Compare commits

...

205 Commits

Author SHA1 Message Date
Alexander Piskun
917177e821 move assets related stuff to "app/assets" folder (#10184) 2025-10-03 11:53:26 -07:00
Alexander Piskun
fd6ac0a765 drop PgSQL 14, unite migration for SQLite and PgSQL (#10165) 2025-10-03 11:34:06 -07:00
Alexander Piskun
94941c50b3 move alembic_db inside app folder (#10163) 2025-10-02 15:01:16 -07:00
Jedrzej Kosinski
fbba2e59e5 Satisfy ruff 2025-09-26 20:39:23 -07:00
Jedrzej Kosinski
adccfb2dfd Remove populate_db_with_asset from load_torch_file for now, as nothing yet uses the hashes 2025-09-26 20:33:46 -07:00
Jedrzej Kosinski
9f4c0f3afe Merge branch 'master' into asset-management 2025-09-26 20:24:25 -07:00
Jedrzej Kosinski
196954ab8c Add 'input_cond' and 'input_uncond' to the args dictionary passed into sampler_cfg_function (#10044) 2025-09-26 19:55:03 -07:00
comfyanonymous
1e098d6132 Don't add template to qwen2.5vl when template is in prompt. (#10043)
Make the hunyuan image refiner template_end 36.
2025-09-26 18:34:17 -04:00
Alexander Piskun
cd66d72b46 convert CLIPTextEncodeSDXL nodes to V3 schema (#9716) 2025-09-26 14:15:44 -07:00
Alexander Piskun
2103e39335 convert nodes_post_processing to V3 schema (#9491) 2025-09-26 14:14:42 -07:00
Alexander Piskun
d20576e6a3 convert nodes_sag.py to V3 schema (#9940) 2025-09-26 14:13:52 -07:00
Alexander Piskun
a061b06321 convert nodes_tcfg.py to V3 schema (#9942) 2025-09-26 14:13:05 -07:00
Alexander Piskun
80718908a9 convert nodes_sdupscale.py to V3 schema (#9943) 2025-09-26 14:12:38 -07:00
Alexander Piskun
7ea173c187 convert nodes_fresca.py to V3 schema (#9951) 2025-09-26 14:12:04 -07:00
Alexander Piskun
76eb1d72c3 convert nodes_rebatch.py to V3 schema (#9945) 2025-09-26 14:10:49 -07:00
Yoland Yan
c4a46e943c Add @kosinkadink as code owner (#10041)
Updated CODEOWNERS to include @kosinkadink as a code owner.
2025-09-26 17:08:16 -04:00
comfyanonymous
2b7f9a8196 Fix the failing unit test. (#10037) 2025-09-26 14:12:43 -04:00
comfyanonymous
ce4cb2389c Make LatentCompositeMasked work with basic video latents. (#10023) 2025-09-25 17:20:13 -04:00
Jedrzej Kosinski
ca39552954 Merge branch 'master' into asset-management 2025-09-24 23:44:57 -07:00
Guy Niv
c8d2117f02 Fix memory leak by properly detaching model finalizer (#9979)
When unloading models in load_models_gpu(), the model finalizer was not
being explicitly detached, leading to a memory leak. This caused
linear memory consumption increase over time as models are repeatedly
loaded and unloaded.

This change prevents orphaned finalizer references from accumulating in
memory during model switching operations.
2025-09-24 22:35:12 -04:00
comfyanonymous
fccab99ec0 Fix issue with .view() in HuMo. (#10014) 2025-09-24 20:09:42 -04:00
Jukka Seppänen
fd79d32f38 Add new audio nodes (#9908)
* Add new audio nodes

- TrimAudioDuration
- SplitAudioChannels
- AudioConcat
- AudioMerge
- AudioAdjustVolume

* Update nodes_audio.py

* Add EmptyAudio -node

* Change duration to Float (allows sub seconds)
2025-09-24 18:59:29 -04:00
Changrz
341b4adefd Rodin3D - add [Rodin3D Gen-2 generate] api-node (#9994)
* update Rodin api node

* update rodin3d gen2 api node

* fix images limited bug
2025-09-24 14:05:37 -04:00
comfyanonymous
b8730510db ComfyUI version 0.3.60 2025-09-23 11:50:33 -04:00
Alexander Piskun
e808790799 feat(api-nodes): add wan t2i, t2v, i2v nodes (#9996) 2025-09-23 11:36:47 -04:00
ComfyUI Wiki
145b0e4f79 update template to 0.1.86 (#9998)
* update template to 0.1.84

* update template to 0.1.85

* Update template to 0.1.86
2025-09-23 11:22:35 -04:00
comfyanonymous
707b2638ec Fix bug with WanAnimateToVideo. (#9990) 2025-09-22 17:34:33 -04:00
comfyanonymous
8a5ac527e6 Fix bug with WanAnimateToVideo node. (#9988) 2025-09-22 17:26:58 -04:00
Christian Byrne
e3206351b0 add offset param (#9977) 2025-09-22 17:12:32 -04:00
comfyanonymous
1fee8827cb Support for qwen edit plus model. Use the new TextEncodeQwenImageEditPlus. (#9986) 2025-09-22 16:49:48 -04:00
comfyanonymous
27bc181c49 Set some wan nodes as no longer experimental. (#9976) 2025-09-21 19:48:31 -04:00
comfyanonymous
d1d9eb94b1 Lower wan memory estimation value a bit. (#9964)
Previous pr reduced the peak memory requirement.
2025-09-20 22:09:35 -04:00
Kohaku-Blueleaf
7be2b49b6b Fix LoRA Trainer bugs with FP8 models. (#9854)
* Fix adapter weight init

* Fix fp8 model training

* Avoid inference tensor
2025-09-20 21:24:48 -04:00
Jedrzej Kosinski
9ed3c5cc09 [Reviving #5709] Add strength input to Differential Diffusion (#9957)
* Update nodes_differential_diffusion.py

* Update nodes_differential_diffusion.py

* Make strength optional to avoid validation errors when loading old workflows, adjust step

---------

Co-authored-by: ThereforeGames <eric@sparknight.io>
2025-09-20 21:10:39 -04:00
comfyanonymous
66241cef31 Add inputs for character replacement to the WanAnimateToVideo node. (#9960) 2025-09-20 02:24:10 -04:00
comfyanonymous
e8df53b764 Update WanAnimateToVideo to more easily extend videos. (#9959) 2025-09-19 18:48:56 -04:00
Alexander Piskun
852704c81a fix(seedream4): add flag to ignore error on partial success (#9952) 2025-09-19 16:04:51 -04:00
Alexander Piskun
9fdf8c25ab api_nodes: reduce default timeout from 7 days to 2 hours (#9918) 2025-09-19 16:02:43 -04:00
comfyanonymous
dc95b6acc0 Basic WIP support for the wan animate model. (#9939) 2025-09-19 03:07:17 -04:00
Christian Byrne
711bcf33ee Bump frontend to 1.26.13 (#9933) 2025-09-19 03:03:30 -04:00
comfyanonymous
24b0fce099 Do padding of audio embed in model for humo for more flexibility. (#9935) 2025-09-18 19:54:16 -04:00
Jodh Singh
1ea8c54064 make kernel of same type as image to avoid mismatch issues (#9932) 2025-09-18 19:51:16 -04:00
DELUXA
8d6653fca6 Enable fp8 ops by default on gfx1200 (#9926) 2025-09-18 19:50:37 -04:00
Jedrzej Kosinski
4dd843d36f Merge branch 'master' into asset-management 2025-09-18 14:08:20 -07:00
Jedrzej Kosinski
46fdd636de Merge pull request #9545 from bigcat88/asset-management
[Assets] Initial implementation
2025-09-18 14:07:18 -07:00
bigcat88
283cd27bdc final adjustments 2025-09-18 10:05:32 +03:00
comfyanonymous
dd611a7700 Support the HuMo 17B model. (#9912) 2025-09-17 18:39:24 -04:00
bigcat88
1a37d1476d refactor(6): fully batched initial scan 2025-09-17 20:29:29 +03:00
bigcat88
f9602457d6 optimization: initial scan speed(batching metadata[filename]) 2025-09-17 16:47:27 +03:00
bigcat88
85ef08449d optimization: initial scan speed(batching tags) 2025-09-17 14:08:57 +03:00
bigcat88
5b6810a2c6 fixed hash calculation during model loading in ComfyUI 2025-09-17 13:25:56 +03:00
bigcat88
621faaa195 refactor(5): use less DB queries to create seed asset 2025-09-17 10:46:21 +03:00
comfyanonymous
9288c78fc5 Support the HuMo model. (#9903) 2025-09-17 00:12:48 -04:00
rattus128
e42682b24e Reduce Peak WAN inference VRAM usage (#9898)
* flux: Do the xq and xk ropes one at a time

This was doing independendent interleaved tensor math on the q and k
tensors, leading to the holding of more than the minimum intermediates
in VRAM. On a bad day, it would VRAM OOM on xk intermediates.

Do everything q and then everything k, so torch can garbage collect
all of qs intermediates before k allocates its intermediates.

This reduces peak VRAM usage for some WAN2.2 inferences (at least).

* wan: Optimize qkv intermediates on attention

As commented. The former logic computed independent pieces of QKV in
parallel which help more inference intermediates in VRAM spiking
VRAM usage. Fully roping Q and garbage collecting the intermediates
before touching K reduces the peak inference VRAM usage.
2025-09-16 19:21:14 -04:00
bigcat88
d0aa64d57b refactor(4): use one query to init DB with all tags for assets 2025-09-16 21:18:18 +03:00
bigcat88
677a0e2508 refactor(3): unite logic for Asset fast check 2025-09-16 20:29:50 +03:00
bigcat88
31ec744317 refactor(2)/fix: skip double checking the existing files during fast check 2025-09-16 19:50:21 +03:00
bigcat88
a336c7c165 refactor(1): use general fast_asset_file_check helper for fast check 2025-09-16 19:19:18 +03:00
bigcat88
77332d3054 optimization: fast scan: commit to the DB in chunks 2025-09-16 14:21:40 +03:00
bigcat88
24a95f5ca4 removed default scanning of "input" and "output" folders; added separate endpoint for test suite. 2025-09-16 11:28:29 +03:00
comfyanonymous
a39ac59c3e Add encoder part of whisper large v3 as an audio encoder model. (#9894)
Not useful yet but some models use it.
2025-09-16 01:19:50 -04:00
blepping
1a85483da1 Fix depending on asserts to raise an exception in BatchedBrownianTree and Flash attn module (#9884)
Correctly handle the case where w0 is passed by kwargs in BatchedBrownianTree
2025-09-15 20:05:03 -04:00
comfyanonymous
47a9cde5d3 Support the omnigen2 umo lora. (#9886) 2025-09-15 18:10:55 -04:00
bigcat88
0be513b213 fix: escape "_" symbol in all other places 2025-09-15 20:26:48 +03:00
bigcat88
f1fb7432a0 fix+test: escape "_" symbol in assets filtering 2025-09-15 19:19:47 +03:00
bigcat88
f3cf99d10c fix+test: escape "_" symbol in tags filtering 2025-09-15 17:29:27 +03:00
bigcat88
5f187fe6fb optimization: make list_unhashed_candidates_under_prefixes single-query instead of N+1 2025-09-15 12:46:35 +03:00
bigcat88
025fc49b4e optimization: DB Queries (Tags) 2025-09-15 10:26:13 +03:00
bigcat88
7becb84341 fixed tests on SQLite file 2025-09-14 23:01:17 +03:00
bigcat88
dda31de690 rework: AssetInfo.name is only a display name 2025-09-14 21:53:44 +03:00
bigcat88
1d970382f0 added final tests 2025-09-14 20:02:28 +03:00
bigcat88
a2fc2bbae4 corrected formatting 2025-09-14 18:12:00 +03:00
bigcat88
a7f2546558 fix: use ".rowcount" instead of ".returning" on SQLite 2025-09-14 17:55:02 +03:00
bigcat88
6cfa94ec58 fixed metadata[filename] feature + new tests for this 2025-09-14 16:28:14 +03:00
bigcat88
a2ec1f7637 simplify code 2025-09-14 15:31:42 +03:00
bigcat88
0b795dc7a7 removed non-needed code 2025-09-14 15:14:24 +03:00
bigcat88
47f7c7ee8c rework + add test for concurrent AssetInfo delete 2025-09-14 15:08:29 +03:00
bigcat88
cdd8d16075 +2 tests for checking Asset downloading logic 2025-09-14 14:57:24 +03:00
bigcat88
37b81e6658 fixed new PgSQL bug 2025-09-14 14:30:38 +03:00
comfyanonymous
4f1f26ac6c Add that hunyuan image is supported to readme. (#9857) 2025-09-14 04:05:38 -04:00
bigcat88
975650060f concurrency upload test + fixed 2 related bugs 2025-09-14 09:39:23 +03:00
bigcat88
4a713654cd added more tests for the Assets logic 2025-09-14 09:10:59 +03:00
Jedrzej Kosinski
f228367c5e Make ModuleNotFoundError ImportError instead (#9850) 2025-09-13 21:34:21 -04:00
comfyanonymous
80b7c9455b Changes to the previous radiance commit. (#9851) 2025-09-13 18:03:34 -04:00
blepping
c1297f4eb3 Add support for Chroma Radiance (#9682)
* Initial Chroma Radiance support

* Minor Chroma Radiance cleanups

* Update Radiance nodes to ensure latents/images are on the intermediate device

* Fix Chroma Radiance memory estimation.

* Increase Chroma Radiance memory usage factor

* Increase Chroma Radiance memory usage factor once again

* Ensure images are multiples of 16 for Chroma Radiance
Add batch dimension and fix channels when necessary in ChromaRadianceImageToLatent node

* Tile Chroma Radiance NeRF to reduce memory consumption, update memory usage factor

* Update Radiance to support conv nerf final head type.

* Allow setting NeRF embedder dtype for Radiance
Bump Radiance nerf tile size to 32
Support EasyCache/LazyCache on Radiance (maybe)

* Add ChromaRadianceStubVAE node

* Crop Radiance image inputs to multiples of 16 instead of erroring to be in line with existing VAE behavior

* Convert Chroma Radiance nodes to V3 schema.

* Add ChromaRadianceOptions node and backend support.
Cleanups/refactoring to reduce code duplication with Chroma.

* Fix overriding the NeRF embedder dtype for Chroma Radiance

* Minor Chroma Radiance cleanups

* Move Chroma Radiance to its own directory in ldm
Minor code cleanups and tooltip improvements

* Fix Chroma Radiance embedder dtype overriding

* Remove Radiance dynamic nerf_embedder dtype override feature

* Unbork Radiance NeRF embedder init

* Remove Chroma Radiance image conversion and stub VAE nodes
Add a chroma_radiance option to the VAELoader builtin node which uses comfy.sd.PixelspaceConversionVAE
Add a PixelspaceConversionVAE to comfy.sd for converting BHWC 0..1 <-> BCHW -1..1
2025-09-13 17:58:43 -04:00
Kimbing Ng
e5e70636e7 Remove single quote pattern to avoid wrong matches (#9842) 2025-09-13 16:59:19 -04:00
bigcat88
9b8e88ba6e added more tests for the Assets logic 2025-09-13 20:09:45 +03:00
bigcat88
bb9ed04758 global refactoring; add support for Assets without the computed hash 2025-09-13 16:39:08 +03:00
comfyanonymous
29bf807b0e Cleanup. (#9838) 2025-09-12 21:57:04 -04:00
Jukka Seppänen
2559dee492 Support wav2vec base models (#9637)
* Support wav2vec base models

* trim trailing whitespace

* Do interpolation after
2025-09-12 21:52:58 -04:00
comfyanonymous
a3b04de700 Hunyuan refiner vae now works with tiled. (#9836) 2025-09-12 19:46:46 -04:00
Jedrzej Kosinski
d7f40442f9 Enable Runtime Selection of Attention Functions (#9639)
* Looking into a @wrap_attn decorator to look for 'optimized_attention_override' entry in transformer_options

* Created logging code for this branch so that it can be used to track down all the code paths where transformer_options would need to be added

* Fix memory usage issue with inspect

* Made WAN attention receive transformer_options, test node added to wan to test out attention override later

* Added **kwargs to all attention functions so transformer_options could potentially be passed through

* Make sure wrap_attn doesn't make itself recurse infinitely, attempt to load SageAttention and FlashAttention if not enabled so that they can be marked as available or not, create registry for available attention

* Turn off attention logging for now, make AttentionOverrideTestNode have a dropdown with available attention (this is a test node only)

* Make flux work with optimized_attention_override

* Add logs to verify optimized_attention_override is passed all the way into attention function

* Make Qwen work with optimized_attention_override

* Made hidream work with optimized_attention_override

* Made wan patches_replace work with optimized_attention_override

* Made SD3 work with optimized_attention_override

* Made HunyuanVideo work with optimized_attention_override

* Made Mochi work with optimized_attention_override

* Made LTX work with optimized_attention_override

* Made StableAudio work with optimized_attention_override

* Made optimized_attention_override work with ACE Step

* Made Hunyuan3D work with optimized_attention_override

* Make CosmosPredict2 work with optimized_attention_override

* Made CosmosVideo work with optimized_attention_override

* Made Omnigen 2 work with optimized_attention_override

* Made StableCascade work with optimized_attention_override

* Made AuraFlow work with optimized_attention_override

* Made Lumina work with optimized_attention_override

* Made Chroma work with optimized_attention_override

* Made SVD work with optimized_attention_override

* Fix WanI2VCrossAttention so that it expects to receive transformer_options

* Fixed Wan2.1 Fun Camera transformer_options passthrough

* Fixed WAN 2.1 VACE transformer_options passthrough

* Add optimized to get_attention_function

* Disable attention logs for now

* Remove attention logging code

* Remove _register_core_attention_functions, as we wouldn't want someone to call that, just in case

* Satisfy ruff

* Remove AttentionOverrideTest node, that's something to cook up for later
2025-09-12 18:07:38 -04:00
comfyanonymous
b149e2e1e3 Better way of doing the generator for the hunyuan image noise aug. (#9834) 2025-09-12 17:53:15 -04:00
Alexander Piskun
581bae2af3 convert Moonvalley API nodes to the V3 schema (#9698) 2025-09-12 17:41:26 -04:00
Alexander Piskun
af99928f22 convert Canny node to V3 schema (#9743) 2025-09-12 17:40:34 -04:00
Alexander Piskun
53c9c7d39a convert CFG nodes to V3 schema (#9717) 2025-09-12 17:39:55 -04:00
Alexander Piskun
ba68e83f1c convert nodes_cond.py to V3 schema (#9719) 2025-09-12 17:39:30 -04:00
Alexander Piskun
dcb8834983 convert Cosmos nodes to V3 schema (#9721) 2025-09-12 17:38:46 -04:00
Alexander Piskun
f9d2e4b742 convert WanCameraEmbedding node to V3 schema (#9714) 2025-09-12 17:38:12 -04:00
Alexander Piskun
45bc1f5c00 convert Minimax API nodes to the V3 schema (#9693) 2025-09-12 17:37:31 -04:00
Alexander Piskun
0aa074a420 add kling-v2-1 model to the KlingStartEndFrame node (#9630) 2025-09-12 17:29:03 -04:00
comfyanonymous
7757d5a657 Set default hunyuan refiner shift to 4.0 (#9833) 2025-09-12 16:40:12 -04:00
comfyanonymous
e600520f8a Fix hunyuan refiner blownout colors at noise aug less than 0.25 (#9832) 2025-09-12 16:35:34 -04:00
comfyanonymous
fd2b820ec2 Add noise augmentation to hunyuan image refiner. (#9831)
This was missing and should help with colors being blown out.
2025-09-12 16:03:08 -04:00
Alexander Piskun
934377ac1e removed currently unnecessary "asset_locations" functionality 2025-09-12 14:46:22 +03:00
Benjamin Lu
d6b977b2e6 Bump frontend to 1.26.11 (#9809) 2025-09-12 00:46:01 -04:00
Jedrzej Kosinski
15ec9ea958 Add Output to V3 Combo type to match what is possible with V1 (#9813) 2025-09-12 00:44:20 -04:00
comfyanonymous
33bd9ed9cb Implement hunyuan image refiner model. (#9817) 2025-09-12 00:43:20 -04:00
comfyanonymous
18de0b2830 Fast preview for hunyuan image. (#9814) 2025-09-11 19:33:02 -04:00
ComfyUI Wiki
df6850fae8 Update template to 0.1.81 (#9811) 2025-09-11 14:59:26 -04:00
comfyanonymous
e01e99d075 Support hunyuan image distilled model. (#9807) 2025-09-10 23:17:34 -04:00
comfyanonymous
72212fef66 ComfyUI version 0.3.59 2025-09-10 17:25:41 -04:00
ComfyUI Wiki
df34f1549a Update template to 0.1.78 (#9806)
* Update template to 0.1.77

* Update template to 0.1.78
2025-09-10 14:16:41 -07:00
Alexander Piskun
9b0553809c add new ByteDanceSeedream (4.0) node (#9802) 2025-09-10 14:13:18 -07:00
comfyanonymous
8d7c930246 ComfyUI version v0.3.58 2025-09-10 10:51:02 -04:00
Alexander Piskun
3c9bf39c20 Merge pull request #1 from bigcat88/asset-management-ci
fix bugs + GH CI tests
2025-09-10 16:31:11 +03:00
bigcat88
0df1ccac6f GitHub CI test for Assets 2025-09-10 16:22:22 +03:00
Alexander Piskun
de44b95db6 add StabilityAudio API nodes (#9749) 2025-09-10 05:06:47 -04:00
bigcat88
72548a8ac4 added additional tests; sorted tests 2025-09-10 10:39:55 +03:00
bigcat88
6eaed072c7 add some logic tests 2025-09-10 09:51:06 +03:00
comfyanonymous
543888d3d8 Fix lowvram issue with hunyuan image vae. (#9794) 2025-09-10 02:15:34 -04:00
ComfyUI Wiki
70fc0425b3 Update template to 0.1.76 (#9793) 2025-09-10 02:09:16 -04:00
comfyanonymous
85e34643f8 Support hunyuan image 2.1 regular model. (#9792) 2025-09-10 02:05:07 -04:00
comfyanonymous
5c33872e2f Fix issue on old torch. (#9791) 2025-09-10 00:23:47 -04:00
Jedrzej Kosinski
206595f854 Change validate_inputs' output typehint to 'bool | str' and update docstrings (#9786) 2025-09-09 21:33:36 -04:00
comfyanonymous
b288fb0db8 Small refactor of some vae code. (#9787) 2025-09-09 18:09:56 -04:00
Alexander Piskun
f73b176abd add ByteDance video API nodes (#9712) 2025-09-09 14:40:29 -04:00
bigcat88
a9096f6c97 removed non-needed code, fix tests, +1 new test 2025-09-09 20:54:11 +03:00
bigcat88
964de8a8ad add more list_assets tests + fix one found bug 2025-09-09 20:35:18 +03:00
bigcat88
1886f10e19 add download tests 2025-09-09 19:30:58 +03:00
bigcat88
357193f7b5 fixed metadata filtering + tests 2025-09-09 19:12:11 +03:00
bigcat88
0ef73e95fd fixed validation error + more tests 2025-09-09 16:02:39 +03:00
bigcat88
faa1e4de17 fixed another test 2025-09-09 15:17:03 +03:00
bigcat88
dfb5703d40 feat: remove Asset when there is no references left + bugfixes + more tests 2025-09-09 15:10:07 +03:00
comfyanonymous
103a12cb66 Support qwen inpaint controlnet. (#9772) 2025-09-08 17:30:26 -04:00
contentis
97652d26b8 Add explicit casting in apply_rope for Qwen VL (#9759) 2025-09-08 15:08:18 -04:00
Jedrzej Kosinski
bd1d9bcd5f Add ZeroDivisionError catch for EasyCache logging statement (#9768) 2025-09-08 15:07:04 -04:00
bigcat88
0e9de2b7c9 feat: add first test 2025-09-08 20:43:45 +03:00
bigcat88
e3311c9229 feat: support for in-memory SQLite databases 2025-09-08 18:15:09 +03:00
bigcat88
3fa0fc496c fix: use UPSERT to eliminate rare race condition during ingesting many small files in parallel 2025-09-08 18:13:32 +03:00
comfyanonymous
fb763d4333 Fix amd_min_version crash when cpu device. (#9754) 2025-09-07 21:16:29 -04:00
bigcat88
6282d495ca corrected detection of missing files for assets 2025-09-07 22:08:38 +03:00
bigcat88
b8ef9bb92c add detection of the missing files for existing assets 2025-09-07 16:49:39 +03:00
comfyanonymous
bcbd7884e3 Don't enable pytorch attention on AMD if triton isn't available. (#9747) 2025-09-07 00:29:38 -04:00
comfyanonymous
27a0fcccc3 Enable bf16 VAE on RDNA4. (#9746) 2025-09-06 23:25:22 -04:00
bigcat88
2d9be462d3 add support for assets duplicates 2025-09-06 19:22:51 +03:00
bigcat88
789a62ce35 assume that DB packages always present; refactoring & cleanup 2025-09-06 17:44:01 +03:00
comfyanonymous
ea6cdd2631 Print all fast options in --help (#9737) 2025-09-06 01:05:05 -04:00
bigcat88
84384ca0b4 temporary restore ModelManager 2025-09-05 23:02:26 +03:00
comfyanonymous
2ee7879a0b Fix lowvram issues with hunyuan3d 2.1 (#9735) 2025-09-05 14:57:35 -04:00
Arjan Singh
3493b9cb1f fix: add cache headers for images (#9560) 2025-09-05 14:32:25 -04:00
bigcat88
ce270ba090 added Assets Autoscan feature 2025-09-05 17:46:09 +03:00
comfyanonymous
c9ebe70072 Some changes to the previous hunyuan PR. (#9725) 2025-09-04 20:39:02 -04:00
Yousef R. Gamaleldin
261421e218 Add Hunyuan 3D 2.1 Support (#8714) 2025-09-04 20:36:20 -04:00
guill
a9f1bb10a5 Fix progress update crossover between users (#9706)
* Fix showing progress from other sessions

Because `client_id` was missing from ths `progress_state` message, it
was being sent to all connected sessions. This technically meant that if
someone had a graph with the same nodes, they would see the progress
updates for others.

Also added a test to prevent reoccurance and moved the tests around to
make CI easier to hook up.

* Fix CI issues related to timing-sensitive tests
2025-09-04 19:13:28 -04:00
comfyanonymous
b0338e930b ComfyUI 0.3.57 2025-09-04 02:15:57 -04:00
ComfyUI Wiki
b71f9bcb71 Update template to 0.1.75 (#9711) 2025-09-04 02:14:02 -04:00
comfyanonymous
72855db715 Fix potential rope issue. (#9710) 2025-09-03 22:20:13 -04:00
Alexander Piskun
f48d05a2d1 convert AlignYourStepsScheduler node to V3 schema (#9226) 2025-09-03 21:21:38 -04:00
comfyanonymous
4368d8f87f Update comment in api example. (#9708) 2025-09-03 18:43:29 -04:00
Alexander Piskun
22da0a83e9 [V3] convert Runway API nodes to the V3 schema (#9487)
* convert RunAway API nodes to the V3 schema

* fixed small typo

* fix: add tooltip for "seed" input
2025-09-03 16:18:27 -04:00
Alexander Piskun
50333f1715 api nodes(Ideogram): add Ideogram Character (#9616)
* api nodes(Ideogram): add Ideogram Character

* rename renderingSpeed default value from 'balanced' to 'default'
2025-09-03 16:17:37 -04:00
Alexander Piskun
26d5b86da8 feat(api-nodes): add ByteDance Image nodes (#9477) 2025-09-03 16:17:07 -04:00
ComfyUI Wiki
4f5812b937 Update template to 0.1.73 (#9686) 2025-09-02 20:06:41 -04:00
comfyanonymous
1bcb469089 ImageScaleToMaxDimension node. (#9689) 2025-09-02 20:05:57 -04:00
Deep Roy
464ba1d614 Accept prompt_id in interrupt handler (#9607)
* Accept prompt_id in interrupt handler

* remove a log
2025-09-02 19:41:10 -04:00
comfyanonymous
e3018c2a5a uso -> uxo/uno as requested. (#9688) 2025-09-02 16:12:07 -04:00
comfyanonymous
3412d53b1d USO style reference. (#9677)
Load the projector.safetensors file with the ModelPatchLoader node and use
the siglip_vision_patch14_384.safetensors "clip vision" model and the
USOStyleReferenceNode.
2025-09-02 15:36:22 -04:00
contentis
e2d1e5dad9 Enable Convolution AutoTuning (#9301) 2025-09-01 20:33:50 -04:00
comfyanonymous
27e067ce50 Implement the USO subject identity lora. (#9674)
Use the lora with FluxContextMultiReferenceLatentMethod node set to "uso"
and a ReferenceLatent node with the reference image.
2025-09-01 18:54:02 -04:00
comfyanonymous
9b15155972 Probably not necessary anymore. (#9646) 2025-08-31 01:32:10 -04:00
chaObserv
32a627bf1f SEEDS: update noise decomposition and refactor (#9633)
- Update the decomposition to reflect interval dependency
- Extract phi computations into functions
- Use torch.lerp for interpolation
2025-08-31 00:01:45 -04:00
Alexander Piskun
fe442fac2e convert Primitive nodes to V3 schema (#9372) 2025-08-30 23:21:58 -04:00
Alexander Piskun
d2c502e629 convert nodes_stability.py to V3 schema (#9497) 2025-08-30 23:20:17 -04:00
Alexander Piskun
fea9ea8268 convert Video nodes to V3 schema (#9489) 2025-08-30 23:19:54 -04:00
Alexander Piskun
f949094b3c convert Stable Cascade nodes to V3 schema (#9373) 2025-08-30 23:19:21 -04:00
bigcat88
bf8363ec87 always autofill "filename" in the metadata 2025-08-29 19:48:42 +03:00
bigcat88
6b86be320a use UUID instead of autoincrement Integer for Assets ID field 2025-08-28 08:22:54 +03:00
bigcat88
bdf4ba24ce removed not needed "assets.updated_at" column 2025-08-27 21:58:17 +03:00
bigcat88
871e41aec6 removed not needed "refcount" column 2025-08-27 21:36:31 +03:00
bigcat88
eb7008a4d3 removed not used "added_by" column 2025-08-27 21:26:35 +03:00
bigcat88
0379eff0b5 allow Upload Asset endpoint to accept hash (as documentation requires) 2025-08-27 21:18:26 +03:00
bigcat88
026b7f209c add "--multi-user" support 2025-08-27 19:47:55 +03:00
bigcat88
7c1b0be496 add Get Asset endpoint 2025-08-27 09:58:12 +03:00
bigcat88
6fade5da38 add AssetsResolver support 2025-08-26 20:58:04 +03:00
bigcat88
a763cbd39d add upload asset endpoint 2025-08-25 16:35:29 +03:00
bigcat88
09dabf95bc refactoring: use the same code for "scan task" and realtime DB population 2025-08-25 13:31:56 +03:00
bigcat88
d7464e9e73 implemented assets scaner 2025-08-24 19:29:21 +03:00
bigcat88
a82577f64a auto-creation of tags and fixed population DB when cloned asset is already present 2025-08-24 16:36:01 +03:00
bigcat88
f2ea0bc22c added create_asset_from_hash endpoint 2025-08-24 14:15:21 +03:00
bigcat88
0755e5320a remove timezone; download asset, delete asset endpoints 2025-08-24 12:36:20 +03:00
bigcat88
8d46bec951 use Pydantic for output; finished Tags endpoints 2025-08-24 11:02:30 +03:00
bigcat88
5c1b5973ac dev: refactor; populate models in more nodes; use Pydantic in endpoints for input validation 2025-08-23 20:14:22 +03:00
bigcat88
f92307cd4c dev: Everything is Assets 2025-08-23 19:21:52 +03:00
Jedrzej Kosinski
c708d0a433 Merge branch 'master' into asset-management 2025-08-18 12:12:15 -07:00
Jedrzej Kosinski
1aa089e0b6 More progress on brainstorming code for asset management for models 2025-08-12 17:59:16 -07:00
Jedrzej Kosinski
f032c1a50a Brainstorming abstraction for asset management stuff 2025-08-11 22:25:42 -07:00
Jedrzej Kosinski
3089936a2c Merge branch 'master' into pysssss-model-db 2025-08-11 14:09:21 -07:00
Jedrzej Kosinski
cd679129e3 Merge branch 'master' into pysssss-model-db 2025-08-07 21:12:30 -07:00
pythongosssss
d7062277a7 fix bad merge 2025-08-03 16:40:27 +01:00
pythongosssss
54cf14cbbb Merge remote-tracking branch 'origin/master' into pysssss-model-db 2025-08-03 16:36:49 +01:00
pythongosssss
7d5160f92c Tidy 2025-06-01 15:45:15 +01:00
pythongosssss
7f7b3f1695 tidy 2025-06-01 15:41:00 +01:00
pythongosssss
9da6aca0d0 Add additional db model metadata fields and model downloading function 2025-06-01 15:32:13 +01:00
pythongosssss
1cb3c98947 Implement database & model hashing 2025-06-01 15:32:02 +01:00
189 changed files with 20749 additions and 2979 deletions

