||||
"pad_token": "<|endoftext|>",
|
||||
"special_tokens_map_file": "./special_tokens_map.json",
|
||||
|
||||
@@ -18,6 +18,8 @@ import comfy.text_encoders.cosmos
|
||||
import comfy.text_encoders.lumina2
|
||||
import comfy.text_encoders.wan
|
||||
import comfy.text_encoders.ace
|
||||
import comfy.text_encoders.omnigen2
|
||||
import comfy.text_encoders.qwen_image
|
||||
|
||||
from . import supported_models_base
|
||||
from . import latent_formats
|
||||
@@ -908,6 +910,48 @@ class CosmosI2V(CosmosT2V):
|
||||
out = model_base.CosmosVideo(self, image_to_video=True, device=device)
|
||||
return out
|
||||
|
||||
class CosmosT2IPredict2(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "cosmos_predict2",
|
||||
"in_channels": 16,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"sigma_data": 1.0,
|
||||
"sigma_max": 80.0,
|
||||
"sigma_min": 0.002,
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Wan21
|
||||
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.9
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.CosmosPredict2(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.cosmos.CosmosT5Tokenizer, comfy.text_encoders.cosmos.te(**t5_detect))
|
||||
|
||||
class CosmosI2VPredict2(CosmosT2IPredict2):
|
||||
unet_config = {
|
||||
"image_model": "cosmos_predict2",
|
||||
"in_channels": 17,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.CosmosPredict2(self, image_to_video=True, device=device)
|
||||
return out
|
||||
|
||||
class Lumina2(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "lumina2",
|
||||
@@ -992,6 +1036,28 @@ class WAN21_FunControl2V(WAN21_T2V):
|
||||
out = model_base.WAN21(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class WAN21_Camera(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "camera",
|
||||
"in_dim": 32,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21_Camera(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class WAN22_Camera(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "camera_2.2",
|
||||
"in_dim": 36,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21_Camera(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class WAN21_Vace(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
@@ -1006,6 +1072,19 @@ class WAN21_Vace(WAN21_T2V):
|
||||
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
class WAN22_T2V(WAN21_T2V):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "t2v",
|
||||
"out_dim": 48,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.Wan22
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN22(self, image_to_video=True, device=device)
|
||||
return out
|
||||
|
||||
class Hunyuan3Dv2(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "hunyuan3d2",
|
||||
@@ -1129,6 +1208,70 @@ class ACEStep(supported_models_base.BASE):
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.ace.AceT5Tokenizer, comfy.text_encoders.ace.AceT5Model)
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep]
|
||||
class Omnigen2(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "omnigen2",
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
"shift": 2.6,
|
||||
}
|
||||
|
||||
memory_usage_factor = 1.65 #TODO
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Flux
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
if comfy.model_management.extended_fp16_support():
|
||||
self.supported_inference_dtypes = [torch.float16] + self.supported_inference_dtypes
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Omnigen2(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_3b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.omnigen2.Omnigen2Tokenizer, comfy.text_encoders.omnigen2.te(**hunyuan_detect))
|
||||
|
||||
class QwenImage(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "qwen_image",
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
"shift": 1.15,
|
||||
}
|
||||
|
||||
memory_usage_factor = 1.8 #TODO
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Wan21
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.QwenImage(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.qwen_image.QwenImageTokenizer, comfy.text_encoders.qwen_image.te(**hunyuan_detect))
|
||||
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
||||
@@ -24,6 +24,41 @@ class Llama2Config:
|
||||
head_dim = 128
|
||||
rms_norm_add = False
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = False
|
||||
|
||||
@dataclass
|
||||
class Qwen25_3BConfig:
|
||||
vocab_size: int = 151936
|
||||
hidden_size: int = 2048
|
||||
intermediate_size: int = 11008
|
||||
num_hidden_layers: int = 36
|
||||
num_attention_heads: int = 16
|
||||
num_key_value_heads: int = 2
|
||||
max_position_embeddings: int = 128000
|
||||
rms_norm_eps: float = 1e-6
|
||||
rope_theta: float = 1000000.0
|
||||
transformer_type: str = "llama"
|
||||
head_dim = 128
|
||||
rms_norm_add = False
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = True
|
||||
|
||||
@dataclass
|
||||
class Qwen25_7BVLI_Config:
|
||||
vocab_size: int = 152064
|
||||
hidden_size: int = 3584
|
||||
intermediate_size: int = 18944
|
||||
num_hidden_layers: int = 28
|
||||
num_attention_heads: int = 28
|
||||
num_key_value_heads: int = 4
|
||||
max_position_embeddings: int = 128000
|
||||
rms_norm_eps: float = 1e-6
|
||||
rope_theta: float = 1000000.0
|
||||
transformer_type: str = "llama"
|
||||
head_dim = 128
|
||||
rms_norm_add = False
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = True
|
||||
|
||||
@dataclass
|
||||
class Gemma2_2B_Config:
|
||||
@@ -40,6 +75,7 @@ class Gemma2_2B_Config:
|
||||
head_dim = 256
|
||||
rms_norm_add = True
|
||||
mlp_activation = "gelu_pytorch_tanh"
|
||||
qkv_bias = False
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None):
|
||||
@@ -98,9 +134,9 @@ class Attention(nn.Module):
|
||||
self.inner_size = self.num_heads * self.head_dim
|
||||
|
||||
ops = ops or nn
|
||||
self.q_proj = ops.Linear(config.hidden_size, self.inner_size, bias=False, device=device, dtype=dtype)
|
||||
self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
|
||||
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
|
||||
self.q_proj = ops.Linear(config.hidden_size, self.inner_size, bias=config.qkv_bias, device=device, dtype=dtype)
|
||||
self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=config.qkv_bias, device=device, dtype=dtype)
|
||||
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=config.qkv_bias, device=device, dtype=dtype)
|
||||
self.o_proj = ops.Linear(self.inner_size, config.hidden_size, bias=False, device=device, dtype=dtype)
|
||||
|
||||
def forward(
|
||||
@@ -320,6 +356,23 @@ class Llama2(BaseLlama, torch.nn.Module):
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Qwen25_3B(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
config = Qwen25_3BConfig(**config_dict)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Qwen25_7BVLI(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
config = Qwen25_7BVLI_Config(**config_dict)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Gemma2_2B(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
|
||||
@@ -1,25 +0,0 @@
|
||||
{
|
||||
"_name_or_path": "openai/clip-vit-large-patch14",
|
||||
"architectures": [
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 49407,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 768,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 248,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.24.0",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
44
comfy/text_encoders/omnigen2.py
Normal file
44
comfy/text_encoders/omnigen2.py
Normal file
@@ -0,0 +1,44 @@
|
||||
from transformers import Qwen2Tokenizer
|
||||
from comfy import sd1_clip
|
||||
import comfy.text_encoders.llama
|
||||
import os
|
||||
|
||||
|
||||
class Qwen25_3BTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='qwen25_3b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class Omnigen2Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen25_3b", tokenizer=Qwen25_3BTokenizer)
|
||||
self.llama_template = '<|im_start|>system\nYou are a helpful assistant that generates high-quality images based on user instructions.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n'
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None,**kwargs):
|
||||
if llama_template is None:
|
||||
llama_text = self.llama_template.format(text)
|
||||
else:
|
||||
llama_text = llama_template.format(text)
|
||||
return super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, **kwargs)
|
||||
|
||||
class Qwen25_3BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_3B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
class Omnigen2Model(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, name="qwen25_3b", clip_model=Qwen25_3BModel, model_options=model_options)
|
||||
|
||||
|
||||
def te(dtype_llama=None, llama_scaled_fp8=None):
|
||||
class Omnigen2TEModel_(Omnigen2Model):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return Omnigen2TEModel_
|
||||
@@ -1,42 +1,42 @@
|
||||
import os
|
||||
|
||||
from comfy import sd1_clip
|
||||
import comfy.text_encoders.t5
|
||||
import comfy.text_encoders.sd3_clip
|
||||
from comfy.sd1_clip import gen_empty_tokens
|
||||
|
||||
from transformers import T5TokenizerFast
|
||||
|
||||
class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def gen_empty_tokens(self, special_tokens, *args, **kwargs):
|
||||
# PixArt expects the negative to be all pad tokens
|
||||
special_tokens = special_tokens.copy()
|
||||
special_tokens.pop("end")
|
||||
return gen_empty_tokens(special_tokens, *args, **kwargs)
|
||||
|
||||
class PixArtT5XXL(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding
|
||||
|
||||
class PixArtTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
|
||||
|
||||
def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
class PixArtTEModel_(PixArtT5XXL):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
if dtype is None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return PixArtTEModel_
|
||||
import os
|
||||
|
||||
from comfy import sd1_clip
|
||||
import comfy.text_encoders.t5
|
||||
import comfy.text_encoders.sd3_clip
|
||||
from comfy.sd1_clip import gen_empty_tokens
|
||||
|
||||
from transformers import T5TokenizerFast
|
||||
|
||||
class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def gen_empty_tokens(self, special_tokens, *args, **kwargs):
|
||||
# PixArt expects the negative to be all pad tokens
|
||||
special_tokens = special_tokens.copy()
|
||||
special_tokens.pop("end")
|
||||
return gen_empty_tokens(special_tokens, *args, **kwargs)
|
||||
|
||||
class PixArtT5XXL(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding
|
||||
|
||||
class PixArtTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
|
||||
|
||||
def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
class PixArtTEModel_(PixArtT5XXL):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
if dtype is None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return PixArtTEModel_
|
||||
|
||||
151388
comfy/text_encoders/qwen25_tokenizer/merges.txt
Normal file
151388
comfy/text_encoders/qwen25_tokenizer/merges.txt
Normal file
File diff suppressed because it is too large
Load Diff
241
comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json
Normal file
241
comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json
Normal file
@@ -0,0 +1,241 @@
|
||||
{
|
||||
"add_bos_token": false,
|
||||
"add_prefix_space": false,
|
||||
"added_tokens_decoder": {
|
||||
"151643": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151644": {
|
||||
"content": "<|im_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151645": {
|
||||
"content": "<|im_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151646": {
|
||||
"content": "<|object_ref_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151647": {
|
||||
"content": "<|object_ref_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151648": {
|
||||
"content": "<|box_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151649": {
|
||||
"content": "<|box_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151650": {
|
||||
"content": "<|quad_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151651": {
|
||||
"content": "<|quad_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151652": {
|
||||
"content": "<|vision_start|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151653": {
|
||||
"content": "<|vision_end|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151654": {
|
||||
"content": "<|vision_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151655": {
|
||||
"content": "<|image_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151656": {
|
||||
"content": "<|video_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151657": {
|
||||
"content": "<tool_call>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151658": {
|
||||
"content": "</tool_call>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151659": {
|
||||
"content": "<|fim_prefix|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151660": {
|
||||
"content": "<|fim_middle|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151661": {
|
||||
"content": "<|fim_suffix|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151662": {
|
||||
"content": "<|fim_pad|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151663": {
|
||||
"content": "<|repo_name|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151664": {
|
||||
"content": "<|file_sep|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": false
|
||||
},
|
||||
"151665": {
|
||||
"content": "<|img|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151666": {
|
||||
"content": "<|endofimg|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151667": {
|
||||
"content": "<|meta|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
},
|
||||
"151668": {
|
||||
"content": "<|endofmeta|>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
}
|
||||
},
|
||||
"additional_special_tokens": [
|
||||
"<|im_start|>",
|
||||
"<|im_end|>",
|
||||
"<|object_ref_start|>",
|
||||
"<|object_ref_end|>",
|
||||
"<|box_start|>",
|
||||
"<|box_end|>",
|
||||
"<|quad_start|>",
|
||||
"<|quad_end|>",
|
||||
"<|vision_start|>",
|
||||
"<|vision_end|>",
|
||||
"<|vision_pad|>",
|
||||
"<|image_pad|>",
|
||||
"<|video_pad|>"
|
||||
],
|
||||
"bos_token": null,
|
||||
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
||||
"clean_up_tokenization_spaces": false,
|
||||
"eos_token": "<|im_end|>",
|
||||
"errors": "replace",
|
||||
"extra_special_tokens": {},
|
||||
"model_max_length": 131072,
|
||||
"pad_token": "<|endoftext|>",
|
||||
"processor_class": "Qwen2_5_VLProcessor",
|
||||
"split_special_tokens": false,
|
||||
"tokenizer_class": "Qwen2Tokenizer",
|
||||
"unk_token": null
|
||||
}
|
||||
1
comfy/text_encoders/qwen25_tokenizer/vocab.json
Normal file
1
comfy/text_encoders/qwen25_tokenizer/vocab.json
Normal file
File diff suppressed because one or more lines are too long
71
comfy/text_encoders/qwen_image.py
Normal file
71
comfy/text_encoders/qwen_image.py
Normal file
@@ -0,0 +1,71 @@
|
||||
from transformers import Qwen2Tokenizer
|
||||
from comfy import sd1_clip
|
||||
import comfy.text_encoders.llama
|
||||
import os
|
||||
import torch
|
||||
import numbers
|
||||
|
||||
class Qwen25_7BVLITokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=3584, embedding_key='qwen25_7b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class QwenImageTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen25_7b", tokenizer=Qwen25_7BVLITokenizer)
|
||||
self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None,**kwargs):
|
||||
if llama_template is None:
|
||||
llama_text = self.llama_template.format(text)
|
||||
else:
|
||||
llama_text = llama_template.format(text)
|
||||
return super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, **kwargs)
|
||||
|
||||
|
||||
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
class QwenImageTEModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options)
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
out, pooled, extra = super().encode_token_weights(token_weight_pairs)
|
||||
tok_pairs = token_weight_pairs["qwen25_7b"][0]
|
||||
count_im_start = 0
|
||||
for i, v in enumerate(tok_pairs):
|
||||
elem = v[0]
|
||||
if not torch.is_tensor(elem):
|
||||
if isinstance(elem, numbers.Integral):
|
||||
if elem == 151644 and count_im_start < 2:
|
||||
template_end = i
|
||||
count_im_start += 1
|
||||
|
||||
if out.shape[1] > (template_end + 3):
|
||||
if tok_pairs[template_end + 1][0] == 872:
|
||||
if tok_pairs[template_end + 2][0] == 198:
|
||||
template_end += 3
|
||||
|
||||
out = out[:, template_end:]
|
||||
|
||||
extra["attention_mask"] = extra["attention_mask"][:, template_end:]
|
||||
if extra["attention_mask"].sum() == torch.numel(extra["attention_mask"]):
|
||||
extra.pop("attention_mask") # attention mask is useless if no masked elements
|
||||
|
||||
return out, pooled, extra
|
||||
|
||||
|
||||
def te(dtype_llama=None, llama_scaled_fp8=None):
|
||||
class QwenImageTEModel_(QwenImageTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return QwenImageTEModel_
|
||||
@@ -146,7 +146,7 @@ class T5Attention(torch.nn.Module):
|
||||
)
|
||||
values = self.relative_attention_bias(relative_position_bucket, out_dtype=dtype) # shape (query_length, key_length, num_heads)
|
||||
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
||||
return values
|
||||
return values.contiguous()
|
||||
|
||||
def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
|
||||
q = self.q(x)
|
||||
|
||||
@@ -28,6 +28,10 @@ import logging
|
||||
import itertools
|
||||
from torch.nn.functional import interpolate
|
||||
from einops import rearrange
|
||||
from comfy.cli_args import args
|
||||
|
||||
MMAP_TORCH_FILES = args.mmap_torch_files
|
||||
DISABLE_MMAP = args.disable_mmap
|
||||
|
||||
ALWAYS_SAFE_LOAD = False
|
||||
if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in pytorch 2.4, the unsafe path should be removed once earlier versions are deprecated
|
||||
@@ -55,7 +59,10 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
|
||||
with safetensors.safe_open(ckpt, framework="pt", device=device.type) as f:
|
||||
sd = {}
|
||||
for k in f.keys():
|
||||
sd[k] = f.get_tensor(k)
|
||||
tensor = f.get_tensor(k)
|
||||
if DISABLE_MMAP: # TODO: Not sure if this is the best way to bypass the mmap issues
|
||||
tensor = tensor.to(device=device, copy=True)
|
||||
sd[k] = tensor
|
||||
if return_metadata:
|
||||
metadata = f.metadata()
|
||||
except Exception as e:
|
||||
@@ -67,12 +74,15 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
|
||||
raise ValueError("{}\n\nFile path: {}\n\nThe safetensors file is corrupt/incomplete. Check the file size and make sure you have copied/downloaded it correctly.".format(message, ckpt))
|
||||
raise e
|
||||
else:
|
||||
torch_args = {}
|
||||
if MMAP_TORCH_FILES:
|
||||
torch_args["mmap"] = True
|
||||
|
||||
if safe_load or ALWAYS_SAFE_LOAD:
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
|
||||
else:
|
||||
logging.warning("WARNING: loading {} unsafely, upgrade your pytorch to 2.4 or newer to load this file safely.".format(ckpt))
|
||||
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
|
||||
if "global_step" in pl_sd:
|
||||
logging.debug(f"Global Step: {pl_sd['global_step']}")
|
||||
if "state_dict" in pl_sd:
|
||||
sd = pl_sd["state_dict"]
|
||||
else:
|
||||
@@ -688,6 +698,26 @@ def resize_to_batch_size(tensor, batch_size):
|
||||
|
||||
return output
|
||||
|
||||
def resize_list_to_batch_size(l, batch_size):
|
||||
in_batch_size = len(l)
|
||||
if in_batch_size == batch_size or in_batch_size == 0:
|
||||
return l
|
||||
|
||||
if batch_size <= 1:
|
||||
return l[:batch_size]
|
||||
|
||||
output = []
|
||||
if batch_size < in_batch_size:
|
||||
scale = (in_batch_size - 1) / (batch_size - 1)
|
||||
for i in range(batch_size):
|
||||
output.append(l[min(round(i * scale), in_batch_size - 1)])
|
||||
else:
|
||||
scale = in_batch_size / batch_size
|
||||
for i in range(batch_size):
|
||||
output.append(l[min(math.floor((i + 0.5) * scale), in_batch_size - 1)])
|
||||
|
||||
return output
|
||||
|
||||
def convert_sd_to(state_dict, dtype):
|
||||
keys = list(state_dict.keys())
|
||||
for k in keys:
|
||||
@@ -992,11 +1022,12 @@ def set_progress_bar_global_hook(function):
|
||||
PROGRESS_BAR_HOOK = function
|
||||
|
||||
class ProgressBar:
|
||||
def __init__(self, total):
|
||||
def __init__(self, total, node_id=None):
|
||||
global PROGRESS_BAR_HOOK
|
||||
self.total = total
|
||||
self.current = 0
|
||||
self.hook = PROGRESS_BAR_HOOK
|
||||
self.node_id = node_id
|
||||
|
||||
def update_absolute(self, value, total=None, preview=None):
|
||||
if total is not None:
|
||||
@@ -1005,7 +1036,7 @@ class ProgressBar:
|
||||
value = self.total
|
||||
self.current = value
|
||||
if self.hook is not None:
|
||||
self.hook(self.current, self.total, preview)
|
||||
self.hook(self.current, self.total, preview, node_id=self.node_id)
|
||||
|
||||
def update(self, value):
|
||||
self.update_absolute(self.current + value)
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from .base import WeightAdapterBase
|
||||
from .base import WeightAdapterBase, WeightAdapterTrainBase
|
||||
from .lora import LoRAAdapter
|
||||
from .loha import LoHaAdapter
|
||||
from .lokr import LoKrAdapter
|
||||
@@ -15,3 +15,20 @@ adapters: list[type[WeightAdapterBase]] = [
|
||||
OFTAdapter,
|
||||
BOFTAdapter,
|
||||
]
|
||||
adapter_maps: dict[str, type[WeightAdapterBase]] = {
|
||||
"LoRA": LoRAAdapter,
|
||||
"LoHa": LoHaAdapter,
|
||||
"LoKr": LoKrAdapter,
|
||||
"OFT": OFTAdapter,
|
||||
## We disable not implemented algo for now
|
||||
# "GLoRA": GLoRAAdapter,
|
||||
# "BOFT": BOFTAdapter,
|
||||
}
|
||||
|
||||
|
||||
__all__ = [
|
||||
"WeightAdapterBase",
|
||||
"WeightAdapterTrainBase",
|
||||
"adapters",
|
||||
"adapter_maps",
|
||||
] + [a.__name__ for a in adapters]
|
||||
|
||||
@@ -12,12 +12,20 @@ class WeightAdapterBase:
|
||||
weights: list[torch.Tensor]
|
||||
|
||||
@classmethod
|
||||
def load(cls, x: str, lora: dict[str, torch.Tensor]) -> Optional["WeightAdapterBase"]:
|
||||
def load(cls, x: str, lora: dict[str, torch.Tensor], alpha: float, dora_scale: torch.Tensor) -> Optional["WeightAdapterBase"]:
|
||||
raise NotImplementedError
|
||||
|
||||
def to_train(self) -> "WeightAdapterTrainBase":
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def create_train(cls, weight, *args) -> "WeightAdapterTrainBase":
|
||||
"""
|
||||
weight: The original weight tensor to be modified.
|
||||
*args: Additional arguments for configuration, such as rank, alpha etc.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
@@ -33,10 +41,22 @@ class WeightAdapterBase:
|
||||
|
||||
|
||||
class WeightAdapterTrainBase(nn.Module):
|
||||
# We follow the scheme of PR #7032
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
# [TODO] Collaborate with LoRA training PR #7032
|
||||
def __call__(self, w):
|
||||
"""
|
||||
w: The original weight tensor to be modified.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def passive_memory_usage(self):
|
||||
raise NotImplementedError("passive_memory_usage is not implemented")
|
||||
|
||||
def move_to(self, device):
|
||||
self.to(device)
|
||||
return self.passive_memory_usage()
|
||||
|
||||
|
||||
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
|
||||
@@ -102,3 +122,54 @@ def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Ten
|
||||
padded_tensor[new_slices] = tensor[orig_slices]
|
||||
|
||||
return padded_tensor
|
||||
|
||||
|
||||
def tucker_weight_from_conv(up, down, mid):
|
||||
up = up.reshape(up.size(0), up.size(1))
|
||||
down = down.reshape(down.size(0), down.size(1))
|
||||
return torch.einsum("m n ..., i m, n j -> i j ...", mid, up, down)
|
||||
|
||||
|
||||
def tucker_weight(wa, wb, t):
|
||||
temp = torch.einsum("i j ..., j r -> i r ...", t, wb)
|
||||
return torch.einsum("i j ..., i r -> r j ...", temp, wa)
|
||||
|
||||
|
||||
def factorization(dimension: int, factor: int = -1) -> tuple[int, int]:
|
||||
"""
|
||||
return a tuple of two value of input dimension decomposed by the number closest to factor
|
||||
second value is higher or equal than first value.
|
||||
|
||||
examples)
|
||||
factor
|
||||
-1 2 4 8 16 ...
|
||||
127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
|
||||
128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
|
||||
250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
|
||||
360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
|
||||
512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
|
||||
1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
|
||||
"""
|
||||
|
||||
if factor > 0 and (dimension % factor) == 0 and dimension >= factor**2:
|
||||
m = factor
|
||||
n = dimension // factor
|
||||
if m > n:
|
||||
n, m = m, n
|
||||
return m, n
|
||||
if factor < 0:
|
||||
factor = dimension
|
||||
m, n = 1, dimension
|
||||
length = m + n
|
||||
while m < n:
|
||||
new_m = m + 1
|
||||
while dimension % new_m != 0:
|
||||
new_m += 1
|
||||
new_n = dimension // new_m
|
||||
if new_m + new_n > length or new_m > factor:
|
||||
break
|
||||
else:
|
||||
m, n = new_m, new_n
|
||||
if m > n:
|
||||
n, m = m, n
|
||||
return m, n
|
||||
|
||||
@@ -3,7 +3,120 @@ from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
from .base import WeightAdapterBase, WeightAdapterTrainBase, weight_decompose
|
||||
|
||||
|
||||
class HadaWeight(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, w1u, w1d, w2u, w2d, scale=torch.tensor(1)):
|
||||
ctx.save_for_backward(w1d, w1u, w2d, w2u, scale)
|
||||
diff_weight = ((w1u @ w1d) * (w2u @ w2d)) * scale
|
||||
return diff_weight
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_out):
|
||||
(w1d, w1u, w2d, w2u, scale) = ctx.saved_tensors
|
||||
grad_out = grad_out * scale
|
||||
temp = grad_out * (w2u @ w2d)
|
||||
grad_w1u = temp @ w1d.T
|
||||
grad_w1d = w1u.T @ temp
|
||||
|
||||
temp = grad_out * (w1u @ w1d)
|
||||
grad_w2u = temp @ w2d.T
|
||||
grad_w2d = w2u.T @ temp
|
||||
|
||||
del temp
|
||||
return grad_w1u, grad_w1d, grad_w2u, grad_w2d, None
|
||||
|
||||
|
||||
class HadaWeightTucker(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, t1, w1u, w1d, t2, w2u, w2d, scale=torch.tensor(1)):
|
||||
ctx.save_for_backward(t1, w1d, w1u, t2, w2d, w2u, scale)
|
||||
|
||||
rebuild1 = torch.einsum("i j ..., j r, i p -> p r ...", t1, w1d, w1u)
|
||||
rebuild2 = torch.einsum("i j ..., j r, i p -> p r ...", t2, w2d, w2u)
|
||||
|
||||
return rebuild1 * rebuild2 * scale
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_out):
|
||||
(t1, w1d, w1u, t2, w2d, w2u, scale) = ctx.saved_tensors
|
||||
grad_out = grad_out * scale
|
||||
|
||||
temp = torch.einsum("i j ..., j r -> i r ...", t2, w2d)
|
||||
rebuild = torch.einsum("i j ..., i r -> r j ...", temp, w2u)
|
||||
|
||||
grad_w = rebuild * grad_out
|
||||
del rebuild
|
||||
|
||||
grad_w1u = torch.einsum("r j ..., i j ... -> r i", temp, grad_w)
|
||||
grad_temp = torch.einsum("i j ..., i r -> r j ...", grad_w, w1u.T)
|
||||
del grad_w, temp
|
||||
|
||||
grad_w1d = torch.einsum("i r ..., i j ... -> r j", t1, grad_temp)
|
||||
grad_t1 = torch.einsum("i j ..., j r -> i r ...", grad_temp, w1d.T)
|
||||
del grad_temp
|
||||
|
||||
temp = torch.einsum("i j ..., j r -> i r ...", t1, w1d)
|
||||
rebuild = torch.einsum("i j ..., i r -> r j ...", temp, w1u)
|
||||
|
||||
grad_w = rebuild * grad_out
|
||||
del rebuild
|
||||
|
||||
grad_w2u = torch.einsum("r j ..., i j ... -> r i", temp, grad_w)
|
||||
grad_temp = torch.einsum("i j ..., i r -> r j ...", grad_w, w2u.T)
|
||||
del grad_w, temp
|
||||
|
||||
grad_w2d = torch.einsum("i r ..., i j ... -> r j", t2, grad_temp)
|
||||
grad_t2 = torch.einsum("i j ..., j r -> i r ...", grad_temp, w2d.T)
|
||||
del grad_temp
|
||||
return grad_t1, grad_w1u, grad_w1d, grad_t2, grad_w2u, grad_w2d, None
|
||||
|
||||
|
||||
class LohaDiff(WeightAdapterTrainBase):
|
||||
def __init__(self, weights):
|
||||
super().__init__()
|
||||
# Unpack weights tuple from LoHaAdapter
|
||||
w1a, w1b, alpha, w2a, w2b, t1, t2, _ = weights
|
||||
|
||||
# Create trainable parameters
|
||||
self.hada_w1_a = torch.nn.Parameter(w1a)
|
||||
self.hada_w1_b = torch.nn.Parameter(w1b)
|
||||
self.hada_w2_a = torch.nn.Parameter(w2a)
|
||||
self.hada_w2_b = torch.nn.Parameter(w2b)
|
||||
|
||||
self.use_tucker = False
|
||||
if t1 is not None and t2 is not None:
|
||||
self.use_tucker = True
|
||||
self.hada_t1 = torch.nn.Parameter(t1)
|
||||
self.hada_t2 = torch.nn.Parameter(t2)
|
||||
else:
|
||||
# Keep the attributes for consistent access
|
||||
self.hada_t1 = None
|
||||
self.hada_t2 = None
|
||||
|
||||
# Store rank and non-trainable alpha
|
||||
self.rank = w1b.shape[0]
|
||||
self.alpha = torch.nn.Parameter(torch.tensor(alpha), requires_grad=False)
|
||||
|
||||
def __call__(self, w):
|
||||
org_dtype = w.dtype
|
||||
|
||||
scale = self.alpha / self.rank
|
||||
if self.use_tucker:
|
||||
diff_weight = HadaWeightTucker.apply(self.hada_t1, self.hada_w1_a, self.hada_w1_b, self.hada_t2, self.hada_w2_a, self.hada_w2_b, scale)
|
||||
else:
|
||||
diff_weight = HadaWeight.apply(self.hada_w1_a, self.hada_w1_b, self.hada_w2_a, self.hada_w2_b, scale)
|
||||
|
||||
# Add the scaled difference to the original weight
|
||||
weight = w.to(diff_weight) + diff_weight.reshape(w.shape)
|
||||
|
||||
return weight.to(org_dtype)
|
||||
|
||||
def passive_memory_usage(self):
|
||||
"""Calculates memory usage of the trainable parameters."""