173
.github/workflows/test-assets.yml vendored Normal file
View File

@@ -0,0 +1,173 @@
name: Asset System Tests
on:
push:
paths:
- 'app/**'
- 'tests-assets/**'
- '.github/workflows/test-assets.yml'
- 'requirements.txt'
pull_request:
branches: [master]
workflow_dispatch:
permissions:
contents: read
env:
PIP_DISABLE_PIP_VERSION_CHECK: '1'
PYTHONUNBUFFERED: '1'
jobs:
sqlite:
name: SQLite (${{ matrix.sqlite_mode }}) • Python ${{ matrix.python }}
runs-on: ubuntu-latest
timeout-minutes: 40
strategy:
fail-fast: false
matrix:
python: ['3.9', '3.12']
sqlite_mode: ['memory', 'file']
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python }}
- name: Install dependencies
run: |
python -m pip install -U pip wheel
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
pip install pytest pytest-aiohttp pytest-asyncio
- name: Set deterministic test base dir
id: basedir
shell: bash
run: |
BASE="$RUNNER_TEMP/comfyui-assets-tests-${{ matrix.python }}-${{ matrix.sqlite_mode }}-${{ github.run_id }}-${{ github.run_attempt }}"
echo "ASSETS_TEST_BASE_DIR=$BASE" >> "$GITHUB_ENV"
echo "ASSETS_TEST_LOGS=$BASE/logs" >> "$GITHUB_ENV"
mkdir -p "$BASE/logs"
echo "ASSETS_TEST_BASE_DIR=$BASE"
- name: Set DB URL for SQLite
id: setdb
shell: bash
run: |
if [ "${{ matrix.sqlite_mode }}" = "memory" ]; then
echo "ASSETS_TEST_DB_URL=sqlite+aiosqlite:///:memory:" >> "$GITHUB_ENV"
else
DBFILE="$RUNNER_TEMP/assets-tests.sqlite"
mkdir -p "$(dirname "$DBFILE")"
echo "ASSETS_TEST_DB_URL=sqlite+aiosqlite:///$DBFILE" >> "$GITHUB_ENV"
fi
- name: Run tests
run: python -m pytest tests-assets
- name: Show ComfyUI logs
if: always()
shell: bash
run: |
echo "==== ASSETS_TEST_BASE_DIR: $ASSETS_TEST_BASE_DIR ===="
echo "==== ASSETS_TEST_LOGS: $ASSETS_TEST_LOGS ===="
ls -la "$ASSETS_TEST_LOGS" || true
for f in "$ASSETS_TEST_LOGS"/stdout.log "$ASSETS_TEST_LOGS"/stderr.log; do
if [ -f "$f" ]; then
echo "----- BEGIN $f -----"
sed -n '1,400p' "$f"
echo "----- END $f -----"
fi
done
- name: Upload ComfyUI logs
if: always()
uses: actions/upload-artifact@v4
with:
name: asset-logs-sqlite-${{ matrix.sqlite_mode }}-py${{ matrix.python }}
path: ${{ env.ASSETS_TEST_LOGS }}/*.log
if-no-files-found: warn
postgres:
name: PostgreSQL ${{ matrix.pgsql }} • Python ${{ matrix.python }}
runs-on: ubuntu-latest
timeout-minutes: 40
strategy:
fail-fast: false
matrix:
python: ['3.9', '3.12']
pgsql: ['16', '18']
services:
postgres:
image: postgres:${{ matrix.pgsql }}
env:
POSTGRES_DB: assets
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
ports:
- 5432:5432
options: >-
--health-cmd "pg_isready -U postgres -d assets"
--health-interval 10s
--health-timeout 5s
--health-retries 12
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python }}
- name: Install dependencies
run: |
python -m pip install -U pip wheel
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
pip install pytest pytest-aiohttp pytest-asyncio
pip install greenlet psycopg
- name: Set deterministic test base dir
id: basedir
shell: bash
run: |
BASE="$RUNNER_TEMP/comfyui-assets-tests-${{ matrix.python }}-${{ matrix.sqlite_mode }}-${{ github.run_id }}-${{ github.run_attempt }}"
echo "ASSETS_TEST_BASE_DIR=$BASE" >> "$GITHUB_ENV"
echo "ASSETS_TEST_LOGS=$BASE/logs" >> "$GITHUB_ENV"
mkdir -p "$BASE/logs"
echo "ASSETS_TEST_BASE_DIR=$BASE"
- name: Set DB URL for PostgreSQL
shell: bash
run: |
echo "ASSETS_TEST_DB_URL=postgresql+psycopg://postgres:postgres@localhost:5432/assets" >> "$GITHUB_ENV"
- name: Run tests
run: python -m pytest tests-assets
- name: Show ComfyUI logs
if: always()
shell: bash
run: |
echo "==== ASSETS_TEST_BASE_DIR: $ASSETS_TEST_BASE_DIR ===="
echo "==== ASSETS_TEST_LOGS: $ASSETS_TEST_LOGS ===="
ls -la "$ASSETS_TEST_LOGS" || true
for f in "$ASSETS_TEST_LOGS"/stdout.log "$ASSETS_TEST_LOGS"/stderr.log; do
if [ -f "$f" ]; then
echo "----- BEGIN $f -----"
sed -n '1,400p' "$f"
echo "----- END $f -----"
fi
done
- name: Upload ComfyUI logs
if: always()
uses: actions/upload-artifact@v4
with:
name: asset-logs-pgsql-${{ matrix.pgsql }}-py${{ matrix.python }}
path: ${{ env.ASSETS_TEST_LOGS }}/*.log
if-no-files-found: warn

30
.github/workflows/test-execution.yml vendored Normal file
View File

@@ -0,0 +1,30 @@
name: Execution Tests
on:
push:
branches: [ main, master ]
pull_request:
branches: [ main, master ]
jobs:
test:
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
runs-on: ${{ matrix.os }}
continue-on-error: true
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.12'
- name: Install requirements
run: |
python -m pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
pip install -r tests-unit/requirements.txt
- name: Run Execution Tests
run: |
python -m pytest tests/execution -v --skip-timing-checks

View File

@@ -10,7 +10,7 @@ jobs:
test:
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
os: [ubuntu-latest, windows-2022, macos-latest]
runs-on: ${{ matrix.os }}
continue-on-error: true
steps:

View File

@@ -1,25 +1,3 @@
# Admins
* @comfyanonymous
# Note: Github teams syntax cannot be used here as the repo is not owned by Comfy-Org.
# Inlined the team members for now.
# Maintainers
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
# Python web server
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
# Node developers
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
/comfy_api_nodes/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
* @kosinkadink

View File

@@ -66,6 +66,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/)
- [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/)
- Image Editing Models
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)

View File

@@ -3,7 +3,7 @@
[alembic]
# path to migration scripts
# Use forward slashes (/) also on windows to provide an os agnostic path
script_location = alembic_db
script_location = app/alembic_db
# template used to generate migration file names; The default value is %%(rev)s_%%(slug)s
# Uncomment the line below if you want the files to be prepended with date and time

View File

@@ -2,13 +2,12 @@ from sqlalchemy import engine_from_config
from sqlalchemy import pool
from alembic import context
from app.assets.database.models import Base
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
config = context.config
from app.database.models import Base
target_metadata = Base.metadata
# other values from the config, defined by the needs of env.py,

View File

@@ -0,0 +1,175 @@
"""initial assets schema
Revision ID: 0001_assets
Revises:
Create Date: 2025-08-20 00:00:00
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
revision = "0001_assets"
down_revision = None
branch_labels = None
depends_on = None
def upgrade() -> None:
# ASSETS: content identity
op.create_table(
"assets",
sa.Column("id", sa.String(length=36), primary_key=True),
sa.Column("hash", sa.String(length=256), nullable=True),
sa.Column("size_bytes", sa.BigInteger(), nullable=False, server_default="0"),
sa.Column("mime_type", sa.String(length=255), nullable=True),
sa.Column("created_at", sa.DateTime(timezone=False), nullable=False),
sa.CheckConstraint("size_bytes >= 0", name="ck_assets_size_nonneg"),
)
op.create_index("uq_assets_hash", "assets", ["hash"], unique=True)
op.create_index("ix_assets_mime_type", "assets", ["mime_type"])
# ASSETS_INFO: user-visible references
op.create_table(
"assets_info",
sa.Column("id", sa.String(length=36), primary_key=True),
sa.Column("owner_id", sa.String(length=128), nullable=False, server_default=""),
sa.Column("name", sa.String(length=512), nullable=False),
sa.Column("asset_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="RESTRICT"), nullable=False),
sa.Column("preview_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="SET NULL"), nullable=True),
sa.Column("user_metadata", sa.JSON(), nullable=True),
sa.Column("created_at", sa.DateTime(timezone=False), nullable=False),
sa.Column("updated_at", sa.DateTime(timezone=False), nullable=False),
sa.Column("last_access_time", sa.DateTime(timezone=False), nullable=False),
sa.UniqueConstraint("asset_id", "owner_id", "name", name="uq_assets_info_asset_owner_name"),
)
op.create_index("ix_assets_info_owner_id", "assets_info", ["owner_id"])
op.create_index("ix_assets_info_asset_id", "assets_info", ["asset_id"])
op.create_index("ix_assets_info_name", "assets_info", ["name"])
op.create_index("ix_assets_info_created_at", "assets_info", ["created_at"])
op.create_index("ix_assets_info_last_access_time", "assets_info", ["last_access_time"])
op.create_index("ix_assets_info_owner_name", "assets_info", ["owner_id", "name"])
# TAGS: normalized tag vocabulary
op.create_table(
"tags",
sa.Column("name", sa.String(length=512), primary_key=True),
sa.Column("tag_type", sa.String(length=32), nullable=False, server_default="user"),
sa.CheckConstraint("name = lower(name)", name="ck_tags_lowercase"),
)
op.create_index("ix_tags_tag_type", "tags", ["tag_type"])
# ASSET_INFO_TAGS: many-to-many for tags on AssetInfo
op.create_table(
"asset_info_tags",
sa.Column("asset_info_id", sa.String(length=36), sa.ForeignKey("assets_info.id", ondelete="CASCADE"), nullable=False),
sa.Column("tag_name", sa.String(length=512), sa.ForeignKey("tags.name", ondelete="RESTRICT"), nullable=False),
sa.Column("origin", sa.String(length=32), nullable=False, server_default="manual"),
sa.Column("added_at", sa.DateTime(timezone=False), nullable=False),
sa.PrimaryKeyConstraint("asset_info_id", "tag_name", name="pk_asset_info_tags"),
)
op.create_index("ix_asset_info_tags_tag_name", "asset_info_tags", ["tag_name"])
op.create_index("ix_asset_info_tags_asset_info_id", "asset_info_tags", ["asset_info_id"])
# ASSET_CACHE_STATE: N:1 local cache rows per Asset
op.create_table(
"asset_cache_state",
sa.Column("id", sa.Integer(), primary_key=True, autoincrement=True),
sa.Column("asset_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="CASCADE"), nullable=False),
sa.Column("file_path", sa.Text(), nullable=False), # absolute local path to cached file
sa.Column("mtime_ns", sa.BigInteger(), nullable=True),
sa.Column("needs_verify", sa.Boolean(), nullable=False, server_default=sa.text("false")),
sa.CheckConstraint("(mtime_ns IS NULL) OR (mtime_ns >= 0)", name="ck_acs_mtime_nonneg"),
sa.UniqueConstraint("file_path", name="uq_asset_cache_state_file_path"),
)
op.create_index("ix_asset_cache_state_file_path", "asset_cache_state", ["file_path"])
op.create_index("ix_asset_cache_state_asset_id", "asset_cache_state", ["asset_id"])
# ASSET_INFO_META: typed KV projection of user_metadata for filtering/sorting
op.create_table(
"asset_info_meta",
sa.Column("asset_info_id", sa.String(length=36), sa.ForeignKey("assets_info.id", ondelete="CASCADE"), nullable=False),
sa.Column("key", sa.String(length=256), nullable=False),
sa.Column("ordinal", sa.Integer(), nullable=False, server_default="0"),
sa.Column("val_str", sa.String(length=2048), nullable=True),
sa.Column("val_num", sa.Numeric(38, 10), nullable=True),
sa.Column("val_bool", sa.Boolean(), nullable=True),
sa.Column("val_json", sa.JSON().with_variant(postgresql.JSONB(), 'postgresql'), nullable=True),
sa.PrimaryKeyConstraint("asset_info_id", "key", "ordinal", name="pk_asset_info_meta"),
)
op.create_index("ix_asset_info_meta_key", "asset_info_meta", ["key"])
op.create_index("ix_asset_info_meta_key_val_str", "asset_info_meta", ["key", "val_str"])
op.create_index("ix_asset_info_meta_key_val_num", "asset_info_meta", ["key", "val_num"])
op.create_index("ix_asset_info_meta_key_val_bool", "asset_info_meta", ["key", "val_bool"])
# Tags vocabulary
tags_table = sa.table(
"tags",
sa.column("name", sa.String(length=512)),
sa.column("tag_type", sa.String()),
)
op.bulk_insert(
tags_table,
[
{"name": "models", "tag_type": "system"},
{"name": "input", "tag_type": "system"},
{"name": "output", "tag_type": "system"},
{"name": "configs", "tag_type": "system"},
{"name": "checkpoints", "tag_type": "system"},
{"name": "loras", "tag_type": "system"},
{"name": "vae", "tag_type": "system"},
{"name": "text_encoders", "tag_type": "system"},
{"name": "diffusion_models", "tag_type": "system"},
{"name": "clip_vision", "tag_type": "system"},
{"name": "style_models", "tag_type": "system"},
{"name": "embeddings", "tag_type": "system"},
{"name": "diffusers", "tag_type": "system"},
{"name": "vae_approx", "tag_type": "system"},
{"name": "controlnet", "tag_type": "system"},
{"name": "gligen", "tag_type": "system"},
{"name": "upscale_models", "tag_type": "system"},
{"name": "hypernetworks", "tag_type": "system"},
{"name": "photomaker", "tag_type": "system"},
{"name": "classifiers", "tag_type": "system"},
{"name": "encoder", "tag_type": "system"},
{"name": "decoder", "tag_type": "system"},
{"name": "missing", "tag_type": "system"},
{"name": "rescan", "tag_type": "system"},
],
)
def downgrade() -> None:
op.drop_index("ix_asset_info_meta_key_val_bool", table_name="asset_info_meta")
op.drop_index("ix_asset_info_meta_key_val_num", table_name="asset_info_meta")
op.drop_index("ix_asset_info_meta_key_val_str", table_name="asset_info_meta")
op.drop_index("ix_asset_info_meta_key", table_name="asset_info_meta")
op.drop_table("asset_info_meta")
op.drop_index("ix_asset_cache_state_asset_id", table_name="asset_cache_state")
op.drop_index("ix_asset_cache_state_file_path", table_name="asset_cache_state")
op.drop_constraint("uq_asset_cache_state_file_path", table_name="asset_cache_state")
op.drop_table("asset_cache_state")
op.drop_index("ix_asset_info_tags_asset_info_id", table_name="asset_info_tags")
op.drop_index("ix_asset_info_tags_tag_name", table_name="asset_info_tags")
op.drop_table("asset_info_tags")
op.drop_index("ix_tags_tag_type", table_name="tags")
op.drop_table("tags")
op.drop_constraint("uq_assets_info_asset_owner_name", table_name="assets_info")
op.drop_index("ix_assets_info_owner_name", table_name="assets_info")
op.drop_index("ix_assets_info_last_access_time", table_name="assets_info")
op.drop_index("ix_assets_info_created_at", table_name="assets_info")
op.drop_index("ix_assets_info_name", table_name="assets_info")
op.drop_index("ix_assets_info_asset_id", table_name="assets_info")
op.drop_index("ix_assets_info_owner_id", table_name="assets_info")
op.drop_table("assets_info")
op.drop_index("uq_assets_hash", table_name="assets")
op.drop_index("ix_assets_mime_type", table_name="assets")
op.drop_table("assets")

4
app/assets/__init__.py Normal file
View File

@@ -0,0 +1,4 @@
from .api.routes import register_assets_system
from .scanner import sync_seed_assets
__all__ = ["sync_seed_assets", "register_assets_system"]

225
app/assets/_helpers.py Normal file
View File

@@ -0,0 +1,225 @@
import contextlib
import os
import uuid
from datetime import datetime, timezone
from pathlib import Path
from typing import Literal, Optional, Sequence
import folder_paths
from .api import schemas_in
def get_comfy_models_folders() -> list[tuple[str, list[str]]]:
"""Build a list of (folder_name, base_paths[]) categories that are configured for model locations.
We trust `folder_paths.folder_names_and_paths` and include a category if
*any* of its base paths lies under the Comfy `models_dir`.
"""
targets: list[tuple[str, list[str]]] = []
models_root = os.path.abspath(folder_paths.models_dir)
for name, (paths, _exts) in folder_paths.folder_names_and_paths.items():
if any(os.path.abspath(p).startswith(models_root + os.sep) for p in paths):
targets.append((name, paths))
return targets
def get_relative_to_root_category_path_of_asset(file_path: str) -> tuple[Literal["input", "output", "models"], str]:
"""Given an absolute or relative file path, determine which root category the path belongs to:
- 'input' if the file resides under `folder_paths.get_input_directory()`
- 'output' if the file resides under `folder_paths.get_output_directory()`
- 'models' if the file resides under any base path of categories returned by `get_comfy_models_folders()`
Returns:
(root_category, relative_path_inside_that_root)
For 'models', the relative path is prefixed with the category name:
e.g. ('models', 'vae/test/sub/ae.safetensors')
Raises:
ValueError: if the path does not belong to input, output, or configured model bases.
"""
fp_abs = os.path.abspath(file_path)
def _is_within(child: str, parent: str) -> bool:
try:
return os.path.commonpath([child, parent]) == parent
except Exception:
return False
def _rel(child: str, parent: str) -> str:
return os.path.relpath(os.path.join(os.sep, os.path.relpath(child, parent)), os.sep)
# 1) input
input_base = os.path.abspath(folder_paths.get_input_directory())
if _is_within(fp_abs, input_base):
return "input", _rel(fp_abs, input_base)
# 2) output
output_base = os.path.abspath(folder_paths.get_output_directory())
if _is_within(fp_abs, output_base):
return "output", _rel(fp_abs, output_base)
# 3) models (check deepest matching base to avoid ambiguity)
best: Optional[tuple[int, str, str]] = None # (base_len, bucket, rel_inside_bucket)
for bucket, bases in get_comfy_models_folders():
for b in bases:
base_abs = os.path.abspath(b)
if not _is_within(fp_abs, base_abs):
continue
cand = (len(base_abs), bucket, _rel(fp_abs, base_abs))
if best is None or cand[0] > best[0]:
best = cand
if best is not None:
_, bucket, rel_inside = best
combined = os.path.join(bucket, rel_inside)
return "models", os.path.relpath(os.path.join(os.sep, combined), os.sep)
raise ValueError(f"Path is not within input, output, or configured model bases: {file_path}")
def get_name_and_tags_from_asset_path(file_path: str) -> tuple[str, list[str]]:
"""Return a tuple (name, tags) derived from a filesystem path.
Semantics:
- Root category is determined by `get_relative_to_root_category_path_of_asset`.
- The returned `name` is the base filename with extension from the relative path.
- The returned `tags` are:
[root_category] + parent folders of the relative path (in order)
For 'models', this means:
file '/.../ModelsDir/vae/test_tag/ae.safetensors'
-> root_category='models', some_path='vae/test_tag/ae.safetensors'
-> name='ae.safetensors', tags=['models', 'vae', 'test_tag']
Raises:
ValueError: if the path does not belong to input, output, or configured model bases.
"""
root_category, some_path = get_relative_to_root_category_path_of_asset(file_path)
p = Path(some_path)
parent_parts = [part for part in p.parent.parts if part not in (".", "..", p.anchor)]
return p.name, list(dict.fromkeys(normalize_tags([root_category, *parent_parts])))
def normalize_tags(tags: Optional[Sequence[str]]) -> list[str]:
return [t.strip().lower() for t in (tags or []) if (t or "").strip()]
def resolve_destination_from_tags(tags: list[str]) -> tuple[str, list[str]]:
"""Validates and maps tags -> (base_dir, subdirs_for_fs)"""
root = tags[0]
if root == "models":
if len(tags) < 2:
raise ValueError("at least two tags required for model asset")
try:
bases = folder_paths.folder_names_and_paths[tags[1]][0]
except KeyError:
raise ValueError(f"unknown model category '{tags[1]}'")
if not bases:
raise ValueError(f"no base path configured for category '{tags[1]}'")
base_dir = os.path.abspath(bases[0])
raw_subdirs = tags[2:]
else:
base_dir = os.path.abspath(
folder_paths.get_input_directory() if root == "input" else folder_paths.get_output_directory()
)
raw_subdirs = tags[1:]
for i in raw_subdirs:
if i in (".", ".."):
raise ValueError("invalid path component in tags")
return base_dir, raw_subdirs if raw_subdirs else []
def ensure_within_base(candidate: str, base: str) -> None:
cand_abs = os.path.abspath(candidate)
base_abs = os.path.abspath(base)
try:
if os.path.commonpath([cand_abs, base_abs]) != base_abs:
raise ValueError("destination escapes base directory")
except Exception:
raise ValueError("invalid destination path")
def compute_relative_filename(file_path: str) -> Optional[str]:
"""
Return the model's path relative to the last well-known folder (the model category),
using forward slashes, eg:
/.../models/checkpoints/flux/123/flux.safetensors -> "flux/123/flux.safetensors"
/.../models/text_encoders/clip_g.safetensors -> "clip_g.safetensors"
For non-model paths, returns None.
NOTE: this is a temporary helper, used only for initializing metadata["filename"] field.
"""
try:
root_category, rel_path = get_relative_to_root_category_path_of_asset(file_path)
except ValueError:
return None
p = Path(rel_path)
parts = [seg for seg in p.parts if seg not in (".", "..", p.anchor)]
if not parts:
return None
if root_category == "models":
# parts[0] is the category ("checkpoints", "vae", etc) drop it
inside = parts[1:] if len(parts) > 1 else [parts[0]]
return "/".join(inside)
return "/".join(parts) # input/output: keep all parts
def list_tree(base_dir: str) -> list[str]:
out: list[str] = []
base_abs = os.path.abspath(base_dir)
if not os.path.isdir(base_abs):
return out
for dirpath, _subdirs, filenames in os.walk(base_abs, topdown=True, followlinks=False):
for name in filenames:
out.append(os.path.abspath(os.path.join(dirpath, name)))
return out
def prefixes_for_root(root: schemas_in.RootType) -> list[str]:
if root == "models":
bases: list[str] = []
for _bucket, paths in get_comfy_models_folders():
bases.extend(paths)
return [os.path.abspath(p) for p in bases]
if root == "input":
return [os.path.abspath(folder_paths.get_input_directory())]
if root == "output":
return [os.path.abspath(folder_paths.get_output_directory())]
return []
def ts_to_iso(ts: Optional[float]) -> Optional[str]:
if ts is None:
return None
try:
return datetime.fromtimestamp(float(ts), tz=timezone.utc).replace(tzinfo=None).isoformat()
except Exception:
return None
def new_scan_id(root: schemas_in.RootType) -> str:
return f"scan-{root}-{uuid.uuid4().hex[:8]}"
def collect_models_files() -> list[str]:
out: list[str] = []
for folder_name, bases in get_comfy_models_folders():
rel_files = folder_paths.get_filename_list(folder_name) or []
for rel_path in rel_files:
abs_path = folder_paths.get_full_path(folder_name, rel_path)
if not abs_path:
continue
abs_path = os.path.abspath(abs_path)
allowed = False
for b in bases:
base_abs = os.path.abspath(b)
with contextlib.suppress(Exception):
if os.path.commonpath([abs_path, base_abs]) == base_abs:
allowed = True
break
if allowed:
out.append(abs_path)
return out

544
app/assets/api/routes.py Normal file
View File

@@ -0,0 +1,544 @@
import contextlib
import logging
import os
import urllib.parse
import uuid
from typing import Optional
from aiohttp import web
from pydantic import ValidationError
import folder_paths
from ... import user_manager
from .. import manager, scanner
from . import schemas_in, schemas_out
ROUTES = web.RouteTableDef()
USER_MANAGER: Optional[user_manager.UserManager] = None
LOGGER = logging.getLogger(__name__)
# UUID regex (canonical hyphenated form, case-insensitive)
UUID_RE = r"[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"
@ROUTES.head("/api/assets/hash/{hash}")
async def head_asset_by_hash(request: web.Request) -> web.Response:
hash_str = request.match_info.get("hash", "").strip().lower()
if not hash_str or ":" not in hash_str:
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
algo, digest = hash_str.split(":", 1)
if algo != "blake3" or not digest or any(c for c in digest if c not in "0123456789abcdef"):
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
exists = await manager.asset_exists(asset_hash=hash_str)
return web.Response(status=200 if exists else 404)
@ROUTES.get("/api/assets")
async def list_assets(request: web.Request) -> web.Response:
qp = request.rel_url.query
query_dict = {}
if "include_tags" in qp:
query_dict["include_tags"] = qp.getall("include_tags")
if "exclude_tags" in qp:
query_dict["exclude_tags"] = qp.getall("exclude_tags")
for k in ("name_contains", "metadata_filter", "limit", "offset", "sort", "order"):
v = qp.get(k)
if v is not None:
query_dict[k] = v
try:
q = schemas_in.ListAssetsQuery.model_validate(query_dict)
except ValidationError as ve:
return _validation_error_response("INVALID_QUERY", ve)
payload = await manager.list_assets(
include_tags=q.include_tags,
exclude_tags=q.exclude_tags,
name_contains=q.name_contains,
metadata_filter=q.metadata_filter,
limit=q.limit,
offset=q.offset,
sort=q.sort,
order=q.order,
owner_id=USER_MANAGER.get_request_user_id(request),
)
return web.json_response(payload.model_dump(mode="json"))
@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}/content")
async def download_asset_content(request: web.Request) -> web.Response:
disposition = request.query.get("disposition", "attachment").lower().strip()
if disposition not in {"inline", "attachment"}:
disposition = "attachment"
try:
abs_path, content_type, filename = await manager.resolve_asset_content_for_download(
asset_info_id=str(uuid.UUID(request.match_info["id"])),
owner_id=USER_MANAGER.get_request_user_id(request),
)
except ValueError as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve))
except NotImplementedError as nie:
return _error_response(501, "BACKEND_UNSUPPORTED", str(nie))
except FileNotFoundError:
return _error_response(404, "FILE_NOT_FOUND", "Underlying file not found on disk.")
quoted = (filename or "").replace("\r", "").replace("\n", "").replace('"', "'")
cd = f'{disposition}; filename="{quoted}"; filename*=UTF-8\'\'{urllib.parse.quote(filename)}'
resp = web.FileResponse(abs_path)
resp.content_type = content_type
resp.headers["Content-Disposition"] = cd
return resp
@ROUTES.post("/api/assets/from-hash")
async def create_asset_from_hash(request: web.Request) -> web.Response:
try:
payload = await request.json()
body = schemas_in.CreateFromHashBody.model_validate(payload)
except ValidationError as ve:
return _validation_error_response("INVALID_BODY", ve)
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
result = await manager.create_asset_from_hash(
hash_str=body.hash,
name=body.name,
tags=body.tags,
user_metadata=body.user_metadata,
owner_id=USER_MANAGER.get_request_user_id(request),
)
if result is None:
return _error_response(404, "ASSET_NOT_FOUND", f"Asset content {body.hash} does not exist")
return web.json_response(result.model_dump(mode="json"), status=201)
@ROUTES.post("/api/assets")
async def upload_asset(request: web.Request) -> web.Response:
"""Multipart/form-data endpoint for Asset uploads."""
if not (request.content_type or "").lower().startswith("multipart/"):
return _error_response(415, "UNSUPPORTED_MEDIA_TYPE", "Use multipart/form-data for uploads.")
reader = await request.multipart()
file_present = False
file_client_name: Optional[str] = None
tags_raw: list[str] = []
provided_name: Optional[str] = None
user_metadata_raw: Optional[str] = None
provided_hash: Optional[str] = None
provided_hash_exists: Optional[bool] = None
file_written = 0
tmp_path: Optional[str] = None
while True:
field = await reader.next()
if field is None:
break
fname = getattr(field, "name", "") or ""
if fname == "hash":
try:
s = ((await field.text()) or "").strip().lower()
except Exception:
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
if s:
if ":" not in s:
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
algo, digest = s.split(":", 1)
if algo != "blake3" or not digest or any(c for c in digest if c not in "0123456789abcdef"):
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
provided_hash = f"{algo}:{digest}"
try:
provided_hash_exists = await manager.asset_exists(asset_hash=provided_hash)
except Exception:
provided_hash_exists = None # do not fail the whole request here
elif fname == "file":
file_present = True
file_client_name = (field.filename or "").strip()
if provided_hash and provided_hash_exists is True:
# If client supplied a hash that we know exists, drain but do not write to disk
try:
while True:
chunk = await field.read_chunk(8 * 1024 * 1024)
if not chunk:
break
file_written += len(chunk)
except Exception:
return _error_response(500, "UPLOAD_IO_ERROR", "Failed to receive uploaded file.")
continue # Do not create temp file; we will create AssetInfo from the existing content
# Otherwise, store to temp for hashing/ingest
uploads_root = os.path.join(folder_paths.get_temp_directory(), "uploads")
unique_dir = os.path.join(uploads_root, uuid.uuid4().hex)
os.makedirs(unique_dir, exist_ok=True)
tmp_path = os.path.join(unique_dir, ".upload.part")
try:
with open(tmp_path, "wb") as f:
while True:
chunk = await field.read_chunk(8 * 1024 * 1024)
if not chunk:
break
f.write(chunk)
file_written += len(chunk)
except Exception:
try:
if os.path.exists(tmp_path or ""):
os.remove(tmp_path)
finally:
return _error_response(500, "UPLOAD_IO_ERROR", "Failed to receive and store uploaded file.")
elif fname == "tags":
tags_raw.append((await field.text()) or "")
elif fname == "name":
provided_name = (await field.text()) or None
elif fname == "user_metadata":
user_metadata_raw = (await field.text()) or None
# If client did not send file, and we are not doing a from-hash fast path -> error
if not file_present and not (provided_hash and provided_hash_exists):
return _error_response(400, "MISSING_FILE", "Form must include a 'file' part or a known 'hash'.")
if file_present and file_written == 0 and not (provided_hash and provided_hash_exists):
# Empty upload is only acceptable if we are fast-pathing from existing hash
try:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
finally:
return _error_response(400, "EMPTY_UPLOAD", "Uploaded file is empty.")
try:
spec = schemas_in.UploadAssetSpec.model_validate({
"tags": tags_raw,
"name": provided_name,
"user_metadata": user_metadata_raw,
"hash": provided_hash,
})
except ValidationError as ve:
try:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
finally:
return _validation_error_response("INVALID_BODY", ve)
# Validate models category against configured folders (consistent with previous behavior)
if spec.tags and spec.tags[0] == "models":
if len(spec.tags) < 2 or spec.tags[1] not in folder_paths.folder_names_and_paths:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
return _error_response(
400, "INVALID_BODY", f"unknown models category '{spec.tags[1] if len(spec.tags) >= 2 else ''}'"
)
owner_id = USER_MANAGER.get_request_user_id(request)
# Fast path: if a valid provided hash exists, create AssetInfo without writing anything
if spec.hash and provided_hash_exists is True:
try:
result = await manager.create_asset_from_hash(
hash_str=spec.hash,
name=spec.name or (spec.hash.split(":", 1)[1]),
tags=spec.tags,
user_metadata=spec.user_metadata or {},
owner_id=owner_id,
)
except Exception:
LOGGER.exception("create_asset_from_hash failed for hash=%s, owner_id=%s", spec.hash, owner_id)
return _error_response(500, "INTERNAL", "Unexpected server error.")
if result is None:
return _error_response(404, "ASSET_NOT_FOUND", f"Asset content {spec.hash} does not exist")
# Drain temp if we accidentally saved (e.g., hash field came after file)
if tmp_path and os.path.exists(tmp_path):
with contextlib.suppress(Exception):
os.remove(tmp_path)
status = 200 if (not result.created_new) else 201
return web.json_response(result.model_dump(mode="json"), status=status)
# Otherwise, we must have a temp file path to ingest
if not tmp_path or not os.path.exists(tmp_path):
# The only case we reach here without a temp file is: client sent a hash that does not exist and no file
return _error_response(404, "ASSET_NOT_FOUND", "Provided hash not found and no file uploaded.")
try:
created = await manager.upload_asset_from_temp_path(
spec,
temp_path=tmp_path,
client_filename=file_client_name,
owner_id=owner_id,
expected_asset_hash=spec.hash,
)
status = 201 if created.created_new else 200
return web.json_response(created.model_dump(mode="json"), status=status)
except ValueError as e:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
msg = str(e)
if "HASH_MISMATCH" in msg or msg.strip().upper() == "HASH_MISMATCH":
return _error_response(
400,
"HASH_MISMATCH",
"Uploaded file hash does not match provided hash.",
)
return _error_response(400, "BAD_REQUEST", "Invalid inputs.")
except Exception:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
LOGGER.exception("upload_asset_from_temp_path failed for tmp_path=%s, owner_id=%s", tmp_path, owner_id)
return _error_response(500, "INTERNAL", "Unexpected server error.")
@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}")
async def get_asset(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
result = await manager.get_asset(
asset_info_id=asset_info_id,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except ValueError as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
LOGGER.exception(
"get_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.put(f"/api/assets/{{id:{UUID_RE}}}")
async def update_asset(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
body = schemas_in.UpdateAssetBody.model_validate(await request.json())
except ValidationError as ve:
return _validation_error_response("INVALID_BODY", ve)
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = await manager.update_asset(
asset_info_id=asset_info_id,
name=body.name,
tags=body.tags,
user_metadata=body.user_metadata,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except (ValueError, PermissionError) as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
LOGGER.exception(
"update_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.put(f"/api/assets/{{id:{UUID_RE}}}/preview")
async def set_asset_preview(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
body = schemas_in.SetPreviewBody.model_validate(await request.json())
except ValidationError as ve:
return _validation_error_response("INVALID_BODY", ve)
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = await manager.set_asset_preview(
asset_info_id=asset_info_id,
preview_asset_id=body.preview_id,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except (PermissionError, ValueError) as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
LOGGER.exception(
"set_asset_preview failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.delete(f"/api/assets/{{id:{UUID_RE}}}")
async def delete_asset(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
delete_content = request.query.get("delete_content")
delete_content = True if delete_content is None else delete_content.lower() not in {"0", "false", "no"}
try:
deleted = await manager.delete_asset_reference(
asset_info_id=asset_info_id,
owner_id=USER_MANAGER.get_request_user_id(request),
delete_content_if_orphan=delete_content,
)
except Exception:
LOGGER.exception(
"delete_asset_reference failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
if not deleted:
return _error_response(404, "ASSET_NOT_FOUND", f"AssetInfo {asset_info_id} not found.")
return web.Response(status=204)
@ROUTES.get("/api/tags")
async def get_tags(request: web.Request) -> web.Response:
query_map = dict(request.rel_url.query)
try:
query = schemas_in.TagsListQuery.model_validate(query_map)
except ValidationError as ve:
return web.json_response(
{"error": {"code": "INVALID_QUERY", "message": "Invalid query parameters", "details": ve.errors()}},
status=400,
)
result = await manager.list_tags(
prefix=query.prefix,
limit=query.limit,
offset=query.offset,
order=query.order,
include_zero=query.include_zero,
owner_id=USER_MANAGER.get_request_user_id(request),
)
return web.json_response(result.model_dump(mode="json"))
@ROUTES.post(f"/api/assets/{{id:{UUID_RE}}}/tags")
async def add_asset_tags(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
payload = await request.json()
data = schemas_in.TagsAdd.model_validate(payload)
except ValidationError as ve:
return _error_response(400, "INVALID_BODY", "Invalid JSON body for tags add.", {"errors": ve.errors()})
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = await manager.add_tags_to_asset(
asset_info_id=asset_info_id,
tags=data.tags,
origin="manual",
owner_id=USER_MANAGER.get_request_user_id(request),
)
except (ValueError, PermissionError) as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
LOGGER.exception(
"add_tags_to_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.delete(f"/api/assets/{{id:{UUID_RE}}}/tags")
async def delete_asset_tags(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
payload = await request.json()
data = schemas_in.TagsRemove.model_validate(payload)
except ValidationError as ve:
return _error_response(400, "INVALID_BODY", "Invalid JSON body for tags remove.", {"errors": ve.errors()})
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = await manager.remove_tags_from_asset(
asset_info_id=asset_info_id,
tags=data.tags,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except ValueError as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
LOGGER.exception(
"remove_tags_from_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.post("/api/assets/scan/seed")
async def seed_assets(request: web.Request) -> web.Response:
try:
payload = await request.json()
except Exception:
payload = {}
try:
body = schemas_in.ScheduleAssetScanBody.model_validate(payload)
except ValidationError as ve:
return _validation_error_response("INVALID_BODY", ve)
try:
await scanner.sync_seed_assets(body.roots)
except Exception:
LOGGER.exception("sync_seed_assets failed for roots=%s", body.roots)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response({"synced": True, "roots": body.roots}, status=200)
@ROUTES.post("/api/assets/scan/schedule")
async def schedule_asset_scan(request: web.Request) -> web.Response:
try:
payload = await request.json()
except Exception:
payload = {}
try:
body = schemas_in.ScheduleAssetScanBody.model_validate(payload)
except ValidationError as ve:
return _validation_error_response("INVALID_BODY", ve)
states = await scanner.schedule_scans(body.roots)
return web.json_response(states.model_dump(mode="json"), status=202)
@ROUTES.get("/api/assets/scan")
async def get_asset_scan_status(request: web.Request) -> web.Response:
root = request.query.get("root", "").strip().lower()
states = scanner.current_statuses()
if root in {"models", "input", "output"}:
states = [s for s in states.scans if s.root == root] # type: ignore
states = schemas_out.AssetScanStatusResponse(scans=states)
return web.json_response(states.model_dump(mode="json"), status=200)
def register_assets_system(app: web.Application, user_manager_instance: user_manager.UserManager) -> None:
global USER_MANAGER
USER_MANAGER = user_manager_instance
app.add_routes(ROUTES)
def _error_response(status: int, code: str, message: str, details: Optional[dict] = None) -> web.Response:
return web.json_response({"error": {"code": code, "message": message, "details": details or {}}}, status=status)
def _validation_error_response(code: str, ve: ValidationError) -> web.Response:
return _error_response(400, code, "Validation failed.", {"errors": ve.json()})