|
||||
return sum(param.numel() * param.element_size() for param in self.parameters())
|
||||
|
||||
|
||||
class LoHaAdapter(WeightAdapterBase):
|
||||
@@ -13,6 +126,25 @@ class LoHaAdapter(WeightAdapterBase):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def create_train(cls, weight, rank=1, alpha=1.0):
|
||||
out_dim = weight.shape[0]
|
||||
in_dim = weight.shape[1:].numel()
|
||||
mat1 = torch.empty(out_dim, rank, device=weight.device, dtype=weight.dtype)
|
||||
mat2 = torch.empty(rank, in_dim, device=weight.device, dtype=weight.dtype)
|
||||
torch.nn.init.normal_(mat1, 0.1)
|
||||
torch.nn.init.constant_(mat2, 0.0)
|
||||
mat3 = torch.empty(out_dim, rank, device=weight.device, dtype=weight.dtype)
|
||||
mat4 = torch.empty(rank, in_dim, device=weight.device, dtype=weight.dtype)
|
||||
torch.nn.init.normal_(mat3, 0.1)
|
||||
torch.nn.init.normal_(mat4, 0.01)
|
||||
return LohaDiff(
|
||||
(mat1, mat2, alpha, mat3, mat4, None, None, None)
|
||||
)
|
||||
|
||||
def to_train(self):
|
||||
return LohaDiff(self.weights)
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
|
||||
@@ -3,7 +3,77 @@ from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
from .base import (
|
||||
WeightAdapterBase,
|
||||
WeightAdapterTrainBase,
|
||||
weight_decompose,
|
||||
factorization,
|
||||
)
|
||||
|
||||
|
||||
class LokrDiff(WeightAdapterTrainBase):
|
||||
def __init__(self, weights):
|
||||
super().__init__()
|
||||
(lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale) = weights
|
||||
self.use_tucker = False
|
||||
if lokr_w1_a is not None:
|
||||
_, rank_a = lokr_w1_a.shape[0], lokr_w1_a.shape[1]
|
||||
rank_a, _ = lokr_w1_b.shape[0], lokr_w1_b.shape[1]
|
||||
self.lokr_w1_a = torch.nn.Parameter(lokr_w1_a)
|
||||
self.lokr_w1_b = torch.nn.Parameter(lokr_w1_b)
|
||||
self.w1_rebuild = True
|
||||
self.ranka = rank_a
|
||||
|
||||
if lokr_w2_a is not None:
|
||||
_, rank_b = lokr_w2_a.shape[0], lokr_w2_a.shape[1]
|
||||
rank_b, _ = lokr_w2_b.shape[0], lokr_w2_b.shape[1]
|
||||
self.lokr_w2_a = torch.nn.Parameter(lokr_w2_a)
|
||||
self.lokr_w2_b = torch.nn.Parameter(lokr_w2_b)
|
||||
if lokr_t2 is not None:
|
||||
self.use_tucker = True
|
||||
self.lokr_t2 = torch.nn.Parameter(lokr_t2)
|
||||
self.w2_rebuild = True
|
||||
self.rankb = rank_b
|
||||
|
||||
if lokr_w1 is not None:
|
||||
self.lokr_w1 = torch.nn.Parameter(lokr_w1)
|
||||
self.w1_rebuild = False
|
||||
|
||||
if lokr_w2 is not None:
|
||||
self.lokr_w2 = torch.nn.Parameter(lokr_w2)
|
||||
self.w2_rebuild = False
|
||||
|
||||
self.alpha = torch.nn.Parameter(torch.tensor(alpha), requires_grad=False)
|
||||
|
||||
@property
|
||||
def w1(self):
|
||||
if self.w1_rebuild:
|
||||
return (self.lokr_w1_a @ self.lokr_w1_b) * (self.alpha / self.ranka)
|
||||
else:
|
||||
return self.lokr_w1
|
||||
|
||||
@property
|
||||
def w2(self):
|
||||
if self.w2_rebuild:
|
||||
if self.use_tucker:
|
||||
w2 = torch.einsum(
|
||||
'i j k l, j r, i p -> p r k l',
|
||||
self.lokr_t2,
|
||||
self.lokr_w2_b,
|
||||
self.lokr_w2_a
|
||||
)
|
||||
else:
|
||||
w2 = self.lokr_w2_a @ self.lokr_w2_b
|
||||
return w2 * (self.alpha / self.rankb)
|
||||
else:
|
||||
return self.lokr_w2
|
||||
|
||||
def __call__(self, w):
|
||||
diff = torch.kron(self.w1, self.w2)
|
||||
return w + diff.reshape(w.shape).to(w)
|
||||
|
||||
def passive_memory_usage(self):
|
||||
return sum(param.numel() * param.element_size() for param in self.parameters())
|
||||
|
||||
|
||||
class LoKrAdapter(WeightAdapterBase):
|
||||
@@ -13,6 +83,20 @@ class LoKrAdapter(WeightAdapterBase):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def create_train(cls, weight, rank=1, alpha=1.0):
|
||||
out_dim = weight.shape[0]
|
||||
in_dim = weight.shape[1:].numel()
|
||||
out1, out2 = factorization(out_dim, rank)
|
||||
in1, in2 = factorization(in_dim, rank)
|
||||
mat1 = torch.empty(out1, in1, device=weight.device, dtype=weight.dtype)
|
||||
mat2 = torch.empty(out2, in2, device=weight.device, dtype=weight.dtype)
|
||||
torch.nn.init.kaiming_uniform_(mat2, a=5**0.5)
|
||||
torch.nn.init.constant_(mat1, 0.0)
|
||||
return LokrDiff(
|
||||
(mat1, mat2, alpha, None, None, None, None, None, None)
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
|
||||
@@ -3,7 +3,56 @@ from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose, pad_tensor_to_shape
|
||||
from .base import (
|
||||
WeightAdapterBase,
|
||||
WeightAdapterTrainBase,
|
||||
weight_decompose,
|
||||
pad_tensor_to_shape,
|
||||
tucker_weight_from_conv,
|
||||
)
|
||||
|
||||
|
||||
class LoraDiff(WeightAdapterTrainBase):
|
||||
def __init__(self, weights):
|
||||
super().__init__()
|
||||
mat1, mat2, alpha, mid, dora_scale, reshape = weights
|
||||
out_dim, rank = mat1.shape[0], mat1.shape[1]
|
||||
rank, in_dim = mat2.shape[0], mat2.shape[1]
|
||||
if mid is not None:
|
||||
convdim = mid.ndim - 2
|
||||
layer = (
|
||||
torch.nn.Conv1d,
|
||||
torch.nn.Conv2d,
|
||||
torch.nn.Conv3d
|
||||
)[convdim]
|
||||
else:
|
||||
layer = torch.nn.Linear
|
||||
self.lora_up = layer(rank, out_dim, bias=False)
|
||||
self.lora_down = layer(in_dim, rank, bias=False)
|
||||
self.lora_up.weight.data.copy_(mat1)
|
||||
self.lora_down.weight.data.copy_(mat2)
|
||||
if mid is not None:
|
||||
self.lora_mid = layer(mid, rank, bias=False)
|
||||
self.lora_mid.weight.data.copy_(mid)
|
||||
else:
|
||||
self.lora_mid = None
|
||||
self.rank = rank
|
||||
self.alpha = torch.nn.Parameter(torch.tensor(alpha), requires_grad=False)
|
||||
|
||||
def __call__(self, w):
|
||||
org_dtype = w.dtype
|
||||
if self.lora_mid is None:
|
||||
diff = self.lora_up.weight @ self.lora_down.weight
|
||||
else:
|
||||
diff = tucker_weight_from_conv(
|
||||
self.lora_up.weight, self.lora_down.weight, self.lora_mid.weight
|
||||
)
|
||||
scale = self.alpha / self.rank
|
||||
weight = w + scale * diff.reshape(w.shape)
|
||||
return weight.to(org_dtype)
|
||||
|
||||
def passive_memory_usage(self):
|
||||
return sum(param.numel() * param.element_size() for param in self.parameters())
|
||||
|
||||
|
||||
class LoRAAdapter(WeightAdapterBase):
|
||||
@@ -13,6 +62,21 @@ class LoRAAdapter(WeightAdapterBase):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def create_train(cls, weight, rank=1, alpha=1.0):
|
||||
out_dim = weight.shape[0]
|
||||
in_dim = weight.shape[1:].numel()
|
||||
mat1 = torch.empty(out_dim, rank, device=weight.device, dtype=weight.dtype)
|
||||
mat2 = torch.empty(rank, in_dim, device=weight.device, dtype=weight.dtype)
|
||||
torch.nn.init.kaiming_uniform_(mat1, a=5**0.5)
|
||||
torch.nn.init.constant_(mat2, 0.0)
|
||||
return LoraDiff(
|
||||
(mat1, mat2, alpha, None, None, None)
|
||||
)
|
||||
|
||||
def to_train(self):
|
||||
return LoraDiff(self.weights)
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
@@ -32,6 +96,7 @@ class LoRAAdapter(WeightAdapterBase):
|
||||
diffusers3_lora = "{}.lora.up.weight".format(x)
|
||||
mochi_lora = "{}.lora_B".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
qwen_default_lora = "{}.lora_B.default.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
@@ -58,6 +123,10 @@ class LoRAAdapter(WeightAdapterBase):
|
||||
A_name = transformers_lora
|
||||
B_name = "{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif qwen_default_lora in lora.keys():
|
||||
A_name = qwen_default_lora
|
||||
B_name = "{}.lora_A.default.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
|
||||
@@ -3,7 +3,58 @@ from typing import Optional
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, weight_decompose
|
||||
from .base import WeightAdapterBase, WeightAdapterTrainBase, weight_decompose, factorization
|
||||
|
||||
|
||||
class OFTDiff(WeightAdapterTrainBase):
|
||||
def __init__(self, weights):
|
||||
super().__init__()
|
||||
# Unpack weights tuple from LoHaAdapter
|
||||
blocks, rescale, alpha, _ = weights
|
||||
|
||||
# Create trainable parameters
|
||||
self.oft_blocks = torch.nn.Parameter(blocks)
|
||||
if rescale is not None:
|
||||
self.rescale = torch.nn.Parameter(rescale)
|
||||
self.rescaled = True
|
||||
else:
|
||||
self.rescaled = False
|
||||
self.block_num, self.block_size, _ = blocks.shape
|
||||
self.constraint = float(alpha)
|
||||
self.alpha = torch.nn.Parameter(torch.tensor(alpha), requires_grad=False)
|
||||
|
||||
def __call__(self, w):
|
||||
org_dtype = w.dtype
|
||||
I = torch.eye(self.block_size, device=self.oft_blocks.device)
|
||||
|
||||
## generate r
|
||||
# for Q = -Q^T
|
||||
q = self.oft_blocks - self.oft_blocks.transpose(1, 2)
|
||||
normed_q = q
|
||||
if self.constraint:
|
||||
q_norm = torch.norm(q) + 1e-8
|
||||
if q_norm > self.constraint:
|
||||
normed_q = q * self.constraint / q_norm
|
||||
# use float() to prevent unsupported type
|
||||
r = (I + normed_q) @ (I - normed_q).float().inverse()
|
||||
|
||||
## Apply chunked matmul on weight
|
||||
_, *shape = w.shape
|
||||
org_weight = w.to(dtype=r.dtype)
|
||||
org_weight = org_weight.unflatten(0, (self.block_num, self.block_size))
|
||||
# Init R=0, so add I on it to ensure the output of step0 is original model output
|
||||
weight = torch.einsum(
|
||||
"k n m, k n ... -> k m ...",
|
||||
r,
|
||||
org_weight,
|
||||
).flatten(0, 1)
|
||||
if self.rescaled:
|
||||
weight = self.rescale * weight
|
||||
return weight.to(org_dtype)
|
||||
|
||||
def passive_memory_usage(self):
|
||||
"""Calculates memory usage of the trainable parameters."""
|
||||
return sum(param.numel() * param.element_size() for param in self.parameters())
|
||||
|
||||
|
||||
class OFTAdapter(WeightAdapterBase):
|
||||
@@ -13,6 +64,18 @@ class OFTAdapter(WeightAdapterBase):
|
||||
self.loaded_keys = loaded_keys
|
||||
self.weights = weights
|
||||
|
||||
@classmethod
|
||||
def create_train(cls, weight, rank=1, alpha=1.0):
|
||||
out_dim = weight.shape[0]
|
||||
block_size, block_num = factorization(out_dim, rank)
|
||||
block = torch.zeros(block_num, block_size, block_size, device=weight.device, dtype=weight.dtype)
|
||||
return OFTDiff(
|
||||
(block, None, alpha, None)
|
||||
)
|
||||
|
||||
def to_train(self):
|
||||
return OFTDiff(self.weights)
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls,
|
||||
@@ -60,6 +123,8 @@ class OFTAdapter(WeightAdapterBase):
|
||||
blocks = v[0]
|
||||
rescale = v[1]
|
||||
alpha = v[2]
|
||||
if alpha is None:
|
||||
alpha = 0
|
||||
dora_scale = v[3]
|
||||
|
||||
blocks = comfy.model_management.cast_to_device(blocks, weight.device, intermediate_dtype)
|
||||
|
||||
69
comfy_api/feature_flags.py
Normal file
69
comfy_api/feature_flags.py
Normal file
@@ -0,0 +1,69 @@
|
||||
"""
|
||||
Feature flags module for ComfyUI WebSocket protocol negotiation.
|
||||
|
||||
This module handles capability negotiation between frontend and backend,
|
||||
allowing graceful protocol evolution while maintaining backward compatibility.
|
||||
"""
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from comfy.cli_args import args
|
||||
|
||||
# Default server capabilities
|
||||
SERVER_FEATURE_FLAGS: Dict[str, Any] = {
|
||||
"supports_preview_metadata": True,
|
||||
"max_upload_size": args.max_upload_size * 1024 * 1024, # Convert MB to bytes
|
||||
}
|
||||
|
||||
|
||||
def get_connection_feature(
|
||||
sockets_metadata: Dict[str, Dict[str, Any]],
|
||||
sid: str,
|
||||
feature_name: str,
|
||||
default: Any = False
|
||||
) -> Any:
|
||||
"""
|
||||
Get a feature flag value for a specific connection.
|
||||
|
||||
Args:
|
||||
sockets_metadata: Dictionary of socket metadata
|
||||
sid: Session ID of the connection
|
||||
feature_name: Name of the feature to check
|
||||
default: Default value if feature not found
|
||||
|
||||
Returns:
|
||||
Feature value or default if not found
|
||||
"""
|
||||
if sid not in sockets_metadata:
|
||||
return default
|
||||
|
||||
return sockets_metadata[sid].get("feature_flags", {}).get(feature_name, default)
|
||||
|
||||
|
||||
def supports_feature(
|
||||
sockets_metadata: Dict[str, Dict[str, Any]],
|
||||
sid: str,
|
||||
feature_name: str
|
||||
) -> bool:
|
||||
"""
|
||||
Check if a connection supports a specific feature.
|
||||
|
||||
Args:
|
||||
sockets_metadata: Dictionary of socket metadata
|
||||
sid: Session ID of the connection
|
||||
feature_name: Name of the feature to check
|
||||
|
||||
Returns:
|
||||
Boolean indicating if feature is supported
|
||||
"""
|
||||
return get_connection_feature(sockets_metadata, sid, feature_name, False) is True
|
||||
|
||||
|
||||
def get_server_features() -> Dict[str, Any]:
|
||||
"""
|
||||
Get the server's feature flags.
|
||||
|
||||
Returns:
|
||||
Dictionary of server feature flags
|
||||
"""
|
||||
return SERVER_FEATURE_FLAGS.copy()
|
||||
86
comfy_api/generate_api_stubs.py
Normal file
86
comfy_api/generate_api_stubs.py
Normal file
@@ -0,0 +1,86 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Script to generate .pyi stub files for the synchronous API wrappers.
|
||||
This allows generating stubs without running the full ComfyUI application.
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import logging
|
||||
import importlib
|
||||
|
||||
# Add ComfyUI to path so we can import modules
|
||||
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
from comfy_api.internal.async_to_sync import AsyncToSyncConverter
|
||||
from comfy_api.version_list import supported_versions
|
||||
|
||||
|
||||
def generate_stubs_for_module(module_name: str) -> None:
|
||||
"""Generate stub files for a specific module that exports ComfyAPI and ComfyAPISync."""
|
||||
try:
|
||||
# Import the module
|
||||
module = importlib.import_module(module_name)
|
||||
|
||||
# Check if module has ComfyAPISync (the sync wrapper)
|
||||
if hasattr(module, "ComfyAPISync"):
|
||||
# Module already has a sync class
|
||||
api_class = getattr(module, "ComfyAPI", None)
|
||||
sync_class = getattr(module, "ComfyAPISync")
|
||||
|
||||
if api_class:
|
||||
# Generate the stub file
|
||||
AsyncToSyncConverter.generate_stub_file(api_class, sync_class)
|
||||
logging.info(f"Generated stub file for {module_name}")
|
||||
else:
|
||||
logging.warning(
|
||||
f"Module {module_name} has ComfyAPISync but no ComfyAPI"
|
||||
)
|
||||
|
||||
elif hasattr(module, "ComfyAPI"):
|
||||
# Module only has async API, need to create sync wrapper first
|
||||
from comfy_api.internal.async_to_sync import create_sync_class
|
||||
|
||||
api_class = getattr(module, "ComfyAPI")
|
||||
sync_class = create_sync_class(api_class)
|
||||
|
||||
# Generate the stub file
|
||||
AsyncToSyncConverter.generate_stub_file(api_class, sync_class)
|
||||
logging.info(f"Generated stub file for {module_name}")
|
||||
else:
|
||||
logging.warning(
|
||||
f"Module {module_name} does not export ComfyAPI or ComfyAPISync"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to generate stub for {module_name}: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
def main():
|
||||
"""Main function to generate all API stub files."""
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
logging.info("Starting stub generation...")
|
||||
|
||||
# Dynamically get module names from supported_versions
|
||||
api_modules = []
|
||||
for api_class in supported_versions:
|
||||
# Extract module name from the class
|
||||
module_name = api_class.__module__
|
||||
if module_name not in api_modules:
|
||||
api_modules.append(module_name)
|
||||
|
||||
logging.info(f"Found {len(api_modules)} API modules: {api_modules}")
|
||||
|
||||
# Generate stubs for each module
|
||||
for module_name in api_modules:
|
||||
generate_stubs_for_module(module_name)
|
||||
|
||||
logging.info("Stub generation complete!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,8 +1,16 @@
|
||||
from .basic_types import ImageInput, AudioInput
|
||||
from .video_types import VideoInput
|
||||
# This file only exists for backwards compatibility.
|
||||
from comfy_api.latest._input import (
|
||||
ImageInput,
|
||||
AudioInput,
|
||||
MaskInput,
|
||||
LatentInput,
|
||||
VideoInput,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"ImageInput",
|
||||
"AudioInput",
|
||||
"MaskInput",
|
||||
"LatentInput",
|
||||
"VideoInput",
|
||||
]
|
||||
|
||||
@@ -1,20 +1,14 @@
|
||||
import torch
|
||||
from typing import TypedDict
|
||||
|
||||
ImageInput = torch.Tensor
|
||||
"""
|
||||
An image in format [B, H, W, C] where B is the batch size, C is the number of channels,
|
||||
"""
|
||||
|
||||
class AudioInput(TypedDict):
|
||||
"""
|
||||
TypedDict representing audio input.
|
||||
"""
|
||||
|
||||
waveform: torch.Tensor
|
||||
"""
|
||||
Tensor in the format [B, C, T] where B is the batch size, C is the number of channels,
|
||||
"""
|
||||
|
||||
sample_rate: int
|
||||
# This file only exists for backwards compatibility.
|
||||
from comfy_api.latest._input.basic_types import (
|
||||
ImageInput,
|
||||
AudioInput,
|
||||
MaskInput,
|
||||
LatentInput,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"ImageInput",
|
||||
"AudioInput",
|
||||
"MaskInput",
|
||||
"LatentInput",
|
||||
]
|
||||
|
||||
@@ -1,45 +1,6 @@
|
||||
from __future__ import annotations
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
|
||||
|
||||
class VideoInput(ABC):
|
||||
"""
|
||||
Abstract base class for video input types.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def get_components(self) -> VideoComponents:
|
||||
"""
|
||||
Abstract method to get the video components (images, audio, and frame rate).
|
||||
|
||||
Returns:
|
||||
VideoComponents containing images, audio, and frame rate
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def save_to(
|
||||
self,
|
||||
path: str,
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
):
|
||||
"""
|
||||
Abstract method to save the video input to a file.
|
||||
"""
|
||||
pass
|
||||
|
||||
# Provide a default implementation, but subclasses can provide optimized versions
|
||||
# if possible.
|
||||
def get_dimensions(self) -> tuple[int, int]:
|
||||
"""
|
||||
Returns the dimensions of the video input.
|
||||
|
||||
Returns:
|
||||
Tuple of (width, height)
|
||||
"""
|
||||
components = self.get_components()
|
||||
return components.images.shape[2], components.images.shape[1]
|
||||
# This file only exists for backwards compatibility.
|
||||
from comfy_api.latest._input.video_types import VideoInput
|
||||
|
||||
__all__ = [
|
||||
"VideoInput",
|
||||
]
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from .video_types import VideoFromFile, VideoFromComponents
|
||||
# This file only exists for backwards compatibility.
|
||||
from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents
|
||||
|
||||
__all__ = [
|
||||
# Implementations
|
||||
"VideoFromFile",
|
||||
"VideoFromComponents",
|
||||
]
|
||||
|
||||
@@ -1,271 +1,2 @@
|
||||
from __future__ import annotations
|
||||
from av.container import InputContainer
|
||||
from av.subtitles.stream import SubtitleStream
|
||||
from fractions import Fraction
|
||||
from typing import Optional
|
||||
from comfy_api.input import AudioInput
|
||||
import av
|
||||
import io
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
from comfy_api.input import VideoInput
|
||||
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
|
||||
|
||||
|
||||
def container_to_output_format(container_format: str | None) -> str | None:
|
||||
"""
|
||||
A container's `format` may be a comma-separated list of formats.
|
||||
E.g., iso container's `format` may be `mov,mp4,m4a,3gp,3g2,mj2`.
|
||||
However, writing to a file/stream with `av.open` requires a single format,
|
||||
or `None` to auto-detect.
|
||||
"""
|
||||
if not container_format:
|
||||
return None # Auto-detect
|
||||
|
||||
if "," not in container_format:
|
||||
return container_format
|
||||
|
||||
formats = container_format.split(",")
|
||||
return formats[0]
|
||||
|
||||
|
||||
def get_open_write_kwargs(
|
||||
dest: str | io.BytesIO, container_format: str, to_format: str | None
|
||||
) -> dict:
|
||||
"""Get kwargs for writing a `VideoFromFile` to a file/stream with `av.open`"""
|
||||
open_kwargs = {
|
||||
"mode": "w",
|
||||
# If isobmff, preserve custom metadata tags (workflow, prompt, extra_pnginfo)
|
||||
"options": {"movflags": "use_metadata_tags"},
|
||||
}
|
||||
|
||||
is_write_to_buffer = isinstance(dest, io.BytesIO)
|
||||
if is_write_to_buffer:
|
||||
# Set output format explicitly, since it cannot be inferred from file extension
|
||||
if to_format == VideoContainer.AUTO:
|
||||
to_format = container_format.lower()
|
||||
elif isinstance(to_format, str):
|
||||
to_format = to_format.lower()
|
||||
open_kwargs["format"] = container_to_output_format(to_format)
|
||||
|
||||
return open_kwargs
|
||||
|
||||
|
||||
class VideoFromFile(VideoInput):
|
||||
"""
|
||||
Class representing video input from a file.
|
||||
"""
|
||||
|
||||
def __init__(self, file: str | io.BytesIO):
|
||||
"""
|
||||
Initialize the VideoFromFile object based off of either a path on disk or a BytesIO object
|
||||
containing the file contents.
|
||||
"""
|
||||
self.__file = file
|
||||
|
||||
def get_dimensions(self) -> tuple[int, int]:
|
||||
"""
|
||||
Returns the dimensions of the video input.
|
||||
|
||||
Returns:
|
||||
Tuple of (width, height)
|
||||
"""
|
||||
if isinstance(self.__file, io.BytesIO):
|
||||
self.__file.seek(0) # Reset the BytesIO object to the beginning
|
||||
with av.open(self.__file, mode='r') as container:
|
||||
for stream in container.streams:
|
||||
if stream.type == 'video':
|
||||
assert isinstance(stream, av.VideoStream)
|
||||
return stream.width, stream.height
|
||||
raise ValueError(f"No video stream found in file '{self.__file}'")
|
||||
|
||||
def get_components_internal(self, container: InputContainer) -> VideoComponents:
|
||||
# Get video frames
|
||||
frames = []
|
||||
for frame in container.decode(video=0):
|
||||
img = frame.to_ndarray(format='rgb24') # shape: (H, W, 3)
|
||||
img = torch.from_numpy(img) / 255.0 # shape: (H, W, 3)
|
||||
frames.append(img)
|
||||
|
||||
images = torch.stack(frames) if len(frames) > 0 else torch.zeros(0, 3, 0, 0)
|
||||
|
||||
# Get frame rate
|
||||
video_stream = next(s for s in container.streams if s.type == 'video')
|
||||
frame_rate = Fraction(video_stream.average_rate) if video_stream and video_stream.average_rate else Fraction(1)
|
||||
|
||||
# Get audio if available
|
||||
audio = None
|
||||
try:
|
||||
container.seek(0) # Reset the container to the beginning
|
||||
for stream in container.streams:
|
||||
if stream.type != 'audio':
|
||||
continue
|
||||
assert isinstance(stream, av.AudioStream)
|
||||
audio_frames = []
|
||||
for packet in container.demux(stream):
|
||||
for frame in packet.decode():
|
||||
assert isinstance(frame, av.AudioFrame)
|
||||
audio_frames.append(frame.to_ndarray()) # shape: (channels, samples)
|
||||
if len(audio_frames) > 0:
|
||||
audio_data = np.concatenate(audio_frames, axis=1) # shape: (channels, total_samples)
|
||||
audio_tensor = torch.from_numpy(audio_data).unsqueeze(0) # shape: (1, channels, total_samples)
|
||||
audio = AudioInput({
|
||||
"waveform": audio_tensor,
|
||||
"sample_rate": int(stream.sample_rate) if stream.sample_rate else 1,
|
||||
})
|
||||
except StopIteration:
|
||||
pass # No audio stream
|
||||
|
||||
metadata = container.metadata
|
||||
return VideoComponents(images=images, audio=audio, frame_rate=frame_rate, metadata=metadata)
|
||||
|
||||
def get_components(self) -> VideoComponents:
|
||||
if isinstance(self.__file, io.BytesIO):
|
||||
self.__file.seek(0) # Reset the BytesIO object to the beginning
|
||||
with av.open(self.__file, mode='r') as container:
|
||||
return self.get_components_internal(container)
|
||||
raise ValueError(f"No video stream found in file '{self.__file}'")
|
||||
|
||||
def save_to(
|
||||
self,
|
||||
path: str | io.BytesIO,
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
):
|
||||
if isinstance(self.__file, io.BytesIO):
|
||||
self.__file.seek(0) # Reset the BytesIO object to the beginning
|
||||
with av.open(self.__file, mode='r') as container:
|
||||
container_format = container.format.name
|
||||
video_encoding = container.streams.video[0].codec.name if len(container.streams.video) > 0 else None
|
||||
reuse_streams = True
|
||||
if format != VideoContainer.AUTO and format not in container_format.split(","):
|
||||
reuse_streams = False
|
||||
if codec != VideoCodec.AUTO and codec != video_encoding and video_encoding is not None:
|
||||
reuse_streams = False
|
||||
|
||||
if not reuse_streams:
|
||||
components = self.get_components_internal(container)
|
||||
video = VideoFromComponents(components)
|
||||
return video.save_to(
|
||||
path,
|
||||
format=format,
|
||||
codec=codec,
|
||||
metadata=metadata
|
||||
)
|
||||
|
||||
streams = container.streams
|
||||
|
||||
open_kwargs = get_open_write_kwargs(path, container_format, format)
|
||||
with av.open(path, **open_kwargs) as output_container:
|
||||
# Copy over the original metadata
|
||||
for key, value in container.metadata.items():
|
||||
if metadata is None or key not in metadata:
|
||||
output_container.metadata[key] = value
|
||||
|
||||
# Add our new metadata
|
||||
if metadata is not None:
|
||||
for key, value in metadata.items():
|
||||
if isinstance(value, str):
|
||||
output_container.metadata[key] = value
|
||||
else:
|
||||
output_container.metadata[key] = json.dumps(value)
|
||||
|
||||
# Add streams to the new container
|
||||
stream_map = {}
|
||||
for stream in streams:
|
||||
if isinstance(stream, (av.VideoStream, av.AudioStream, SubtitleStream)):
|
||||
out_stream = output_container.add_stream_from_template(template=stream, opaque=True)
|
||||
stream_map[stream] = out_stream
|
||||
|
||||
# Write packets to the new container
|
||||
for packet in container.demux():
|
||||
if packet.stream in stream_map and packet.dts is not None:
|
||||
packet.stream = stream_map[packet.stream]
|
||||
output_container.mux(packet)
|
||||
|
||||
class VideoFromComponents(VideoInput):
|
||||
"""
|
||||
Class representing video input from tensors.