View File

@@ -0,0 +1,297 @@
import json
import uuid
from typing import Any, Literal, Optional
from pydantic import (
BaseModel,
ConfigDict,
Field,
conint,
field_validator,
model_validator,
)
class ListAssetsQuery(BaseModel):
include_tags: list[str] = Field(default_factory=list)
exclude_tags: list[str] = Field(default_factory=list)
name_contains: Optional[str] = None
# Accept either a JSON string (query param) or a dict
metadata_filter: Optional[dict[str, Any]] = None
limit: conint(ge=1, le=500) = 20
offset: conint(ge=0) = 0
sort: Literal["name", "created_at", "updated_at", "size", "last_access_time"] = "created_at"
order: Literal["asc", "desc"] = "desc"
@field_validator("include_tags", "exclude_tags", mode="before")
@classmethod
def _split_csv_tags(cls, v):
# Accept "a,b,c" or ["a","b"] (we are liberal in what we accept)
if v is None:
return []
if isinstance(v, str):
return [t.strip() for t in v.split(",") if t.strip()]
if isinstance(v, list):
out: list[str] = []
for item in v:
if isinstance(item, str):
out.extend([t.strip() for t in item.split(",") if t.strip()])
return out
return v
@field_validator("metadata_filter", mode="before")
@classmethod
def _parse_metadata_json(cls, v):
if v is None or isinstance(v, dict):
return v
if isinstance(v, str) and v.strip():
try:
parsed = json.loads(v)
except Exception as e:
raise ValueError(f"metadata_filter must be JSON: {e}") from e
if not isinstance(parsed, dict):
raise ValueError("metadata_filter must be a JSON object")
return parsed
return None
class UpdateAssetBody(BaseModel):
name: Optional[str] = None
tags: Optional[list[str]] = None
user_metadata: Optional[dict[str, Any]] = None
@model_validator(mode="after")
def _at_least_one(self):
if self.name is None and self.tags is None and self.user_metadata is None:
raise ValueError("Provide at least one of: name, tags, user_metadata.")
if self.tags is not None:
if not isinstance(self.tags, list) or not all(isinstance(t, str) for t in self.tags):
raise ValueError("Field 'tags' must be an array of strings.")
return self
class CreateFromHashBody(BaseModel):
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
hash: str
name: str
tags: list[str] = Field(default_factory=list)
user_metadata: dict[str, Any] = Field(default_factory=dict)
@field_validator("hash")
@classmethod
def _require_blake3(cls, v):
s = (v or "").strip().lower()
if ":" not in s:
raise ValueError("hash must be 'blake3:<hex>'")
algo, digest = s.split(":", 1)
if algo != "blake3":
raise ValueError("only canonical 'blake3:<hex>' is accepted here")
if not digest or any(c for c in digest if c not in "0123456789abcdef"):
raise ValueError("hash digest must be lowercase hex")
return s
@field_validator("tags", mode="before")
@classmethod
def _tags_norm(cls, v):
if v is None:
return []
if isinstance(v, list):
out = [str(t).strip().lower() for t in v if str(t).strip()]
seen = set()
dedup = []
for t in out:
if t not in seen:
seen.add(t)
dedup.append(t)
return dedup
if isinstance(v, str):
return [t.strip().lower() for t in v.split(",") if t.strip()]
return []
class TagsListQuery(BaseModel):
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
prefix: Optional[str] = Field(None, min_length=1, max_length=256)
limit: int = Field(100, ge=1, le=1000)
offset: int = Field(0, ge=0, le=10_000_000)
order: Literal["count_desc", "name_asc"] = "count_desc"
include_zero: bool = True
@field_validator("prefix")
@classmethod
def normalize_prefix(cls, v: Optional[str]) -> Optional[str]:
if v is None:
return v
v = v.strip()
return v.lower() or None
class TagsAdd(BaseModel):
model_config = ConfigDict(extra="ignore")
tags: list[str] = Field(..., min_length=1)
@field_validator("tags")
@classmethod
def normalize_tags(cls, v: list[str]) -> list[str]:
out = []
for t in v:
if not isinstance(t, str):
raise TypeError("tags must be strings")
tnorm = t.strip().lower()
if tnorm:
out.append(tnorm)
seen = set()
deduplicated = []
for x in out:
if x not in seen:
seen.add(x)
deduplicated.append(x)
return deduplicated
class TagsRemove(TagsAdd):
pass
RootType = Literal["models", "input", "output"]
ALLOWED_ROOTS: tuple[RootType, ...] = ("models", "input", "output")
class ScheduleAssetScanBody(BaseModel):
roots: list[RootType] = Field(..., min_length=1)
class UploadAssetSpec(BaseModel):
"""Upload Asset operation.
- tags: ordered; first is root ('models'|'input'|'output');
if root == 'models', second must be a valid category from folder_paths.folder_names_and_paths
- name: display name
- user_metadata: arbitrary JSON object (optional)
- hash: optional canonical 'blake3:<hex>' provided by the client for validation / fast-path
Files created via this endpoint are stored on disk using the **content hash** as the filename stem
and the original extension is preserved when available.
"""
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
tags: list[str] = Field(..., min_length=1)
name: Optional[str] = Field(default=None, max_length=512, description="Display Name")
user_metadata: dict[str, Any] = Field(default_factory=dict)
hash: Optional[str] = Field(default=None)
@field_validator("hash", mode="before")
@classmethod
def _parse_hash(cls, v):
if v is None:
return None
s = str(v).strip().lower()
if not s:
return None
if ":" not in s:
raise ValueError("hash must be 'blake3:<hex>'")
algo, digest = s.split(":", 1)
if algo != "blake3":
raise ValueError("only canonical 'blake3:<hex>' is accepted here")
if not digest or any(c for c in digest if c not in "0123456789abcdef"):
raise ValueError("hash digest must be lowercase hex")
return f"{algo}:{digest}"
@field_validator("tags", mode="before")
@classmethod
def _parse_tags(cls, v):
"""
Accepts a list of strings (possibly multiple form fields),
where each string can be:
- JSON array (e.g., '["models","loras","foo"]')
- comma-separated ('models, loras, foo')
- single token ('models')
Returns a normalized, deduplicated, ordered list.
"""
items: list[str] = []
if v is None:
return []
if isinstance(v, str):
v = [v]
if isinstance(v, list):
for item in v:
if item is None:
continue
s = str(item).strip()
if not s:
continue
if s.startswith("["):
try:
arr = json.loads(s)
if isinstance(arr, list):
items.extend(str(x) for x in arr)
continue
except Exception:
pass # fallback to CSV parse below
items.extend([p for p in s.split(",") if p.strip()])
else:
return []
# normalize + dedupe
norm = []
seen = set()
for t in items:
tnorm = str(t).strip().lower()
if tnorm and tnorm not in seen:
seen.add(tnorm)
norm.append(tnorm)
return norm
@field_validator("user_metadata", mode="before")
@classmethod
def _parse_metadata_json(cls, v):
if v is None or isinstance(v, dict):
return v or {}
if isinstance(v, str):
s = v.strip()
if not s:
return {}
try:
parsed = json.loads(s)
except Exception as e:
raise ValueError(f"user_metadata must be JSON: {e}") from e
if not isinstance(parsed, dict):
raise ValueError("user_metadata must be a JSON object")
return parsed
return {}
@model_validator(mode="after")
def _validate_order(self):
if not self.tags:
raise ValueError("tags must be provided and non-empty")
root = self.tags[0]
if root not in {"models", "input", "output"}:
raise ValueError("first tag must be one of: models, input, output")
if root == "models":
if len(self.tags) < 2:
raise ValueError("models uploads require a category tag as the second tag")
return self
class SetPreviewBody(BaseModel):
"""Set or clear the preview for an AssetInfo. Provide an Asset.id or null."""
preview_id: Optional[str] = None
@field_validator("preview_id", mode="before")
@classmethod
def _norm_uuid(cls, v):
if v is None:
return None
s = str(v).strip()
if not s:
return None
try:
uuid.UUID(s)
except Exception:
raise ValueError("preview_id must be a UUID")
return s

View File

@@ -0,0 +1,115 @@
from datetime import datetime
from typing import Any, Literal, Optional
from pydantic import BaseModel, ConfigDict, Field, field_serializer
class AssetSummary(BaseModel):
id: str
name: str
asset_hash: Optional[str]
size: Optional[int] = None
mime_type: Optional[str] = None
tags: list[str] = Field(default_factory=list)
preview_url: Optional[str] = None
created_at: Optional[datetime] = None
updated_at: Optional[datetime] = None
last_access_time: Optional[datetime] = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("created_at", "updated_at", "last_access_time")
def _ser_dt(self, v: Optional[datetime], _info):
return v.isoformat() if v else None
class AssetsList(BaseModel):
assets: list[AssetSummary]
total: int
has_more: bool
class AssetUpdated(BaseModel):
id: str
name: str
asset_hash: Optional[str]
tags: list[str] = Field(default_factory=list)
user_metadata: dict[str, Any] = Field(default_factory=dict)
updated_at: Optional[datetime] = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("updated_at")
def _ser_updated(self, v: Optional[datetime], _info):
return v.isoformat() if v else None
class AssetDetail(BaseModel):
id: str
name: str
asset_hash: Optional[str]
size: Optional[int] = None
mime_type: Optional[str] = None
tags: list[str] = Field(default_factory=list)
user_metadata: dict[str, Any] = Field(default_factory=dict)
preview_id: Optional[str] = None
created_at: Optional[datetime] = None
last_access_time: Optional[datetime] = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("created_at", "last_access_time")
def _ser_dt(self, v: Optional[datetime], _info):
return v.isoformat() if v else None
class AssetCreated(AssetDetail):
created_new: bool
class TagUsage(BaseModel):
name: str
count: int
type: str
class TagsList(BaseModel):
tags: list[TagUsage] = Field(default_factory=list)
total: int
has_more: bool
class TagsAdd(BaseModel):
model_config = ConfigDict(str_strip_whitespace=True)
added: list[str] = Field(default_factory=list)
already_present: list[str] = Field(default_factory=list)
total_tags: list[str] = Field(default_factory=list)
class TagsRemove(BaseModel):
model_config = ConfigDict(str_strip_whitespace=True)
removed: list[str] = Field(default_factory=list)
not_present: list[str] = Field(default_factory=list)
total_tags: list[str] = Field(default_factory=list)
class AssetScanError(BaseModel):
path: str
message: str
at: Optional[str] = Field(None, description="ISO timestamp")
class AssetScanStatus(BaseModel):
scan_id: str
root: Literal["models", "input", "output"]
status: Literal["scheduled", "running", "completed", "failed", "cancelled"]
scheduled_at: Optional[str] = None
started_at: Optional[str] = None
finished_at: Optional[str] = None
discovered: int = 0
processed: int = 0
file_errors: list[AssetScanError] = Field(default_factory=list)
class AssetScanStatusResponse(BaseModel):
scans: list[AssetScanStatus] = Field(default_factory=list)

View File

View File

@@ -0,0 +1,25 @@
from .bulk_ops import seed_from_paths_batch
from .escape_like import escape_like_prefix
from .fast_check import fast_asset_file_check
from .filters import apply_metadata_filter, apply_tag_filters
from .ownership import visible_owner_clause
from .projection import is_scalar, project_kv
from .tags import (
add_missing_tag_for_asset_id,
ensure_tags_exist,
remove_missing_tag_for_asset_id,
)
__all__ = [
"apply_tag_filters",
"apply_metadata_filter",
"escape_like_prefix",
"fast_asset_file_check",
"is_scalar",
"project_kv",
"ensure_tags_exist",
"add_missing_tag_for_asset_id",
"remove_missing_tag_for_asset_id",
"seed_from_paths_batch",
"visible_owner_clause",
]

View File

@@ -0,0 +1,230 @@
import os
import uuid
from typing import Iterable, Sequence
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql as d_pg
from sqlalchemy.dialects import sqlite as d_sqlite
from sqlalchemy.ext.asyncio import AsyncSession
from ..models import Asset, AssetCacheState, AssetInfo, AssetInfoMeta, AssetInfoTag
from ..timeutil import utcnow
MAX_BIND_PARAMS = 800
async def seed_from_paths_batch(
session: AsyncSession,
*,
specs: Sequence[dict],
owner_id: str = "",
) -> dict:
"""Each spec is a dict with keys:
- abs_path: str
- size_bytes: int
- mtime_ns: int
- info_name: str
- tags: list[str]
- fname: Optional[str]
"""
if not specs:
return {"inserted_infos": 0, "won_states": 0, "lost_states": 0}
now = utcnow()
dialect = session.bind.dialect.name
if dialect not in ("sqlite", "postgresql"):
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
asset_rows: list[dict] = []
state_rows: list[dict] = []
path_to_asset: dict[str, str] = {}
asset_to_info: dict[str, dict] = {} # asset_id -> prepared info row
path_list: list[str] = []
for sp in specs:
ap = os.path.abspath(sp["abs_path"])
aid = str(uuid.uuid4())
iid = str(uuid.uuid4())
path_list.append(ap)
path_to_asset[ap] = aid
asset_rows.append(
{
"id": aid,
"hash": None,
"size_bytes": sp["size_bytes"],
"mime_type": None,
"created_at": now,
}
)
state_rows.append(
{
"asset_id": aid,
"file_path": ap,
"mtime_ns": sp["mtime_ns"],
}
)
asset_to_info[aid] = {
"id": iid,
"owner_id": owner_id,
"name": sp["info_name"],
"asset_id": aid,
"preview_id": None,
"user_metadata": {"filename": sp["fname"]} if sp["fname"] else None,
"created_at": now,
"updated_at": now,
"last_access_time": now,
"_tags": sp["tags"],
"_filename": sp["fname"],
}
# insert all seed Assets (hash=NULL)
ins_asset = d_sqlite.insert(Asset) if dialect == "sqlite" else d_pg.insert(Asset)
for chunk in _iter_chunks(asset_rows, _rows_per_stmt(5)):
await session.execute(ins_asset, chunk)
# try to claim AssetCacheState (file_path)
winners_by_path: set[str] = set()
if dialect == "sqlite":
ins_state = (
d_sqlite.insert(AssetCacheState)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
.returning(AssetCacheState.file_path)
)
else:
ins_state = (
d_pg.insert(AssetCacheState)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
.returning(AssetCacheState.file_path)
)
for chunk in _iter_chunks(state_rows, _rows_per_stmt(3)):
winners_by_path.update((await session.execute(ins_state, chunk)).scalars().all())
all_paths_set = set(path_list)
losers_by_path = all_paths_set - winners_by_path
lost_assets = [path_to_asset[p] for p in losers_by_path]
if lost_assets: # losers get their Asset removed
for id_chunk in _iter_chunks(lost_assets, MAX_BIND_PARAMS):
await session.execute(sa.delete(Asset).where(Asset.id.in_(id_chunk)))
if not winners_by_path:
return {"inserted_infos": 0, "won_states": 0, "lost_states": len(losers_by_path)}
# insert AssetInfo only for winners
winner_info_rows = [asset_to_info[path_to_asset[p]] for p in winners_by_path]
if dialect == "sqlite":
ins_info = (
d_sqlite.insert(AssetInfo)
.on_conflict_do_nothing(index_elements=[AssetInfo.asset_id, AssetInfo.owner_id, AssetInfo.name])
.returning(AssetInfo.id)
)
else:
ins_info = (
d_pg.insert(AssetInfo)
.on_conflict_do_nothing(index_elements=[AssetInfo.asset_id, AssetInfo.owner_id, AssetInfo.name])
.returning(AssetInfo.id)
)
inserted_info_ids: set[str] = set()
for chunk in _iter_chunks(winner_info_rows, _rows_per_stmt(9)):
inserted_info_ids.update((await session.execute(ins_info, chunk)).scalars().all())
# build and insert tag + meta rows for the AssetInfo
tag_rows: list[dict] = []
meta_rows: list[dict] = []
if inserted_info_ids:
for row in winner_info_rows:
iid = row["id"]
if iid not in inserted_info_ids:
continue
for t in row["_tags"]:
tag_rows.append({
"asset_info_id": iid,
"tag_name": t,
"origin": "automatic",
"added_at": now,
})
if row["_filename"]:
meta_rows.append(
{
"asset_info_id": iid,
"key": "filename",
"ordinal": 0,
"val_str": row["_filename"],
"val_num": None,
"val_bool": None,
"val_json": None,
}
)
await bulk_insert_tags_and_meta(session, tag_rows=tag_rows, meta_rows=meta_rows, max_bind_params=MAX_BIND_PARAMS)
return {
"inserted_infos": len(inserted_info_ids),
"won_states": len(winners_by_path),
"lost_states": len(losers_by_path),
}
async def bulk_insert_tags_and_meta(
session: AsyncSession,
*,
tag_rows: list[dict],
meta_rows: list[dict],
max_bind_params: int,
) -> None:
"""Batch insert into asset_info_tags and asset_info_meta with ON CONFLICT DO NOTHING.
- tag_rows keys: asset_info_id, tag_name, origin, added_at
- meta_rows keys: asset_info_id, key, ordinal, val_str, val_num, val_bool, val_json
"""
dialect = session.bind.dialect.name
if tag_rows:
if dialect == "sqlite":
ins_links = (
d_sqlite.insert(AssetInfoTag)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
elif dialect == "postgresql":
ins_links = (
d_pg.insert(AssetInfoTag)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
for chunk in _chunk_rows(tag_rows, cols_per_row=4, max_bind_params=max_bind_params):
await session.execute(ins_links, chunk)
if meta_rows:
if dialect == "sqlite":
ins_meta = (
d_sqlite.insert(AssetInfoMeta)
.on_conflict_do_nothing(
index_elements=[AssetInfoMeta.asset_info_id, AssetInfoMeta.key, AssetInfoMeta.ordinal]
)
)
elif dialect == "postgresql":
ins_meta = (
d_pg.insert(AssetInfoMeta)
.on_conflict_do_nothing(
index_elements=[AssetInfoMeta.asset_info_id, AssetInfoMeta.key, AssetInfoMeta.ordinal]
)
)
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
for chunk in _chunk_rows(meta_rows, cols_per_row=7, max_bind_params=max_bind_params):
await session.execute(ins_meta, chunk)
def _chunk_rows(rows: list[dict], cols_per_row: int, max_bind_params: int) -> Iterable[list[dict]]:
if not rows:
return []
rows_per_stmt = max(1, max_bind_params // max(1, cols_per_row))
for i in range(0, len(rows), rows_per_stmt):
yield rows[i:i + rows_per_stmt]
def _iter_chunks(seq, n: int):
for i in range(0, len(seq), n):
yield seq[i:i + n]
def _rows_per_stmt(cols: int) -> int:
return max(1, MAX_BIND_PARAMS // max(1, cols))

View File

@@ -0,0 +1,7 @@
def escape_like_prefix(s: str, escape: str = "!") -> tuple[str, str]:
"""Escapes %, _ and the escape char itself in a LIKE prefix.
Returns (escaped_prefix, escape_char). Caller should append '%' and pass escape=escape_char to .like().
"""
s = s.replace(escape, escape + escape) # escape the escape char first
s = s.replace("%", escape + "%").replace("_", escape + "_") # escape LIKE wildcards
return s, escape

View File

@@ -0,0 +1,19 @@
import os
from typing import Optional
def fast_asset_file_check(
*,
mtime_db: Optional[int],
size_db: Optional[int],
stat_result: os.stat_result,
) -> bool:
if mtime_db is None:
return False
actual_mtime_ns = getattr(stat_result, "st_mtime_ns", int(stat_result.st_mtime * 1_000_000_000))
if int(mtime_db) != int(actual_mtime_ns):
return False
sz = int(size_db or 0)
if sz > 0:
return int(stat_result.st_size) == sz
return True

View File

@@ -0,0 +1,87 @@
from typing import Optional, Sequence
import sqlalchemy as sa
from sqlalchemy import exists
from ..._helpers import normalize_tags
from ..models import AssetInfo, AssetInfoMeta, AssetInfoTag
def apply_tag_filters(
stmt: sa.sql.Select,
include_tags: Optional[Sequence[str]],
exclude_tags: Optional[Sequence[str]],
) -> sa.sql.Select:
"""include_tags: every tag must be present; exclude_tags: none may be present."""
include_tags = normalize_tags(include_tags)
exclude_tags = normalize_tags(exclude_tags)
if include_tags:
for tag_name in include_tags:
stmt = stmt.where(
exists().where(
(AssetInfoTag.asset_info_id == AssetInfo.id)
& (AssetInfoTag.tag_name == tag_name)
)
)
if exclude_tags:
stmt = stmt.where(
~exists().where(
(AssetInfoTag.asset_info_id == AssetInfo.id)
& (AssetInfoTag.tag_name.in_(exclude_tags))
)
)
return stmt
def apply_metadata_filter(
stmt: sa.sql.Select,
metadata_filter: Optional[dict],
) -> sa.sql.Select:
"""Apply filters using asset_info_meta projection table."""
if not metadata_filter:
return stmt
def _exists_for_pred(key: str, *preds) -> sa.sql.ClauseElement:
return sa.exists().where(
AssetInfoMeta.asset_info_id == AssetInfo.id,
AssetInfoMeta.key == key,
*preds,
)
def _exists_clause_for_value(key: str, value) -> sa.sql.ClauseElement:
if value is None:
no_row_for_key = sa.not_(
sa.exists().where(
AssetInfoMeta.asset_info_id == AssetInfo.id,
AssetInfoMeta.key == key,
)
)
null_row = _exists_for_pred(
key,
AssetInfoMeta.val_json.is_(None),
AssetInfoMeta.val_str.is_(None),
AssetInfoMeta.val_num.is_(None),
AssetInfoMeta.val_bool.is_(None),
)
return sa.or_(no_row_for_key, null_row)
if isinstance(value, bool):
return _exists_for_pred(key, AssetInfoMeta.val_bool == bool(value))
if isinstance(value, (int, float)):
from decimal import Decimal
num = value if isinstance(value, Decimal) else Decimal(str(value))
return _exists_for_pred(key, AssetInfoMeta.val_num == num)
if isinstance(value, str):
return _exists_for_pred(key, AssetInfoMeta.val_str == value)
return _exists_for_pred(key, AssetInfoMeta.val_json == value)
for k, v in metadata_filter.items():
if isinstance(v, list):
ors = [_exists_clause_for_value(k, elem) for elem in v]
if ors:
stmt = stmt.where(sa.or_(*ors))
else:
stmt = stmt.where(_exists_clause_for_value(k, v))
return stmt

View File

@@ -0,0 +1,12 @@
import sqlalchemy as sa
from ..models import AssetInfo
def visible_owner_clause(owner_id: str) -> sa.sql.ClauseElement:
"""Build owner visibility predicate for reads. Owner-less rows are visible to everyone."""
owner_id = (owner_id or "").strip()
if owner_id == "":
return AssetInfo.owner_id == ""
return AssetInfo.owner_id.in_(["", owner_id])

View File

@@ -0,0 +1,64 @@
from decimal import Decimal
def is_scalar(v):
if v is None:
return True
if isinstance(v, bool):
return True
if isinstance(v, (int, float, Decimal, str)):
return True
return False
def project_kv(key: str, value):
"""
Turn a metadata key/value into typed projection rows.
Returns list[dict] with keys:
key, ordinal, and one of val_str / val_num / val_bool / val_json (others None)
"""
rows: list[dict] = []
def _null_row(ordinal: int) -> dict:
return {
"key": key, "ordinal": ordinal,
"val_str": None, "val_num": None, "val_bool": None, "val_json": None
}
if value is None:
rows.append(_null_row(0))
return rows
if is_scalar(value):
if isinstance(value, bool):
rows.append({"key": key, "ordinal": 0, "val_bool": bool(value)})
elif isinstance(value, (int, float, Decimal)):
num = value if isinstance(value, Decimal) else Decimal(str(value))
rows.append({"key": key, "ordinal": 0, "val_num": num})
elif isinstance(value, str):
rows.append({"key": key, "ordinal": 0, "val_str": value})
else:
rows.append({"key": key, "ordinal": 0, "val_json": value})
return rows
if isinstance(value, list):
if all(is_scalar(x) for x in value):
for i, x in enumerate(value):
if x is None:
rows.append(_null_row(i))
elif isinstance(x, bool):
rows.append({"key": key, "ordinal": i, "val_bool": bool(x)})
elif isinstance(x, (int, float, Decimal)):
num = x if isinstance(x, Decimal) else Decimal(str(x))
rows.append({"key": key, "ordinal": i, "val_num": num})
elif isinstance(x, str):
rows.append({"key": key, "ordinal": i, "val_str": x})
else:
rows.append({"key": key, "ordinal": i, "val_json": x})
return rows
for i, x in enumerate(value):
rows.append({"key": key, "ordinal": i, "val_json": x})
return rows
rows.append({"key": key, "ordinal": 0, "val_json": value})
return rows

View File

@@ -0,0 +1,90 @@
from typing import Iterable
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql as d_pg
from sqlalchemy.dialects import sqlite as d_sqlite
from sqlalchemy.ext.asyncio import AsyncSession
from ..._helpers import normalize_tags
from ..models import AssetInfo, AssetInfoTag, Tag
from ..timeutil import utcnow
async def ensure_tags_exist(session: AsyncSession, names: Iterable[str], tag_type: str = "user") -> None:
wanted = normalize_tags(list(names))
if not wanted:
return
rows = [{"name": n, "tag_type": tag_type} for n in list(dict.fromkeys(wanted))]
dialect = session.bind.dialect.name
if dialect == "sqlite":
ins = (
d_sqlite.insert(Tag)
.values(rows)
.on_conflict_do_nothing(index_elements=[Tag.name])
)
elif dialect == "postgresql":
ins = (
d_pg.insert(Tag)
.values(rows)
.on_conflict_do_nothing(index_elements=[Tag.name])
)
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
await session.execute(ins)
async def add_missing_tag_for_asset_id(
session: AsyncSession,
*,
asset_id: str,
origin: str = "automatic",
) -> None:
select_rows = (
sa.select(
AssetInfo.id.label("asset_info_id"),
sa.literal("missing").label("tag_name"),
sa.literal(origin).label("origin"),
sa.literal(utcnow()).label("added_at"),
)
.where(AssetInfo.asset_id == asset_id)
.where(
sa.not_(
sa.exists().where((AssetInfoTag.asset_info_id == AssetInfo.id) & (AssetInfoTag.tag_name == "missing"))
)
)
)
dialect = session.bind.dialect.name
if dialect == "sqlite":
ins = (
d_sqlite.insert(AssetInfoTag)
.from_select(
["asset_info_id", "tag_name", "origin", "added_at"],
select_rows,
)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
elif dialect == "postgresql":
ins = (
d_pg.insert(AssetInfoTag)
.from_select(
["asset_info_id", "tag_name", "origin", "added_at"],
select_rows,
)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
await session.execute(ins)
async def remove_missing_tag_for_asset_id(
session: AsyncSession,
*,
asset_id: str,
) -> None:
await session.execute(
sa.delete(AssetInfoTag).where(
AssetInfoTag.asset_info_id.in_(sa.select(AssetInfo.id).where(AssetInfo.asset_id == asset_id)),
AssetInfoTag.tag_name == "missing",
)
)

View File

@@ -0,0 +1,251 @@
import uuid
from datetime import datetime
from typing import Any, Optional
from sqlalchemy import (
JSON,
BigInteger,
Boolean,
CheckConstraint,
DateTime,
ForeignKey,
Index,
Integer,
Numeric,
String,
Text,
UniqueConstraint,
)
from sqlalchemy.dialects.postgresql import JSONB
from sqlalchemy.orm import DeclarativeBase, Mapped, foreign, mapped_column, relationship
from .timeutil import utcnow
JSONB_V = JSON(none_as_null=True).with_variant(JSONB(none_as_null=True), 'postgresql')
class Base(DeclarativeBase):
pass
def to_dict(obj: Any, include_none: bool = False) -> dict[str, Any]:
fields = obj.__table__.columns.keys()
out: dict[str, Any] = {}
for field in fields:
val = getattr(obj, field)
if val is None and not include_none:
continue
if isinstance(val, datetime):
out[field] = val.isoformat()
else:
out[field] = val
return out
class Asset(Base):
__tablename__ = "assets"
id: Mapped[str] = mapped_column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()))
hash: Mapped[Optional[str]] = mapped_column(String(256), nullable=True)
size_bytes: Mapped[int] = mapped_column(BigInteger, nullable=False, default=0)
mime_type: Mapped[Optional[str]] = mapped_column(String(255))
created_at: Mapped[datetime] = mapped_column(
DateTime(timezone=False), nullable=False, default=utcnow
)
infos: Mapped[list["AssetInfo"]] = relationship(
"AssetInfo",
back_populates="asset",
primaryjoin=lambda: Asset.id == foreign(AssetInfo.asset_id),
foreign_keys=lambda: [AssetInfo.asset_id],
cascade="all,delete-orphan",
passive_deletes=True,
)
preview_of: Mapped[list["AssetInfo"]] = relationship(
"AssetInfo",
back_populates="preview_asset",
primaryjoin=lambda: Asset.id == foreign(AssetInfo.preview_id),
foreign_keys=lambda: [AssetInfo.preview_id],
viewonly=True,
)
cache_states: Mapped[list["AssetCacheState"]] = relationship(
back_populates="asset",
cascade="all, delete-orphan",
passive_deletes=True,
)
__table_args__ = (
Index("uq_assets_hash", "hash", unique=True),
Index("ix_assets_mime_type", "mime_type"),
CheckConstraint("size_bytes >= 0", name="ck_assets_size_nonneg"),
)
def to_dict(self, include_none: bool = False) -> dict[str, Any]:
return to_dict(self, include_none=include_none)
def __repr__(self) -> str:
return f"<Asset id={self.id} hash={(self.hash or '')[:12]}>"
class AssetCacheState(Base):
__tablename__ = "asset_cache_state"
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="CASCADE"), nullable=False)
file_path: Mapped[str] = mapped_column(Text, nullable=False)
mtime_ns: Mapped[Optional[int]] = mapped_column(BigInteger, nullable=True)
needs_verify: Mapped[bool] = mapped_column(Boolean, nullable=False, default=False)
asset: Mapped["Asset"] = relationship(back_populates="cache_states")
__table_args__ = (
Index("ix_asset_cache_state_file_path", "file_path"),
Index("ix_asset_cache_state_asset_id", "asset_id"),
CheckConstraint("(mtime_ns IS NULL) OR (mtime_ns >= 0)", name="ck_acs_mtime_nonneg"),
UniqueConstraint("file_path", name="uq_asset_cache_state_file_path"),
)
def to_dict(self, include_none: bool = False) -> dict[str, Any]:
return to_dict(self, include_none=include_none)
def __repr__(self) -> str:
return f"<AssetCacheState id={self.id} asset_id={self.asset_id} path={self.file_path!r}>"
class AssetInfo(Base):
__tablename__ = "assets_info"
id: Mapped[str] = mapped_column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()))
owner_id: Mapped[str] = mapped_column(String(128), nullable=False, default="")
name: Mapped[str] = mapped_column(String(512), nullable=False)
asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="RESTRICT"), nullable=False)
preview_id: Mapped[Optional[str]] = mapped_column(String(36), ForeignKey("assets.id", ondelete="SET NULL"))
user_metadata: Mapped[Optional[dict[str, Any]]] = mapped_column(JSON(none_as_null=True))
created_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
updated_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
last_access_time: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
asset: Mapped[Asset] = relationship(
"Asset",
back_populates="infos",
foreign_keys=[asset_id],
lazy="selectin",
)
preview_asset: Mapped[Optional[Asset]] = relationship(
"Asset",
back_populates="preview_of",
foreign_keys=[preview_id],
)
metadata_entries: Mapped[list["AssetInfoMeta"]] = relationship(
back_populates="asset_info",
cascade="all,delete-orphan",
passive_deletes=True,
)
tag_links: Mapped[list["AssetInfoTag"]] = relationship(
back_populates="asset_info",
cascade="all,delete-orphan",
passive_deletes=True,
overlaps="tags,asset_infos",
)
tags: Mapped[list["Tag"]] = relationship(
secondary="asset_info_tags",
back_populates="asset_infos",
lazy="selectin",
viewonly=True,
overlaps="tag_links,asset_info_links,asset_infos,tag",
)
__table_args__ = (
UniqueConstraint("asset_id", "owner_id", "name", name="uq_assets_info_asset_owner_name"),
Index("ix_assets_info_owner_name", "owner_id", "name"),
Index("ix_assets_info_owner_id", "owner_id"),
Index("ix_assets_info_asset_id", "asset_id"),
Index("ix_assets_info_name", "name"),
Index("ix_assets_info_created_at", "created_at"),
Index("ix_assets_info_last_access_time", "last_access_time"),
)
def to_dict(self, include_none: bool = False) -> dict[str, Any]:
data = to_dict(self, include_none=include_none)
data["tags"] = [t.name for t in self.tags]
return data
def __repr__(self) -> str:
return f"<AssetInfo id={self.id} name={self.name!r} asset_id={self.asset_id}>"
class AssetInfoMeta(Base):
__tablename__ = "asset_info_meta"
asset_info_id: Mapped[str] = mapped_column(
String(36), ForeignKey("assets_info.id", ondelete="CASCADE"), primary_key=True
)
key: Mapped[str] = mapped_column(String(256), primary_key=True)
ordinal: Mapped[int] = mapped_column(Integer, primary_key=True, default=0)
val_str: Mapped[Optional[str]] = mapped_column(String(2048), nullable=True)
val_num: Mapped[Optional[float]] = mapped_column(Numeric(38, 10), nullable=True)
val_bool: Mapped[Optional[bool]] = mapped_column(Boolean, nullable=True)
val_json: Mapped[Optional[Any]] = mapped_column(JSONB_V, nullable=True)
asset_info: Mapped["AssetInfo"] = relationship(back_populates="metadata_entries")
__table_args__ = (
Index("ix_asset_info_meta_key", "key"),
Index("ix_asset_info_meta_key_val_str", "key", "val_str"),
Index("ix_asset_info_meta_key_val_num", "key", "val_num"),
Index("ix_asset_info_meta_key_val_bool", "key", "val_bool"),
)
class AssetInfoTag(Base):
__tablename__ = "asset_info_tags"
asset_info_id: Mapped[str] = mapped_column(
String(36), ForeignKey("assets_info.id", ondelete="CASCADE"), primary_key=True
)
tag_name: Mapped[str] = mapped_column(
String(512), ForeignKey("tags.name", ondelete="RESTRICT"), primary_key=True
)
origin: Mapped[str] = mapped_column(String(32), nullable=False, default="manual")
added_at: Mapped[datetime] = mapped_column(
DateTime(timezone=False), nullable=False, default=utcnow
)
asset_info: Mapped["AssetInfo"] = relationship(back_populates="tag_links")
tag: Mapped["Tag"] = relationship(back_populates="asset_info_links")
__table_args__ = (
Index("ix_asset_info_tags_tag_name", "tag_name"),
Index("ix_asset_info_tags_asset_info_id", "asset_info_id"),
)
class Tag(Base):
__tablename__ = "tags"
name: Mapped[str] = mapped_column(String(512), primary_key=True)
tag_type: Mapped[str] = mapped_column(String(32), nullable=False, default="user")
asset_info_links: Mapped[list["AssetInfoTag"]] = relationship(
back_populates="tag",
overlaps="asset_infos,tags",
)
asset_infos: Mapped[list["AssetInfo"]] = relationship(
secondary="asset_info_tags",
back_populates="tags",
viewonly=True,
overlaps="asset_info_links,tag_links,tags,asset_info",
)
__table_args__ = (
Index("ix_tags_tag_type", "tag_type"),
)
def __repr__(self) -> str:
return f"<Tag {self.name}>"