|
||||
"""
|
||||
|
||||
def __init__(self, components: VideoComponents):
|
||||
self.__components = components
|
||||
|
||||
def get_components(self) -> VideoComponents:
|
||||
return VideoComponents(
|
||||
images=self.__components.images,
|
||||
audio=self.__components.audio,
|
||||
frame_rate=self.__components.frame_rate
|
||||
)
|
||||
|
||||
def save_to(
|
||||
self,
|
||||
path: str,
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
):
|
||||
if format != VideoContainer.AUTO and format != VideoContainer.MP4:
|
||||
raise ValueError("Only MP4 format is supported for now")
|
||||
if codec != VideoCodec.AUTO and codec != VideoCodec.H264:
|
||||
raise ValueError("Only H264 codec is supported for now")
|
||||
with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}) as output:
|
||||
# Add metadata before writing any streams
|
||||
if metadata is not None:
|
||||
for key, value in metadata.items():
|
||||
output.metadata[key] = json.dumps(value)
|
||||
|
||||
frame_rate = Fraction(round(self.__components.frame_rate * 1000), 1000)
|
||||
# Create a video stream
|
||||
video_stream = output.add_stream('h264', rate=frame_rate)
|
||||
video_stream.width = self.__components.images.shape[2]
|
||||
video_stream.height = self.__components.images.shape[1]
|
||||
video_stream.pix_fmt = 'yuv420p'
|
||||
|
||||
# Create an audio stream
|
||||
audio_sample_rate = 1
|
||||
audio_stream: Optional[av.AudioStream] = None
|
||||
if self.__components.audio:
|
||||
audio_sample_rate = int(self.__components.audio['sample_rate'])
|
||||
audio_stream = output.add_stream('aac', rate=audio_sample_rate)
|
||||
audio_stream.sample_rate = audio_sample_rate
|
||||
audio_stream.format = 'fltp'
|
||||
|
||||
# Encode video
|
||||
for i, frame in enumerate(self.__components.images):
|
||||
img = (frame * 255).clamp(0, 255).byte().cpu().numpy() # shape: (H, W, 3)
|
||||
frame = av.VideoFrame.from_ndarray(img, format='rgb24')
|
||||
frame = frame.reformat(format='yuv420p') # Convert to YUV420P as required by h264
|
||||
packet = video_stream.encode(frame)
|
||||
output.mux(packet)
|
||||
|
||||
# Flush video
|
||||
packet = video_stream.encode(None)
|
||||
output.mux(packet)
|
||||
|
||||
if audio_stream and self.__components.audio:
|
||||
# Encode audio
|
||||
samples_per_frame = int(audio_sample_rate / frame_rate)
|
||||
num_frames = self.__components.audio['waveform'].shape[2] // samples_per_frame
|
||||
for i in range(num_frames):
|
||||
start = i * samples_per_frame
|
||||
end = start + samples_per_frame
|
||||
# TODO(Feature) - Add support for stereo audio
|
||||
chunk = (
|
||||
self.__components.audio["waveform"][0, 0, start:end]
|
||||
.unsqueeze(0)
|
||||
.contiguous()
|
||||
.numpy()
|
||||
)
|
||||
audio_frame = av.AudioFrame.from_ndarray(chunk, format='fltp', layout='mono')
|
||||
audio_frame.sample_rate = audio_sample_rate
|
||||
audio_frame.pts = i * samples_per_frame
|
||||
for packet in audio_stream.encode(audio_frame):
|
||||
output.mux(packet)
|
||||
|
||||
# Flush audio
|
||||
for packet in audio_stream.encode(None):
|
||||
output.mux(packet)
|
||||
|
||||
# This file only exists for backwards compatibility.
|
||||
from comfy_api.latest._input_impl.video_types import * # noqa: F403
|
||||
|
||||
150
comfy_api/internal/__init__.py
Normal file
150
comfy_api/internal/__init__.py
Normal file
@@ -0,0 +1,150 @@
|
||||
# Internal infrastructure for ComfyAPI
|
||||
from .api_registry import (
|
||||
ComfyAPIBase as ComfyAPIBase,
|
||||
ComfyAPIWithVersion as ComfyAPIWithVersion,
|
||||
register_versions as register_versions,
|
||||
get_all_versions as get_all_versions,
|
||||
)
|
||||
|
||||
import asyncio
|
||||
from dataclasses import asdict
|
||||
from typing import Callable, Optional
|
||||
|
||||
|
||||
def first_real_override(cls: type, name: str, *, base: type=None) -> Optional[Callable]:
|
||||
"""Return the *callable* override of `name` visible on `cls`, or None if every
|
||||
implementation up to (and including) `base` is the placeholder defined on `base`.
|
||||
|
||||
If base is not provided, it will assume cls has a GET_BASE_CLASS
|
||||
"""
|
||||
if base is None:
|
||||
if not hasattr(cls, "GET_BASE_CLASS"):
|
||||
raise ValueError("base is required if cls does not have a GET_BASE_CLASS; is this a valid ComfyNode subclass?")
|
||||
base = cls.GET_BASE_CLASS()
|
||||
base_attr = getattr(base, name, None)
|
||||
if base_attr is None:
|
||||
return None
|
||||
base_func = base_attr.__func__
|
||||
for c in cls.mro(): # NodeB, NodeA, ComfyNode, object …
|
||||
if c is base: # reached the placeholder – we're done
|
||||
break
|
||||
if name in c.__dict__: # first class that *defines* the attr
|
||||
func = getattr(c, name).__func__
|
||||
if func is not base_func: # real override
|
||||
return getattr(cls, name) # bound to *cls*
|
||||
return None
|
||||
|
||||
|
||||
class _ComfyNodeInternal:
|
||||
"""Class that all V3-based APIs inherit from for ComfyNode.
|
||||
|
||||
This is intended to only be referenced within execution.py, as it has to handle all V3 APIs going forward."""
|
||||
@classmethod
|
||||
def GET_NODE_INFO_V1(cls):
|
||||
...
|
||||
|
||||
|
||||
class _NodeOutputInternal:
|
||||
"""Class that all V3-based APIs inherit from for NodeOutput.
|
||||
|
||||
This is intended to only be referenced within execution.py, as it has to handle all V3 APIs going forward."""
|
||||
...
|
||||
|
||||
|
||||
def as_pruned_dict(dataclass_obj):
|
||||
'''Return dict of dataclass object with pruned None values.'''
|
||||
return prune_dict(asdict(dataclass_obj))
|
||||
|
||||
def prune_dict(d: dict):
|
||||
return {k: v for k,v in d.items() if v is not None}
|
||||
|
||||
|
||||
def is_class(obj):
|
||||
'''
|
||||
Returns True if is a class type.
|
||||
Returns False if is a class instance.
|
||||
'''
|
||||
return isinstance(obj, type)
|
||||
|
||||
|
||||
def copy_class(cls: type) -> type:
|
||||
'''
|
||||
Copy a class and its attributes.
|
||||
'''
|
||||
if cls is None:
|
||||
return None
|
||||
cls_dict = {
|
||||
k: v for k, v in cls.__dict__.items()
|
||||
if k not in ('__dict__', '__weakref__', '__module__', '__doc__')
|
||||
}
|
||||
# new class
|
||||
new_cls = type(
|
||||
cls.__name__,
|
||||
(cls,),
|
||||
cls_dict
|
||||
)
|
||||
# metadata preservation
|
||||
new_cls.__module__ = cls.__module__
|
||||
new_cls.__doc__ = cls.__doc__
|
||||
return new_cls
|
||||
|
||||
|
||||
class classproperty(object):
|
||||
def __init__(self, f):
|
||||
self.f = f
|
||||
def __get__(self, obj, owner):
|
||||
return self.f(owner)
|
||||
|
||||
|
||||
# NOTE: this was ai generated and validated by hand
|
||||
def shallow_clone_class(cls, new_name=None):
|
||||
'''
|
||||
Shallow clone a class while preserving super() functionality.
|
||||
'''
|
||||
new_name = new_name or f"{cls.__name__}Clone"
|
||||
# Include the original class in the bases to maintain proper inheritance
|
||||
new_bases = (cls,) + cls.__bases__
|
||||
return type(new_name, new_bases, dict(cls.__dict__))
|
||||
|
||||
# NOTE: this was ai generated and validated by hand
|
||||
def lock_class(cls):
|
||||
'''
|
||||
Lock a class so that its top-levelattributes cannot be modified.
|
||||
'''
|
||||
# Locked instance __setattr__
|
||||
def locked_instance_setattr(self, name, value):
|
||||
raise AttributeError(
|
||||
f"Cannot set attribute '{name}' on immutable instance of {type(self).__name__}"
|
||||
)
|
||||
# Locked metaclass
|
||||
class LockedMeta(type(cls)):
|
||||
def __setattr__(cls_, name, value):
|
||||
raise AttributeError(
|
||||
f"Cannot modify class attribute '{name}' on locked class '{cls_.__name__}'"
|
||||
)
|
||||
# Rebuild class with locked behavior
|
||||
locked_dict = dict(cls.__dict__)
|
||||
locked_dict['__setattr__'] = locked_instance_setattr
|
||||
|
||||
return LockedMeta(cls.__name__, cls.__bases__, locked_dict)
|
||||
|
||||
|
||||
def make_locked_method_func(type_obj, func, class_clone):
|
||||
"""
|
||||
Returns a function that, when called with **inputs, will execute:
|
||||
getattr(type_obj, func).__func__(lock_class(class_clone), **inputs)
|
||||
|
||||
Supports both synchronous and asynchronous methods.
|
||||
"""
|
||||
locked_class = lock_class(class_clone)
|
||||
method = getattr(type_obj, func).__func__
|
||||
|
||||
# Check if the original method is async
|
||||
if asyncio.iscoroutinefunction(method):
|
||||
async def wrapped_async_func(**inputs):
|
||||
return await method(locked_class, **inputs)
|
||||
return wrapped_async_func
|
||||
else:
|
||||
def wrapped_func(**inputs):
|
||||
return method(locked_class, **inputs)
|
||||
return wrapped_func
|
||||
39
comfy_api/internal/api_registry.py
Normal file
39
comfy_api/internal/api_registry.py
Normal file
@@ -0,0 +1,39 @@
|
||||
from typing import Type, List, NamedTuple
|
||||
from comfy_api.internal.singleton import ProxiedSingleton
|
||||
from packaging import version as packaging_version
|
||||
|
||||
|
||||
class ComfyAPIBase(ProxiedSingleton):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
|
||||
class ComfyAPIWithVersion(NamedTuple):
|
||||
version: str
|
||||
api_class: Type[ComfyAPIBase]
|
||||
|
||||
|
||||
def parse_version(version_str: str) -> packaging_version.Version:
|
||||
"""
|
||||
Parses a version string into a packaging_version.Version object.
|
||||
Raises ValueError if the version string is invalid.
|
||||
"""
|
||||
if version_str == "latest":
|
||||
return packaging_version.parse("9999999.9999999.9999999")
|
||||
return packaging_version.parse(version_str)
|
||||
|
||||
|
||||
registered_versions: List[ComfyAPIWithVersion] = []
|
||||
|
||||
|
||||
def register_versions(versions: List[ComfyAPIWithVersion]):
|
||||
versions.sort(key=lambda x: parse_version(x.version))
|
||||
global registered_versions
|
||||
registered_versions = versions
|
||||
|
||||
|
||||
def get_all_versions() -> List[ComfyAPIWithVersion]:
|
||||
"""
|
||||
Returns a list of all registered ComfyAPI versions.
|
||||
"""
|
||||
return registered_versions
|
||||
987
comfy_api/internal/async_to_sync.py
Normal file
987
comfy_api/internal/async_to_sync.py
Normal file
@@ -0,0 +1,987 @@
|
||||
import asyncio
|
||||
import concurrent.futures
|
||||
import contextvars
|
||||
import functools
|
||||
import inspect
|
||||
import logging
|
||||
import os
|
||||
import textwrap
|
||||
import threading
|
||||
from enum import Enum
|
||||
from typing import Optional, Type, get_origin, get_args
|
||||
|
||||
|
||||
class TypeTracker:
|
||||
"""Tracks types discovered during stub generation for automatic import generation."""
|
||||
|
||||
def __init__(self):
|
||||
self.discovered_types = {} # type_name -> (module, qualname)
|
||||
self.builtin_types = {
|
||||
"Any",
|
||||
"Dict",
|
||||
"List",
|
||||
"Optional",
|
||||
"Tuple",
|
||||
"Union",
|
||||
"Set",
|
||||
"Sequence",
|
||||
"cast",
|
||||
"NamedTuple",
|
||||
"str",
|
||||
"int",
|
||||
"float",
|
||||
"bool",
|
||||
"None",
|
||||
"bytes",
|
||||
"object",
|
||||
"type",
|
||||
"dict",
|
||||
"list",
|
||||
"tuple",
|
||||
"set",
|
||||
}
|
||||
self.already_imported = (
|
||||
set()
|
||||
) # Track types already imported to avoid duplicates
|
||||
|
||||
def track_type(self, annotation):
|
||||
"""Track a type annotation and record its module/import info."""
|
||||
if annotation is None or annotation is type(None):
|
||||
return
|
||||
|
||||
# Skip builtins and typing module types we already import
|
||||
type_name = getattr(annotation, "__name__", None)
|
||||
if type_name and (
|
||||
type_name in self.builtin_types or type_name in self.already_imported
|
||||
):
|
||||
return
|
||||
|
||||
# Get module and qualname
|
||||
module = getattr(annotation, "__module__", None)
|
||||
qualname = getattr(annotation, "__qualname__", type_name or "")
|
||||
|
||||
# Skip types from typing module (they're already imported)
|
||||
if module == "typing":
|
||||
return
|
||||
|
||||
# Skip UnionType and GenericAlias from types module as they're handled specially
|
||||
if module == "types" and type_name in ("UnionType", "GenericAlias"):
|
||||
return
|
||||
|
||||
if module and module not in ["builtins", "__main__"]:
|
||||
# Store the type info
|
||||
if type_name:
|
||||
self.discovered_types[type_name] = (module, qualname)
|
||||
|
||||
def get_imports(self, main_module_name: str) -> list[str]:
|
||||
"""Generate import statements for all discovered types."""