View File

@@ -0,0 +1,57 @@
from .content import (
check_fs_asset_exists_quick,
compute_hash_and_dedup_for_cache_state,
ingest_fs_asset,
list_cache_states_with_asset_under_prefixes,
list_unhashed_candidates_under_prefixes,
list_verify_candidates_under_prefixes,
redirect_all_references_then_delete_asset,
touch_asset_infos_by_fs_path,
)
from .info import (
add_tags_to_asset_info,
create_asset_info_for_existing_asset,
delete_asset_info_by_id,
fetch_asset_info_and_asset,
fetch_asset_info_asset_and_tags,
get_asset_tags,
list_asset_infos_page,
list_tags_with_usage,
remove_tags_from_asset_info,
replace_asset_info_metadata_projection,
set_asset_info_preview,
set_asset_info_tags,
touch_asset_info_by_id,
update_asset_info_full,
)
from .queries import (
asset_exists_by_hash,
asset_info_exists_for_asset_id,
get_asset_by_hash,
get_asset_info_by_id,
get_cache_state_by_asset_id,
list_cache_states_by_asset_id,
pick_best_live_path,
)
__all__ = [
# queries
"asset_exists_by_hash", "get_asset_by_hash", "get_asset_info_by_id", "asset_info_exists_for_asset_id",
"get_cache_state_by_asset_id",
"list_cache_states_by_asset_id",
"pick_best_live_path",
# info
"list_asset_infos_page", "create_asset_info_for_existing_asset", "set_asset_info_tags",
"update_asset_info_full", "replace_asset_info_metadata_projection",
"touch_asset_info_by_id", "delete_asset_info_by_id",
"add_tags_to_asset_info", "remove_tags_from_asset_info",
"get_asset_tags", "list_tags_with_usage", "set_asset_info_preview",
"fetch_asset_info_and_asset", "fetch_asset_info_asset_and_tags",
# content
"check_fs_asset_exists_quick",
"redirect_all_references_then_delete_asset",
"compute_hash_and_dedup_for_cache_state",
"list_unhashed_candidates_under_prefixes", "list_verify_candidates_under_prefixes",
"ingest_fs_asset", "touch_asset_infos_by_fs_path",
"list_cache_states_with_asset_under_prefixes",
]

View File

@@ -0,0 +1,721 @@
import contextlib
import logging
import os
from datetime import datetime
from typing import Any, Optional, Sequence, Union
import sqlalchemy as sa
from sqlalchemy import select
from sqlalchemy.dialects import postgresql as d_pg
from sqlalchemy.dialects import sqlite as d_sqlite
from sqlalchemy.exc import IntegrityError
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.orm import noload
from ..._helpers import compute_relative_filename
from ...storage import hashing as hashing_mod
from ..helpers import (
ensure_tags_exist,
escape_like_prefix,
remove_missing_tag_for_asset_id,
)
from ..models import Asset, AssetCacheState, AssetInfo, AssetInfoTag, Tag
from ..timeutil import utcnow
from .info import replace_asset_info_metadata_projection
from .queries import list_cache_states_by_asset_id, pick_best_live_path
async def check_fs_asset_exists_quick(
session: AsyncSession,
*,
file_path: str,
size_bytes: Optional[int] = None,
mtime_ns: Optional[int] = None,
) -> bool:
"""Returns True if we already track this absolute path with a HASHED asset and the cached mtime/size match."""
locator = os.path.abspath(file_path)
stmt = (
sa.select(sa.literal(True))
.select_from(AssetCacheState)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(
AssetCacheState.file_path == locator,
Asset.hash.isnot(None),
AssetCacheState.needs_verify.is_(False),
)
.limit(1)
)
conds = []
if mtime_ns is not None:
conds.append(AssetCacheState.mtime_ns == int(mtime_ns))
if size_bytes is not None:
conds.append(sa.or_(Asset.size_bytes == 0, Asset.size_bytes == int(size_bytes)))
if conds:
stmt = stmt.where(*conds)
return (await session.execute(stmt)).first() is not None
async def redirect_all_references_then_delete_asset(
session: AsyncSession,
*,
duplicate_asset_id: str,
canonical_asset_id: str,
) -> None:
"""
Safely migrate all references from duplicate_asset_id to canonical_asset_id.
- If an AssetInfo for (owner_id, name) already exists on the canonical asset,
merge tags, metadata, times, and preview, then delete the duplicate AssetInfo.
- Otherwise, simply repoint the AssetInfo.asset_id.
- Always retarget AssetCacheState rows.
- Finally delete the duplicate Asset row.
"""
if duplicate_asset_id == canonical_asset_id:
return
# 1) Migrate AssetInfo rows one-by-one to avoid UNIQUE conflicts.
dup_infos = (
await session.execute(
select(AssetInfo).options(noload(AssetInfo.tags)).where(AssetInfo.asset_id == duplicate_asset_id)
)
).unique().scalars().all()
for info in dup_infos:
# Try to find an existing collision on canonical
existing = (
await session.execute(
select(AssetInfo)
.options(noload(AssetInfo.tags))
.where(
AssetInfo.asset_id == canonical_asset_id,
AssetInfo.owner_id == info.owner_id,
AssetInfo.name == info.name,
)
.limit(1)
)
).unique().scalars().first()
if existing:
merged_meta = dict(existing.user_metadata or {})
other_meta = info.user_metadata or {}
for k, v in other_meta.items():
if k not in merged_meta:
merged_meta[k] = v
if merged_meta != (existing.user_metadata or {}):
await replace_asset_info_metadata_projection(
session,
asset_info_id=existing.id,
user_metadata=merged_meta,
)
existing_tags = {
t for (t,) in (
await session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == existing.id)
)
).all()
}
from_tags = {
t for (t,) in (
await session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == info.id)
)
).all()
}
to_add = sorted(from_tags - existing_tags)
if to_add:
await ensure_tags_exist(session, to_add, tag_type="user")
now = utcnow()
session.add_all([
AssetInfoTag(asset_info_id=existing.id, tag_name=t, origin="automatic", added_at=now)
for t in to_add
])
await session.flush()
if existing.preview_id is None and info.preview_id is not None:
existing.preview_id = info.preview_id
if info.last_access_time and (
existing.last_access_time is None or info.last_access_time > existing.last_access_time
):
existing.last_access_time = info.last_access_time
existing.updated_at = utcnow()
await session.flush()
# Delete the duplicate AssetInfo (cascades will clean its tags/meta)
await session.delete(info)
await session.flush()
else:
# Simple retarget
info.asset_id = canonical_asset_id
info.updated_at = utcnow()
await session.flush()
# 2) Repoint cache states and previews
await session.execute(
sa.update(AssetCacheState)
.where(AssetCacheState.asset_id == duplicate_asset_id)
.values(asset_id=canonical_asset_id)
)
await session.execute(
sa.update(AssetInfo)
.where(AssetInfo.preview_id == duplicate_asset_id)
.values(preview_id=canonical_asset_id)
)
# 3) Remove duplicate Asset
dup = await session.get(Asset, duplicate_asset_id)
if dup:
await session.delete(dup)
await session.flush()
async def compute_hash_and_dedup_for_cache_state(
session: AsyncSession,
*,
state_id: int,
) -> Optional[str]:
"""
Compute hash for the given cache state, deduplicate, and settle verify cases.
Returns the asset_id that this state ends up pointing to, or None if file disappeared.
"""
state = await session.get(AssetCacheState, state_id)
if not state:
return None
path = state.file_path
try:
if not os.path.isfile(path):
# File vanished: drop the state. If the Asset has hash=NULL and has no other states, drop the Asset too.
asset = await session.get(Asset, state.asset_id)
await session.delete(state)
await session.flush()
if asset and asset.hash is None:
remaining = (
await session.execute(
sa.select(sa.func.count())
.select_from(AssetCacheState)
.where(AssetCacheState.asset_id == asset.id)
)
).scalar_one()
if int(remaining or 0) == 0:
await session.delete(asset)
await session.flush()
else:
await _recompute_and_apply_filename_for_asset(session, asset_id=asset.id)
return None
digest = await hashing_mod.blake3_hash(path)
new_hash = f"blake3:{digest}"
st = os.stat(path, follow_symlinks=True)
new_size = int(st.st_size)
mtime_ns = getattr(st, "st_mtime_ns", int(st.st_mtime * 1_000_000_000))
# Current asset of this state
this_asset = await session.get(Asset, state.asset_id)
# If the state got orphaned somehow (race), just reattach appropriately.
if not this_asset:
canonical = (
await session.execute(sa.select(Asset).where(Asset.hash == new_hash).limit(1))
).scalars().first()
if canonical:
state.asset_id = canonical.id
else:
now = utcnow()
new_asset = Asset(hash=new_hash, size_bytes=new_size, mime_type=None, created_at=now)
session.add(new_asset)
await session.flush()
state.asset_id = new_asset.id
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=state.asset_id)
await session.flush()
return state.asset_id
# 1) Seed asset case (hash is NULL): claim or merge into canonical
if this_asset.hash is None:
canonical = (
await session.execute(sa.select(Asset).where(Asset.hash == new_hash).limit(1))
).scalars().first()
if canonical and canonical.id != this_asset.id:
# Merge seed asset into canonical (safe, collision-aware)
await redirect_all_references_then_delete_asset(
session,
duplicate_asset_id=this_asset.id,
canonical_asset_id=canonical.id,
)
state = await session.get(AssetCacheState, state_id)
if state:
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=canonical.id)
await _recompute_and_apply_filename_for_asset(session, asset_id=canonical.id)
await session.flush()
return canonical.id
# No canonical: try to claim the hash; handle races with a SAVEPOINT
try:
async with session.begin_nested():
this_asset.hash = new_hash
if int(this_asset.size_bytes or 0) == 0 and new_size > 0:
this_asset.size_bytes = new_size
await session.flush()
except IntegrityError:
# Someone else claimed it concurrently; fetch canonical and merge
canonical = (
await session.execute(sa.select(Asset).where(Asset.hash == new_hash).limit(1))
).scalars().first()
if canonical and canonical.id != this_asset.id:
await redirect_all_references_then_delete_asset(
session,
duplicate_asset_id=this_asset.id,
canonical_asset_id=canonical.id,
)
state = await session.get(AssetCacheState, state_id)
if state:
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=canonical.id)
await _recompute_and_apply_filename_for_asset(session, asset_id=canonical.id)
await session.flush()
return canonical.id
# If we got here, the integrity error was not about hash uniqueness
raise
# Claimed successfully
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=this_asset.id)
await _recompute_and_apply_filename_for_asset(session, asset_id=this_asset.id)
await session.flush()
return this_asset.id
# 2) Verify case for hashed assets
if this_asset.hash == new_hash:
if int(this_asset.size_bytes or 0) == 0 and new_size > 0:
this_asset.size_bytes = new_size
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=this_asset.id)
await _recompute_and_apply_filename_for_asset(session, asset_id=this_asset.id)
await session.flush()
return this_asset.id
# Content changed on this path only: retarget THIS state, do not move AssetInfo rows
canonical = (
await session.execute(sa.select(Asset).where(Asset.hash == new_hash).limit(1))
).scalars().first()
if canonical:
target_id = canonical.id
else:
now = utcnow()
new_asset = Asset(hash=new_hash, size_bytes=new_size, mime_type=None, created_at=now)
session.add(new_asset)
await session.flush()
target_id = new_asset.id
state.asset_id = target_id
state.mtime_ns = mtime_ns
state.needs_verify = False
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(session, asset_id=target_id)
await _recompute_and_apply_filename_for_asset(session, asset_id=target_id)
await session.flush()
return target_id
except Exception:
raise
async def list_unhashed_candidates_under_prefixes(session: AsyncSession, *, prefixes: list[str]) -> list[int]:
if not prefixes:
return []
conds = []
for p in prefixes:
base = os.path.abspath(p)
if not base.endswith(os.sep):
base += os.sep
escaped, esc = escape_like_prefix(base)
conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc))
path_filter = sa.or_(*conds) if len(conds) > 1 else conds[0]
if session.bind.dialect.name == "postgresql":
stmt = (
sa.select(AssetCacheState.id)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(Asset.hash.is_(None), path_filter)
.order_by(AssetCacheState.asset_id.asc(), AssetCacheState.id.asc())
.distinct(AssetCacheState.asset_id)
)
else:
first_id = sa.func.min(AssetCacheState.id).label("first_id")
stmt = (
sa.select(first_id)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(Asset.hash.is_(None), path_filter)
.group_by(AssetCacheState.asset_id)
.order_by(first_id.asc())
)
return [int(x) for x in (await session.execute(stmt)).scalars().all()]
async def list_verify_candidates_under_prefixes(
session: AsyncSession, *, prefixes: Sequence[str]
) -> Union[list[int], Sequence[int]]:
if not prefixes:
return []
conds = []
for p in prefixes:
base = os.path.abspath(p)
if not base.endswith(os.sep):
base += os.sep
escaped, esc = escape_like_prefix(base)
conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc))
return (
await session.execute(
sa.select(AssetCacheState.id)
.where(AssetCacheState.needs_verify.is_(True))
.where(sa.or_(*conds))
.order_by(AssetCacheState.id.asc())
)
).scalars().all()
async def ingest_fs_asset(
session: AsyncSession,
*,
asset_hash: str,
abs_path: str,
size_bytes: int,
mtime_ns: int,
mime_type: Optional[str] = None,
info_name: Optional[str] = None,
owner_id: str = "",
preview_id: Optional[str] = None,
user_metadata: Optional[dict] = None,
tags: Sequence[str] = (),
tag_origin: str = "manual",
require_existing_tags: bool = False,
) -> dict:
"""
Idempotently upsert:
- Asset by content hash (create if missing)
- AssetCacheState(file_path) pointing to asset_id
- Optionally AssetInfo + tag links and metadata projection
Returns flags and ids.
"""
locator = os.path.abspath(abs_path)
now = utcnow()
dialect = session.bind.dialect.name
if preview_id:
if not await session.get(Asset, preview_id):
preview_id = None
out: dict[str, Any] = {
"asset_created": False,
"asset_updated": False,
"state_created": False,
"state_updated": False,
"asset_info_id": None,
}
# 1) Asset by hash
asset = (
await session.execute(select(Asset).where(Asset.hash == asset_hash).limit(1))
).scalars().first()
if not asset:
vals = {
"hash": asset_hash,
"size_bytes": int(size_bytes),
"mime_type": mime_type,
"created_at": now,
}
if dialect == "sqlite":
res = await session.execute(
d_sqlite.insert(Asset)
.values(**vals)
.on_conflict_do_nothing(index_elements=[Asset.hash])
)
if int(res.rowcount or 0) > 0:
out["asset_created"] = True
asset = (
await session.execute(
select(Asset).where(Asset.hash == asset_hash).limit(1)
)
).scalars().first()
elif dialect == "postgresql":
res = await session.execute(
d_pg.insert(Asset)
.values(**vals)
.on_conflict_do_nothing(
index_elements=[Asset.hash],
index_where=Asset.__table__.c.hash.isnot(None),
)
.returning(Asset.id)
)
inserted_id = res.scalar_one_or_none()
if inserted_id:
out["asset_created"] = True
asset = await session.get(Asset, inserted_id)
else:
asset = (
await session.execute(
select(Asset).where(Asset.hash == asset_hash).limit(1)
)
).scalars().first()
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
if not asset:
raise RuntimeError("Asset row not found after upsert.")
else:
changed = False
if asset.size_bytes != int(size_bytes) and int(size_bytes) > 0:
asset.size_bytes = int(size_bytes)
changed = True
if mime_type and asset.mime_type != mime_type:
asset.mime_type = mime_type
changed = True
if changed:
out["asset_updated"] = True
# 2) AssetCacheState upsert by file_path (unique)
vals = {
"asset_id": asset.id,
"file_path": locator,
"mtime_ns": int(mtime_ns),
}
if dialect == "sqlite":
ins = (
d_sqlite.insert(AssetCacheState)
.values(**vals)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
)
elif dialect == "postgresql":
ins = (
d_pg.insert(AssetCacheState)
.values(**vals)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
)
else:
raise NotImplementedError(f"Unsupported database dialect: {dialect}")
res = await session.execute(ins)
if int(res.rowcount or 0) > 0:
out["state_created"] = True
else:
upd = (
sa.update(AssetCacheState)
.where(AssetCacheState.file_path == locator)
.where(
sa.or_(
AssetCacheState.asset_id != asset.id,
AssetCacheState.mtime_ns.is_(None),
AssetCacheState.mtime_ns != int(mtime_ns),
)
)
.values(asset_id=asset.id, mtime_ns=int(mtime_ns))
)
res2 = await session.execute(upd)
if int(res2.rowcount or 0) > 0:
out["state_updated"] = True
# 3) Optional AssetInfo + tags + metadata
if info_name:
try:
async with session.begin_nested():
info = AssetInfo(
owner_id=owner_id,
name=info_name,
asset_id=asset.id,
preview_id=preview_id,
created_at=now,
updated_at=now,
last_access_time=now,
)
session.add(info)
await session.flush()
out["asset_info_id"] = info.id
except IntegrityError:
pass
existing_info = (
await session.execute(
select(AssetInfo)
.where(
AssetInfo.asset_id == asset.id,
AssetInfo.name == info_name,
(AssetInfo.owner_id == owner_id),
)
.limit(1)
)
).unique().scalar_one_or_none()
if not existing_info:
raise RuntimeError("Failed to update or insert AssetInfo.")
if preview_id and existing_info.preview_id != preview_id:
existing_info.preview_id = preview_id
existing_info.updated_at = now
if existing_info.last_access_time < now:
existing_info.last_access_time = now
await session.flush()
out["asset_info_id"] = existing_info.id
norm = [t.strip().lower() for t in (tags or []) if (t or "").strip()]
if norm and out["asset_info_id"] is not None:
if not require_existing_tags:
await ensure_tags_exist(session, norm, tag_type="user")
existing_tag_names = set(
name for (name,) in (await session.execute(select(Tag.name).where(Tag.name.in_(norm)))).all()
)
missing = [t for t in norm if t not in existing_tag_names]
if missing and require_existing_tags:
raise ValueError(f"Unknown tags: {missing}")
existing_links = set(
tag_name
for (tag_name,) in (
await session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == out["asset_info_id"])
)
).all()
)
to_add = [t for t in norm if t in existing_tag_names and t not in existing_links]
if to_add:
session.add_all(
[
AssetInfoTag(
asset_info_id=out["asset_info_id"],
tag_name=t,
origin=tag_origin,
added_at=now,
)
for t in to_add
]
)
await session.flush()
# metadata["filename"] hack
if out["asset_info_id"] is not None:
primary_path = pick_best_live_path(await list_cache_states_by_asset_id(session, asset_id=asset.id))
computed_filename = compute_relative_filename(primary_path) if primary_path else None
current_meta = existing_info.user_metadata or {}
new_meta = dict(current_meta)
if user_metadata is not None:
for k, v in user_metadata.items():
new_meta[k] = v
if computed_filename:
new_meta["filename"] = computed_filename
if new_meta != current_meta:
await replace_asset_info_metadata_projection(
session,
asset_info_id=out["asset_info_id"],
user_metadata=new_meta,
)
try:
await remove_missing_tag_for_asset_id(session, asset_id=asset.id)
except Exception:
logging.exception("Failed to clear 'missing' tag for asset %s", asset.id)
return out
async def touch_asset_infos_by_fs_path(
session: AsyncSession,
*,
file_path: str,
ts: Optional[datetime] = None,
only_if_newer: bool = True,
) -> None:
locator = os.path.abspath(file_path)
ts = ts or utcnow()
stmt = sa.update(AssetInfo).where(
sa.exists(
sa.select(sa.literal(1))
.select_from(AssetCacheState)
.where(
AssetCacheState.asset_id == AssetInfo.asset_id,
AssetCacheState.file_path == locator,
)
)
)
if only_if_newer:
stmt = stmt.where(
sa.or_(
AssetInfo.last_access_time.is_(None),
AssetInfo.last_access_time < ts,
)
)
await session.execute(stmt.values(last_access_time=ts))
async def list_cache_states_with_asset_under_prefixes(
session: AsyncSession,
*,
prefixes: Sequence[str],
) -> list[tuple[AssetCacheState, Optional[str], int]]:
"""Return (AssetCacheState, asset_hash, size_bytes) for rows under any prefix."""
if not prefixes:
return []
conds = []
for p in prefixes:
if not p:
continue
base = os.path.abspath(p)
if not base.endswith(os.sep):
base = base + os.sep
escaped, esc = escape_like_prefix(base)
conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc))
if not conds:
return []
rows = (
await session.execute(
select(AssetCacheState, Asset.hash, Asset.size_bytes)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(sa.or_(*conds))
.order_by(AssetCacheState.id.asc())
)
).all()
return [(r[0], r[1], int(r[2] or 0)) for r in rows]
async def _recompute_and_apply_filename_for_asset(session: AsyncSession, *, asset_id: str) -> None:
"""Compute filename from the first *existing* cache state path and apply it to all AssetInfo (if changed)."""
try:
primary_path = pick_best_live_path(await list_cache_states_by_asset_id(session, asset_id=asset_id))
if not primary_path:
return
new_filename = compute_relative_filename(primary_path)
if not new_filename:
return
infos = (
await session.execute(select(AssetInfo).where(AssetInfo.asset_id == asset_id))
).scalars().all()
for info in infos:
current_meta = info.user_metadata or {}
if current_meta.get("filename") == new_filename:
continue
updated = dict(current_meta)
updated["filename"] = new_filename
await replace_asset_info_metadata_projection(session, asset_info_id=info.id, user_metadata=updated)
except Exception:
logging.exception("Failed to recompute filename metadata for asset %s", asset_id)

View File

@@ -0,0 +1,586 @@
from collections import defaultdict
from datetime import datetime
from typing import Any, Optional, Sequence
import sqlalchemy as sa
from sqlalchemy import delete, func, select
from sqlalchemy.exc import IntegrityError
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.orm import contains_eager, noload
from ..._helpers import compute_relative_filename, normalize_tags
from ..helpers import (
apply_metadata_filter,
apply_tag_filters,
ensure_tags_exist,
escape_like_prefix,
project_kv,
visible_owner_clause,
)
from ..models import Asset, AssetInfo, AssetInfoMeta, AssetInfoTag, Tag
from ..timeutil import utcnow
from .queries import (
get_asset_by_hash,
list_cache_states_by_asset_id,
pick_best_live_path,
)
async def list_asset_infos_page(
session: AsyncSession,
*,
owner_id: str = "",
include_tags: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
name_contains: Optional[str] = None,
metadata_filter: Optional[dict] = None,
limit: int = 20,
offset: int = 0,
sort: str = "created_at",
order: str = "desc",
) -> tuple[list[AssetInfo], dict[str, list[str]], int]:
base = (
select(AssetInfo)
.join(Asset, Asset.id == AssetInfo.asset_id)
.options(contains_eager(AssetInfo.asset), noload(AssetInfo.tags))
.where(visible_owner_clause(owner_id))
)
if name_contains:
escaped, esc = escape_like_prefix(name_contains)
base = base.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc))
base = apply_tag_filters(base, include_tags, exclude_tags)
base = apply_metadata_filter(base, metadata_filter)
sort = (sort or "created_at").lower()
order = (order or "desc").lower()
sort_map = {
"name": AssetInfo.name,
"created_at": AssetInfo.created_at,
"updated_at": AssetInfo.updated_at,
"last_access_time": AssetInfo.last_access_time,
"size": Asset.size_bytes,
}
sort_col = sort_map.get(sort, AssetInfo.created_at)
sort_exp = sort_col.desc() if order == "desc" else sort_col.asc()
base = base.order_by(sort_exp).limit(limit).offset(offset)
count_stmt = (
select(func.count())
.select_from(AssetInfo)
.join(Asset, Asset.id == AssetInfo.asset_id)
.where(visible_owner_clause(owner_id))
)
if name_contains:
escaped, esc = escape_like_prefix(name_contains)
count_stmt = count_stmt.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc))
count_stmt = apply_tag_filters(count_stmt, include_tags, exclude_tags)
count_stmt = apply_metadata_filter(count_stmt, metadata_filter)
total = int((await session.execute(count_stmt)).scalar_one() or 0)
infos = (await session.execute(base)).unique().scalars().all()
id_list: list[str] = [i.id for i in infos]
tag_map: dict[str, list[str]] = defaultdict(list)
if id_list:
rows = await session.execute(
select(AssetInfoTag.asset_info_id, Tag.name)
.join(Tag, Tag.name == AssetInfoTag.tag_name)
.where(AssetInfoTag.asset_info_id.in_(id_list))
)
for aid, tag_name in rows.all():
tag_map[aid].append(tag_name)
return infos, tag_map, total
async def fetch_asset_info_and_asset(
session: AsyncSession,
*,
asset_info_id: str,
owner_id: str = "",
) -> Optional[tuple[AssetInfo, Asset]]:
stmt = (
select(AssetInfo, Asset)
.join(Asset, Asset.id == AssetInfo.asset_id)
.where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
.limit(1)
.options(noload(AssetInfo.tags))
)
row = await session.execute(stmt)
pair = row.first()
if not pair:
return None
return pair[0], pair[1]
async def fetch_asset_info_asset_and_tags(
session: AsyncSession,
*,
asset_info_id: str,
owner_id: str = "",
) -> Optional[tuple[AssetInfo, Asset, list[str]]]:
stmt = (
select(AssetInfo, Asset, Tag.name)
.join(Asset, Asset.id == AssetInfo.asset_id)
.join(AssetInfoTag, AssetInfoTag.asset_info_id == AssetInfo.id, isouter=True)
.join(Tag, Tag.name == AssetInfoTag.tag_name, isouter=True)
.where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
.options(noload(AssetInfo.tags))
.order_by(Tag.name.asc())
)
rows = (await session.execute(stmt)).all()
if not rows:
return None
first_info, first_asset, _ = rows[0]
tags: list[str] = []
seen: set[str] = set()
for _info, _asset, tag_name in rows:
if tag_name and tag_name not in seen:
seen.add(tag_name)
tags.append(tag_name)
return first_info, first_asset, tags
async def create_asset_info_for_existing_asset(
session: AsyncSession,
*,
asset_hash: str,
name: str,
user_metadata: Optional[dict] = None,
tags: Optional[Sequence[str]] = None,
tag_origin: str = "manual",
owner_id: str = "",
) -> AssetInfo:
"""Create or return an existing AssetInfo for an Asset identified by asset_hash."""
now = utcnow()
asset = await get_asset_by_hash(session, asset_hash=asset_hash)
if not asset:
raise ValueError(f"Unknown asset hash {asset_hash}")
info = AssetInfo(
owner_id=owner_id,
name=name,
asset_id=asset.id,
preview_id=None,
created_at=now,
updated_at=now,
last_access_time=now,
)
try:
async with session.begin_nested():
session.add(info)
await session.flush()
except IntegrityError:
existing = (
await session.execute(
select(AssetInfo)
.options(noload(AssetInfo.tags))
.where(
AssetInfo.asset_id == asset.id,
AssetInfo.name == name,
AssetInfo.owner_id == owner_id,
)
.limit(1)
)
).unique().scalars().first()
if not existing:
raise RuntimeError("AssetInfo upsert failed to find existing row after conflict.")
return existing
# metadata["filename"] hack
new_meta = dict(user_metadata or {})
computed_filename = None
try:
p = pick_best_live_path(await list_cache_states_by_asset_id(session, asset_id=asset.id))
if p:
computed_filename = compute_relative_filename(p)
except Exception:
computed_filename = None
if computed_filename:
new_meta["filename"] = computed_filename
if new_meta:
await replace_asset_info_metadata_projection(
session,
asset_info_id=info.id,
user_metadata=new_meta,
)
if tags is not None:
await set_asset_info_tags(
session,
asset_info_id=info.id,
tags=tags,
origin=tag_origin,
)
return info
async def set_asset_info_tags(
session: AsyncSession,
*,
asset_info_id: str,
tags: Sequence[str],
origin: str = "manual",
) -> dict:
desired = normalize_tags(tags)
current = set(
tag_name for (tag_name,) in (
await session.execute(select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id))
).all()
)
to_add = [t for t in desired if t not in current]
to_remove = [t for t in current if t not in desired]
if to_add:
await ensure_tags_exist(session, to_add, tag_type="user")
session.add_all([
AssetInfoTag(asset_info_id=asset_info_id, tag_name=t, origin=origin, added_at=utcnow())
for t in to_add
])
await session.flush()
if to_remove:
await session.execute(
delete(AssetInfoTag)
.where(AssetInfoTag.asset_info_id == asset_info_id, AssetInfoTag.tag_name.in_(to_remove))
)
await session.flush()
return {"added": to_add, "removed": to_remove, "total": desired}
async def update_asset_info_full(
session: AsyncSession,
*,
asset_info_id: str,
name: Optional[str] = None,
tags: Optional[Sequence[str]] = None,
user_metadata: Optional[dict] = None,
tag_origin: str = "manual",
asset_info_row: Any = None,
) -> AssetInfo:
if not asset_info_row:
info = await session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
else:
info = asset_info_row
touched = False
if name is not None and name != info.name:
info.name = name
touched = True
computed_filename = None
try:
p = pick_best_live_path(await list_cache_states_by_asset_id(session, asset_id=info.asset_id))
if p:
computed_filename = compute_relative_filename(p)
except Exception:
computed_filename = None
if user_metadata is not None:
new_meta = dict(user_metadata)
if computed_filename:
new_meta["filename"] = computed_filename
await replace_asset_info_metadata_projection(
session, asset_info_id=asset_info_id, user_metadata=new_meta
)
touched = True
else:
if computed_filename:
current_meta = info.user_metadata or {}
if current_meta.get("filename") != computed_filename:
new_meta = dict(current_meta)
new_meta["filename"] = computed_filename
await replace_asset_info_metadata_projection(
session, asset_info_id=asset_info_id, user_metadata=new_meta
)
touched = True
if tags is not None:
await set_asset_info_tags(
session,
asset_info_id=asset_info_id,
tags=tags,
origin=tag_origin,
)
touched = True
if touched and user_metadata is None:
info.updated_at = utcnow()
await session.flush()
return info
async def replace_asset_info_metadata_projection(
session: AsyncSession,
*,
asset_info_id: str,
user_metadata: Optional[dict],
) -> None:
info = await session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info.user_metadata = user_metadata or {}
info.updated_at = utcnow()
await session.flush()
await session.execute(delete(AssetInfoMeta).where(AssetInfoMeta.asset_info_id == asset_info_id))
await session.flush()
if not user_metadata:
return
rows: list[AssetInfoMeta] = []
for k, v in user_metadata.items():
for r in project_kv(k, v):
rows.append(
AssetInfoMeta(
asset_info_id=asset_info_id,
key=r["key"],
ordinal=int(r["ordinal"]),
val_str=r.get("val_str"),
val_num=r.get("val_num"),
val_bool=r.get("val_bool"),
val_json=r.get("val_json"),
)
)
if rows:
session.add_all(rows)
await session.flush()
async def touch_asset_info_by_id(
session: AsyncSession,
*,
asset_info_id: str,
ts: Optional[datetime] = None,
only_if_newer: bool = True,
) -> None:
ts = ts or utcnow()
stmt = sa.update(AssetInfo).where(AssetInfo.id == asset_info_id)
if only_if_newer:
stmt = stmt.where(
sa.or_(AssetInfo.last_access_time.is_(None), AssetInfo.last_access_time < ts)
)
await session.execute(stmt.values(last_access_time=ts))
async def delete_asset_info_by_id(session: AsyncSession, *, asset_info_id: str, owner_id: str) -> bool:
stmt = sa.delete(AssetInfo).where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
return int((await session.execute(stmt)).rowcount or 0) > 0
async def add_tags_to_asset_info(
session: AsyncSession,
*,
asset_info_id: str,
tags: Sequence[str],
origin: str = "manual",
create_if_missing: bool = True,
asset_info_row: Any = None,
) -> dict:
if not asset_info_row:
info = await session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
norm = normalize_tags(tags)
if not norm:
total = await get_asset_tags(session, asset_info_id=asset_info_id)
return {"added": [], "already_present": [], "total_tags": total}
if create_if_missing:
await ensure_tags_exist(session, norm, tag_type="user")
current = {
tag_name
for (tag_name,) in (
await session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
}
want = set(norm)
to_add = sorted(want - current)
if to_add:
async with session.begin_nested() as nested:
try:
session.add_all(
[
AssetInfoTag(
asset_info_id=asset_info_id,
tag_name=t,
origin=origin,
added_at=utcnow(),
)
for t in to_add
]
)
await session.flush()
except IntegrityError:
await nested.rollback()
after = set(await get_asset_tags(session, asset_info_id=asset_info_id))
return {
"added": sorted(((after - current) & want)),
"already_present": sorted(want & current),
"total_tags": sorted(after),
}
async def remove_tags_from_asset_info(
session: AsyncSession,
*,
asset_info_id: str,
tags: Sequence[str],
) -> dict:
info = await session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
norm = normalize_tags(tags)
if not norm:
total = await get_asset_tags(session, asset_info_id=asset_info_id)
return {"removed": [], "not_present": [], "total_tags": total}
existing = {
tag_name
for (tag_name,) in (
await session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
}
to_remove = sorted(set(t for t in norm if t in existing))
not_present = sorted(set(t for t in norm if t not in existing))
if to_remove:
await session.execute(
delete(AssetInfoTag)
.where(
AssetInfoTag.asset_info_id == asset_info_id,
AssetInfoTag.tag_name.in_(to_remove),
)
)
await session.flush()
total = await get_asset_tags(session, asset_info_id=asset_info_id)
return {"removed": to_remove, "not_present": not_present, "total_tags": total}
async def list_tags_with_usage(
session: AsyncSession,
*,
prefix: Optional[str] = None,
limit: int = 100,
offset: int = 0,
include_zero: bool = True,
order: str = "count_desc",
owner_id: str = "",
) -> tuple[list[tuple[str, str, int]], int]:
counts_sq = (
select(
AssetInfoTag.tag_name.label("tag_name"),
func.count(AssetInfoTag.asset_info_id).label("cnt"),
)
.select_from(AssetInfoTag)
.join(AssetInfo, AssetInfo.id == AssetInfoTag.asset_info_id)
.where(visible_owner_clause(owner_id))
.group_by(AssetInfoTag.tag_name)
.subquery()
)
q = (
select(
Tag.name,
Tag.tag_type,
func.coalesce(counts_sq.c.cnt, 0).label("count"),
)
.select_from(Tag)
.join(counts_sq, counts_sq.c.tag_name == Tag.name, isouter=True)
)
if prefix:
escaped, esc = escape_like_prefix(prefix.strip().lower())
q = q.where(Tag.name.like(escaped + "%", escape=esc))
if not include_zero:
q = q.where(func.coalesce(counts_sq.c.cnt, 0) > 0)
if order == "name_asc":
q = q.order_by(Tag.name.asc())
else:
q = q.order_by(func.coalesce(counts_sq.c.cnt, 0).desc(), Tag.name.asc())
total_q = select(func.count()).select_from(Tag)
if prefix:
escaped, esc = escape_like_prefix(prefix.strip().lower())
total_q = total_q.where(Tag.name.like(escaped + "%", escape=esc))
if not include_zero:
total_q = total_q.where(
Tag.name.in_(select(AssetInfoTag.tag_name).group_by(AssetInfoTag.tag_name))
)
rows = (await session.execute(q.limit(limit).offset(offset))).all()
total = (await session.execute(total_q)).scalar_one()
rows_norm = [(name, ttype, int(count or 0)) for (name, ttype, count) in rows]
return rows_norm, int(total or 0)
async def get_asset_tags(session: AsyncSession, *, asset_info_id: str) -> list[str]:
return [
tag_name
for (tag_name,) in (
await session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
]
async def set_asset_info_preview(
session: AsyncSession,
*,
asset_info_id: str,
preview_asset_id: Optional[str],
) -> None:
"""Set or clear preview_id and bump updated_at. Raises on unknown IDs."""
info = await session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if preview_asset_id is None:
info.preview_id = None
else:
# validate preview asset exists
if not await session.get(Asset, preview_asset_id):
raise ValueError(f"Preview Asset {preview_asset_id} not found")
info.preview_id = preview_asset_id
info.updated_at = utcnow()
await session.flush()