|
||||
imports = []
|
||||
imports_by_module = {}
|
||||
|
||||
for type_name, (module, qualname) in sorted(self.discovered_types.items()):
|
||||
# Skip types from the main module (they're already imported)
|
||||
if main_module_name and module == main_module_name:
|
||||
continue
|
||||
|
||||
if module not in imports_by_module:
|
||||
imports_by_module[module] = []
|
||||
if type_name not in imports_by_module[module]: # Avoid duplicates
|
||||
imports_by_module[module].append(type_name)
|
||||
|
||||
# Generate import statements
|
||||
for module, types in sorted(imports_by_module.items()):
|
||||
if len(types) == 1:
|
||||
imports.append(f"from {module} import {types[0]}")
|
||||
else:
|
||||
imports.append(f"from {module} import {', '.join(sorted(set(types)))}")
|
||||
|
||||
return imports
|
||||
|
||||
|
||||
class AsyncToSyncConverter:
|
||||
"""
|
||||
Provides utilities to convert async classes to sync classes with proper type hints.
|
||||
"""
|
||||
|
||||
_thread_pool: Optional[concurrent.futures.ThreadPoolExecutor] = None
|
||||
_thread_pool_lock = threading.Lock()
|
||||
_thread_pool_initialized = False
|
||||
|
||||
@classmethod
|
||||
def get_thread_pool(cls, max_workers=None) -> concurrent.futures.ThreadPoolExecutor:
|
||||
"""Get or create the shared thread pool with proper thread-safe initialization."""
|
||||
# Fast path - check if already initialized without acquiring lock
|
||||
if cls._thread_pool_initialized:
|
||||
assert cls._thread_pool is not None, "Thread pool should be initialized"
|
||||
return cls._thread_pool
|
||||
|
||||
# Slow path - acquire lock and create pool if needed
|
||||
with cls._thread_pool_lock:
|
||||
if not cls._thread_pool_initialized:
|
||||
cls._thread_pool = concurrent.futures.ThreadPoolExecutor(
|
||||
max_workers=max_workers, thread_name_prefix="async_to_sync_"
|
||||
)
|
||||
cls._thread_pool_initialized = True
|
||||
|
||||
# This should never be None at this point, but add assertion for type checker
|
||||
assert cls._thread_pool is not None
|
||||
return cls._thread_pool
|
||||
|
||||
@classmethod
|
||||
def run_async_in_thread(cls, coro_func, *args, **kwargs):
|
||||
"""
|
||||
Run an async function in a separate thread from the thread pool.
|
||||
Blocks until the async function completes.
|
||||
Properly propagates contextvars between threads and manages event loops.
|
||||
"""
|
||||
# Capture current context - this includes all context variables
|
||||
context = contextvars.copy_context()
|
||||
|
||||
# Store the result and any exception that occurs
|
||||
result_container: dict = {"result": None, "exception": None}
|
||||
|
||||
# Function that runs in the thread pool
|
||||
def run_in_thread():
|
||||
# Create new event loop for this thread
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
|
||||
try:
|
||||
# Create the coroutine within the context
|
||||
async def run_with_context():
|
||||
# The coroutine function might access context variables
|
||||
return await coro_func(*args, **kwargs)
|
||||
|
||||
# Run the coroutine with the captured context
|
||||
# This ensures all context variables are available in the async function
|
||||
result = context.run(loop.run_until_complete, run_with_context())
|
||||
result_container["result"] = result
|
||||
except Exception as e:
|
||||
# Store the exception to re-raise in the calling thread
|
||||
result_container["exception"] = e
|
||||
finally:
|
||||
# Ensure event loop is properly closed to prevent warnings
|
||||
try:
|
||||
# Cancel any remaining tasks
|
||||
pending = asyncio.all_tasks(loop)
|
||||
for task in pending:
|
||||
task.cancel()
|
||||
|
||||
# Run the loop briefly to handle cancellations
|
||||
if pending:
|
||||
loop.run_until_complete(
|
||||
asyncio.gather(*pending, return_exceptions=True)
|
||||
)
|
||||
except Exception:
|
||||
pass # Ignore errors during cleanup
|
||||
|
||||
# Close the event loop
|
||||
loop.close()
|
||||
|
||||
# Clear the event loop from the thread
|
||||
asyncio.set_event_loop(None)
|
||||
|
||||
# Submit to thread pool and wait for result
|
||||
thread_pool = cls.get_thread_pool()
|
||||
future = thread_pool.submit(run_in_thread)
|
||||
future.result() # Wait for completion
|
||||
|
||||
# Re-raise any exception that occurred in the thread
|
||||
if result_container["exception"] is not None:
|
||||
raise result_container["exception"]
|
||||
|
||||
return result_container["result"]
|
||||
|
||||
@classmethod
|
||||
def create_sync_class(cls, async_class: Type, thread_pool_size=10) -> Type:
|
||||
"""
|
||||
Creates a new class with synchronous versions of all async methods.
|
||||
|
||||
Args:
|
||||
async_class: The async class to convert
|
||||
thread_pool_size: Size of thread pool to use
|
||||
|
||||
Returns:
|
||||
A new class with sync versions of all async methods
|
||||
"""
|
||||
sync_class_name = "ComfyAPISyncStub"
|
||||
cls.get_thread_pool(thread_pool_size)
|
||||
|
||||
# Create a proper class with docstrings and proper base classes
|
||||
sync_class_dict = {
|
||||
"__doc__": async_class.__doc__,
|
||||
"__module__": async_class.__module__,
|
||||
"__qualname__": sync_class_name,
|
||||
"__orig_class__": async_class, # Store original class for typing references
|
||||
}
|
||||
|
||||
# Create __init__ method
|
||||
def __init__(self, *args, **kwargs):
|
||||
self._async_instance = async_class(*args, **kwargs)
|
||||
|
||||
# Handle annotated class attributes (like execution: Execution)
|
||||
# Get all annotations from the class hierarchy
|
||||
all_annotations = {}
|
||||
for base_class in reversed(inspect.getmro(async_class)):
|
||||
if hasattr(base_class, "__annotations__"):
|
||||
all_annotations.update(base_class.__annotations__)
|
||||
|
||||
# For each annotated attribute, check if it needs to be created or wrapped
|
||||
for attr_name, attr_type in all_annotations.items():
|
||||
if hasattr(self._async_instance, attr_name):
|
||||
# Attribute exists on the instance
|
||||
attr = getattr(self._async_instance, attr_name)
|
||||
# Check if this attribute needs a sync wrapper
|
||||
if hasattr(attr, "__class__"):
|
||||
from comfy_api.internal.singleton import ProxiedSingleton
|
||||
|
||||
if isinstance(attr, ProxiedSingleton):
|
||||
# Create a sync version of this attribute
|
||||
try:
|
||||
sync_attr_class = cls.create_sync_class(attr.__class__)
|
||||
# Create instance of the sync wrapper with the async instance
|
||||
sync_attr = object.__new__(sync_attr_class) # type: ignore
|
||||
sync_attr._async_instance = attr
|
||||
setattr(self, attr_name, sync_attr)
|
||||
except Exception:
|
||||
# If we can't create a sync version, keep the original
|
||||
setattr(self, attr_name, attr)
|
||||
else:
|
||||
# Not async, just copy the reference
|
||||
setattr(self, attr_name, attr)
|
||||
else:
|
||||
# Attribute doesn't exist, but is annotated - create it
|
||||
# This handles cases like execution: Execution
|
||||
if isinstance(attr_type, type):
|
||||
# Check if the type is defined as an inner class
|
||||
if hasattr(async_class, attr_type.__name__):
|
||||
inner_class = getattr(async_class, attr_type.__name__)
|
||||
from comfy_api.internal.singleton import ProxiedSingleton
|
||||
|
||||
# Create an instance of the inner class
|
||||
try:
|
||||
# For ProxiedSingleton classes, get or create the singleton instance
|
||||
if issubclass(inner_class, ProxiedSingleton):
|
||||
async_instance = inner_class.get_instance()
|
||||
else:
|
||||
async_instance = inner_class()
|
||||
|
||||
# Create sync wrapper
|
||||
sync_attr_class = cls.create_sync_class(inner_class)
|
||||
sync_attr = object.__new__(sync_attr_class) # type: ignore
|
||||
sync_attr._async_instance = async_instance
|
||||
setattr(self, attr_name, sync_attr)
|
||||
# Also set on the async instance for consistency
|
||||
setattr(self._async_instance, attr_name, async_instance)
|
||||
except Exception as e:
|
||||
logging.warning(
|
||||
f"Failed to create instance for {attr_name}: {e}"
|
||||
)
|
||||
|
||||
# Handle other instance attributes that might not be annotated
|
||||
for name, attr in inspect.getmembers(self._async_instance):
|
||||
if name.startswith("_") or hasattr(self, name):
|
||||
continue
|
||||
|
||||
# If attribute is an instance of a class, and that class is defined in the original class
|
||||
# we need to check if it needs a sync wrapper
|
||||
if isinstance(attr, object) and not isinstance(
|
||||
attr, (str, int, float, bool, list, dict, tuple)
|
||||
):
|
||||
from comfy_api.internal.singleton import ProxiedSingleton
|
||||
|
||||
if isinstance(attr, ProxiedSingleton):
|
||||
# Create a sync version of this nested class
|
||||
try:
|
||||
sync_attr_class = cls.create_sync_class(attr.__class__)
|
||||
# Create instance of the sync wrapper with the async instance
|
||||
sync_attr = object.__new__(sync_attr_class) # type: ignore
|
||||
sync_attr._async_instance = attr
|
||||
setattr(self, name, sync_attr)
|
||||
except Exception:
|
||||
# If we can't create a sync version, keep the original
|
||||
setattr(self, name, attr)
|
||||
|
||||
sync_class_dict["__init__"] = __init__
|
||||
|
||||
# Process methods from the async class
|
||||
for name, method in inspect.getmembers(
|
||||
async_class, predicate=inspect.isfunction
|
||||
):
|
||||
if name.startswith("_"):
|
||||
continue
|
||||
|
||||
# Extract the actual return type from a coroutine
|
||||
if inspect.iscoroutinefunction(method):
|
||||
# Create sync version of async method with proper signature
|
||||
@functools.wraps(method)
|
||||
def sync_method(self, *args, _method_name=name, **kwargs):
|
||||
async_method = getattr(self._async_instance, _method_name)
|
||||
return AsyncToSyncConverter.run_async_in_thread(
|
||||
async_method, *args, **kwargs
|
||||
)
|
||||
|
||||
# Add to the class dict
|
||||
sync_class_dict[name] = sync_method
|
||||
else:
|
||||
# For regular methods, create a proxy method
|
||||
@functools.wraps(method)
|
||||
def proxy_method(self, *args, _method_name=name, **kwargs):
|
||||
method = getattr(self._async_instance, _method_name)
|
||||
return method(*args, **kwargs)
|
||||
|
||||
# Add to the class dict
|
||||
sync_class_dict[name] = proxy_method
|
||||
|
||||
# Handle property access
|
||||
for name, prop in inspect.getmembers(
|
||||
async_class, lambda x: isinstance(x, property)
|
||||
):
|
||||
|
||||
def make_property(name, prop_obj):
|
||||
def getter(self):
|
||||
value = getattr(self._async_instance, name)
|
||||
if inspect.iscoroutinefunction(value):
|
||||
|
||||
def sync_fn(*args, **kwargs):
|
||||
return AsyncToSyncConverter.run_async_in_thread(
|
||||
value, *args, **kwargs
|
||||
)
|
||||
|
||||
return sync_fn
|
||||
return value
|
||||
|
||||
def setter(self, value):
|
||||
setattr(self._async_instance, name, value)
|
||||
|
||||
return property(getter, setter if prop_obj.fset else None)
|
||||
|
||||
sync_class_dict[name] = make_property(name, prop)
|
||||
|
||||
# Create the class
|
||||
sync_class = type(sync_class_name, (object,), sync_class_dict)
|
||||
|
||||
return sync_class
|
||||
|
||||
@classmethod
|
||||
def _format_type_annotation(
|
||||
cls, annotation, type_tracker: Optional[TypeTracker] = None
|
||||
) -> str:
|
||||
"""Convert a type annotation to its string representation for stub files."""
|
||||
if (
|
||||
annotation is inspect.Parameter.empty
|
||||
or annotation is inspect.Signature.empty
|
||||
):
|
||||
return "Any"
|
||||
|
||||
# Handle None type
|
||||
if annotation is type(None):
|
||||
return "None"
|
||||
|
||||
# Track the type if we have a tracker
|
||||
if type_tracker:
|
||||
type_tracker.track_type(annotation)
|
||||
|
||||
# Try using typing.get_origin/get_args for Python 3.8+
|
||||
try:
|
||||
origin = get_origin(annotation)
|
||||
args = get_args(annotation)
|
||||
|
||||
if origin is not None:
|
||||
# Track the origin type
|
||||
if type_tracker:
|
||||
type_tracker.track_type(origin)
|
||||
|
||||
# Get the origin name
|
||||
origin_name = getattr(origin, "__name__", str(origin))
|
||||
if "." in origin_name:
|
||||
origin_name = origin_name.split(".")[-1]
|
||||
|
||||
# Special handling for types.UnionType (Python 3.10+ pipe operator)
|
||||
# Convert to old-style Union for compatibility
|
||||
if str(origin) == "<class 'types.UnionType'>" or origin_name == "UnionType":
|
||||
origin_name = "Union"
|
||||
|
||||
# Format arguments recursively
|
||||
if args:
|
||||
formatted_args = []
|
||||
for arg in args:
|
||||
# Track each type in the union
|
||||
if type_tracker:
|
||||
type_tracker.track_type(arg)
|
||||
formatted_args.append(cls._format_type_annotation(arg, type_tracker))
|
||||
return f"{origin_name}[{', '.join(formatted_args)}]"
|
||||
else:
|
||||
return origin_name
|
||||
except (AttributeError, TypeError):
|
||||
# Fallback for older Python versions or non-generic types
|
||||
pass
|
||||
|
||||
# Handle generic types the old way for compatibility
|
||||
if hasattr(annotation, "__origin__") and hasattr(annotation, "__args__"):
|
||||
origin = annotation.__origin__
|
||||
origin_name = (
|
||||
origin.__name__
|
||||
if hasattr(origin, "__name__")
|
||||
else str(origin).split("'")[1]
|
||||
)
|
||||
|
||||
# Format each type argument
|
||||
args = []
|
||||
for arg in annotation.__args__:
|
||||
args.append(cls._format_type_annotation(arg, type_tracker))
|
||||
|
||||
return f"{origin_name}[{', '.join(args)}]"
|
||||
|
||||
# Handle regular types with __name__
|
||||
if hasattr(annotation, "__name__"):
|
||||
return annotation.__name__
|
||||
|
||||
# Handle special module types (like types from typing module)
|
||||
if hasattr(annotation, "__module__") and hasattr(annotation, "__qualname__"):
|
||||
# For types like typing.Literal, typing.TypedDict, etc.
|
||||
return annotation.__qualname__
|
||||
|
||||
# Last resort: string conversion with cleanup
|
||||
type_str = str(annotation)
|
||||
|
||||
# Clean up common patterns more robustly
|
||||
if type_str.startswith("<class '") and type_str.endswith("'>"):
|
||||
type_str = type_str[8:-2] # Remove "<class '" and "'>"
|
||||
|
||||
# Remove module prefixes for common modules
|
||||
for prefix in ["typing.", "builtins.", "types."]:
|
||||
if type_str.startswith(prefix):
|
||||
type_str = type_str[len(prefix) :]
|
||||
|
||||
# Handle special cases
|
||||
if type_str in ("_empty", "inspect._empty"):
|
||||
return "None"
|
||||
|
||||
# Fix NoneType (this should rarely be needed now)
|
||||
if type_str == "NoneType":
|
||||
return "None"
|
||||
|
||||
return type_str
|
||||
|
||||
@classmethod
|
||||
def _extract_coroutine_return_type(cls, annotation):
|
||||
"""Extract the actual return type from a Coroutine annotation."""
|
||||
if hasattr(annotation, "__args__") and len(annotation.__args__) > 2:
|
||||
# Coroutine[Any, Any, ReturnType] -> extract ReturnType
|
||||
return annotation.__args__[2]
|
||||
return annotation
|
||||
|
||||
@classmethod
|
||||
def _format_parameter_default(cls, default_value) -> str:
|
||||
"""Format a parameter's default value for stub files."""
|
||||
if default_value is inspect.Parameter.empty:
|
||||
return ""
|
||||
elif default_value is None:
|
||||
return " = None"
|
||||
elif isinstance(default_value, bool):
|
||||
return f" = {default_value}"
|
||||
elif default_value == {}:
|
||||
return " = {}"
|
||||
elif default_value == []:
|
||||
return " = []"
|
||||
else:
|
||||
return f" = {default_value}"
|
||||
|
||||
@classmethod
|
||||
def _format_method_parameters(
|
||||
cls,
|
||||
sig: inspect.Signature,
|
||||
skip_self: bool = True,
|
||||
type_hints: Optional[dict] = None,
|
||||
type_tracker: Optional[TypeTracker] = None,
|
||||
) -> str:
|
||||
"""Format method parameters for stub files."""
|
||||
params = []
|
||||
if type_hints is None:
|
||||
type_hints = {}
|
||||
|
||||
for i, (param_name, param) in enumerate(sig.parameters.items()):
|
||||
if i == 0 and param_name == "self" and skip_self:
|
||||
params.append("self")
|
||||
else:
|
||||
# Get type annotation from type hints if available, otherwise from signature
|
||||
annotation = type_hints.get(param_name, param.annotation)
|
||||
type_str = cls._format_type_annotation(annotation, type_tracker)
|
||||
|
||||
# Get default value
|
||||
default_str = cls._format_parameter_default(param.default)
|
||||
|
||||
# Combine parameter parts
|
||||
if annotation is inspect.Parameter.empty:
|
||||
params.append(f"{param_name}: Any{default_str}")
|
||||
else:
|
||||
params.append(f"{param_name}: {type_str}{default_str}")
|
||||
|
||||
return ", ".join(params)
|
||||
|
||||
@classmethod
|
||||
def _generate_method_signature(
|
||||
cls,
|
||||
method_name: str,
|
||||
method,
|
||||
is_async: bool = False,
|
||||
type_tracker: Optional[TypeTracker] = None,
|
||||
) -> str:
|
||||
"""Generate a complete method signature for stub files."""
|
||||
sig = inspect.signature(method)
|
||||
|
||||
# Try to get evaluated type hints to resolve string annotations
|
||||
try:
|
||||
from typing import get_type_hints
|
||||
type_hints = get_type_hints(method)
|
||||
except Exception:
|
||||
# Fallback to empty dict if we can't get type hints
|
||||
type_hints = {}
|
||||
|
||||
# For async methods, extract the actual return type
|
||||
return_annotation = type_hints.get('return', sig.return_annotation)
|
||||
if is_async and inspect.iscoroutinefunction(method):
|
||||
return_annotation = cls._extract_coroutine_return_type(return_annotation)
|
||||
|
||||
# Format parameters with type hints
|
||||
params_str = cls._format_method_parameters(sig, type_hints=type_hints, type_tracker=type_tracker)
|
||||
|
||||
# Format return type
|
||||
return_type = cls._format_type_annotation(return_annotation, type_tracker)
|
||||
if return_annotation is inspect.Signature.empty:
|
||||
return_type = "None"
|
||||
|
||||
return f"def {method_name}({params_str}) -> {return_type}: ..."
|
||||
|
||||
@classmethod
|
||||
def _generate_imports(
|
||||
cls, async_class: Type, type_tracker: TypeTracker
|
||||
) -> list[str]:
|
||||
"""Generate import statements for the stub file."""
|
||||
imports = []
|
||||
|
||||
# Add standard typing imports
|
||||
imports.append(
|
||||
"from typing import Any, Dict, List, Optional, Tuple, Union, Set, Sequence, cast, NamedTuple"
|
||||
)
|
||||
|
||||
# Add imports from the original module
|
||||
if async_class.__module__ != "builtins":
|
||||
module = inspect.getmodule(async_class)
|
||||
additional_types = []
|
||||
|
||||
if module:
|
||||
# Check if module has __all__ defined
|
||||
module_all = getattr(module, "__all__", None)
|
||||
|
||||
for name, obj in sorted(inspect.getmembers(module)):
|
||||
if isinstance(obj, type):
|
||||
# Skip if __all__ is defined and this name isn't in it
|
||||
# unless it's already been tracked as used in type annotations
|
||||
if module_all is not None and name not in module_all:
|
||||
# Check if this type was actually used in annotations
|
||||
if name not in type_tracker.discovered_types:
|
||||
continue
|
||||
|
||||
# Check for NamedTuple
|
||||
if issubclass(obj, tuple) and hasattr(obj, "_fields"):
|
||||
additional_types.append(name)
|
||||
# Mark as already imported
|
||||
type_tracker.already_imported.add(name)
|
||||
# Check for Enum
|
||||
elif issubclass(obj, Enum) and name != "Enum":
|
||||
additional_types.append(name)
|
||||
# Mark as already imported
|
||||
type_tracker.already_imported.add(name)
|
||||
|
||||
if additional_types:
|
||||
type_imports = ", ".join([async_class.__name__] + additional_types)
|
||||
imports.append(f"from {async_class.__module__} import {type_imports}")
|
||||
else:
|
||||
imports.append(
|
||||
f"from {async_class.__module__} import {async_class.__name__}"
|
||||
)
|
||||
|
||||
# Add imports for all discovered types
|
||||
# Pass the main module name to avoid duplicate imports
|
||||
imports.extend(
|
||||
type_tracker.get_imports(main_module_name=async_class.__module__)
|
||||
)
|
||||
|
||||
# Add base module import if needed
|
||||
if hasattr(inspect.getmodule(async_class), "__name__"):
|
||||
module_name = inspect.getmodule(async_class).__name__
|
||||
if "." in module_name:
|
||||
base_module = module_name.split(".")[0]
|
||||
# Only add if not already importing from it
|
||||
if not any(imp.startswith(f"from {base_module}") for imp in imports):
|
||||
imports.append(f"import {base_module}")
|
||||
|
||||
return imports
|
||||
|
||||
@classmethod
|
||||
def _get_class_attributes(cls, async_class: Type) -> list[tuple[str, Type]]:
|
||||
"""Extract class attributes that are classes themselves."""
|
||||
class_attributes = []
|
||||
|
||||
# Look for class attributes that are classes
|
||||
for name, attr in sorted(inspect.getmembers(async_class)):
|
||||
if isinstance(attr, type) and not name.startswith("_"):
|
||||
class_attributes.append((name, attr))
|
||||
elif (
|
||||
hasattr(async_class, "__annotations__")
|
||||
and name in async_class.__annotations__
|
||||
):
|
||||
annotation = async_class.__annotations__[name]
|
||||
if isinstance(annotation, type):
|
||||
class_attributes.append((name, annotation))
|
||||
|
||||
return class_attributes
|
||||
|
||||
@classmethod
|
||||
def _generate_inner_class_stub(
|
||||
cls,
|
||||
name: str,
|
||||
attr: Type,
|
||||
indent: str = " ",
|
||||
type_tracker: Optional[TypeTracker] = None,
|
||||
) -> list[str]:
|
||||
"""Generate stub for an inner class."""
|
||||
stub_lines = []
|
||||
stub_lines.append(f"{indent}class {name}Sync:")
|
||||
|
||||
# Add docstring if available
|
||||
if hasattr(attr, "__doc__") and attr.__doc__:
|
||||
stub_lines.extend(
|
||||
cls._format_docstring_for_stub(attr.__doc__, f"{indent} ")
|
||||
)
|
||||
|
||||
# Add __init__ if it exists
|
||||
if hasattr(attr, "__init__"):
|
||||
try:
|
||||
init_method = getattr(attr, "__init__")
|
||||
init_sig = inspect.signature(init_method)
|
||||
|
||||
# Try to get type hints
|
||||
try:
|
||||
from typing import get_type_hints
|
||||
init_hints = get_type_hints(init_method)
|
||||
except Exception:
|
||||
init_hints = {}
|
||||
|
||||
# Format parameters
|
||||
params_str = cls._format_method_parameters(
|
||||
init_sig, type_hints=init_hints, type_tracker=type_tracker
|
||||
)
|
||||
# Add __init__ docstring if available (before the method)
|
||||
if hasattr(init_method, "__doc__") and init_method.__doc__:
|
||||
stub_lines.extend(
|
||||
cls._format_docstring_for_stub(
|
||||
init_method.__doc__, f"{indent} "
|
||||
)
|
||||
)
|
||||
stub_lines.append(
|
||||
f"{indent} def __init__({params_str}) -> None: ..."
|
||||
)
|
||||
except (ValueError, TypeError):
|
||||
stub_lines.append(
|
||||
f"{indent} def __init__(self, *args, **kwargs) -> None: ..."
|
||||
)
|
||||
|
||||
# Add methods to the inner class
|
||||
has_methods = False
|
||||
for method_name, method in sorted(
|
||||
inspect.getmembers(attr, predicate=inspect.isfunction)
|
||||
):
|
||||
if method_name.startswith("_"):
|
||||
continue
|
||||
|
||||
has_methods = True
|
||||
try:
|
||||
# Add method docstring if available (before the method signature)
|
||||
if method.__doc__:
|
||||
stub_lines.extend(
|
||||
cls._format_docstring_for_stub(method.__doc__, f"{indent} ")
|
||||
)
|
||||
|
||||
method_sig = cls._generate_method_signature(
|
||||
method_name, method, is_async=True, type_tracker=type_tracker
|
||||
)
|
||||
stub_lines.append(f"{indent} {method_sig}")
|
||||
except (ValueError, TypeError):
|
||||
stub_lines.append(
|
||||
f"{indent} def {method_name}(self, *args, **kwargs): ..."
|
||||
)
|
||||
|
||||
if not has_methods:
|
||||
stub_lines.append(f"{indent} pass")
|
||||
|
||||
return stub_lines
|
||||
|
||||
@classmethod
|
||||
def _format_docstring_for_stub(
|
||||
cls, docstring: str, indent: str = " "
|
||||
) -> list[str]:
|
||||
"""Format a docstring for inclusion in a stub file with proper indentation."""
|
||||
if not docstring:
|
||||
return []
|
||||
|
||||
# First, dedent the docstring to remove any existing indentation
|
||||
dedented = textwrap.dedent(docstring).strip()
|
||||
|
||||
# Split into lines
|
||||
lines = dedented.split("\n")
|
||||
|
||||
# Build the properly indented docstring
|
||||
result = []
|
||||
result.append(f'{indent}"""')
|
||||
|
||||
for line in lines:
|
||||
if line.strip(): # Non-empty line
|
||||
result.append(f"{indent}{line}")
|
||||
else: # Empty line
|
||||
result.append("")
|
||||
|
||||
result.append(f'{indent}"""')
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def _post_process_stub_content(cls, stub_content: list[str]) -> list[str]:
|
||||
"""Post-process stub content to fix any remaining issues."""
|
||||
processed = []
|
||||
|
||||
for line in stub_content:
|
||||
# Skip processing imports
|
||||
if line.startswith(("from ", "import ")):
|
||||
processed.append(line)
|
||||
continue
|
||||
|
||||
# Fix method signatures missing return types
|
||||
if (
|
||||
line.strip().startswith("def ")
|
||||
and line.strip().endswith(": ...")
|
||||
and ") -> " not in line
|
||||
):
|
||||
# Add -> None for methods without return annotation
|
||||
line = line.replace(": ...", " -> None: ...")
|
||||
|
||||
processed.append(line)
|
||||
|
||||
return processed
|
||||
|
||||
@classmethod
|
||||
def generate_stub_file(cls, async_class: Type, sync_class: Type) -> None:
|
||||
"""
|
||||
Generate a .pyi stub file for the sync class to help IDEs with type checking.
|
||||
"""
|
||||
try:
|
||||
# Only generate stub if we can determine module path
|
||||
if async_class.__module__ == "__main__":
|
||||
return
|
||||
|
||||
module = inspect.getmodule(async_class)
|
||||
if not module:
|
||||
return
|
||||
|
||||
module_path = module.__file__
|
||||
if not module_path:
|
||||
return
|
||||
|
||||
# Create stub file path in a 'generated' subdirectory
|
||||
module_dir = os.path.dirname(module_path)
|
||||
stub_dir = os.path.join(module_dir, "generated")
|
||||
|
||||
# Ensure the generated directory exists
|
||||
os.makedirs(stub_dir, exist_ok=True)
|
||||
|
||||
module_name = os.path.basename(module_path)
|
||||
if module_name.endswith(".py"):
|
||||
module_name = module_name[:-3]
|
||||
|
||||
sync_stub_path = os.path.join(stub_dir, f"{sync_class.__name__}.pyi")
|
||||
|
||||
# Create a type tracker for this stub generation
|
||||
type_tracker = TypeTracker()
|
||||
|
||||
stub_content = []
|
||||
|
||||
# We'll generate imports after processing all methods to capture all types
|
||||
# Leave a placeholder for imports
|
||||
imports_placeholder_index = len(stub_content)
|
||||
stub_content.append("") # Will be replaced with imports later
|
||||
|
||||
# Class definition
|
||||
stub_content.append(f"class {sync_class.__name__}:")
|
||||
|
||||
# Docstring
|
||||
if async_class.__doc__:
|
||||
stub_content.extend(
|
||||
cls._format_docstring_for_stub(async_class.__doc__, " ")
|
||||
)
|
||||
|
||||
# Generate __init__
|
||||
try:
|
||||
init_method = async_class.__init__
|
||||
init_signature = inspect.signature(init_method)
|
||||
|
||||
# Try to get type hints for __init__
|
||||
try:
|
||||
from typing import get_type_hints
|
||||
init_hints = get_type_hints(init_method)
|
||||
except Exception:
|
||||
init_hints = {}
|
||||
|
||||
# Format parameters
|
||||
params_str = cls._format_method_parameters(
|
||||
init_signature, type_hints=init_hints, type_tracker=type_tracker
|
||||
)
|
||||
# Add __init__ docstring if available (before the method)
|
||||
if hasattr(init_method, "__doc__") and init_method.__doc__:
|
||||
stub_content.extend(
|
||||
cls._format_docstring_for_stub(init_method.__doc__, " ")
|
||||
)
|
||||
stub_content.append(f" def __init__({params_str}) -> None: ...")