View File

@@ -0,0 +1,76 @@
import os
from typing import Optional, Sequence, Union
import sqlalchemy as sa
from sqlalchemy import select
from sqlalchemy.ext.asyncio import AsyncSession
from ..models import Asset, AssetCacheState, AssetInfo
async def asset_exists_by_hash(session: AsyncSession, *, asset_hash: str) -> bool:
row = (
await session.execute(
select(sa.literal(True)).select_from(Asset).where(Asset.hash == asset_hash).limit(1)
)
).first()
return row is not None
async def get_asset_by_hash(session: AsyncSession, *, asset_hash: str) -> Optional[Asset]:
return (
await session.execute(select(Asset).where(Asset.hash == asset_hash).limit(1))
).scalars().first()
async def get_asset_info_by_id(session: AsyncSession, *, asset_info_id: str) -> Optional[AssetInfo]:
return await session.get(AssetInfo, asset_info_id)
async def asset_info_exists_for_asset_id(session: AsyncSession, *, asset_id: str) -> bool:
q = (
select(sa.literal(True))
.select_from(AssetInfo)
.where(AssetInfo.asset_id == asset_id)
.limit(1)
)
return (await session.execute(q)).first() is not None
async def get_cache_state_by_asset_id(session: AsyncSession, *, asset_id: str) -> Optional[AssetCacheState]:
return (
await session.execute(
select(AssetCacheState)
.where(AssetCacheState.asset_id == asset_id)
.order_by(AssetCacheState.id.asc())
.limit(1)
)
).scalars().first()
async def list_cache_states_by_asset_id(
session: AsyncSession, *, asset_id: str
) -> Union[list[AssetCacheState], Sequence[AssetCacheState]]:
return (
await session.execute(
select(AssetCacheState)
.where(AssetCacheState.asset_id == asset_id)
.order_by(AssetCacheState.id.asc())
)
).scalars().all()
def pick_best_live_path(states: Union[list[AssetCacheState], Sequence[AssetCacheState]]) -> str:
"""
Return the best on-disk path among cache states:
1) Prefer a path that exists with needs_verify == False (already verified).
2) Otherwise, pick the first path that exists.
3) Otherwise return empty string.
"""
alive = [s for s in states if getattr(s, "file_path", None) and os.path.isfile(s.file_path)]
if not alive:
return ""
for s in alive:
if not getattr(s, "needs_verify", False):
return s.file_path
return alive[0].file_path

View File

@@ -0,0 +1,6 @@
from datetime import datetime, timezone
def utcnow() -> datetime:
"""Naive UTC timestamp (no tzinfo). We always treat DB datetimes as UTC."""
return datetime.now(timezone.utc).replace(tzinfo=None)

556
app/assets/manager.py Normal file
View File

@@ -0,0 +1,556 @@
import contextlib
import logging
import mimetypes
import os
from typing import Optional, Sequence
from comfy_api.internal import async_to_sync
from ..db import create_session
from ._helpers import (
ensure_within_base,
get_name_and_tags_from_asset_path,
resolve_destination_from_tags,
)
from .api import schemas_in, schemas_out
from .database.models import Asset
from .database.services import (
add_tags_to_asset_info,
asset_exists_by_hash,
asset_info_exists_for_asset_id,
check_fs_asset_exists_quick,
create_asset_info_for_existing_asset,
delete_asset_info_by_id,
fetch_asset_info_and_asset,
fetch_asset_info_asset_and_tags,
get_asset_by_hash,
get_asset_info_by_id,
get_asset_tags,
ingest_fs_asset,
list_asset_infos_page,
list_cache_states_by_asset_id,
list_tags_with_usage,
pick_best_live_path,
remove_tags_from_asset_info,
set_asset_info_preview,
touch_asset_info_by_id,
touch_asset_infos_by_fs_path,
update_asset_info_full,
)
from .storage import hashing
async def asset_exists(*, asset_hash: str) -> bool:
async with await create_session() as session:
return await asset_exists_by_hash(session, asset_hash=asset_hash)
def populate_db_with_asset(file_path: str, tags: Optional[list[str]] = None) -> None:
if tags is None:
tags = []
try:
asset_name, path_tags = get_name_and_tags_from_asset_path(file_path)
async_to_sync.AsyncToSyncConverter.run_async_in_thread(
add_local_asset,
tags=list(dict.fromkeys([*path_tags, *tags])),
file_name=asset_name,
file_path=file_path,
)
except ValueError as e:
logging.warning("Skipping non-asset path %s: %s", file_path, e)
async def add_local_asset(tags: list[str], file_name: str, file_path: str) -> None:
abs_path = os.path.abspath(file_path)
size_bytes, mtime_ns = _get_size_mtime_ns(abs_path)
if not size_bytes:
return
async with await create_session() as session:
if await check_fs_asset_exists_quick(session, file_path=abs_path, size_bytes=size_bytes, mtime_ns=mtime_ns):
await touch_asset_infos_by_fs_path(session, file_path=abs_path)
await session.commit()
return
asset_hash = hashing.blake3_hash_sync(abs_path)
async with await create_session() as session:
await ingest_fs_asset(
session,
asset_hash="blake3:" + asset_hash,
abs_path=abs_path,
size_bytes=size_bytes,
mtime_ns=mtime_ns,
mime_type=None,
info_name=file_name,
tag_origin="automatic",
tags=tags,
)
await session.commit()
async def list_assets(
*,
include_tags: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
name_contains: Optional[str] = None,
metadata_filter: Optional[dict] = None,
limit: int = 20,
offset: int = 0,
sort: str = "created_at",
order: str = "desc",
owner_id: str = "",
) -> schemas_out.AssetsList:
sort = _safe_sort_field(sort)
order = "desc" if (order or "desc").lower() not in {"asc", "desc"} else order.lower()
async with await create_session() as session:
infos, tag_map, total = await list_asset_infos_page(
session,
owner_id=owner_id,
include_tags=include_tags,
exclude_tags=exclude_tags,
name_contains=name_contains,
metadata_filter=metadata_filter,
limit=limit,
offset=offset,
sort=sort,
order=order,
)
summaries: list[schemas_out.AssetSummary] = []
for info in infos:
asset = info.asset
tags = tag_map.get(info.id, [])
summaries.append(
schemas_out.AssetSummary(
id=info.id,
name=info.name,
asset_hash=asset.hash if asset else None,
size=int(asset.size_bytes) if asset else None,
mime_type=asset.mime_type if asset else None,
tags=tags,
preview_url=f"/api/assets/{info.id}/content",
created_at=info.created_at,
updated_at=info.updated_at,
last_access_time=info.last_access_time,
)
)
return schemas_out.AssetsList(
assets=summaries,
total=total,
has_more=(offset + len(summaries)) < total,
)
async def get_asset(*, asset_info_id: str, owner_id: str = "") -> schemas_out.AssetDetail:
async with await create_session() as session:
res = await fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not res:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info, asset, tag_names = res
preview_id = info.preview_id
return schemas_out.AssetDetail(
id=info.id,
name=info.name,
asset_hash=asset.hash if asset else None,
size=int(asset.size_bytes) if asset and asset.size_bytes is not None else None,
mime_type=asset.mime_type if asset else None,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
)
async def resolve_asset_content_for_download(
*,
asset_info_id: str,
owner_id: str = "",
) -> tuple[str, str, str]:
async with await create_session() as session:
pair = await fetch_asset_info_and_asset(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not pair:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info, asset = pair
states = await list_cache_states_by_asset_id(session, asset_id=asset.id)
abs_path = pick_best_live_path(states)
if not abs_path:
raise FileNotFoundError
await touch_asset_info_by_id(session, asset_info_id=asset_info_id)
await session.commit()
ctype = asset.mime_type or mimetypes.guess_type(info.name or abs_path)[0] or "application/octet-stream"
download_name = info.name or os.path.basename(abs_path)
return abs_path, ctype, download_name
async def upload_asset_from_temp_path(
spec: schemas_in.UploadAssetSpec,
*,
temp_path: str,
client_filename: Optional[str] = None,
owner_id: str = "",
expected_asset_hash: Optional[str] = None,
) -> schemas_out.AssetCreated:
try:
digest = await hashing.blake3_hash(temp_path)
except Exception as e:
raise RuntimeError(f"failed to hash uploaded file: {e}")
asset_hash = "blake3:" + digest
if expected_asset_hash and asset_hash != expected_asset_hash.strip().lower():
raise ValueError("HASH_MISMATCH")
async with await create_session() as session:
existing = await get_asset_by_hash(session, asset_hash=asset_hash)
if existing is not None:
with contextlib.suppress(Exception):
if temp_path and os.path.exists(temp_path):
os.remove(temp_path)
display_name = _safe_filename(spec.name or (client_filename or ""), fallback=digest)
info = await create_asset_info_for_existing_asset(
session,
asset_hash=asset_hash,
name=display_name,
user_metadata=spec.user_metadata or {},
tags=spec.tags or [],
tag_origin="manual",
owner_id=owner_id,
)
tag_names = await get_asset_tags(session, asset_info_id=info.id)
await session.commit()
return schemas_out.AssetCreated(
id=info.id,
name=info.name,
asset_hash=existing.hash,
size=int(existing.size_bytes) if existing.size_bytes is not None else None,
mime_type=existing.mime_type,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
created_new=False,
)
base_dir, subdirs = resolve_destination_from_tags(spec.tags)
dest_dir = os.path.join(base_dir, *subdirs) if subdirs else base_dir
os.makedirs(dest_dir, exist_ok=True)
src_for_ext = (client_filename or spec.name or "").strip()
_ext = os.path.splitext(os.path.basename(src_for_ext))[1] if src_for_ext else ""
ext = _ext if 0 < len(_ext) <= 16 else ""
hashed_basename = f"{digest}{ext}"
dest_abs = os.path.abspath(os.path.join(dest_dir, hashed_basename))
ensure_within_base(dest_abs, base_dir)
content_type = (
mimetypes.guess_type(os.path.basename(src_for_ext), strict=False)[0]
or mimetypes.guess_type(hashed_basename, strict=False)[0]
or "application/octet-stream"
)
try:
os.replace(temp_path, dest_abs)
except Exception as e:
raise RuntimeError(f"failed to move uploaded file into place: {e}")
try:
size_bytes, mtime_ns = _get_size_mtime_ns(dest_abs)
except OSError as e:
raise RuntimeError(f"failed to stat destination file: {e}")
async with await create_session() as session:
result = await ingest_fs_asset(
session,
asset_hash=asset_hash,
abs_path=dest_abs,
size_bytes=size_bytes,
mtime_ns=mtime_ns,
mime_type=content_type,
info_name=_safe_filename(spec.name or (client_filename or ""), fallback=digest),
owner_id=owner_id,
preview_id=None,
user_metadata=spec.user_metadata or {},
tags=spec.tags,
tag_origin="manual",
require_existing_tags=False,
)
info_id = result["asset_info_id"]
if not info_id:
raise RuntimeError("failed to create asset metadata")
pair = await fetch_asset_info_and_asset(session, asset_info_id=info_id, owner_id=owner_id)
if not pair:
raise RuntimeError("inconsistent DB state after ingest")
info, asset = pair
tag_names = await get_asset_tags(session, asset_info_id=info.id)
await session.commit()
return schemas_out.AssetCreated(
id=info.id,
name=info.name,
asset_hash=asset.hash,
size=int(asset.size_bytes),
mime_type=asset.mime_type,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
created_new=result["asset_created"],
)
async def update_asset(
*,
asset_info_id: str,
name: Optional[str] = None,
tags: Optional[list[str]] = None,
user_metadata: Optional[dict] = None,
owner_id: str = "",
) -> schemas_out.AssetUpdated:
async with await create_session() as session:
info_row = await get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
info = await update_asset_info_full(
session,
asset_info_id=asset_info_id,
name=name,
tags=tags,
user_metadata=user_metadata,
tag_origin="manual",
asset_info_row=info_row,
)
tag_names = await get_asset_tags(session, asset_info_id=asset_info_id)
await session.commit()
return schemas_out.AssetUpdated(
id=info.id,
name=info.name,
asset_hash=info.asset.hash if info.asset else None,
tags=tag_names,
user_metadata=info.user_metadata or {},
updated_at=info.updated_at,
)
async def set_asset_preview(
*,
asset_info_id: str,
preview_asset_id: Optional[str],
owner_id: str = "",
) -> schemas_out.AssetDetail:
async with await create_session() as session:
info_row = await get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
await set_asset_info_preview(
session,
asset_info_id=asset_info_id,
preview_asset_id=preview_asset_id,
)
res = await fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not res:
raise RuntimeError("State changed during preview update")
info, asset, tags = res
await session.commit()
return schemas_out.AssetDetail(
id=info.id,
name=info.name,
asset_hash=asset.hash if asset else None,
size=int(asset.size_bytes) if asset and asset.size_bytes is not None else None,
mime_type=asset.mime_type if asset else None,
tags=tags,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
)
async def delete_asset_reference(*, asset_info_id: str, owner_id: str, delete_content_if_orphan: bool = True) -> bool:
async with await create_session() as session:
info_row = await get_asset_info_by_id(session, asset_info_id=asset_info_id)
asset_id = info_row.asset_id if info_row else None
deleted = await delete_asset_info_by_id(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not deleted:
await session.commit()
return False
if not delete_content_if_orphan or not asset_id:
await session.commit()
return True
still_exists = await asset_info_exists_for_asset_id(session, asset_id=asset_id)
if still_exists:
await session.commit()
return True
states = await list_cache_states_by_asset_id(session, asset_id=asset_id)
file_paths = [s.file_path for s in (states or []) if getattr(s, "file_path", None)]
asset_row = await session.get(Asset, asset_id)
if asset_row is not None:
await session.delete(asset_row)
await session.commit()
for p in file_paths:
with contextlib.suppress(Exception):
if p and os.path.isfile(p):
os.remove(p)
return True
async def create_asset_from_hash(
*,
hash_str: str,
name: str,
tags: Optional[list[str]] = None,
user_metadata: Optional[dict] = None,
owner_id: str = "",
) -> Optional[schemas_out.AssetCreated]:
canonical = hash_str.strip().lower()
async with await create_session() as session:
asset = await get_asset_by_hash(session, asset_hash=canonical)
if not asset:
return None
info = await create_asset_info_for_existing_asset(
session,
asset_hash=canonical,
name=_safe_filename(name, fallback=canonical.split(":", 1)[1]),
user_metadata=user_metadata or {},
tags=tags or [],
tag_origin="manual",
owner_id=owner_id,
)
tag_names = await get_asset_tags(session, asset_info_id=info.id)
await session.commit()
return schemas_out.AssetCreated(
id=info.id,
name=info.name,
asset_hash=asset.hash,
size=int(asset.size_bytes),
mime_type=asset.mime_type,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
created_new=False,
)
async def list_tags(
*,
prefix: Optional[str] = None,
limit: int = 100,
offset: int = 0,
order: str = "count_desc",
include_zero: bool = True,
owner_id: str = "",
) -> schemas_out.TagsList:
limit = max(1, min(1000, limit))
offset = max(0, offset)
async with await create_session() as session:
rows, total = await list_tags_with_usage(
session,
prefix=prefix,
limit=limit,
offset=offset,
include_zero=include_zero,
order=order,
owner_id=owner_id,
)
tags = [schemas_out.TagUsage(name=name, count=count, type=tag_type) for (name, tag_type, count) in rows]
return schemas_out.TagsList(tags=tags, total=total, has_more=(offset + len(tags)) < total)
async def add_tags_to_asset(
*,
asset_info_id: str,
tags: list[str],
origin: str = "manual",
owner_id: str = "",
) -> schemas_out.TagsAdd:
async with await create_session() as session:
info_row = await get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
data = await add_tags_to_asset_info(
session,
asset_info_id=asset_info_id,
tags=tags,
origin=origin,
create_if_missing=True,
asset_info_row=info_row,
)
await session.commit()
return schemas_out.TagsAdd(**data)
async def remove_tags_from_asset(
*,
asset_info_id: str,
tags: list[str],
owner_id: str = "",
) -> schemas_out.TagsRemove:
async with await create_session() as session:
info_row = await get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
data = await remove_tags_from_asset_info(
session,
asset_info_id=asset_info_id,
tags=tags,
)
await session.commit()
return schemas_out.TagsRemove(**data)
def _safe_sort_field(requested: Optional[str]) -> str:
if not requested:
return "created_at"
v = requested.lower()
if v in {"name", "created_at", "updated_at", "size", "last_access_time"}:
return v
return "created_at"
def _get_size_mtime_ns(path: str) -> tuple[int, int]:
st = os.stat(path, follow_symlinks=True)
return st.st_size, getattr(st, "st_mtime_ns", int(st.st_mtime * 1_000_000_000))
def _safe_filename(name: Optional[str], fallback: str) -> str:
n = os.path.basename((name or "").strip() or fallback)
if n:
return n
return fallback

501
app/assets/scanner.py Normal file
View File

@@ -0,0 +1,501 @@
import asyncio
import contextlib
import logging
import os
import time
from dataclasses import dataclass, field
from typing import Literal, Optional
import sqlalchemy as sa
import folder_paths
from ..db import create_session
from ._helpers import (
collect_models_files,
compute_relative_filename,
get_comfy_models_folders,
get_name_and_tags_from_asset_path,
list_tree,
new_scan_id,
prefixes_for_root,
ts_to_iso,
)
from .api import schemas_in, schemas_out
from .database.helpers import (
add_missing_tag_for_asset_id,
ensure_tags_exist,
escape_like_prefix,
fast_asset_file_check,
remove_missing_tag_for_asset_id,
seed_from_paths_batch,
)
from .database.models import Asset, AssetCacheState, AssetInfo
from .database.services import (
compute_hash_and_dedup_for_cache_state,
list_cache_states_by_asset_id,
list_cache_states_with_asset_under_prefixes,
list_unhashed_candidates_under_prefixes,
list_verify_candidates_under_prefixes,
)
LOGGER = logging.getLogger(__name__)
SLOW_HASH_CONCURRENCY = 1
@dataclass
class ScanProgress:
scan_id: str
root: schemas_in.RootType
status: Literal["scheduled", "running", "completed", "failed", "cancelled"] = "scheduled"
scheduled_at: float = field(default_factory=lambda: time.time())
started_at: Optional[float] = None
finished_at: Optional[float] = None
discovered: int = 0
processed: int = 0
file_errors: list[dict] = field(default_factory=list)
@dataclass
class SlowQueueState:
queue: asyncio.Queue
workers: list[asyncio.Task] = field(default_factory=list)
closed: bool = False
RUNNING_TASKS: dict[schemas_in.RootType, asyncio.Task] = {}
PROGRESS_BY_ROOT: dict[schemas_in.RootType, ScanProgress] = {}
SLOW_STATE_BY_ROOT: dict[schemas_in.RootType, SlowQueueState] = {}
def current_statuses() -> schemas_out.AssetScanStatusResponse:
scans = []
for root in schemas_in.ALLOWED_ROOTS:
prog = PROGRESS_BY_ROOT.get(root)
if not prog:
continue
scans.append(_scan_progress_to_scan_status_model(prog))
return schemas_out.AssetScanStatusResponse(scans=scans)
async def schedule_scans(roots: list[schemas_in.RootType]) -> schemas_out.AssetScanStatusResponse:
results: list[ScanProgress] = []
for root in roots:
if root in RUNNING_TASKS and not RUNNING_TASKS[root].done():
results.append(PROGRESS_BY_ROOT[root])
continue
prog = ScanProgress(scan_id=new_scan_id(root), root=root, status="scheduled")
PROGRESS_BY_ROOT[root] = prog
state = SlowQueueState(queue=asyncio.Queue())
SLOW_STATE_BY_ROOT[root] = state
RUNNING_TASKS[root] = asyncio.create_task(
_run_hash_verify_pipeline(root, prog, state),
name=f"asset-scan:{root}",
)
results.append(prog)
return _status_response_for(results)
async def sync_seed_assets(roots: list[schemas_in.RootType]) -> None:
t_total = time.perf_counter()
created = 0
skipped_existing = 0
paths: list[str] = []
try:
existing_paths: set[str] = set()
for r in roots:
try:
survivors = await _fast_db_consistency_pass(r, collect_existing_paths=True, update_missing_tags=True)
if survivors:
existing_paths.update(survivors)
except Exception as ex:
LOGGER.exception("fast DB reconciliation failed for %s: %s", r, ex)
if "models" in roots:
paths.extend(collect_models_files())
if "input" in roots:
paths.extend(list_tree(folder_paths.get_input_directory()))
if "output" in roots:
paths.extend(list_tree(folder_paths.get_output_directory()))
specs: list[dict] = []
tag_pool: set[str] = set()
for p in paths:
ap = os.path.abspath(p)
if ap in existing_paths:
skipped_existing += 1
continue
try:
st = os.stat(ap, follow_symlinks=True)
except OSError:
continue
if not st.st_size:
continue
name, tags = get_name_and_tags_from_asset_path(ap)
specs.append(
{
"abs_path": ap,
"size_bytes": st.st_size,
"mtime_ns": getattr(st, "st_mtime_ns", int(st.st_mtime * 1_000_000_000)),
"info_name": name,
"tags": tags,
"fname": compute_relative_filename(ap),
}
)
for t in tags:
tag_pool.add(t)
if not specs:
return
async with await create_session() as sess:
if tag_pool:
await ensure_tags_exist(sess, tag_pool, tag_type="user")
result = await seed_from_paths_batch(sess, specs=specs, owner_id="")
created += result["inserted_infos"]
await sess.commit()
finally:
LOGGER.info(
"Assets scan(roots=%s) completed in %.3fs (created=%d, skipped_existing=%d, total_seen=%d)",
roots,
time.perf_counter() - t_total,
created,
skipped_existing,
len(paths),
)
def _status_response_for(progresses: list[ScanProgress]) -> schemas_out.AssetScanStatusResponse:
return schemas_out.AssetScanStatusResponse(scans=[_scan_progress_to_scan_status_model(p) for p in progresses])
def _scan_progress_to_scan_status_model(progress: ScanProgress) -> schemas_out.AssetScanStatus:
return schemas_out.AssetScanStatus(
scan_id=progress.scan_id,
root=progress.root,
status=progress.status,
scheduled_at=ts_to_iso(progress.scheduled_at),
started_at=ts_to_iso(progress.started_at),
finished_at=ts_to_iso(progress.finished_at),
discovered=progress.discovered,
processed=progress.processed,
file_errors=[
schemas_out.AssetScanError(
path=e.get("path", ""),
message=e.get("message", ""),
at=e.get("at"),
)
for e in (progress.file_errors or [])
],
)
async def _run_hash_verify_pipeline(root: schemas_in.RootType, prog: ScanProgress, state: SlowQueueState) -> None:
prog.status = "running"
prog.started_at = time.time()
try:
prefixes = prefixes_for_root(root)
await _fast_db_consistency_pass(root)
# collect candidates from DB
async with await create_session() as sess:
verify_ids = await list_verify_candidates_under_prefixes(sess, prefixes=prefixes)
unhashed_ids = await list_unhashed_candidates_under_prefixes(sess, prefixes=prefixes)
# dedupe: prioritize verification first
seen = set()
ordered: list[int] = []
for lst in (verify_ids, unhashed_ids):
for sid in lst:
if sid not in seen:
seen.add(sid)
ordered.append(sid)
prog.discovered = len(ordered)
# queue up work
for sid in ordered:
await state.queue.put(sid)
state.closed = True
_start_state_workers(root, prog, state)
await _await_state_workers_then_finish(root, prog, state)
except asyncio.CancelledError:
prog.status = "cancelled"
raise
except Exception as exc:
_append_error(prog, path="", message=str(exc))
prog.status = "failed"
prog.finished_at = time.time()
LOGGER.exception("Asset scan failed for %s", root)
finally:
RUNNING_TASKS.pop(root, None)
async def _reconcile_missing_tags_for_root(root: schemas_in.RootType, prog: ScanProgress) -> None:
"""
Detect missing files quickly and toggle 'missing' tag per asset_id.
Rules:
- Only hashed assets (assets.hash != NULL) participate in missing tagging.
- We consider ALL cache states of the asset (across roots) before tagging.
"""
if root == "models":
bases: list[str] = []
for _bucket, paths in get_comfy_models_folders():
bases.extend(paths)
elif root == "input":
bases = [folder_paths.get_input_directory()]
else:
bases = [folder_paths.get_output_directory()]
try:
async with await create_session() as sess:
# state + hash + size for the current root
rows = await list_cache_states_with_asset_under_prefixes(sess, prefixes=bases)
# Track fast_ok within the scanned root and whether the asset is hashed
by_asset: dict[str, dict[str, bool]] = {}
for state, a_hash, size_db in rows:
aid = state.asset_id
acc = by_asset.get(aid)
if acc is None:
acc = {"any_fast_ok_here": False, "hashed": (a_hash is not None), "size_db": int(size_db or 0)}
by_asset[aid] = acc
try:
if acc["hashed"]:
st = os.stat(state.file_path, follow_symlinks=True)
if fast_asset_file_check(mtime_db=state.mtime_ns, size_db=acc["size_db"], stat_result=st):
acc["any_fast_ok_here"] = True
except FileNotFoundError:
pass
except OSError as e:
_append_error(prog, path=state.file_path, message=str(e))
# Decide per asset, considering ALL its states (not just this root)
for aid, acc in by_asset.items():
try:
if not acc["hashed"]:
# Never tag seed assets as missing
continue
any_fast_ok_global = acc["any_fast_ok_here"]
if not any_fast_ok_global:
# Check other states outside this root
others = await list_cache_states_by_asset_id(sess, asset_id=aid)
for st in others:
try:
any_fast_ok_global = fast_asset_file_check(
mtime_db=st.mtime_ns,
size_db=acc["size_db"],
stat_result=os.stat(st.file_path, follow_symlinks=True),
)
except OSError:
continue
if any_fast_ok_global:
await remove_missing_tag_for_asset_id(sess, asset_id=aid)
else:
await add_missing_tag_for_asset_id(sess, asset_id=aid, origin="automatic")
except Exception as ex:
_append_error(prog, path="", message=f"reconcile {aid[:8]}: {ex}")
await sess.commit()
except Exception as e:
_append_error(prog, path="", message=f"reconcile failed: {e}")
def _start_state_workers(root: schemas_in.RootType, prog: ScanProgress, state: SlowQueueState) -> None:
if state.workers:
return
async def _worker(_wid: int):
while True:
sid = await state.queue.get()
try:
if sid is None:
return
try:
async with await create_session() as sess:
# Optional: fetch path for better error messages
st = await sess.get(AssetCacheState, sid)
try:
await compute_hash_and_dedup_for_cache_state(sess, state_id=sid)
await sess.commit()
except Exception as e:
path = st.file_path if st else f"state:{sid}"
_append_error(prog, path=path, message=str(e))
raise
except Exception:
pass
finally:
prog.processed += 1
finally:
state.queue.task_done()
state.workers = [
asyncio.create_task(_worker(i), name=f"asset-hash:{root}:{i}")
for i in range(SLOW_HASH_CONCURRENCY)
]
async def _close_when_ready():
while not state.closed:
await asyncio.sleep(0.05)
for _ in range(SLOW_HASH_CONCURRENCY):
await state.queue.put(None)
asyncio.create_task(_close_when_ready())
async def _await_state_workers_then_finish(
root: schemas_in.RootType, prog: ScanProgress, state: SlowQueueState
) -> None:
if state.workers:
await asyncio.gather(*state.workers, return_exceptions=True)
await _reconcile_missing_tags_for_root(root, prog)
prog.finished_at = time.time()
prog.status = "completed"
def _append_error(prog: ScanProgress, *, path: str, message: str) -> None:
prog.file_errors.append({
"path": path,
"message": message,
"at": ts_to_iso(time.time()),
})
async def _fast_db_consistency_pass(
root: schemas_in.RootType,
*,
collect_existing_paths: bool = False,
update_missing_tags: bool = False,
) -> Optional[set[str]]:
"""Fast DB+FS pass for a root:
- Toggle needs_verify per state using fast check
- For hashed assets with at least one fast-ok state in this root: delete stale missing states
- For seed assets with all states missing: delete Asset and its AssetInfos
- Optionally add/remove 'missing' tags based on fast-ok in this root
- Optionally return surviving absolute paths
"""
prefixes = prefixes_for_root(root)
if not prefixes:
return set() if collect_existing_paths else None
conds = []
for p in prefixes:
base = os.path.abspath(p)
if not base.endswith(os.sep):
base += os.sep
escaped, esc = escape_like_prefix(base)
conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc))
async with await create_session() as sess:
rows = (
await sess.execute(
sa.select(
AssetCacheState.id,
AssetCacheState.file_path,
AssetCacheState.mtime_ns,
AssetCacheState.needs_verify,
AssetCacheState.asset_id,
Asset.hash,
Asset.size_bytes,
)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(sa.or_(*conds))
.order_by(AssetCacheState.asset_id.asc(), AssetCacheState.id.asc())
)
).all()
by_asset: dict[str, dict] = {}
for sid, fp, mtime_db, needs_verify, aid, a_hash, a_size in rows:
acc = by_asset.get(aid)
if acc is None:
acc = {"hash": a_hash, "size_db": int(a_size or 0), "states": []}
by_asset[aid] = acc
fast_ok = False
try:
exists = True
fast_ok = fast_asset_file_check(
mtime_db=mtime_db,
size_db=acc["size_db"],
stat_result=os.stat(fp, follow_symlinks=True),
)
except FileNotFoundError:
exists = False
except OSError:
exists = False
acc["states"].append({
"sid": sid,
"fp": fp,
"exists": exists,
"fast_ok": fast_ok,
"needs_verify": bool(needs_verify),
})
to_set_verify: list[int] = []
to_clear_verify: list[int] = []
stale_state_ids: list[int] = []
survivors: set[str] = set()
for aid, acc in by_asset.items():
a_hash = acc["hash"]
states = acc["states"]
any_fast_ok = any(s["fast_ok"] for s in states)
all_missing = all(not s["exists"] for s in states)
for s in states:
if not s["exists"]:
continue
if s["fast_ok"] and s["needs_verify"]:
to_clear_verify.append(s["sid"])
if not s["fast_ok"] and not s["needs_verify"]:
to_set_verify.append(s["sid"])
if a_hash is None:
if states and all_missing: # remove seed Asset completely, if no valid AssetCache exists
await sess.execute(sa.delete(AssetInfo).where(AssetInfo.asset_id == aid))
asset = await sess.get(Asset, aid)
if asset:
await sess.delete(asset)
else:
for s in states:
if s["exists"]:
survivors.add(os.path.abspath(s["fp"]))
continue
if any_fast_ok: # if Asset has at least one valid AssetCache record, remove any invalid AssetCache records
for s in states:
if not s["exists"]:
stale_state_ids.append(s["sid"])
if update_missing_tags:
with contextlib.suppress(Exception):
await remove_missing_tag_for_asset_id(sess, asset_id=aid)
elif update_missing_tags:
with contextlib.suppress(Exception):
await add_missing_tag_for_asset_id(sess, asset_id=aid, origin="automatic")
for s in states:
if s["exists"]:
survivors.add(os.path.abspath(s["fp"]))
if stale_state_ids:
await sess.execute(sa.delete(AssetCacheState).where(AssetCacheState.id.in_(stale_state_ids)))
if to_set_verify:
await sess.execute(
sa.update(AssetCacheState)
.where(AssetCacheState.id.in_(to_set_verify))
.values(needs_verify=True)
)
if to_clear_verify:
await sess.execute(
sa.update(AssetCacheState)
.where(AssetCacheState.id.in_(to_clear_verify))
.values(needs_verify=False)
)
await sess.commit()
return survivors if collect_existing_paths else None

View File

View File

@@ -0,0 +1,72 @@
import asyncio
import os
from typing import IO, Union
from blake3 import blake3
DEFAULT_CHUNK = 8 * 1024 * 1024 # 8 MiB
def _hash_file_obj_sync(file_obj: IO[bytes], chunk_size: int) -> str:
"""Hash an already-open binary file object by streaming in chunks.
- Seeks to the beginning before reading (if supported).
- Restores the original position afterward (if tell/seek are supported).
"""
if chunk_size <= 0:
chunk_size = DEFAULT_CHUNK
orig_pos = None
if hasattr(file_obj, "tell"):
orig_pos = file_obj.tell()
try:
if hasattr(file_obj, "seek"):
file_obj.seek(0)
h = blake3()
while True:
chunk = file_obj.read(chunk_size)
if not chunk:
break
h.update(chunk)
return h.hexdigest()
finally:
if hasattr(file_obj, "seek") and orig_pos is not None:
file_obj.seek(orig_pos)
def blake3_hash_sync(
fp: Union[str, bytes, os.PathLike[str], os.PathLike[bytes], IO[bytes]],
chunk_size: int = DEFAULT_CHUNK,
) -> str:
"""Returns a BLAKE3 hex digest for ``fp``, which may be:
- a filename (str/bytes) or PathLike
- an open binary file object
If ``fp`` is a file object, it must be opened in **binary** mode and support
``read``, ``seek``, and ``tell``. The function will seek to the start before
reading and will attempt to restore the original position afterward.
"""
if hasattr(fp, "read"):
return _hash_file_obj_sync(fp, chunk_size)
with open(os.fspath(fp), "rb") as f:
return _hash_file_obj_sync(f, chunk_size)
async def blake3_hash(
fp: Union[str, bytes, os.PathLike[str], os.PathLike[bytes], IO[bytes]],
chunk_size: int = DEFAULT_CHUNK,
) -> str:
"""Async wrapper for ``blake3_hash_sync``.
Uses a worker thread so the event loop remains responsive.
"""
# If it is a path, open inside the worker thread to keep I/O off the loop.
if hasattr(fp, "read"):
return await asyncio.to_thread(blake3_hash_sync, fp, chunk_size)
def _worker() -> str:
with open(os.fspath(fp), "rb") as f:
return _hash_file_obj_sync(f, chunk_size)
return await asyncio.to_thread(_worker)

View File

@@ -1,112 +0,0 @@
import logging
import os
import shutil
from app.logger import log_startup_warning
from utils.install_util import get_missing_requirements_message
from comfy.cli_args import args
_DB_AVAILABLE = False
Session = None
try:
from alembic import command
from alembic.config import Config
from alembic.runtime.migration import MigrationContext
from alembic.script import ScriptDirectory
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
_DB_AVAILABLE = True
except ImportError as e:
log_startup_warning(
f"""
------------------------------------------------------------------------
Error importing dependencies: {e}
{get_missing_requirements_message()}
This error is happening because ComfyUI now uses a local sqlite database.
------------------------------------------------------------------------
""".strip()
)
def dependencies_available():
"""
Temporary function to check if the dependencies are available
"""
return _DB_AVAILABLE
def can_create_session():
"""
Temporary function to check if the database is available to create a session
During initial release there may be environmental issues (or missing dependencies) that prevent the database from being created
"""
return dependencies_available() and Session is not None
def get_alembic_config():
root_path = os.path.join(os.path.dirname(__file__), "../..")
config_path = os.path.abspath(os.path.join(root_path, "alembic.ini"))
scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
config = Config(config_path)
config.set_main_option("script_location", scripts_path)
config.set_main_option("sqlalchemy.url", args.database_url)
return config
def get_db_path():
url = args.database_url
if url.startswith("sqlite:///"):
return url.split("///")[1]
else:
raise ValueError(f"Unsupported database URL '{url}'.")
def init_db():
db_url = args.database_url
logging.debug(f"Database URL: {db_url}")
db_path = get_db_path()
db_exists = os.path.exists(db_path)
config = get_alembic_config()
# Check if we need to upgrade
engine = create_engine(db_url)
conn = engine.connect()
context = MigrationContext.configure(conn)
current_rev = context.get_current_revision()
script = ScriptDirectory.from_config(config)
target_rev = script.get_current_head()
if target_rev is None:
logging.warning("No target revision found.")
elif current_rev != target_rev:
# Backup the database pre upgrade
backup_path = db_path + ".bkp"
if db_exists:
shutil.copy(db_path, backup_path)
else:
backup_path = None
try:
command.upgrade(config, target_rev)
logging.info(f"Database upgraded from {current_rev} to {target_rev}")
except Exception as e:
if backup_path:
# Restore the database from backup if upgrade fails
shutil.copy(backup_path, db_path)
os.remove(backup_path)
logging.exception("Error upgrading database: ")
raise e
global Session
Session = sessionmaker(bind=engine)
def create_session():
return Session()

View File

@@ -1,14 +0,0 @@
from sqlalchemy.orm import declarative_base
Base = declarative_base()
def to_dict(obj):
fields = obj.__table__.columns.keys()
return {
field: (val.to_dict() if hasattr(val, "to_dict") else val)
for field in fields
if (val := getattr(obj, field))
}
# TODO: Define models here

255
app/db.py Normal file
View File

@@ -0,0 +1,255 @@
import logging
import os
import shutil
from contextlib import asynccontextmanager
from typing import Optional
from alembic import command
from alembic.config import Config
from alembic.runtime.migration import MigrationContext
from alembic.script import ScriptDirectory
from sqlalchemy import create_engine, text
from sqlalchemy.engine import make_url
from sqlalchemy.ext.asyncio import (
AsyncEngine,
AsyncSession,
async_sessionmaker,
create_async_engine,
)
from comfy.cli_args import args
LOGGER = logging.getLogger(__name__)
ENGINE: Optional[AsyncEngine] = None
SESSION: Optional[async_sessionmaker] = None
def _root_paths():
"""Resolve alembic.ini and migrations script folder."""
root_path = os.path.abspath(os.path.dirname(__file__))
config_path = os.path.abspath(os.path.join(root_path, "../alembic.ini"))
scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
return config_path, scripts_path
def _absolutize_sqlite_url(db_url: str) -> str:
"""Make SQLite database path absolute. No-op for non-SQLite URLs."""
try:
u = make_url(db_url)
except Exception:
return db_url
if not u.drivername.startswith("sqlite"):
return db_url
db_path: str = u.database or ""
if isinstance(db_path, str) and db_path.startswith("file:"):
return str(u) # Do not touch SQLite URI databases like: "file:xxx?mode=memory&cache=shared"
if not os.path.isabs(db_path):
db_path = os.path.abspath(os.path.join(os.getcwd(), db_path))
u = u.set(database=db_path)
return str(u)
def _normalize_sqlite_memory_url(db_url: str) -> tuple[str, bool]:
"""
If db_url points at an in-memory SQLite DB (":memory:" or file:... mode=memory),
rewrite it to a *named* shared in-memory URI and ensure 'uri=true' is present.
Returns: (normalized_url, is_memory)
"""
try:
u = make_url(db_url)
except Exception:
return db_url, False
if not u.drivername.startswith("sqlite"):
return db_url, False
db = u.database or ""
if db == ":memory:":
u = u.set(database=f"file:comfyui_db_{os.getpid()}?mode=memory&cache=shared&uri=true")
return str(u), True
if isinstance(db, str) and db.startswith("file:") and "mode=memory" in db:
if "uri=true" not in db:
u = u.set(database=(db + ("&" if "?" in db else "?") + "uri=true"))
return str(u), True
return str(u), False
def _get_sqlite_file_path(sync_url: str) -> Optional[str]:
"""Return the on-disk path for a SQLite URL, else None."""
try:
u = make_url(sync_url)
except Exception:
return None
if not u.drivername.startswith("sqlite"):
return None
db_path = u.database
if isinstance(db_path, str) and db_path.startswith("file:"):
return None # Not a real file if it is a URI like "file:...?"
return db_path
def _get_alembic_config(sync_url: str) -> Config:
"""Prepare Alembic Config with script location and DB URL."""
config_path, scripts_path = _root_paths()
cfg = Config(config_path)
cfg.set_main_option("script_location", scripts_path)
cfg.set_main_option("sqlalchemy.url", sync_url)
return cfg
async def init_db_engine() -> None:
"""Initialize async engine + sessionmaker and run migrations to head.
This must be called once on application startup before any DB usage.
"""
global ENGINE, SESSION
if ENGINE is not None:
return
raw_url = args.database_url
if not raw_url:
raise RuntimeError("Database URL is not configured.")
db_url, is_mem = _normalize_sqlite_memory_url(raw_url)
db_url = _absolutize_sqlite_url(db_url)
# Prepare async engine
connect_args = {}
if db_url.startswith("sqlite"):
connect_args = {
"check_same_thread": False,
"timeout": 12,
}
if is_mem:
connect_args["uri"] = True
ENGINE = create_async_engine(
db_url,
connect_args=connect_args,
pool_pre_ping=True,
future=True,
)
# Enforce SQLite pragmas on the async engine
if db_url.startswith("sqlite"):
async with ENGINE.begin() as conn:
if not is_mem:
# WAL for concurrency and durability, Foreign Keys for referential integrity
current_mode = (await conn.execute(text("PRAGMA journal_mode;"))).scalar()
if str(current_mode).lower() != "wal":
new_mode = (await conn.execute(text("PRAGMA journal_mode=WAL;"))).scalar()
if str(new_mode).lower() != "wal":
raise RuntimeError("Failed to set SQLite journal mode to WAL.")
LOGGER.info("SQLite journal mode set to WAL.")
await conn.execute(text("PRAGMA foreign_keys = ON;"))
await conn.execute(text("PRAGMA synchronous = NORMAL;"))
await _run_migrations(database_url=db_url, connect_args=connect_args)
SESSION = async_sessionmaker(
bind=ENGINE,
class_=AsyncSession,
expire_on_commit=False,
autoflush=False,
autocommit=False,
)
async def _run_migrations(database_url: str, connect_args: dict) -> None:
if database_url.find("postgresql+psycopg") == -1:
"""SQLite: Convert an async SQLAlchemy URL to a sync URL for Alembic."""
u = make_url(database_url)
driver = u.drivername
if not driver.startswith("sqlite+aiosqlite"):
raise ValueError(f"Unsupported DB driver: {driver}")
database_url, is_mem = _normalize_sqlite_memory_url(str(u.set(drivername="sqlite")))
database_url = _absolutize_sqlite_url(database_url)
cfg = _get_alembic_config(database_url)
engine = create_engine(database_url, future=True, connect_args=connect_args)
with engine.connect() as conn:
context = MigrationContext.configure(conn)
current_rev = context.get_current_revision()
script = ScriptDirectory.from_config(cfg)
target_rev = script.get_current_head()
if target_rev is None:
LOGGER.warning("Alembic: no target revision found.")
return
if current_rev == target_rev:
LOGGER.debug("Alembic: database already at head %s", target_rev)
return
LOGGER.info("Alembic: upgrading database from %s to %s", current_rev, target_rev)
# Optional backup for SQLite file DBs
backup_path = None
sqlite_path = _get_sqlite_file_path(database_url)
if sqlite_path and os.path.exists(sqlite_path):
backup_path = sqlite_path + ".bkp"
try:
shutil.copy(sqlite_path, backup_path)
except Exception as exc:
LOGGER.warning("Failed to create SQLite backup before migration: %s", exc)
try:
command.upgrade(cfg, target_rev)
except Exception:
if backup_path and os.path.exists(backup_path):
LOGGER.exception("Error upgrading database, attempting restore from backup.")
try:
shutil.copy(backup_path, sqlite_path) # restore
os.remove(backup_path)
except Exception as re:
LOGGER.error("Failed to restore SQLite backup: %s", re)
else:
LOGGER.exception("Error upgrading database, backup is not available.")
raise
def get_engine():
"""Return the global async engine (initialized after init_db_engine())."""
if ENGINE is None:
raise RuntimeError("Engine is not initialized. Call init_db_engine() first.")
return ENGINE
def get_session_maker():
"""Return the global async_sessionmaker (initialized after init_db_engine())."""
if SESSION is None:
raise RuntimeError("Session maker is not initialized. Call init_db_engine() first.")
return SESSION
@asynccontextmanager
async def session_scope():
"""Async context manager for a unit of work:
async with session_scope() as sess:
... use sess ...
"""
maker = get_session_maker()
async with maker() as sess:
try:
yield sess
await sess.commit()
except Exception:
await sess.rollback()
raise
async def create_session():
"""Convenience helper to acquire a single AsyncSession instance.
Typical usage:
async with (await create_session()) as sess:
...
"""
maker = get_session_maker()
return maker()

View File

@@ -196,6 +196,17 @@ def download_release_asset_zip(release: Release, destination_path: str) -> None:
class FrontendManager:
"""
A class to manage ComfyUI frontend versions and installations.
This class handles the initialization and management of different frontend versions,
including the default frontend from the pip package and custom frontend versions
from GitHub repositories.
Attributes:
CUSTOM_FRONTENDS_ROOT (str): The root directory where custom frontend versions are stored.
"""
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
@classmethod
@@ -205,6 +216,15 @@ class FrontendManager:
@classmethod
def default_frontend_path(cls) -> str:
"""
Get the path to the default frontend installation from the pip package.
Returns:
str: The path to the default frontend static files.
Raises:
SystemExit: If the comfyui-frontend-package is not installed.
"""
try:
import comfyui_frontend_package
@@ -225,6 +245,15 @@ comfyui-frontend-package is not installed.
@classmethod
def templates_path(cls) -> str:
"""
Get the path to the workflow templates.
Returns:
str: The path to the workflow templates directory.
Raises:
SystemExit: If the comfyui-workflow-templates package is not installed.
"""
try:
import comfyui_workflow_templates
@@ -260,11 +289,16 @@ comfyui-workflow-templates is not installed.
@classmethod
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
"""
Parse a version string into its components.
The version string should be in the format: 'owner/repo@version'
where version can be either a semantic version (v1.2.3) or 'latest'.
Args:
value (str): The version string to parse.
Returns:
tuple[str, str]: A tuple containing provider name and version.
tuple[str, str, str]: A tuple containing (owner, repo, version).
Raises:
argparse.ArgumentTypeError: If the version string is invalid.
@@ -281,18 +315,22 @@ comfyui-workflow-templates is not installed.
cls, version_string: str, provider: Optional[FrontEndProvider] = None
) -> str:
"""
Initializes the frontend for the specified version.
Initialize a frontend version without error handling.
This method attempts to initialize a specific frontend version, either from
the default pip package or from a custom GitHub repository. It will download
and extract the frontend files if necessary.
Args:
version_string (str): The version string.
provider (FrontEndProvider, optional): The provider to use. Defaults to None.
version_string (str): The version string specifying which frontend to use.
provider (FrontEndProvider, optional): The provider to use for custom frontends.
Returns:
str: The path to the initialized frontend.
Raises:
Exception: If there is an error during the initialization process.
main error source might be request timeout or invalid URL.
Exception: If there is an error during initialization (e.g., network timeout,
invalid URL, or missing assets).
"""
if version_string == DEFAULT_VERSION_STRING:
check_frontend_version()
@@ -344,13 +382,17 @@ comfyui-workflow-templates is not installed.
@classmethod
def init_frontend(cls, version_string: str) -> str:
"""
Initializes the frontend with the specified version string.
Initialize a frontend version with error handling.
This is the main method to initialize a frontend version. It wraps init_frontend_unsafe
with error handling, falling back to the default frontend if initialization fails.
Args:
version_string (str): The version string to initialize the frontend with.
version_string (str): The version string specifying which frontend to use.
Returns:
str: The path of the initialized frontend.
str: The path to the initialized frontend. If initialization fails,
returns the path to the default frontend.
"""
try:
return cls.init_frontend_unsafe(version_string)

View File

@@ -1,4 +1,5 @@
from .wav2vec2 import Wav2Vec2Model
from .whisper import WhisperLargeV3
import comfy.model_management
import comfy.ops
import comfy.utils
@@ -11,7 +12,18 @@ class AudioEncoderModel():
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
self.model = Wav2Vec2Model(dtype=self.dtype, device=offload_device, operations=comfy.ops.manual_cast)
model_type = config.pop("model_type")
model_config = dict(config)
model_config.update({
"dtype": self.dtype,
"device": offload_device,
"operations": comfy.ops.manual_cast
})
if model_type == "wav2vec2":
self.model = Wav2Vec2Model(**model_config)
elif model_type == "whisper3":
self.model = WhisperLargeV3(**model_config)
self.model.eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.model_sample_rate = 16000
@@ -29,14 +41,51 @@ class AudioEncoderModel():
outputs = {}
outputs["encoded_audio"] = out
outputs["encoded_audio_all_layers"] = all_layers
outputs["audio_samples"] = audio.shape[2]
return outputs
def load_audio_encoder_from_sd(sd, prefix=""):
audio_encoder = AudioEncoderModel(None)
sd = comfy.utils.state_dict_prefix_replace(sd, {"wav2vec2.": ""})
if "encoder.layer_norm.bias" in sd: #wav2vec2
embed_dim = sd["encoder.layer_norm.bias"].shape[0]
if embed_dim == 1024:# large
config = {
"model_type": "wav2vec2",
"embed_dim": 1024,
"num_heads": 16,
"num_layers": 24,
"conv_norm": True,
"conv_bias": True,
"do_normalize": True,
"do_stable_layer_norm": True
}
elif embed_dim == 768: # base
config = {
"model_type": "wav2vec2",
"embed_dim": 768,
"num_heads": 12,
"num_layers": 12,
"conv_norm": False,
"conv_bias": False,
"do_normalize": False, # chinese-wav2vec2-base has this False
"do_stable_layer_norm": False
}
else:
raise RuntimeError("ERROR: audio encoder file is invalid or unsupported embed_dim: {}".format(embed_dim))
elif "model.encoder.embed_positions.weight" in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"model.": ""})
config = {
"model_type": "whisper3",
}
else:
raise RuntimeError("ERROR: audio encoder not supported.")
audio_encoder = AudioEncoderModel(config)
m, u = audio_encoder.load_sd(sd)
if len(m) > 0:
logging.warning("missing audio encoder: {}".format(m))
if len(u) > 0:
logging.warning("unexpected audio encoder: {}".format(u))
return audio_encoder

View File

@@ -13,19 +13,49 @@ class LayerNormConv(nn.Module):
x = self.conv(x)
return torch.nn.functional.gelu(self.layer_norm(x.transpose(-2, -1)).transpose(-2, -1))
class LayerGroupNormConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
super().__init__()
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
self.layer_norm = operations.GroupNorm(num_groups=out_channels, num_channels=out_channels, affine=True, device=device, dtype=dtype)
def forward(self, x):
x = self.conv(x)
return torch.nn.functional.gelu(self.layer_norm(x))
class ConvNoNorm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
super().__init__()
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
def forward(self, x):
x = self.conv(x)
return torch.nn.functional.gelu(x)
class ConvFeatureEncoder(nn.Module):
def __init__(self, conv_dim, dtype=None, device=None, operations=None):
def __init__(self, conv_dim, conv_bias=False, conv_norm=True, dtype=None, device=None, operations=None):
super().__init__()
self.conv_layers = nn.ModuleList([
LayerNormConv(1, conv_dim, kernel_size=10, stride=5, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=True, device=device, dtype=dtype, operations=operations),
])
if conv_norm:
self.conv_layers = nn.ModuleList([
LayerNormConv(1, conv_dim, kernel_size=10, stride=5, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
])
else:
self.conv_layers = nn.ModuleList([
LayerGroupNormConv(1, conv_dim, kernel_size=10, stride=5, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
])
def forward(self, x):
x = x.unsqueeze(1)
@@ -76,6 +106,7 @@ class TransformerEncoder(nn.Module):
num_heads=12,
num_layers=12,
mlp_ratio=4.0,
do_stable_layer_norm=True,
dtype=None, device=None, operations=None
):
super().__init__()
@@ -86,20 +117,25 @@ class TransformerEncoder(nn.Module):
embed_dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
do_stable_layer_norm=do_stable_layer_norm,
device=device, dtype=dtype, operations=operations
)
for _ in range(num_layers)
])
self.layer_norm = operations.LayerNorm(embed_dim, eps=1e-05, device=device, dtype=dtype)
self.do_stable_layer_norm = do_stable_layer_norm
def forward(self, x, mask=None):
x = x + self.pos_conv_embed(x)
all_x = ()
if not self.do_stable_layer_norm:
x = self.layer_norm(x)
for layer in self.layers:
all_x += (x,)
x = layer(x, mask)
x = self.layer_norm(x)
if self.do_stable_layer_norm:
x = self.layer_norm(x)
all_x += (x,)
return x, all_x
@@ -145,6 +181,7 @@ class TransformerEncoderLayer(nn.Module):
embed_dim=768,
num_heads=12,
mlp_ratio=4.0,
do_stable_layer_norm=True,
dtype=None, device=None, operations=None
):
super().__init__()
@@ -154,15 +191,19 @@ class TransformerEncoderLayer(nn.Module):
self.layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
self.feed_forward = FeedForward(embed_dim, mlp_ratio, device=device, dtype=dtype, operations=operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
self.do_stable_layer_norm = do_stable_layer_norm
def forward(self, x, mask=None):
residual = x
x = self.layer_norm(x)
if self.do_stable_layer_norm:
x = self.layer_norm(x)
x = self.attention(x, mask=mask)
x = residual + x
x = x + self.feed_forward(self.final_layer_norm(x))
return x
if not self.do_stable_layer_norm:
x = self.layer_norm(x)
return self.final_layer_norm(x + self.feed_forward(x))
else:
return x + self.feed_forward(self.final_layer_norm(x))
class Wav2Vec2Model(nn.Module):
@@ -174,34 +215,38 @@ class Wav2Vec2Model(nn.Module):
final_dim=256,
num_heads=16,
num_layers=24,
conv_norm=True,
conv_bias=True,
do_normalize=True,
do_stable_layer_norm=True,
dtype=None, device=None, operations=None
):
super().__init__()
conv_dim = 512
self.feature_extractor = ConvFeatureEncoder(conv_dim, device=device, dtype=dtype, operations=operations)
self.feature_extractor = ConvFeatureEncoder(conv_dim, conv_norm=conv_norm, conv_bias=conv_bias, device=device, dtype=dtype, operations=operations)
self.feature_projection = FeatureProjection(conv_dim, embed_dim, device=device, dtype=dtype, operations=operations)
self.masked_spec_embed = nn.Parameter(torch.empty(embed_dim, device=device, dtype=dtype))
self.do_normalize = do_normalize
self.encoder = TransformerEncoder(
embed_dim=embed_dim,
num_heads=num_heads,
num_layers=num_layers,
do_stable_layer_norm=do_stable_layer_norm,
device=device, dtype=dtype, operations=operations
)
def forward(self, x, mask_time_indices=None, return_dict=False):
x = torch.mean(x, dim=1)
x = (x - x.mean()) / torch.sqrt(x.var() + 1e-7)
if self.do_normalize:
x = (x - x.mean()) / torch.sqrt(x.var() + 1e-7)
features = self.feature_extractor(x)
features = self.feature_projection(features)
batch_size, seq_len, _ = features.shape
x, all_x = self.encoder(features)
return x, all_x

186
comfy/audio_encoders/whisper.py Executable file
View File

@@ -0,0 +1,186 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from typing import Optional
from comfy.ldm.modules.attention import optimized_attention_masked
import comfy.ops
class WhisperFeatureExtractor(nn.Module):
def __init__(self, n_mels=128, device=None):
super().__init__()
self.sample_rate = 16000
self.n_fft = 400
self.hop_length = 160
self.n_mels = n_mels
self.chunk_length = 30
self.n_samples = 480000
self.mel_spectrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=self.sample_rate,
n_fft=self.n_fft,
hop_length=self.hop_length,
n_mels=self.n_mels,
f_min=0,
f_max=8000,
norm="slaney",
mel_scale="slaney",
).to(device)
def __call__(self, audio):
audio = torch.mean(audio, dim=1)
batch_size = audio.shape[0]
processed_audio = []
for i in range(batch_size):
aud = audio[i]
if aud.shape[0] > self.n_samples:
aud = aud[:self.n_samples]
elif aud.shape[0] < self.n_samples:
aud = F.pad(aud, (0, self.n_samples - aud.shape[0]))
processed_audio.append(aud)
audio = torch.stack(processed_audio)
mel_spec = self.mel_spectrogram(audio.to(self.mel_spectrogram.spectrogram.window.device))[:, :, :-1].to(audio.device)
log_mel_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_mel_spec = torch.maximum(log_mel_spec, log_mel_spec.max() - 8.0)
log_mel_spec = (log_mel_spec + 4.0) / 4.0
return log_mel_spec
class MultiHeadAttention(nn.Module):
def __init__(self, d_model: int, n_heads: int, dtype=None, device=None, operations=None):
super().__init__()
assert d_model % n_heads == 0
self.d_model = d_model
self.n_heads = n_heads
self.d_k = d_model // n_heads
self.q_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
self.k_proj = operations.Linear(d_model, d_model, bias=False, dtype=dtype, device=device)
self.v_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
self.out_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, seq_len, _ = query.shape
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
attn_output = optimized_attention_masked(q, k, v, self.n_heads, mask)
attn_output = self.out_proj(attn_output)
return attn_output
class EncoderLayer(nn.Module):
def __init__(self, d_model: int, n_heads: int, d_ff: int, dtype=None, device=None, operations=None):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, n_heads, dtype=dtype, device=device, operations=operations)
self.self_attn_layer_norm = operations.LayerNorm(d_model, dtype=dtype, device=device)
self.fc1 = operations.Linear(d_model, d_ff, dtype=dtype, device=device)
self.fc2 = operations.Linear(d_ff, d_model, dtype=dtype, device=device)
self.final_layer_norm = operations.LayerNorm(d_model, dtype=dtype, device=device)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
residual = x
x = self.self_attn_layer_norm(x)
x = self.self_attn(x, x, x, attention_mask)
x = residual + x
residual = x
x = self.final_layer_norm(x)
x = self.fc1(x)
x = F.gelu(x)
x = self.fc2(x)
x = residual + x
return x
class AudioEncoder(nn.Module):
def __init__(
self,
n_mels: int = 128,
n_ctx: int = 1500,
n_state: int = 1280,
n_head: int = 20,
n_layer: int = 32,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.conv1 = operations.Conv1d(n_mels, n_state, kernel_size=3, padding=1, dtype=dtype, device=device)
self.conv2 = operations.Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1, dtype=dtype, device=device)
self.embed_positions = operations.Embedding(n_ctx, n_state, dtype=dtype, device=device)
self.layers = nn.ModuleList([
EncoderLayer(n_state, n_head, n_state * 4, dtype=dtype, device=device, operations=operations)
for _ in range(n_layer)
])
self.layer_norm = operations.LayerNorm(n_state, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.gelu(self.conv1(x))
x = F.gelu(self.conv2(x))
x = x.transpose(1, 2)
x = x + comfy.ops.cast_to_input(self.embed_positions.weight[:, :x.shape[1]], x)
all_x = ()
for layer in self.layers:
all_x += (x,)
x = layer(x)
x = self.layer_norm(x)
all_x += (x,)
return x, all_x
class WhisperLargeV3(nn.Module):
def __init__(
self,
n_mels: int = 128,
n_audio_ctx: int = 1500,
n_audio_state: int = 1280,
n_audio_head: int = 20,
n_audio_layer: int = 32,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.feature_extractor = WhisperFeatureExtractor(n_mels=n_mels, device=device)
self.encoder = AudioEncoder(
n_mels, n_audio_ctx, n_audio_state, n_audio_head, n_audio_layer,
dtype=dtype, device=device, operations=operations
)
def forward(self, audio):
mel = self.feature_extractor(audio)
x, all_x = self.encoder(mel)
return x, all_x

View File

@@ -143,8 +143,9 @@ class PerformanceFeature(enum.Enum):
Fp16Accumulation = "fp16_accumulation"
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
AutoTune = "autotune"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")
@@ -211,7 +212,8 @@ parser.add_argument(
database_default_path = os.path.abspath(
os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db")
)
parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.")
parser.add_argument("--database-url", type=str, default=f"sqlite+aiosqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite+aiosqlite:///:memory:'.")
parser.add_argument("--disable-assets-autoscan", action="store_true", help="Disable asset scanning on startup for database synchronization.")
if comfy.options.args_parsing:
args = parser.parse_args()

View File

@@ -61,8 +61,12 @@ class CLIPEncoder(torch.nn.Module):
def forward(self, x, mask=None, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
all_intermediate = None
if intermediate_output is not None:
if intermediate_output < 0:
if intermediate_output == "all":
all_intermediate = []
intermediate_output = None
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
@@ -70,6 +74,12 @@ class CLIPEncoder(torch.nn.Module):
x = l(x, mask, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if all_intermediate is not None:
intermediate = torch.cat(all_intermediate, dim=1)
return x, intermediate
class CLIPEmbeddings(torch.nn.Module):

View File

@@ -50,7 +50,13 @@ class ClipVisionModel():
self.image_size = config.get("image_size", 224)
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
model_type = config.get("model_type", "clip_vision_model")
model_class = IMAGE_ENCODERS.get(model_type)
if model_type == "siglip_vision_model":
self.return_all_hidden_states = True
else:
self.return_all_hidden_states = False
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
@@ -68,12 +74,18 @@ class ClipVisionModel():
def encode_image(self, image, crop=True):
comfy.model_management.load_model_gpu(self.patcher)
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2)
outputs = Output()
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
if self.return_all_hidden_states:
all_hs = out[1].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = all_hs[:, -2]
outputs["all_hidden_states"] = all_hs
else:
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
outputs["mm_projected"] = out[3]
return outputs
@@ -124,8 +136,12 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
elif "embeddings.patch_embeddings.projection.weight" in sd:
# Dinov2
elif 'encoder.layer.39.layer_scale2.lambda1' in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
elif 'encoder.layer.23.layer_scale2.lambda1' in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_large.json")
else:
return None

View File

@@ -253,7 +253,10 @@ class ControlNet(ControlBase):
to_concat = []
for c in self.extra_concat_orig:
c = c.to(self.cond_hint.device)
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
c = comfy.utils.common_upscale(c, self.cond_hint.shape[-1], self.cond_hint.shape[-2], self.upscale_algorithm, "center")
if c.ndim < self.cond_hint.ndim:
c = c.unsqueeze(2)
c = comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[2], dim=2)
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
@@ -585,11 +588,18 @@ def load_controlnet_flux_instantx(sd, model_options={}):
def load_controlnet_qwen_instantx(sd, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
control_model = comfy.ldm.qwen_image.controlnet.QwenImageControlNetModel(operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_latent_channels = sd.get("controlnet_x_embedder.weight").shape[1]
extra_condition_channels = 0
concat_mask = False
if control_latent_channels == 68: #inpaint controlnet
extra_condition_channels = control_latent_channels - 64
concat_mask = True
control_model = comfy.ldm.qwen_image.controlnet.QwenImageControlNetModel(extra_condition_channels=extra_condition_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, sd)
latent_format = comfy.latent_formats.Wan21()
extra_conds = []
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def convert_mistoline(sd):

View File

@@ -31,6 +31,20 @@ class LayerScale(torch.nn.Module):
def forward(self, x):
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)
class Dinov2MLP(torch.nn.Module):
def __init__(self, hidden_size: int, dtype, device, operations):
super().__init__()
mlp_ratio = 4
hidden_features = int(hidden_size * mlp_ratio)
self.fc1 = operations.Linear(hidden_size, hidden_features, bias = True, device=device, dtype=dtype)
self.fc2 = operations.Linear(hidden_features, hidden_size, bias = True, device=device, dtype=dtype)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.fc1(hidden_state)
hidden_state = torch.nn.functional.gelu(hidden_state)
hidden_state = self.fc2(hidden_state)
return hidden_state
class SwiGLUFFN(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
@@ -50,12 +64,15 @@ class SwiGLUFFN(torch.nn.Module):
class Dino2Block(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn):
super().__init__()
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
if use_swiglu_ffn:
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
else:
self.mlp = Dinov2MLP(dim, dtype, device, operations)
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
@@ -66,9 +83,10 @@ class Dino2Block(torch.nn.Module):
class Dino2Encoder(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn):
super().__init__()
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
for _ in range(num_layers)])
def forward(self, x, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
@@ -78,8 +96,8 @@ class Dino2Encoder(torch.nn.Module):
intermediate_output = len(self.layer) + intermediate_output
intermediate = None
for i, l in enumerate(self.layer):
x = l(x, optimized_attention)
for i, layer in enumerate(self.layer):
x = layer(x, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
@@ -128,9 +146,10 @@ class Dinov2Model(torch.nn.Module):
dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
layer_norm_eps = config_dict["layer_norm_eps"]
use_swiglu_ffn = config_dict["use_swiglu_ffn"]
self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):

View File

@@ -0,0 +1,22 @@
{
"hidden_size": 1024,
"use_mask_token": true,
"patch_size": 14,
"image_size": 518,
"num_channels": 3,
"num_attention_heads": 16,
"initializer_range": 0.02,
"attention_probs_dropout_prob": 0.0,
"hidden_dropout_prob": 0.0,
"hidden_act": "gelu",
"mlp_ratio": 4,
"model_type": "dinov2",
"num_hidden_layers": 24,
"layer_norm_eps": 1e-6,
"qkv_bias": true,
"use_swiglu_ffn": false,
"layerscale_value": 1.0,
"drop_path_rate": 0.0,
"image_mean": [0.485, 0.456, 0.406],
"image_std": [0.229, 0.224, 0.225]
}

View File

@@ -86,24 +86,24 @@ class BatchedBrownianTree:
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
def __init__(self, x, t0, t1, seed=None, **kwargs):
self.cpu_tree = True
if "cpu" in kwargs:
self.cpu_tree = kwargs.pop("cpu")
self.cpu_tree = kwargs.pop("cpu", True)
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get('w0', torch.zeros_like(x))
w0 = kwargs.pop('w0', None)
if w0 is None:
w0 = torch.zeros_like(x)
self.batched = False
if seed is None:
seed = torch.randint(0, 2 ** 63 - 1, []).item()
self.batched = True
try:
assert len(seed) == x.shape[0]
seed = (torch.randint(0, 2 ** 63 - 1, ()).item(),)
elif isinstance(seed, (tuple, list)):
if len(seed) != x.shape[0]:
raise ValueError("Passing a list or tuple of seeds to BatchedBrownianTree requires a length matching the batch size.")
self.batched = True
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
if self.cpu_tree:
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
else:
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
seed = (seed,)
if self.cpu_tree:
t0, w0, t1 = t0.detach().cpu(), w0.detach().cpu(), t1.detach().cpu()
self.trees = tuple(torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed)
@staticmethod
def sort(a, b):
@@ -111,11 +111,10 @@ class BatchedBrownianTree:
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
device, dtype = t0.device, t0.dtype
if self.cpu_tree:
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
else:
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
t0, t1 = t0.detach().cpu().float(), t1.detach().cpu().float()
w = torch.stack([tree(t0, t1) for tree in self.trees]).to(device=device, dtype=dtype) * (self.sign * sign)
return w if self.batched else w[0]
@@ -171,6 +170,16 @@ def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4):
return sigmas
def ei_h_phi_1(h: torch.Tensor) -> torch.Tensor:
"""Compute the result of h*phi_1(h) in exponential integrator methods."""
return torch.expm1(h)
def ei_h_phi_2(h: torch.Tensor) -> torch.Tensor:
"""Compute the result of h*phi_2(h) in exponential integrator methods."""
return (torch.expm1(h) - h) / h
@torch.no_grad()
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
@@ -1550,13 +1559,12 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
@@ -1564,55 +1572,53 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
fac = 1 / (2 * r)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r * h
fac = 1 / (2 * r)
sigma_s_1 = sigma_fn(lambda_s_1)
continue
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r)
sigma_s_1 = sigma_fn(lambda_s_1)
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r < 1
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r * h * eta).exp() * (-2 * (1 - r) * h * eta).expm1().neg().sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigmas[i + 1])
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r * h_eta) * denoised
if inject_noise:
sde_noise = (-2 * r * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_2 * denoised_d
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
# Step 2
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
if inject_noise:
segment_factor = (r - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigmas[i + 1])
x = x + sde_noise * sigmas[i + 1] * s_noise
return x
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
"""SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 3.
arXiv: https://arxiv.org/abs/2305.14267
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
@@ -1624,45 +1630,49 @@ def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=Non
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r_1 * h
lambda_s_2 = lambda_s + r_2 * h
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
continue
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r_1)
lambda_s_2 = torch.lerp(lambda_s, lambda_t, r_2)
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r_1 < r_2 < 1
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r_1 * h * eta).exp() * (-2 * (r_2 - r_1) * h * eta).expm1().neg().sqrt()
noise_coeff_3 = (-r_2 * h * eta).exp() * (-2 * (1 - r_2) * h * eta).expm1().neg().sqrt()
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r_1 * h_eta) * denoised
if inject_noise:
sde_noise = (-2 * r_1 * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * coeff_2 * denoised + (r_2 / r_1) * alpha_s_2 * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
if inject_noise:
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 2
a3_2 = r_2 / r_1 * ei_h_phi_2(-r_2 * h_eta)
a3_1 = ei_h_phi_1(-r_2 * h_eta) - a3_2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * (a3_1 * denoised + a3_2 * denoised_2)
if inject_noise:
segment_factor = (r_1 - r_2) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigma_s_2)
x_3 = x_3 + sde_noise * sigma_s_2 * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_3 * denoised + (1. / r_2) * alpha_t * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
# Step 3
b3 = ei_h_phi_2(-h_eta) / r_2
b1 = ei_h_phi_1(-h_eta) - b3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b3 * denoised_3)
if inject_noise:
segment_factor = (r_2 - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_2, sigmas[i + 1])
x = x + sde_noise * sigmas[i + 1] * s_noise
return x