|
||||
except (ValueError, TypeError):
|
||||
stub_content.append(
|
||||
" def __init__(self, *args, **kwargs) -> None: ..."
|
||||
)
|
||||
|
||||
stub_content.append("") # Add newline after __init__
|
||||
|
||||
# Get class attributes
|
||||
class_attributes = cls._get_class_attributes(async_class)
|
||||
|
||||
# Generate inner classes
|
||||
for name, attr in class_attributes:
|
||||
inner_class_stub = cls._generate_inner_class_stub(
|
||||
name, attr, type_tracker=type_tracker
|
||||
)
|
||||
stub_content.extend(inner_class_stub)
|
||||
stub_content.append("") # Add newline after the inner class
|
||||
|
||||
# Add methods to the main class
|
||||
processed_methods = set() # Keep track of methods we've processed
|
||||
for name, method in sorted(
|
||||
inspect.getmembers(async_class, predicate=inspect.isfunction)
|
||||
):
|
||||
if name.startswith("_") or name in processed_methods:
|
||||
continue
|
||||
|
||||
processed_methods.add(name)
|
||||
|
||||
try:
|
||||
method_sig = cls._generate_method_signature(
|
||||
name, method, is_async=True, type_tracker=type_tracker
|
||||
)
|
||||
|
||||
# Add docstring if available (before the method signature for proper formatting)
|
||||
if method.__doc__:
|
||||
stub_content.extend(
|
||||
cls._format_docstring_for_stub(method.__doc__, " ")
|
||||
)
|
||||
|
||||
stub_content.append(f" {method_sig}")
|
||||
|
||||
stub_content.append("") # Add newline after each method
|
||||
|
||||
except (ValueError, TypeError):
|
||||
# If we can't get the signature, just add a simple stub
|
||||
stub_content.append(f" def {name}(self, *args, **kwargs): ...")
|
||||
stub_content.append("") # Add newline
|
||||
|
||||
# Add properties
|
||||
for name, prop in sorted(
|
||||
inspect.getmembers(async_class, lambda x: isinstance(x, property))
|
||||
):
|
||||
stub_content.append(" @property")
|
||||
stub_content.append(f" def {name}(self) -> Any: ...")
|
||||
if prop.fset:
|
||||
stub_content.append(f" @{name}.setter")
|
||||
stub_content.append(
|
||||
f" def {name}(self, value: Any) -> None: ..."
|
||||
)
|
||||
stub_content.append("") # Add newline after each property
|
||||
|
||||
# Add placeholders for the nested class instances
|
||||
# Check the actual attribute names from class annotations and attributes
|
||||
attribute_mappings = {}
|
||||
|
||||
# First check annotations for typed attributes (including from parent classes)
|
||||
# Collect all annotations from the class hierarchy
|
||||
all_annotations = {}
|
||||
for base_class in reversed(inspect.getmro(async_class)):
|
||||
if hasattr(base_class, "__annotations__"):
|
||||
all_annotations.update(base_class.__annotations__)
|
||||
|
||||
for attr_name, attr_type in sorted(all_annotations.items()):
|
||||
for class_name, class_type in class_attributes:
|
||||
# If the class type matches the annotated type
|
||||
if (
|
||||
attr_type == class_type
|
||||
or (hasattr(attr_type, "__name__") and attr_type.__name__ == class_name)
|
||||
or (isinstance(attr_type, str) and attr_type == class_name)
|
||||
):
|
||||
attribute_mappings[class_name] = attr_name
|
||||
|
||||
# Remove the extra checking - annotations should be sufficient
|
||||
|
||||
# Add the attribute declarations with proper names
|
||||
for class_name, class_type in class_attributes:
|
||||
# Check if there's a mapping from annotation
|
||||
attr_name = attribute_mappings.get(class_name, class_name)
|
||||
# Use the annotation name if it exists, even if the attribute doesn't exist yet
|
||||
# This is because the attribute might be created at runtime
|
||||
stub_content.append(f" {attr_name}: {class_name}Sync")
|
||||
|
||||
stub_content.append("") # Add a final newline
|
||||
|
||||
# Now generate imports with all discovered types
|
||||
imports = cls._generate_imports(async_class, type_tracker)
|
||||
|
||||
# Deduplicate imports while preserving order
|
||||
seen = set()
|
||||
unique_imports = []
|
||||
for imp in imports:
|
||||
if imp not in seen:
|
||||
seen.add(imp)
|
||||
unique_imports.append(imp)
|
||||
else:
|
||||
logging.warning(f"Duplicate import detected: {imp}")
|
||||
|
||||
# Replace the placeholder with actual imports
|
||||
stub_content[imports_placeholder_index : imports_placeholder_index + 1] = (
|
||||
unique_imports
|
||||
)
|
||||
|
||||
# Post-process stub content
|
||||
stub_content = cls._post_process_stub_content(stub_content)
|
||||
|
||||
# Write stub file
|
||||
with open(sync_stub_path, "w") as f:
|
||||
f.write("\n".join(stub_content))
|
||||
|
||||
logging.info(f"Generated stub file: {sync_stub_path}")
|
||||
|
||||
except Exception as e:
|
||||
# If stub generation fails, log the error but don't break the main functionality
|
||||
logging.error(
|
||||
f"Error generating stub file for {sync_class.__name__}: {str(e)}"
|
||||
)
|
||||
import traceback
|
||||
|
||||
logging.error(traceback.format_exc())
|
||||
|
||||
|
||||
def create_sync_class(async_class: Type, thread_pool_size=10) -> Type:
|
||||
"""
|
||||
Creates a sync version of an async class
|
||||
|
||||
Args:
|
||||
async_class: The async class to convert
|
||||
thread_pool_size: Size of thread pool to use
|
||||
|
||||
Returns:
|
||||
A new class with sync versions of all async methods
|
||||
"""
|
||||
return AsyncToSyncConverter.create_sync_class(async_class, thread_pool_size)
|
||||
33
comfy_api/internal/singleton.py
Normal file
33
comfy_api/internal/singleton.py
Normal file
@@ -0,0 +1,33 @@
|
||||
from typing import Type, TypeVar
|
||||
|
||||
class SingletonMetaclass(type):
|
||||
T = TypeVar("T", bound="SingletonMetaclass")
|
||||
_instances = {}
|
||||
|
||||
def __call__(cls, *args, **kwargs):
|
||||
if cls not in cls._instances:
|
||||
cls._instances[cls] = super(SingletonMetaclass, cls).__call__(
|
||||
*args, **kwargs
|
||||
)
|
||||
return cls._instances[cls]
|
||||
|
||||
def inject_instance(cls: Type[T], instance: T) -> None:
|
||||
assert cls not in SingletonMetaclass._instances, (
|
||||
"Cannot inject instance after first instantiation"
|
||||
)
|
||||
SingletonMetaclass._instances[cls] = instance
|
||||
|
||||
def get_instance(cls: Type[T], *args, **kwargs) -> T:
|
||||
"""
|
||||
Gets the singleton instance of the class, creating it if it doesn't exist.
|
||||
"""
|
||||
if cls not in SingletonMetaclass._instances:
|
||||
SingletonMetaclass._instances[cls] = super(
|
||||
SingletonMetaclass, cls
|
||||
).__call__(*args, **kwargs)
|
||||
return cls._instances[cls]
|
||||
|
||||
|
||||
class ProxiedSingleton(object, metaclass=SingletonMetaclass):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
124
comfy_api/latest/__init__.py
Normal file
124
comfy_api/latest/__init__.py
Normal file
@@ -0,0 +1,124 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Type, TYPE_CHECKING
|
||||
from comfy_api.internal import ComfyAPIBase
|
||||
from comfy_api.internal.singleton import ProxiedSingleton
|
||||
from comfy_api.internal.async_to_sync import create_sync_class
|
||||
from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput
|
||||
from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents
|
||||
from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents
|
||||
from comfy_api.latest._io import _IO as io #noqa: F401
|
||||
from comfy_api.latest._ui import _UI as ui #noqa: F401
|
||||
# from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401
|
||||
from comfy_execution.utils import get_executing_context
|
||||
from comfy_execution.progress import get_progress_state, PreviewImageTuple
|
||||
from PIL import Image
|
||||
from comfy.cli_args import args
|
||||
import numpy as np
|
||||
|
||||
|
||||
class ComfyAPI_latest(ComfyAPIBase):
|
||||
VERSION = "latest"
|
||||
STABLE = False
|
||||
|
||||
class Execution(ProxiedSingleton):
|
||||
async def set_progress(
|
||||
self,
|
||||
value: float,
|
||||
max_value: float,
|
||||
node_id: str | None = None,
|
||||
preview_image: Image.Image | ImageInput | None = None,
|
||||
ignore_size_limit: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Update the progress bar displayed in the ComfyUI interface.
|
||||
|
||||
This function allows custom nodes and API calls to report their progress
|
||||
back to the user interface, providing visual feedback during long operations.
|
||||
|
||||
Migration from previous API: comfy.utils.PROGRESS_BAR_HOOK
|
||||
"""
|
||||
executing_context = get_executing_context()
|
||||
if node_id is None and executing_context is not None:
|
||||
node_id = executing_context.node_id
|
||||
if node_id is None:
|
||||
raise ValueError("node_id must be provided if not in executing context")
|
||||
|
||||
# Convert preview_image to PreviewImageTuple if needed
|
||||
to_display: PreviewImageTuple | Image.Image | ImageInput | None = preview_image
|
||||
if to_display is not None:
|
||||
# First convert to PIL Image if needed
|
||||
if isinstance(to_display, ImageInput):
|
||||
# Convert ImageInput (torch.Tensor) to PIL Image
|
||||
# Handle tensor shape [B, H, W, C] -> get first image if batch
|
||||
tensor = to_display
|
||||
if len(tensor.shape) == 4:
|
||||
tensor = tensor[0]
|
||||
|
||||
# Convert to numpy array and scale to 0-255
|
||||
image_np = (tensor.cpu().numpy() * 255).astype(np.uint8)
|
||||
to_display = Image.fromarray(image_np)
|
||||
|
||||
if isinstance(to_display, Image.Image):
|
||||
# Detect image format from PIL Image
|
||||
image_format = to_display.format if to_display.format else "JPEG"
|
||||
# Use None for preview_size if ignore_size_limit is True
|
||||
preview_size = None if ignore_size_limit else args.preview_size
|
||||
to_display = (image_format, to_display, preview_size)
|
||||
|
||||
get_progress_state().update_progress(
|
||||
node_id=node_id,
|
||||
value=value,
|
||||
max_value=max_value,
|
||||
image=to_display,
|
||||
)
|
||||
|
||||
execution: Execution
|
||||
|
||||
class ComfyExtension(ABC):
|
||||
async def on_load(self) -> None:
|
||||
"""
|
||||
Called when an extension is loaded.
|
||||
This should be used to initialize any global resources neeeded by the extension.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
"""
|
||||
Returns a list of nodes that this extension provides.
|
||||
"""
|
||||
|
||||
class Input:
|
||||
Image = ImageInput
|
||||
Audio = AudioInput
|
||||
Mask = MaskInput
|
||||
Latent = LatentInput
|
||||
Video = VideoInput
|
||||
|
||||
class InputImpl:
|
||||
VideoFromFile = VideoFromFile
|
||||
VideoFromComponents = VideoFromComponents
|
||||
|
||||
class Types:
|
||||
VideoCodec = VideoCodec
|
||||
VideoContainer = VideoContainer
|
||||
VideoComponents = VideoComponents
|
||||
|
||||
ComfyAPI = ComfyAPI_latest
|
||||
|
||||
# Create a synchronous version of the API
|
||||
if TYPE_CHECKING:
|
||||
import comfy_api.latest.generated.ComfyAPISyncStub # type: ignore
|
||||
|
||||
ComfyAPISync: Type[comfy_api.latest.generated.ComfyAPISyncStub.ComfyAPISyncStub]
|
||||
ComfyAPISync = create_sync_class(ComfyAPI_latest)
|
||||
|
||||
__all__ = [
|
||||
"ComfyAPI",
|
||||
"ComfyAPISync",
|
||||
"Input",
|
||||
"InputImpl",
|
||||
"Types",
|
||||
"ComfyExtension",
|
||||
]
|
||||
10
comfy_api/latest/_input/__init__.py
Normal file
10
comfy_api/latest/_input/__init__.py
Normal file
@@ -0,0 +1,10 @@
|
||||
from .basic_types import ImageInput, AudioInput, MaskInput, LatentInput
|
||||
from .video_types import VideoInput
|
||||
|
||||
__all__ = [
|
||||
"ImageInput",
|
||||
"AudioInput",
|
||||
"VideoInput",
|
||||
"MaskInput",
|
||||
"LatentInput",
|
||||
]
|
||||
42
comfy_api/latest/_input/basic_types.py
Normal file
42
comfy_api/latest/_input/basic_types.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import torch
|
||||
from typing import TypedDict, List, Optional
|
||||
|
||||
ImageInput = torch.Tensor
|
||||
"""
|
||||
An image in format [B, H, W, C] where B is the batch size, C is the number of channels,
|
||||
"""
|
||||
|
||||
MaskInput = torch.Tensor
|
||||
"""
|
||||
A mask in format [B, H, W] where B is the batch size
|
||||
"""
|
||||
|
||||
class AudioInput(TypedDict):
|
||||
"""
|
||||
TypedDict representing audio input.
|
||||
"""
|
||||
|
||||
waveform: torch.Tensor
|
||||
"""
|
||||
Tensor in the format [B, C, T] where B is the batch size, C is the number of channels,
|
||||
"""
|
||||
|
||||
sample_rate: int
|
||||
|
||||
class LatentInput(TypedDict):
|
||||
"""
|
||||
TypedDict representing latent input.
|
||||
"""
|
||||
|
||||
samples: torch.Tensor
|
||||
"""
|
||||
Tensor in the format [B, C, H, W] where B is the batch size, C is the number of channels,
|
||||
H is the height, and W is the width.
|
||||
"""
|
||||
|
||||
noise_mask: Optional[MaskInput]
|
||||
"""
|
||||
Optional noise mask tensor in the same format as samples.
|
||||
"""
|
||||
|
||||
batch_index: Optional[List[int]]
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user