View File

@@ -533,11 +533,94 @@ class Wan22(Wan21):
0.3971, 1.0600, 0.3943, 0.5537, 0.5444, 0.4089, 0.7468, 0.7744
]).view(1, self.latent_channels, 1, 1, 1)
class HunyuanImage21(LatentFormat):
latent_channels = 64
latent_dimensions = 2
scale_factor = 0.75289
latent_rgb_factors = [
[-0.0154, -0.0397, -0.0521],
[ 0.0005, 0.0093, 0.0006],
[-0.0805, -0.0773, -0.0586],
[-0.0494, -0.0487, -0.0498],
[-0.0212, -0.0076, -0.0261],
[-0.0179, -0.0417, -0.0505],
[ 0.0158, 0.0310, 0.0239],
[ 0.0409, 0.0516, 0.0201],
[ 0.0350, 0.0553, 0.0036],
[-0.0447, -0.0327, -0.0479],
[-0.0038, -0.0221, -0.0365],
[-0.0423, -0.0718, -0.0654],
[ 0.0039, 0.0368, 0.0104],
[ 0.0655, 0.0217, 0.0122],
[ 0.0490, 0.1638, 0.2053],
[ 0.0932, 0.0829, 0.0650],
[-0.0186, -0.0209, -0.0135],
[-0.0080, -0.0076, -0.0148],
[-0.0284, -0.0201, 0.0011],
[-0.0642, -0.0294, -0.0777],
[-0.0035, 0.0076, -0.0140],
[ 0.0519, 0.0731, 0.0887],
[-0.0102, 0.0095, 0.0704],
[ 0.0068, 0.0218, -0.0023],
[-0.0726, -0.0486, -0.0519],
[ 0.0260, 0.0295, 0.0263],
[ 0.0250, 0.0333, 0.0341],
[ 0.0168, -0.0120, -0.0174],
[ 0.0226, 0.1037, 0.0114],
[ 0.2577, 0.1906, 0.1604],
[-0.0646, -0.0137, -0.0018],
[-0.0112, 0.0309, 0.0358],
[-0.0347, 0.0146, -0.0481],
[ 0.0234, 0.0179, 0.0201],
[ 0.0157, 0.0313, 0.0225],
[ 0.0423, 0.0675, 0.0524],
[-0.0031, 0.0027, -0.0255],
[ 0.0447, 0.0555, 0.0330],
[-0.0152, 0.0103, 0.0299],
[-0.0755, -0.0489, -0.0635],
[ 0.0853, 0.0788, 0.1017],
[-0.0272, -0.0294, -0.0471],
[ 0.0440, 0.0400, -0.0137],
[ 0.0335, 0.0317, -0.0036],
[-0.0344, -0.0621, -0.0984],
[-0.0127, -0.0630, -0.0620],
[-0.0648, 0.0360, 0.0924],
[-0.0781, -0.0801, -0.0409],
[ 0.0363, 0.0613, 0.0499],
[ 0.0238, 0.0034, 0.0041],
[-0.0135, 0.0258, 0.0310],
[ 0.0614, 0.1086, 0.0589],
[ 0.0428, 0.0350, 0.0205],
[ 0.0153, 0.0173, -0.0018],
[-0.0288, -0.0455, -0.0091],
[ 0.0344, 0.0109, -0.0157],
[-0.0205, -0.0247, -0.0187],
[ 0.0487, 0.0126, 0.0064],
[-0.0220, -0.0013, 0.0074],
[-0.0203, -0.0094, -0.0048],
[-0.0719, 0.0429, -0.0442],
[ 0.1042, 0.0497, 0.0356],
[-0.0659, -0.0578, -0.0280],
[-0.0060, -0.0322, -0.0234]]
latent_rgb_factors_bias = [0.0007, -0.0256, -0.0206]
class HunyuanImage21Refiner(LatentFormat):
latent_channels = 64
latent_dimensions = 3
scale_factor = 1.03682
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 0.9990943042622529
class Hunyuan3Dv2_1(LatentFormat):
scale_factor = 1.0039506158752403
latent_channels = 64
latent_dimensions = 1
class Hunyuan3Dv2mini(LatentFormat):
latent_channels = 64
latent_dimensions = 1
@@ -546,3 +629,20 @@ class Hunyuan3Dv2mini(LatentFormat):
class ACEAudio(LatentFormat):
latent_channels = 8
latent_dimensions = 2
class ChromaRadiance(LatentFormat):
latent_channels = 3
def __init__(self):
self.latent_rgb_factors = [
# R G B
[ 1.0, 0.0, 0.0 ],
[ 0.0, 1.0, 0.0 ],
[ 0.0, 0.0, 1.0 ]
]
def process_in(self, latent):
return latent
def process_out(self, latent):
return latent

View File

@@ -133,6 +133,7 @@ class Attention(nn.Module):
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
transformer_options={},
**cross_attention_kwargs,
) -> torch.Tensor:
return self.processor(
@@ -140,6 +141,7 @@ class Attention(nn.Module):
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
transformer_options=transformer_options,
**cross_attention_kwargs,
)
@@ -366,6 +368,7 @@ class CustomerAttnProcessor2_0:
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
transformer_options={},
*args,
**kwargs,
) -> torch.Tensor:
@@ -433,7 +436,7 @@ class CustomerAttnProcessor2_0:
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = optimized_attention(
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True, transformer_options=transformer_options,
).to(query.dtype)
# linear proj
@@ -697,6 +700,7 @@ class LinearTransformerBlock(nn.Module):
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
temb: torch.FloatTensor = None,
transformer_options={},
):
N = hidden_states.shape[0]
@@ -720,6 +724,7 @@ class LinearTransformerBlock(nn.Module):
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
transformer_options=transformer_options,
)
else:
attn_output, _ = self.attn(
@@ -729,6 +734,7 @@ class LinearTransformerBlock(nn.Module):
encoder_attention_mask=None,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=None,
transformer_options=transformer_options,
)
if self.use_adaln_single:
@@ -743,6 +749,7 @@ class LinearTransformerBlock(nn.Module):
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
transformer_options=transformer_options,
)
hidden_states = attn_output + hidden_states

View File

@@ -314,6 +314,7 @@ class ACEStepTransformer2DModel(nn.Module):
output_length: int = 0,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
transformer_options={},
):
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
temb = self.t_block(embedded_timestep)
@@ -339,6 +340,7 @@ class ACEStepTransformer2DModel(nn.Module):
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
temb=temb,
transformer_options=transformer_options,
)
output = self.final_layer(hidden_states, embedded_timestep, output_length)
@@ -393,6 +395,7 @@ class ACEStepTransformer2DModel(nn.Module):
output_length = hidden_states.shape[-1]
transformer_options = kwargs.get("transformer_options", {})
output = self.decode(
hidden_states=hidden_states,
attention_mask=attention_mask,
@@ -402,6 +405,7 @@ class ACEStepTransformer2DModel(nn.Module):
output_length=output_length,
block_controlnet_hidden_states=block_controlnet_hidden_states,
controlnet_scale=controlnet_scale,
transformer_options=transformer_options,
)
return output

View File

@@ -298,7 +298,8 @@ class Attention(nn.Module):
mask = None,
context_mask = None,
rotary_pos_emb = None,
causal = None
causal = None,
transformer_options={},
):
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
@@ -363,7 +364,7 @@ class Attention(nn.Module):
heads_per_kv_head = h // kv_h
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
out = optimized_attention(q, k, v, h, skip_reshape=True)
out = optimized_attention(q, k, v, h, skip_reshape=True, transformer_options=transformer_options)
out = self.to_out(out)
if mask is not None:
@@ -488,7 +489,8 @@ class TransformerBlock(nn.Module):
global_cond=None,
mask = None,
context_mask = None,
rotary_pos_emb = None
rotary_pos_emb = None,
transformer_options={}
):
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
@@ -498,12 +500,12 @@ class TransformerBlock(nn.Module):
residual = x
x = self.pre_norm(x)
x = x * (1 + scale_self) + shift_self
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb, transformer_options=transformer_options)
x = x * torch.sigmoid(1 - gate_self)
x = x + residual
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask, transformer_options=transformer_options)
if self.conformer is not None:
x = x + self.conformer(x)
@@ -517,10 +519,10 @@ class TransformerBlock(nn.Module):
x = x + residual
else:
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb, transformer_options=transformer_options)
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask, transformer_options=transformer_options)
if self.conformer is not None:
x = x + self.conformer(x)
@@ -606,7 +608,8 @@ class ContinuousTransformer(nn.Module):
return_info = False,
**kwargs
):
patches_replace = kwargs.get("transformer_options", {}).get("patches_replace", {})
transformer_options = kwargs.get("transformer_options", {})
patches_replace = transformer_options.get("patches_replace", {})
batch, seq, device = *x.shape[:2], x.device
context = kwargs["context"]
@@ -632,7 +635,7 @@ class ContinuousTransformer(nn.Module):
# Attention layers
if self.rotary_pos_emb is not None:
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=torch.float, device=x.device)
else:
rotary_pos_emb = None
@@ -645,13 +648,13 @@ class ContinuousTransformer(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"])
out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context)
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context, transformer_options=transformer_options)
# x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
if return_info:

View File

@@ -85,7 +85,7 @@ class SingleAttention(nn.Module):
)
#@torch.compile()
def forward(self, c):
def forward(self, c, transformer_options={}):
bsz, seqlen1, _ = c.shape
@@ -95,7 +95,7 @@ class SingleAttention(nn.Module):
v = v.view(bsz, seqlen1, self.n_heads, self.head_dim)
q, k = self.q_norm1(q), self.k_norm1(k)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True, transformer_options=transformer_options)
c = self.w1o(output)
return c
@@ -144,7 +144,7 @@ class DoubleAttention(nn.Module):
#@torch.compile()
def forward(self, c, x):
def forward(self, c, x, transformer_options={}):
bsz, seqlen1, _ = c.shape
bsz, seqlen2, _ = x.shape
@@ -168,7 +168,7 @@ class DoubleAttention(nn.Module):
torch.cat([cv, xv], dim=1),
)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True, transformer_options=transformer_options)
c, x = output.split([seqlen1, seqlen2], dim=1)
c = self.w1o(c)
@@ -207,7 +207,7 @@ class MMDiTBlock(nn.Module):
self.is_last = is_last
#@torch.compile()
def forward(self, c, x, global_cond, **kwargs):
def forward(self, c, x, global_cond, transformer_options={}, **kwargs):
cres, xres = c, x
@@ -225,7 +225,7 @@ class MMDiTBlock(nn.Module):
x = modulate(self.normX1(x), xshift_msa, xscale_msa)
# attention
c, x = self.attn(c, x)
c, x = self.attn(c, x, transformer_options=transformer_options)
c = self.normC2(cres + cgate_msa.unsqueeze(1) * c)
@@ -255,13 +255,13 @@ class DiTBlock(nn.Module):
self.mlp = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
#@torch.compile()
def forward(self, cx, global_cond, **kwargs):
def forward(self, cx, global_cond, transformer_options={}, **kwargs):
cxres = cx
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.modCX(
global_cond
).chunk(6, dim=1)
cx = modulate(self.norm1(cx), shift_msa, scale_msa)
cx = self.attn(cx)
cx = self.attn(cx, transformer_options=transformer_options)
cx = self.norm2(cxres + gate_msa.unsqueeze(1) * cx)
mlpout = self.mlp(modulate(cx, shift_mlp, scale_mlp))
cx = gate_mlp.unsqueeze(1) * mlpout
@@ -473,13 +473,14 @@ class MMDiT(nn.Module):
out = {}
out["txt"], out["img"] = layer(args["txt"],
args["img"],
args["vec"])
args["vec"],
transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond, "transformer_options": transformer_options}, {"original_block": block_wrap})
c = out["txt"]
x = out["img"]
else:
c, x = layer(c, x, global_cond, **kwargs)
c, x = layer(c, x, global_cond, transformer_options=transformer_options, **kwargs)
if len(self.single_layers) > 0:
c_len = c.size(1)
@@ -488,13 +489,13 @@ class MMDiT(nn.Module):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = layer(args["img"], args["vec"])
out["img"] = layer(args["img"], args["vec"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond}, {"original_block": block_wrap})
out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond, "transformer_options": transformer_options}, {"original_block": block_wrap})
cx = out["img"]
else:
cx = layer(cx, global_cond, **kwargs)
cx = layer(cx, global_cond, transformer_options=transformer_options, **kwargs)
x = cx[:, c_len:]

View File

@@ -32,12 +32,12 @@ class OptimizedAttention(nn.Module):
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
def forward(self, q, k, v):
def forward(self, q, k, v, transformer_options={}):
q = self.to_q(q)
k = self.to_k(k)
v = self.to_v(v)
out = optimized_attention(q, k, v, self.heads)
out = optimized_attention(q, k, v, self.heads, transformer_options=transformer_options)
return self.out_proj(out)
@@ -47,13 +47,13 @@ class Attention2D(nn.Module):
self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
# self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)
def forward(self, x, kv, self_attn=False):
def forward(self, x, kv, self_attn=False, transformer_options={}):
orig_shape = x.shape
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
if self_attn:
kv = torch.cat([x, kv], dim=1)
# x = self.attn(x, kv, kv, need_weights=False)[0]
x = self.attn(x, kv, kv)
x = self.attn(x, kv, kv, transformer_options=transformer_options)
x = x.permute(0, 2, 1).view(*orig_shape)
return x
@@ -114,9 +114,9 @@ class AttnBlock(nn.Module):
operations.Linear(c_cond, c, dtype=dtype, device=device)
)
def forward(self, x, kv):
def forward(self, x, kv, transformer_options={}):
kv = self.kv_mapper(kv)
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn, transformer_options=transformer_options)
return x

View File

@@ -173,7 +173,7 @@ class StageB(nn.Module):
clip = self.clip_norm(clip)
return clip
def _down_encode(self, x, r_embed, clip):
def _down_encode(self, x, r_embed, clip, transformer_options={}):
level_outputs = []
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
for down_block, downscaler, repmap in block_group:
@@ -187,7 +187,7 @@ class StageB(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@@ -199,7 +199,7 @@ class StageB(nn.Module):
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, clip):
def _up_decode(self, level_outputs, r_embed, clip, transformer_options={}):
x = level_outputs[0]
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
for i, (up_block, upscaler, repmap) in enumerate(block_group):
@@ -216,7 +216,7 @@ class StageB(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@@ -228,7 +228,7 @@ class StageB(nn.Module):
x = upscaler(x)
return x
def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
def forward(self, x, r, effnet, clip, pixels=None, transformer_options={}, **kwargs):
if pixels is None:
pixels = x.new_zeros(x.size(0), 3, 8, 8)
@@ -245,8 +245,8 @@ class StageB(nn.Module):
nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True))
x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear',
align_corners=True)
level_outputs = self._down_encode(x, r_embed, clip)
x = self._up_decode(level_outputs, r_embed, clip)
level_outputs = self._down_encode(x, r_embed, clip, transformer_options=transformer_options)
x = self._up_decode(level_outputs, r_embed, clip, transformer_options=transformer_options)
return self.clf(x)
def update_weights_ema(self, src_model, beta=0.999):

View File

@@ -182,7 +182,7 @@ class StageC(nn.Module):
clip = self.clip_norm(clip)
return clip
def _down_encode(self, x, r_embed, clip, cnet=None):
def _down_encode(self, x, r_embed, clip, cnet=None, transformer_options={}):
level_outputs = []
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
for down_block, downscaler, repmap in block_group:
@@ -201,7 +201,7 @@ class StageC(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@@ -213,7 +213,7 @@ class StageC(nn.Module):
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
def _up_decode(self, level_outputs, r_embed, clip, cnet=None, transformer_options={}):
x = level_outputs[0]
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
for i, (up_block, upscaler, repmap) in enumerate(block_group):
@@ -235,7 +235,7 @@ class StageC(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@@ -247,7 +247,7 @@ class StageC(nn.Module):
x = upscaler(x)
return x
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, **kwargs):
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, transformer_options={}, **kwargs):
# Process the conditioning embeddings
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
for c in self.t_conds:
@@ -262,8 +262,8 @@ class StageC(nn.Module):
# Model Blocks
x = self.embedding(x)
level_outputs = self._down_encode(x, r_embed, clip, cnet)
x = self._up_decode(level_outputs, r_embed, clip, cnet)
level_outputs = self._down_encode(x, r_embed, clip, cnet, transformer_options=transformer_options)
x = self._up_decode(level_outputs, r_embed, clip, cnet, transformer_options=transformer_options)
return self.clf(x)
def update_weights_ema(self, src_model, beta=0.999):

View File

@@ -76,7 +76,7 @@ class DoubleStreamBlock(nn.Module):
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None):
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}):
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
@@ -95,7 +95,7 @@ class DoubleStreamBlock(nn.Module):
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask)
pe=pe, mask=attn_mask, transformer_options=transformer_options)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
@@ -148,7 +148,7 @@ class SingleStreamBlock(nn.Module):
self.mlp_act = nn.GELU(approximate="tanh")
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}) -> Tensor:
mod = vec
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
@@ -157,7 +157,7 @@ class SingleStreamBlock(nn.Module):
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask)
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x.addcmul_(mod.gate, output)

View File

@@ -151,8 +151,6 @@ class Chroma(nn.Module):
attn_mask: Tensor = None,
) -> Tensor:
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
@@ -193,14 +191,16 @@ class Chroma(nn.Module):
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": double_mod,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
@@ -209,7 +209,8 @@ class Chroma(nn.Module):
txt=txt,
vec=double_mod,
pe=pe,
attn_mask=attn_mask)
attn_mask=attn_mask,
transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
@@ -229,17 +230,19 @@ class Chroma(nn.Module):
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": single_mod,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
@@ -249,8 +252,9 @@ class Chroma(nn.Module):
img[:, txt.shape[1] :, ...] += add
img = img[:, txt.shape[1] :, ...]
final_mod = self.get_modulations(mod_vectors, "final")
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
if hasattr(self, "final_layer"):
final_mod = self.get_modulations(mod_vectors, "final")
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
return img
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
@@ -266,6 +270,9 @@ class Chroma(nn.Module):
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=self.patch_size, pw=self.patch_size)
if img.ndim != 3 or context.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
h_len = ((h + (self.patch_size // 2)) // self.patch_size)
w_len = ((w + (self.patch_size // 2)) // self.patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)

View File

@@ -0,0 +1,206 @@
# Adapted from https://github.com/lodestone-rock/flow
from functools import lru_cache
import torch
from torch import nn
from comfy.ldm.flux.layers import RMSNorm
class NerfEmbedder(nn.Module):
"""
An embedder module that combines input features with a 2D positional
encoding that mimics the Discrete Cosine Transform (DCT).
This module takes an input tensor of shape (B, P^2, C), where P is the
patch size, and enriches it with positional information before projecting
it to a new hidden size.
"""
def __init__(
self,
in_channels: int,
hidden_size_input: int,
max_freqs: int,
dtype=None,
device=None,
operations=None,
):
"""
Initializes the NerfEmbedder.
Args:
in_channels (int): The number of channels in the input tensor.
hidden_size_input (int): The desired dimension of the output embedding.
max_freqs (int): The number of frequency components to use for both
the x and y dimensions of the positional encoding.
The total number of positional features will be max_freqs^2.
"""
super().__init__()
self.dtype = dtype
self.max_freqs = max_freqs
self.hidden_size_input = hidden_size_input
# A linear layer to project the concatenated input features and
# positional encodings to the final output dimension.
self.embedder = nn.Sequential(
operations.Linear(in_channels + max_freqs**2, hidden_size_input, dtype=dtype, device=device)
)
@lru_cache(maxsize=4)
def fetch_pos(self, patch_size: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
"""
Generates and caches 2D DCT-like positional embeddings for a given patch size.
The LRU cache is a performance optimization that avoids recomputing the
same positional grid on every forward pass.
Args:
patch_size (int): The side length of the square input patch.
device: The torch device to create the tensors on.
dtype: The torch dtype for the tensors.
Returns:
A tensor of shape (1, patch_size^2, max_freqs^2) containing the
positional embeddings.
"""
# Create normalized 1D coordinate grids from 0 to 1.
pos_x = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
pos_y = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
# Create a 2D meshgrid of coordinates.
pos_y, pos_x = torch.meshgrid(pos_y, pos_x, indexing="ij")
# Reshape positions to be broadcastable with frequencies.
# Shape becomes (patch_size^2, 1, 1).
pos_x = pos_x.reshape(-1, 1, 1)
pos_y = pos_y.reshape(-1, 1, 1)
# Create a 1D tensor of frequency values from 0 to max_freqs-1.
freqs = torch.linspace(0, self.max_freqs - 1, self.max_freqs, dtype=dtype, device=device)
# Reshape frequencies to be broadcastable for creating 2D basis functions.
# freqs_x shape: (1, max_freqs, 1)
# freqs_y shape: (1, 1, max_freqs)
freqs_x = freqs[None, :, None]
freqs_y = freqs[None, None, :]
# A custom weighting coefficient, not part of standard DCT.
# This seems to down-weight the contribution of higher-frequency interactions.
coeffs = (1 + freqs_x * freqs_y) ** -1
# Calculate the 1D cosine basis functions for x and y coordinates.
# This is the core of the DCT formulation.
dct_x = torch.cos(pos_x * freqs_x * torch.pi)
dct_y = torch.cos(pos_y * freqs_y * torch.pi)
# Combine the 1D basis functions to create 2D basis functions by element-wise
# multiplication, and apply the custom coefficients. Broadcasting handles the
# combination of all (pos_x, freqs_x) with all (pos_y, freqs_y).
# The result is flattened into a feature vector for each position.
dct = (dct_x * dct_y * coeffs).view(1, -1, self.max_freqs ** 2)
return dct
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the embedder.
Args:
inputs (Tensor): The input tensor of shape (B, P^2, C).
Returns:
Tensor: The output tensor of shape (B, P^2, hidden_size_input).
"""
# Get the batch size, number of pixels, and number of channels.
B, P2, C = inputs.shape
# Infer the patch side length from the number of pixels (P^2).
patch_size = int(P2 ** 0.5)
input_dtype = inputs.dtype
inputs = inputs.to(dtype=self.dtype)
# Fetch the pre-computed or cached positional embeddings.
dct = self.fetch_pos(patch_size, inputs.device, self.dtype)
# Repeat the positional embeddings for each item in the batch.
dct = dct.repeat(B, 1, 1)
# Concatenate the original input features with the positional embeddings
# along the feature dimension.
inputs = torch.cat((inputs, dct), dim=-1)
# Project the combined tensor to the target hidden size.
return self.embedder(inputs).to(dtype=input_dtype)
class NerfGLUBlock(nn.Module):
"""
A NerfBlock using a Gated Linear Unit (GLU) like MLP.
"""
def __init__(self, hidden_size_s: int, hidden_size_x: int, mlp_ratio, dtype=None, device=None, operations=None):
super().__init__()
# The total number of parameters for the MLP is increased to accommodate
# the gate, value, and output projection matrices.
# We now need to generate parameters for 3 matrices.
total_params = 3 * hidden_size_x**2 * mlp_ratio
self.param_generator = operations.Linear(hidden_size_s, total_params, dtype=dtype, device=device)
self.norm = RMSNorm(hidden_size_x, dtype=dtype, device=device, operations=operations)
self.mlp_ratio = mlp_ratio
def forward(self, x: torch.Tensor, s: torch.Tensor) -> torch.Tensor:
batch_size, num_x, hidden_size_x = x.shape
mlp_params = self.param_generator(s)
# Split the generated parameters into three parts for the gate, value, and output projection.
fc1_gate_params, fc1_value_params, fc2_params = mlp_params.chunk(3, dim=-1)
# Reshape the parameters into matrices for batch matrix multiplication.
fc1_gate = fc1_gate_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio)
fc1_value = fc1_value_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio)
fc2 = fc2_params.view(batch_size, hidden_size_x * self.mlp_ratio, hidden_size_x)
# Normalize the generated weight matrices as in the original implementation.
fc1_gate = torch.nn.functional.normalize(fc1_gate, dim=-2)
fc1_value = torch.nn.functional.normalize(fc1_value, dim=-2)
fc2 = torch.nn.functional.normalize(fc2, dim=-2)
res_x = x
x = self.norm(x)
# Apply the final output projection.
x = torch.bmm(torch.nn.functional.silu(torch.bmm(x, fc1_gate)) * torch.bmm(x, fc1_value), fc2)
return x + res_x
class NerfFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.linear = operations.Linear(hidden_size, out_channels, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1.
# So we temporarily move the channel dimension to the end for the norm operation.
return self.linear(self.norm(x.movedim(1, -1))).movedim(-1, 1)
class NerfFinalLayerConv(nn.Module):
def __init__(self, hidden_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.conv = operations.Conv2d(
in_channels=hidden_size,
out_channels=out_channels,
kernel_size=3,
padding=1,
dtype=dtype,
device=device,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1.
# So we temporarily move the channel dimension to the end for the norm operation.
return self.conv(self.norm(x.movedim(1, -1)).movedim(-1, 1))

View File

@@ -0,0 +1,329 @@
# Credits:
# Original Flux code can be found on: https://github.com/black-forest-labs/flux
# Chroma Radiance adaption referenced from https://github.com/lodestone-rock/flow
from dataclasses import dataclass
from typing import Optional
import torch
from torch import Tensor, nn
from einops import repeat
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.chroma.model import Chroma, ChromaParams
from comfy.ldm.chroma.layers import (
DoubleStreamBlock,
SingleStreamBlock,
Approximator,
)
from .layers import (
NerfEmbedder,
NerfGLUBlock,
NerfFinalLayer,
NerfFinalLayerConv,
)
@dataclass
class ChromaRadianceParams(ChromaParams):
patch_size: int
nerf_hidden_size: int
nerf_mlp_ratio: int
nerf_depth: int
nerf_max_freqs: int
# Setting nerf_tile_size to 0 disables tiling.
nerf_tile_size: int
# Currently one of linear (legacy) or conv.
nerf_final_head_type: str
# None means use the same dtype as the model.
nerf_embedder_dtype: Optional[torch.dtype]
class ChromaRadiance(Chroma):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
if operations is None:
raise RuntimeError("Attempt to create ChromaRadiance object without setting operations")
nn.Module.__init__(self)
self.dtype = dtype
params = ChromaRadianceParams(**kwargs)
self.params = params
self.patch_size = params.patch_size
self.in_channels = params.in_channels
self.out_channels = params.out_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.in_dim = params.in_dim
self.out_dim = params.out_dim
self.hidden_dim = params.hidden_dim
self.n_layers = params.n_layers
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in_patch = operations.Conv2d(
params.in_channels,
params.hidden_size,
kernel_size=params.patch_size,
stride=params.patch_size,
bias=True,
dtype=dtype,
device=device,
)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
# set as nn identity for now, will overwrite it later.
self.distilled_guidance_layer = Approximator(
in_dim=self.in_dim,
hidden_dim=self.hidden_dim,
out_dim=self.out_dim,
n_layers=self.n_layers,
dtype=dtype, device=device, operations=operations
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
dtype=dtype, device=device, operations=operations,
)
for _ in range(params.depth_single_blocks)
]
)
# pixel channel concat with DCT
self.nerf_image_embedder = NerfEmbedder(
in_channels=params.in_channels,
hidden_size_input=params.nerf_hidden_size,
max_freqs=params.nerf_max_freqs,
dtype=params.nerf_embedder_dtype or dtype,
device=device,
operations=operations,
)
self.nerf_blocks = nn.ModuleList([
NerfGLUBlock(
hidden_size_s=params.hidden_size,
hidden_size_x=params.nerf_hidden_size,
mlp_ratio=params.nerf_mlp_ratio,
dtype=dtype,
device=device,
operations=operations,
) for _ in range(params.nerf_depth)
])
if params.nerf_final_head_type == "linear":
self.nerf_final_layer = NerfFinalLayer(
params.nerf_hidden_size,
out_channels=params.in_channels,
dtype=dtype,
device=device,
operations=operations,
)
elif params.nerf_final_head_type == "conv":
self.nerf_final_layer_conv = NerfFinalLayerConv(
params.nerf_hidden_size,
out_channels=params.in_channels,
dtype=dtype,
device=device,
operations=operations,
)
else:
errstr = f"Unsupported nerf_final_head_type {params.nerf_final_head_type}"
raise ValueError(errstr)
self.skip_mmdit = []
self.skip_dit = []
self.lite = False
@property
def _nerf_final_layer(self) -> nn.Module:
if self.params.nerf_final_head_type == "linear":
return self.nerf_final_layer
if self.params.nerf_final_head_type == "conv":
return self.nerf_final_layer_conv
# Impossible to get here as we raise an error on unexpected types on initialization.
raise NotImplementedError
def img_in(self, img: Tensor) -> Tensor:
img = self.img_in_patch(img) # -> [B, Hidden, H/P, W/P]
# flatten into a sequence for the transformer.
return img.flatten(2).transpose(1, 2) # -> [B, NumPatches, Hidden]
def forward_nerf(
self,
img_orig: Tensor,
img_out: Tensor,
params: ChromaRadianceParams,
) -> Tensor:
B, C, H, W = img_orig.shape
num_patches = img_out.shape[1]
patch_size = params.patch_size
# Store the raw pixel values of each patch for the NeRF head later.
# unfold creates patches: [B, C * P * P, NumPatches]
nerf_pixels = nn.functional.unfold(img_orig, kernel_size=patch_size, stride=patch_size)
nerf_pixels = nerf_pixels.transpose(1, 2) # -> [B, NumPatches, C * P * P]
if params.nerf_tile_size > 0 and num_patches > params.nerf_tile_size:
# Enable tiling if nerf_tile_size isn't 0 and we actually have more patches than
# the tile size.
img_dct = self.forward_tiled_nerf(img_out, nerf_pixels, B, C, num_patches, patch_size, params)
else:
# Reshape for per-patch processing
nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size)
nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2)
# Get DCT-encoded pixel embeddings [pixel-dct]
img_dct = self.nerf_image_embedder(nerf_pixels)
# Pass through the dynamic MLP blocks (the NeRF)
for block in self.nerf_blocks:
img_dct = block(img_dct, nerf_hidden)
# Reassemble the patches into the final image.
img_dct = img_dct.transpose(1, 2) # -> [B*NumPatches, C, P*P]
# Reshape to combine with batch dimension for fold
img_dct = img_dct.reshape(B, num_patches, -1) # -> [B, NumPatches, C*P*P]
img_dct = img_dct.transpose(1, 2) # -> [B, C*P*P, NumPatches]
img_dct = nn.functional.fold(
img_dct,
output_size=(H, W),
kernel_size=patch_size,
stride=patch_size,
)
return self._nerf_final_layer(img_dct)
def forward_tiled_nerf(
self,
nerf_hidden: Tensor,
nerf_pixels: Tensor,
batch: int,
channels: int,
num_patches: int,
patch_size: int,
params: ChromaRadianceParams,
) -> Tensor:
"""
Processes the NeRF head in tiles to save memory.
nerf_hidden has shape [B, L, D]
nerf_pixels has shape [B, L, C * P * P]
"""
tile_size = params.nerf_tile_size
output_tiles = []
# Iterate over the patches in tiles. The dimension L (num_patches) is at index 1.
for i in range(0, num_patches, tile_size):
end = min(i + tile_size, num_patches)
# Slice the current tile from the input tensors
nerf_hidden_tile = nerf_hidden[:, i:end, :]
nerf_pixels_tile = nerf_pixels[:, i:end, :]
# Get the actual number of patches in this tile (can be smaller for the last tile)
num_patches_tile = nerf_hidden_tile.shape[1]
# Reshape the tile for per-patch processing
# [B, NumPatches_tile, D] -> [B * NumPatches_tile, D]
nerf_hidden_tile = nerf_hidden_tile.reshape(batch * num_patches_tile, params.hidden_size)
# [B, NumPatches_tile, C*P*P] -> [B*NumPatches_tile, C, P*P] -> [B*NumPatches_tile, P*P, C]
nerf_pixels_tile = nerf_pixels_tile.reshape(batch * num_patches_tile, channels, patch_size**2).transpose(1, 2)
# get DCT-encoded pixel embeddings [pixel-dct]
img_dct_tile = self.nerf_image_embedder(nerf_pixels_tile)
# pass through the dynamic MLP blocks (the NeRF)
for block in self.nerf_blocks:
img_dct_tile = block(img_dct_tile, nerf_hidden_tile)
output_tiles.append(img_dct_tile)
# Concatenate the processed tiles along the patch dimension
return torch.cat(output_tiles, dim=0)
def radiance_get_override_params(self, overrides: dict) -> ChromaRadianceParams:
params = self.params
if not overrides:
return params
params_dict = {k: getattr(params, k) for k in params.__dataclass_fields__}
nullable_keys = frozenset(("nerf_embedder_dtype",))
bad_keys = tuple(k for k in overrides if k not in params_dict)
if bad_keys:
e = f"Unknown key(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
raise ValueError(e)
bad_keys = tuple(
k
for k, v in overrides.items()
if type(v) != type(getattr(params, k)) and (v is not None or k not in nullable_keys)
)
if bad_keys:
e = f"Invalid value(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
raise ValueError(e)
# At this point it's all valid keys and values so we can merge with the existing params.
params_dict |= overrides
return params.__class__(**params_dict)
def _forward(
self,
x: Tensor,
timestep: Tensor,
context: Tensor,
guidance: Optional[Tensor],
control: Optional[dict]=None,
transformer_options: dict={},
**kwargs: dict,
) -> Tensor:
bs, c, h, w = x.shape
img = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
if img.ndim != 4:
raise ValueError("Input img tensor must be in [B, C, H, W] format.")
if context.ndim != 3:
raise ValueError("Input txt tensors must have 3 dimensions.")
params = self.radiance_get_override_params(transformer_options.get("chroma_radiance_options", {}))
h_len = (img.shape[-2] // self.patch_size)
w_len = (img.shape[-1] // self.patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
img_out = self.forward_orig(
img,
img_ids,
context,
txt_ids,
timestep,
guidance,
control,
transformer_options,
attn_mask=kwargs.get("attention_mask", None),
)
return self.forward_nerf(img, img_out, params)[:, :, :h, :w]

View File

@@ -176,6 +176,7 @@ class Attention(nn.Module):
context=None,
mask=None,
rope_emb=None,
transformer_options={},
**kwargs,
):
"""
@@ -184,7 +185,7 @@ class Attention(nn.Module):
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
"""
q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs)
out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True)
out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True, transformer_options=transformer_options)
del q, k, v
out = rearrange(out, " b n s c -> s b (n c)")
return self.to_out(out)
@@ -546,6 +547,7 @@ class VideoAttn(nn.Module):
context: Optional[torch.Tensor] = None,
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
"""
Forward pass for video attention.
@@ -571,6 +573,7 @@ class VideoAttn(nn.Module):
context_M_B_D,
crossattn_mask,
rope_emb=rope_emb_L_1_1_D,
transformer_options=transformer_options,
)
x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W)
return x_T_H_W_B_D
@@ -665,6 +668,7 @@ class DITBuildingBlock(nn.Module):
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_3D: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
"""
Forward pass for dynamically configured blocks with adaptive normalization.
@@ -702,6 +706,7 @@ class DITBuildingBlock(nn.Module):
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
context=None,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
transformer_options=transformer_options,
)
elif self.block_type in ["cross_attn", "ca"]:
x = x + gate_1_1_1_B_D * self.block(
@@ -709,6 +714,7 @@ class DITBuildingBlock(nn.Module):
context=crossattn_emb,
crossattn_mask=crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
transformer_options=transformer_options,
)
else:
raise ValueError(f"Unknown block type: {self.block_type}")
@@ -784,6 +790,7 @@ class GeneralDITTransformerBlock(nn.Module):
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_3D: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
for block in self.blocks:
x = block(
@@ -793,5 +800,6 @@ class GeneralDITTransformerBlock(nn.Module):
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
transformer_options=transformer_options,
)
return x

View File

@@ -520,6 +520,7 @@ class GeneralDIT(nn.Module):
x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}"
transformer_options = kwargs.get("transformer_options", {})
for _, block in self.blocks.items():
assert (
self.blocks["block0"].x_format == block.x_format
@@ -534,6 +535,7 @@ class GeneralDIT(nn.Module):
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
transformer_options=transformer_options,
)
x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D")

View File

@@ -44,7 +44,7 @@ class GPT2FeedForward(nn.Module):
return x
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor) -> torch.Tensor:
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor, transformer_options: Optional[dict] = {}) -> torch.Tensor:
"""Computes multi-head attention using PyTorch's native implementation.
This function provides a PyTorch backend alternative to Transformer Engine's attention operation.
@@ -71,7 +71,7 @@ def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H
q_B_H_S_D = rearrange(q_B_S_H_D, "b ... h k -> b h ... k").view(in_q_shape[0], in_q_shape[-2], -1, in_q_shape[-1])
k_B_H_S_D = rearrange(k_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
v_B_H_S_D = rearrange(v_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True)
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True, transformer_options=transformer_options)
class Attention(nn.Module):
@@ -180,8 +180,8 @@ class Attention(nn.Module):
return q, k, v
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
result = self.attn_op(q, k, v) # [B, S, H, D]
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, transformer_options: Optional[dict] = {}) -> torch.Tensor:
result = self.attn_op(q, k, v, transformer_options=transformer_options) # [B, S, H, D]
return self.output_dropout(self.output_proj(result))
def forward(
@@ -189,6 +189,7 @@ class Attention(nn.Module):
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
rope_emb: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
"""
Args:
@@ -196,7 +197,7 @@ class Attention(nn.Module):
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
"""
q, k, v = self.compute_qkv(x, context, rope_emb=rope_emb)
return self.compute_attention(q, k, v)
return self.compute_attention(q, k, v, transformer_options=transformer_options)
class Timesteps(nn.Module):
@@ -459,6 +460,7 @@ class Block(nn.Module):
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
extra_per_block_pos_emb: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
if extra_per_block_pos_emb is not None:
x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb
@@ -512,6 +514,7 @@ class Block(nn.Module):
rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
None,
rope_emb=rope_emb_L_1_1_D,
transformer_options=transformer_options,
),
"b (t h w) d -> b t h w d",
t=T,
@@ -525,6 +528,7 @@ class Block(nn.Module):
layer_norm_cross_attn: Callable,
_scale_cross_attn_B_T_1_1_D: torch.Tensor,
_shift_cross_attn_B_T_1_1_D: torch.Tensor,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
_normalized_x_B_T_H_W_D = _fn(
_x_B_T_H_W_D, layer_norm_cross_attn, _scale_cross_attn_B_T_1_1_D, _shift_cross_attn_B_T_1_1_D
@@ -534,6 +538,7 @@ class Block(nn.Module):
rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
crossattn_emb,
rope_emb=rope_emb_L_1_1_D,
transformer_options=transformer_options,
),
"b (t h w) d -> b t h w d",
t=T,
@@ -547,6 +552,7 @@ class Block(nn.Module):
self.layer_norm_cross_attn,
scale_cross_attn_B_T_1_1_D,
shift_cross_attn_B_T_1_1_D,
transformer_options=transformer_options,
)
x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D
@@ -865,6 +871,7 @@ class MiniTrainDIT(nn.Module):
"rope_emb_L_1_1_D": rope_emb_L_1_1_D.unsqueeze(1).unsqueeze(0),
"adaln_lora_B_T_3D": adaln_lora_B_T_3D,
"extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
"transformer_options": kwargs.get("transformer_options", {}),
}
for block in self.blocks:
x_B_T_H_W_D = block(

View File

@@ -159,7 +159,7 @@ class DoubleStreamBlock(nn.Module):
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None):
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
@@ -182,7 +182,7 @@ class DoubleStreamBlock(nn.Module):
attn = attention(torch.cat((img_q, txt_q), dim=2),
torch.cat((img_k, txt_k), dim=2),
torch.cat((img_v, txt_v), dim=2),
pe=pe, mask=attn_mask)
pe=pe, mask=attn_mask, transformer_options=transformer_options)
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
else:
@@ -190,7 +190,7 @@ class DoubleStreamBlock(nn.Module):
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask)
pe=pe, mask=attn_mask, transformer_options=transformer_options)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
@@ -244,7 +244,7 @@ class SingleStreamBlock(nn.Module):
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None) -> Tensor:
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
mod, _ = self.modulation(vec)
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
@@ -252,7 +252,7 @@ class SingleStreamBlock(nn.Module):
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask)
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x += apply_mod(output, mod.gate, None, modulation_dims)

View File

@@ -6,7 +6,7 @@ from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor:
q_shape = q.shape
k_shape = k.shape
@@ -17,7 +17,7 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
heads = q.shape[1]
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask)
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options)
return x
@@ -35,11 +35,10 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.to(dtype=torch.float32, device=pos.device)
def apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
x_out = freqs_cis[..., 0] * x_[..., 0] + freqs_cis[..., 1] * x_[..., 1]
return x_out.reshape(*x.shape).type_as(x)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
xq_ = xq.to(dtype=freqs_cis.dtype).reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.to(dtype=freqs_cis.dtype).reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)

View File

@@ -106,6 +106,7 @@ class Flux(nn.Module):
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches = transformer_options.get("patches", {})
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@@ -117,9 +118,17 @@ class Flux(nn.Module):
if guidance is not None:
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
txt = self.txt_in(txt)
if "post_input" in patches:
for p in patches["post_input"]:
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
img = out["img"]
txt = out["txt"]
img_ids = out["img_ids"]
txt_ids = out["txt_ids"]
if img_ids is not None:
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
@@ -135,14 +144,16 @@ class Flux(nn.Module):
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
@@ -151,7 +162,8 @@ class Flux(nn.Module):
txt=txt,
vec=vec,
pe=pe,
attn_mask=attn_mask)
attn_mask=attn_mask,
transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
@@ -172,17 +184,19 @@ class Flux(nn.Module):
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
@@ -233,12 +247,18 @@ class Flux(nn.Module):
h = 0
w = 0
index = 0
index_ref_method = kwargs.get("ref_latents_method", "offset") == "index"
ref_latents_method = kwargs.get("ref_latents_method", "offset")
for ref in ref_latents:
if index_ref_method:
if ref_latents_method == "index":
index += 1
h_offset = 0
w_offset = 0
elif ref_latents_method == "uxo":
index = 0
h_offset = h_len * patch_size + h
w_offset = w_len * patch_size + w
h += ref.shape[-2]
w += ref.shape[-1]
else:
index = 1
h_offset = 0

View File

@@ -109,6 +109,7 @@ class AsymmetricAttention(nn.Module):
scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
crop_y,
transformer_options={},
**rope_rotation,
) -> Tuple[torch.Tensor, torch.Tensor]:
rope_cos = rope_rotation.get("rope_cos")
@@ -143,7 +144,7 @@ class AsymmetricAttention(nn.Module):
xy = optimized_attention(q,
k,
v, self.num_heads, skip_reshape=True)
v, self.num_heads, skip_reshape=True, transformer_options=transformer_options)
x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1)
x = self.proj_x(x)
@@ -224,6 +225,7 @@ class AsymmetricJointBlock(nn.Module):
x: torch.Tensor,
c: torch.Tensor,
y: torch.Tensor,
transformer_options={},
**attn_kwargs,
):
"""Forward pass of a block.
@@ -256,6 +258,7 @@ class AsymmetricJointBlock(nn.Module):
y,
scale_x=scale_msa_x,
scale_y=scale_msa_y,
transformer_options=transformer_options,
**attn_kwargs,
)
@@ -524,10 +527,11 @@ class AsymmDiTJoint(nn.Module):
args["txt"],
rope_cos=args["rope_cos"],
rope_sin=args["rope_sin"],
crop_y=args["num_tokens"]
crop_y=args["num_tokens"],
transformer_options=args["transformer_options"]
)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens, "transformer_options": transformer_options}, {"original_block": block_wrap})
y_feat = out["txt"]
x = out["img"]
else:
@@ -538,6 +542,7 @@ class AsymmDiTJoint(nn.Module):
rope_cos=rope_cos,
rope_sin=rope_sin,
crop_y=num_tokens,
transformer_options=transformer_options,
) # (B, M, D), (B, L, D)
del y_feat # Final layers don't use dense text features.

View File

@@ -72,8 +72,8 @@ class TimestepEmbed(nn.Module):
return t_emb
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2])
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, transformer_options={}):
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2], transformer_options=transformer_options)
class HiDreamAttnProcessor_flashattn:
@@ -86,6 +86,7 @@ class HiDreamAttnProcessor_flashattn:
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
transformer_options={},
*args,
**kwargs,
) -> torch.FloatTensor:
@@ -133,7 +134,7 @@ class HiDreamAttnProcessor_flashattn:
query = torch.cat([query_1, query_2], dim=-1)
key = torch.cat([key_1, key_2], dim=-1)
hidden_states = attention(query, key, value)
hidden_states = attention(query, key, value, transformer_options=transformer_options)
if not attn.single:
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
@@ -199,6 +200,7 @@ class HiDreamAttention(nn.Module):
image_tokens_masks: torch.FloatTensor = None,
norm_text_tokens: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.Tensor:
return self.processor(
self,
@@ -206,6 +208,7 @@ class HiDreamAttention(nn.Module):
image_tokens_masks = image_tokens_masks,
text_tokens = norm_text_tokens,
rope = rope,
transformer_options=transformer_options,
)
@@ -406,7 +409,7 @@ class HiDreamImageSingleTransformerBlock(nn.Module):
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
@@ -419,6 +422,7 @@ class HiDreamImageSingleTransformerBlock(nn.Module):
norm_image_tokens,
image_tokens_masks,
rope = rope,
transformer_options=transformer_options,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
@@ -483,6 +487,7 @@ class HiDreamImageTransformerBlock(nn.Module):
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
@@ -500,6 +505,7 @@ class HiDreamImageTransformerBlock(nn.Module):
image_tokens_masks,
norm_text_tokens,
rope = rope,
transformer_options=transformer_options,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
@@ -550,6 +556,7 @@ class HiDreamImageBlock(nn.Module):
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.FloatTensor:
return self.block(
image_tokens,
@@ -557,6 +564,7 @@ class HiDreamImageBlock(nn.Module):
text_tokens,
adaln_input,
rope,
transformer_options=transformer_options,
)
@@ -786,6 +794,7 @@ class HiDreamImageTransformer2DModel(nn.Module):
text_tokens = cur_encoder_hidden_states,
adaln_input = adaln_input,
rope = rope,
transformer_options=transformer_options,
)
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
block_id += 1
@@ -809,6 +818,7 @@ class HiDreamImageTransformer2DModel(nn.Module):
text_tokens=None,
adaln_input=adaln_input,
rope=rope,
transformer_options=transformer_options,
)
hidden_states = hidden_states[:, :hidden_states_seq_len]
block_id += 1

View File

@@ -99,14 +99,16 @@ class Hunyuan3Dv2(nn.Module):
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
@@ -115,7 +117,8 @@ class Hunyuan3Dv2(nn.Module):
txt=txt,
vec=vec,
pe=pe,
attn_mask=attn_mask)
attn_mask=attn_mask,
transformer_options=transformer_options)
img = torch.cat((txt, img), 1)
@@ -126,17 +129,19 @@ class Hunyuan3Dv2(nn.Module):
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args["transformer_options"])
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
img = img[:, txt.shape[1]:, ...]
img = self.final_layer(img, vec)

View File

@@ -4,81 +4,458 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Union, Tuple, List, Callable, Optional
import numpy as np
from einops import repeat, rearrange
import math
from tqdm import tqdm
from typing import Optional
import logging
import comfy.ops
ops = comfy.ops.disable_weight_init
def generate_dense_grid_points(
bbox_min: np.ndarray,
bbox_max: np.ndarray,
octree_resolution: int,
indexing: str = "ij",
):
length = bbox_max - bbox_min
num_cells = octree_resolution
def fps(src: torch.Tensor, batch: torch.Tensor, sampling_ratio: float, start_random: bool = True):
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyz = np.stack((xs, ys, zs), axis=-1)
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
# manually create the pointer vector
assert src.size(0) == batch.numel()
return xyz, grid_size, length
batch_size = int(batch.max()) + 1
deg = src.new_zeros(batch_size, dtype = torch.long)
deg.scatter_add_(0, batch, torch.ones_like(batch))
ptr_vec = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_vec[1:])
#return fps_sampling(src, ptr_vec, ratio)
sampled_indicies = []
for b in range(batch_size):
# start and the end of each batch
start, end = ptr_vec[b].item(), ptr_vec[b + 1].item()
# points from the point cloud
points = src[start:end]
num_points = points.size(0)
num_samples = max(1, math.ceil(num_points * sampling_ratio))
selected = torch.zeros(num_samples, device = src.device, dtype = torch.long)
distances = torch.full((num_points,), float("inf"), device = src.device)
# select a random start point
if start_random:
farthest = torch.randint(0, num_points, (1,), device = src.device)
else:
farthest = torch.tensor([0], device = src.device, dtype = torch.long)
for i in range(num_samples):
selected[i] = farthest
centroid = points[farthest].squeeze(0)
dist = torch.norm(points - centroid, dim = 1) # compute euclidean distance
distances = torch.minimum(distances, dist)
farthest = torch.argmax(distances)
sampled_indicies.append(torch.arange(start, end)[selected])
return torch.cat(sampled_indicies, dim = 0)
class PointCrossAttention(nn.Module):
def __init__(self,
num_latents: int,
downsample_ratio: float,
pc_size: int,
pc_sharpedge_size: int,
point_feats: int,
width: int,
heads: int,
layers: int,
fourier_embedder,
normal_pe: bool = False,
qkv_bias: bool = False,
use_ln_post: bool = True,
qk_norm: bool = True):
super().__init__()
self.fourier_embedder = fourier_embedder
self.pc_size = pc_size
self.normal_pe = normal_pe
self.downsample_ratio = downsample_ratio
self.pc_sharpedge_size = pc_sharpedge_size
self.num_latents = num_latents
self.point_feats = point_feats
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width)
self.cross_attn = ResidualCrossAttentionBlock(
width = width,
heads = heads,
qkv_bias = qkv_bias,
qk_norm = qk_norm
)
self.self_attn = None
if layers > 0:
self.self_attn = Transformer(
width = width,
heads = heads,
qkv_bias = qkv_bias,
qk_norm = qk_norm,
layers = layers
)
if use_ln_post:
self.ln_post = nn.LayerNorm(width)
else:
self.ln_post = None
def sample_points_and_latents(self, point_cloud: torch.Tensor, features: torch.Tensor):
"""
Subsample points randomly from the point cloud (input_pc)
Further sample the subsampled points to get query_pc
take the fourier embeddings for both input and query pc
Mental Note: FPS-sampled points (query_pc) act as latent tokens that attend to and learn from the broader context in input_pc.
Goal: get a smaller represenation (query_pc) to represent the entire scence structure by learning from a broader subset (input_pc).
More computationally efficient.
Features are additional information for each point in the cloud
"""
B, _, D = point_cloud.shape
num_latents = int(self.num_latents)
num_random_query = self.pc_size / (self.pc_size + self.pc_sharpedge_size) * num_latents
num_sharpedge_query = num_latents - num_random_query
# Split random and sharpedge surface points
random_pc, sharpedge_pc = torch.split(point_cloud, [self.pc_size, self.pc_sharpedge_size], dim=1)
# assert statements
assert random_pc.shape[1] <= self.pc_size, "Random surface points size must be less than or equal to pc_size"
assert sharpedge_pc.shape[1] <= self.pc_sharpedge_size, "Sharpedge surface points size must be less than or equal to pc_sharpedge_size"
input_random_pc_size = int(num_random_query * self.downsample_ratio)
random_query_pc, random_input_pc, random_idx_pc, random_idx_query = \
self.subsample(pc = random_pc, num_query = num_random_query, input_pc_size = input_random_pc_size)
input_sharpedge_pc_size = int(num_sharpedge_query * self.downsample_ratio)
if input_sharpedge_pc_size == 0:
sharpedge_input_pc = torch.zeros(B, 0, D, dtype = random_input_pc.dtype).to(point_cloud.device)
sharpedge_query_pc = torch.zeros(B, 0, D, dtype= random_query_pc.dtype).to(point_cloud.device)
else:
sharpedge_query_pc, sharpedge_input_pc, sharpedge_idx_pc, sharpedge_idx_query = \
self.subsample(pc = sharpedge_pc, num_query = num_sharpedge_query, input_pc_size = input_sharpedge_pc_size)
# concat the random and sharpedges
query_pc = torch.cat([random_query_pc, sharpedge_query_pc], dim = 1)
input_pc = torch.cat([random_input_pc, sharpedge_input_pc], dim = 1)
query = self.fourier_embedder(query_pc)
data = self.fourier_embedder(input_pc)
if self.point_feats > 0:
random_surface_features, sharpedge_surface_features = torch.split(features, [self.pc_size, self.pc_sharpedge_size], dim = 1)
input_random_surface_features, query_random_features = \
self.handle_features(features = random_surface_features, idx_pc = random_idx_pc, batch_size = B,
input_pc_size = input_random_pc_size, idx_query = random_idx_query)
if input_sharpedge_pc_size == 0:
input_sharpedge_surface_features = torch.zeros(B, 0, self.point_feats,
dtype = input_random_surface_features.dtype, device = point_cloud.device)
query_sharpedge_features = torch.zeros(B, 0, self.point_feats,
dtype = query_random_features.dtype, device = point_cloud.device)
else:
input_sharpedge_surface_features, query_sharpedge_features = \
self.handle_features(idx_pc = sharpedge_idx_pc, features = sharpedge_surface_features,
batch_size = B, idx_query = sharpedge_idx_query, input_pc_size = input_sharpedge_pc_size)
query_features = torch.cat([query_random_features, query_sharpedge_features], dim = 1)
input_features = torch.cat([input_random_surface_features, input_sharpedge_surface_features], dim = 1)
if self.normal_pe:
# apply the fourier embeddings on the first 3 dims (xyz)
input_features_pe = self.fourier_embedder(input_features[..., :3])
query_features_pe = self.fourier_embedder(query_features[..., :3])
# replace the first 3 dims with the new PE ones
input_features = torch.cat([input_features_pe, input_features[..., :3]], dim = -1)
query_features = torch.cat([query_features_pe, query_features[..., :3]], dim = -1)
# concat at the channels dim
query = torch.cat([query, query_features], dim = -1)
data = torch.cat([data, input_features], dim = -1)
# don't return pc_info to avoid unnecessary memory usuage
return query.view(B, -1, query.shape[-1]), data.view(B, -1, data.shape[-1])
def forward(self, point_cloud: torch.Tensor, features: torch.Tensor):
query, data = self.sample_points_and_latents(point_cloud = point_cloud, features = features)
# apply projections
query = self.input_proj(query)
data = self.input_proj(data)
# apply cross attention between query and data
latents = self.cross_attn(query, data)
if self.self_attn is not None:
latents = self.self_attn(latents)
if self.ln_post is not None:
latents = self.ln_post(latents)
return latents
class VanillaVolumeDecoder:
def subsample(self, pc, num_query, input_pc_size: int):
"""
num_query: number of points to keep after FPS
input_pc_size: number of points to select before FPS
"""
B, _, D = pc.shape
query_ratio = num_query / input_pc_size
# random subsampling of points inside the point cloud
idx_pc = torch.randperm(pc.shape[1], device = pc.device)[:input_pc_size]
input_pc = pc[:, idx_pc, :]
# flatten to allow applying fps across the whole batch
flattent_input_pc = input_pc.view(B * input_pc_size, D)
# construct a batch_down tensor to tell fps
# which points belong to which batch
N_down = int(flattent_input_pc.shape[0] / B)
batch_down = torch.arange(B).to(pc.device)
batch_down = torch.repeat_interleave(batch_down, N_down)
idx_query = fps(flattent_input_pc, batch_down, sampling_ratio = query_ratio)
query_pc = flattent_input_pc[idx_query].view(B, -1, D)
return query_pc, input_pc, idx_pc, idx_query
def handle_features(self, features, idx_pc, input_pc_size, batch_size: int, idx_query):
B = batch_size
input_surface_features = features[:, idx_pc, :]
flattent_input_features = input_surface_features.view(B * input_pc_size, -1)
query_features = flattent_input_features[idx_query].view(B, -1,
flattent_input_features.shape[-1])
return input_surface_features, query_features
def normalize_mesh(mesh, scale = 0.9999):
"""Normalize mesh to fit in [-scale, scale]. Translate mesh so its center is [0,0,0]"""
bbox = mesh.bounds
center = (bbox[1] + bbox[0]) / 2
max_extent = (bbox[1] - bbox[0]).max()
mesh.apply_translation(-center)
mesh.apply_scale((2 * scale) / max_extent)
return mesh
def sample_pointcloud(mesh, num = 200000):
""" Uniformly sample points from the surface of the mesh """
points, face_idx = mesh.sample(num, return_index = True)
normals = mesh.face_normals[face_idx]
return torch.from_numpy(points.astype(np.float32)), torch.from_numpy(normals.astype(np.float32))
def detect_sharp_edges(mesh, threshold=0.985):
"""Return edge indices (a, b) that lie on sharp boundaries of the mesh."""
V, F = mesh.vertices, mesh.faces
VN, FN = mesh.vertex_normals, mesh.face_normals
sharp_mask = np.ones(V.shape[0])
for i in range(3):
indices = F[:, i]
alignment = np.einsum('ij,ij->i', VN[indices], FN)
dot_stack = np.stack((sharp_mask[indices], alignment), axis=-1)
sharp_mask[indices] = np.min(dot_stack, axis=-1)
edge_a = np.concatenate([F[:, 0], F[:, 1], F[:, 2]])
edge_b = np.concatenate([F[:, 1], F[:, 2], F[:, 0]])
sharp_edges = (sharp_mask[edge_a] < threshold) & (sharp_mask[edge_b] < threshold)
return edge_a[sharp_edges], edge_b[sharp_edges]
def sharp_sample_pointcloud(mesh, num = 16384):
""" Sample points preferentially from sharp edges in the mesh. """
edge_a, edge_b = detect_sharp_edges(mesh)
V, VN = mesh.vertices, mesh.vertex_normals
va, vb = V[edge_a], V[edge_b]
na, nb = VN[edge_a], VN[edge_b]
edge_lengths = np.linalg.norm(vb - va, axis=-1)
weights = edge_lengths / edge_lengths.sum()
indices = np.searchsorted(np.cumsum(weights), np.random.rand(num))
t = np.random.rand(num, 1)
samples = t * va[indices] + (1 - t) * vb[indices]
normals = t * na[indices] + (1 - t) * nb[indices]
return samples.astype(np.float32), normals.astype(np.float32)
def load_surface_sharpedge(mesh, num_points=4096, num_sharp_points=4096, sharpedge_flag = True, device = "cuda"):
"""Load a surface with optional sharp-edge annotations from a trimesh mesh."""
import trimesh
try:
mesh_full = trimesh.util.concatenate(mesh.dump())
except Exception:
mesh_full = trimesh.util.concatenate(mesh)
mesh_full = normalize_mesh(mesh_full)
faces = mesh_full.faces
vertices = mesh_full.vertices
origin_face_count = faces.shape[0]
mesh_surface = trimesh.Trimesh(vertices=vertices, faces=faces[:origin_face_count])
mesh_fill = trimesh.Trimesh(vertices=vertices, faces=faces[origin_face_count:])
area_surface = mesh_surface.area
area_fill = mesh_fill.area
total_area = area_surface + area_fill
sample_num = 499712 // 2
fill_ratio = area_fill / total_area if total_area > 0 else 0
num_fill = int(sample_num * fill_ratio)
num_surface = sample_num - num_fill
surf_pts, surf_normals = sample_pointcloud(mesh_surface, num_surface)
fill_pts, fill_normals = (torch.zeros(0, 3), torch.zeros(0, 3)) if num_fill == 0 else sample_pointcloud(mesh_fill, num_fill)
sharp_pts, sharp_normals = sharp_sample_pointcloud(mesh_surface, sample_num)
def assemble_tensor(points, normals, label=None):
data = torch.cat([points, normals], dim=1).half().to(device)
if label is not None:
label_tensor = torch.full((data.shape[0], 1), float(label), dtype=torch.float16).to(device)
data = torch.cat([data, label_tensor], dim=1)
return data
surface = assemble_tensor(torch.cat([surf_pts.to(device), fill_pts.to(device)], dim=0),
torch.cat([surf_normals.to(device), fill_normals.to(device)], dim=0),
label = 0 if sharpedge_flag else None)
sharp_surface = assemble_tensor(torch.from_numpy(sharp_pts), torch.from_numpy(sharp_normals),
label = 1 if sharpedge_flag else None)
rng = np.random.default_rng()
surface = surface[rng.choice(surface.shape[0], num_points, replace = False)]
sharp_surface = sharp_surface[rng.choice(sharp_surface.shape[0], num_sharp_points, replace = False)]
full = torch.cat([surface, sharp_surface], dim = 0).unsqueeze(0)
return full
class SharpEdgeSurfaceLoader:
""" Load mesh surface and sharp edge samples. """
def __init__(self, num_uniform_points = 8192, num_sharp_points = 8192):
self.num_uniform_points = num_uniform_points
self.num_sharp_points = num_sharp_points
self.total_points = num_uniform_points + num_sharp_points
def __call__(self, mesh_input, device = "cuda"):
mesh = self._load_mesh(mesh_input)
return load_surface_sharpedge(mesh, self.num_uniform_points, self.num_sharp_points, device = device)
@staticmethod
def _load_mesh(mesh_input):
import trimesh
if isinstance(mesh_input, str):
mesh = trimesh.load(mesh_input, force="mesh", merge_primitives = True)
else:
mesh = mesh_input
if isinstance(mesh, trimesh.Scene):
combined = None
for obj in mesh.geometry.values():
combined = obj if combined is None else combined + obj
return combined
return mesh
class DiagonalGaussianDistribution:
def __init__(self, params: torch.Tensor, feature_dim: int = -1):
# divide quant channels (8) into mean and log variance
self.mean, self.logvar = torch.chunk(params, 2, dim = feature_dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.std = torch.exp(0.5 * self.logvar)
def sample(self):
eps = torch.randn_like(self.std)
z = self.mean + eps * self.std
return z
################################################
# Volume Decoder
################################################
class VanillaVolumeDecoder():
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: Callable,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
octree_resolution: int = None,
enable_pbar: bool = True,
**kwargs,
):
device = latents.device
dtype = latents.dtype
batch_size = latents.shape[0]
def __call__(self, latents: torch.Tensor, geo_decoder: callable, octree_resolution: int, bounds = 1.01,
num_chunks: int = 10_000, enable_pbar: bool = True, **kwargs):
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=octree_resolution,
indexing="ij"
)
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
bbox_min, bbox_max = torch.tensor(bounds[:3]), torch.tensor(bounds[3:])
x = torch.linspace(bbox_min[0], bbox_max[0], int(octree_resolution) + 1, dtype = torch.float32)
y = torch.linspace(bbox_min[1], bbox_max[1], int(octree_resolution) + 1, dtype = torch.float32)
z = torch.linspace(bbox_min[2], bbox_max[2], int(octree_resolution) + 1, dtype = torch.float32)
[xs, ys, zs] = torch.meshgrid(x, y, z, indexing = "ij")
xyz = torch.stack((xs, ys, zs), axis=-1).to(latents.device, dtype = latents.dtype).contiguous().reshape(-1, 3)
grid_size = [int(octree_resolution) + 1, int(octree_resolution) + 1, int(octree_resolution) + 1]
# 2. latents to 3d volume
batch_logits = []
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc="Volume Decoding",
for start in tqdm(range(0, xyz.shape[0], num_chunks), desc="Volume Decoding",
disable=not enable_pbar):
chunk_queries = xyz_samples[start: start + num_chunks, :]
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=chunk_queries, latents=latents)
chunk_queries = xyz[start: start + num_chunks, :]
chunk_queries = chunk_queries.unsqueeze(0).repeat(latents.shape[0], 1, 1)
logits = geo_decoder(queries = chunk_queries, latents = latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1)
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
grid_logits = torch.cat(batch_logits, dim = 1)
grid_logits = grid_logits.view((latents.shape[0], *grid_size)).float()
return grid_logits
class FourierEmbedder(nn.Module):
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
each feature dimension of `x[..., i]` into:
@@ -175,13 +552,11 @@ class FourierEmbedder(nn.Module):
else:
return x
class CrossAttentionProcessor:
def __call__(self, attn, q, k, v):
out = comfy.ops.scaled_dot_product_attention(q, k, v)
return out
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
@@ -232,38 +607,41 @@ class MLP(nn.Module):
def forward(self, x):
return self.drop_path(self.c_proj(self.gelu(self.c_fc(x))))
class QKVMultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
heads: int,
n_data = None,
width=None,
qk_norm=False,
norm_layer=ops.LayerNorm
):
super().__init__()
self.heads = heads
self.n_data = n_data
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.attn_processor = CrossAttentionProcessor()
def forward(self, q, kv):
_, n_ctx, _ = q.shape
bs, n_data, width = kv.shape
attn_ch = width // self.heads // 2
q = q.view(bs, n_ctx, self.heads, -1)
kv = kv.view(bs, n_data, self.heads, -1)
k, v = torch.split(kv, attn_ch, dim=-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
out = self.attn_processor(self, q, k, v)
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
return out
q, k, v = [t.permute(0, 2, 1, 3) for t in (q, k, v)]
out = F.scaled_dot_product_attention(q, k, v)
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
return out
class MultiheadCrossAttention(nn.Module):
def __init__(
@@ -306,7 +684,6 @@ class MultiheadCrossAttention(nn.Module):
x = self.c_proj(x)
return x
class ResidualCrossAttentionBlock(nn.Module):
def __init__(
self,
@@ -366,7 +743,7 @@ class QKVMultiheadAttention(nn.Module):
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
q, k, v = [t.permute(0, 2, 1, 3) for t in (q, k, v)]
out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1)
return out
@@ -383,8 +760,7 @@ class MultiheadAttention(nn.Module):
drop_path_rate: float = 0.0
):
super().__init__()
self.width = width
self.heads = heads
self.c_qkv = ops.Linear(width, width * 3, bias=qkv_bias)
self.c_proj = ops.Linear(width, width)
self.attention = QKVMultiheadAttention(
@@ -491,7 +867,7 @@ class CrossAttentionDecoder(nn.Module):
self.query_proj = ops.Linear(self.fourier_embedder.out_dim, width)
if self.downsample_ratio != 1:
self.latents_proj = ops.Linear(width * downsample_ratio, width)
if self.enable_ln_post == False:
if not self.enable_ln_post:
qk_norm = False
self.cross_attn_decoder = ResidualCrossAttentionBlock(
width=width,
@@ -522,28 +898,44 @@ class CrossAttentionDecoder(nn.Module):
class ShapeVAE(nn.Module):
def __init__(
self,
*,
embed_dim: int,
width: int,
heads: int,
num_decoder_layers: int,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
include_pi: bool = True,
qkv_bias: bool = True,
qk_norm: bool = False,
label_type: str = "binary",
drop_path_rate: float = 0.0,
scale_factor: float = 1.0,
self,
*,
num_latents: int = 4096,
embed_dim: int = 64,
width: int = 1024,
heads: int = 16,
num_decoder_layers: int = 16,
num_encoder_layers: int = 8,
pc_size: int = 81920,
pc_sharpedge_size: int = 0,
point_feats: int = 4,
downsample_ratio: int = 20,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
qkv_bias: bool = False,
qk_norm: bool = True,
drop_path_rate: float = 0.0,
include_pi: bool = False,
scale_factor: float = 1.0039506158752403,
label_type: str = "binary",
):
super().__init__()
self.geo_decoder_ln_post = geo_decoder_ln_post
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
self.encoder = PointCrossAttention(layers = num_encoder_layers,
num_latents = num_latents,
downsample_ratio = downsample_ratio,
heads = heads,
pc_size = pc_size,
width = width,
point_feats = point_feats,
fourier_embedder = self.fourier_embedder,
pc_sharpedge_size = pc_sharpedge_size)
self.post_kl = ops.Linear(embed_dim, width)
self.transformer = Transformer(
@@ -583,5 +975,14 @@ class ShapeVAE(nn.Module):
grid_logits = self.volume_decoder(latents, self.geo_decoder, bounds=bounds, num_chunks=num_chunks, octree_resolution=octree_resolution, enable_pbar=enable_pbar)
return grid_logits.movedim(-2, -1)
def encode(self, x):
return None
def encode(self, surface):
pc, feats = surface[:, :, :3], surface[:, :, 3:]
latents = self.encoder(pc, feats)
moments = self.pre_kl(latents)
posterior = DiagonalGaussianDistribution(moments, feature_dim = -1)
latents = posterior.sample()
return latents

View File

@@ -0,0 +1,659 @@
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, operations, device, dtype):
super().__init__()
self.proj = operations.Linear(dim_in, dim_out, device = device, dtype = dtype)
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
if gate.device.type == "mps":
return F.gelu(gate.to(dtype = torch.float32)).to(dtype = gate.dtype)
return F.gelu(gate)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states
class FeedForward(nn.Module):
def __init__(self, dim: int, dim_out = None, mult: int = 4,
dropout: float = 0.0, inner_dim = None, operations = None, device = None, dtype = None):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
act_fn = GELU(dim, inner_dim, operations = operations, device = device, dtype = dtype)
self.net = nn.ModuleList([])
self.net.append(act_fn)
self.net.append(nn.Dropout(dropout))
self.net.append(operations.Linear(inner_dim, dim_out, device = device, dtype = dtype))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
class AddAuxLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, x, loss):
# do nothing in forward (no computation)
ctx.requires_aux_loss = loss.requires_grad
ctx.dtype = loss.dtype
return x
@staticmethod
def backward(ctx, grad_output):
# add the aux loss gradients
grad_loss = None
# put the aux grad the same as the main grad loss
# aux grad contributes equally
if ctx.requires_aux_loss:
grad_loss = torch.ones(1, dtype = ctx.dtype, device = grad_output.device)
return grad_output, grad_loss
class MoEGate(nn.Module):
def __init__(self, embed_dim, num_experts=16, num_experts_per_tok=2, aux_loss_alpha=0.01, device = None, dtype = None):
super().__init__()
self.top_k = num_experts_per_tok
self.n_routed_experts = num_experts
self.alpha = aux_loss_alpha
self.gating_dim = embed_dim
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim), device = device, dtype = dtype))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# flatten hidden states
hidden_states = hidden_states.view(-1, hidden_states.size(-1))
# get logits and pass it to softmax
logits = F.linear(hidden_states, comfy.model_management.cast_to(self.weight, dtype=hidden_states.dtype, device=hidden_states.device), bias = None)
scores = logits.softmax(dim = -1)
topk_weight, topk_idx = torch.topk(scores, k = self.top_k, dim = -1, sorted = False)
if self.training and self.alpha > 0.0:
scores_for_aux = scores
# used bincount instead of one hot encoding
counts = torch.bincount(topk_idx.view(-1), minlength = self.n_routed_experts).float()
ce = counts / topk_idx.numel() # normalized expert usage
# mean expert score
Pi = scores_for_aux.mean(0)
# expert balance loss
aux_loss = (Pi * ce * self.n_routed_experts).sum() * self.alpha
else:
aux_loss = None
return topk_idx, topk_weight, aux_loss
class MoEBlock(nn.Module):
def __init__(self, dim, num_experts: int = 6, moe_top_k: int = 2, dropout: float = 0.0,
ff_inner_dim: int = None, operations = None, device = None, dtype = None):
super().__init__()
self.moe_top_k = moe_top_k
self.num_experts = num_experts
self.experts = nn.ModuleList([
FeedForward(dim, dropout = dropout, inner_dim = ff_inner_dim, operations = operations, device = device, dtype = dtype)
for _ in range(num_experts)
])
self.gate = MoEGate(dim, num_experts = num_experts, num_experts_per_tok = moe_top_k, device = device, dtype = dtype)
self.shared_experts = FeedForward(dim, dropout = dropout, inner_dim = ff_inner_dim, operations = operations, device = device, dtype = dtype)
def forward(self, hidden_states) -> torch.Tensor:
identity = hidden_states
orig_shape = hidden_states.shape
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if self.training:
hidden_states = hidden_states.repeat_interleave(self.moe_top_k, dim = 0)
y = torch.empty_like(hidden_states, dtype = hidden_states.dtype)
for i, expert in enumerate(self.experts):
tmp = expert(hidden_states[flat_topk_idx == i])
y[flat_topk_idx == i] = tmp.to(hidden_states.dtype)
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim = 1)
y = y.view(*orig_shape)
y = AddAuxLoss.apply(y, aux_loss)
else:
y = self.moe_infer(hidden_states, flat_expert_indices = flat_topk_idx,flat_expert_weights = topk_weight.view(-1, 1)).view(*orig_shape)
y = y + self.shared_experts(identity)
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
# no need for .numpy().cpu() here
tokens_per_expert = flat_expert_indices.bincount().cumsum(0)
token_idxs = idxs // self.moe_top_k
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
# use index_add_ with a 1-D index tensor directly avoids building a large [N, D] index map and extra memcopy required by scatter_reduce_
# + avoid dtype conversion
expert_cache.index_add_(0, exp_token_idx, expert_out)
return expert_cache
class Timesteps(nn.Module):
def __init__(self, num_channels: int, downscale_freq_shift: float = 0.0,
scale: float = 1.0, max_period: int = 10000):
super().__init__()
self.num_channels = num_channels
half_dim = num_channels // 2
# precompute the “inv_freq” vector once
exponent = -math.log(max_period) * torch.arange(
half_dim, dtype=torch.float32
) / (half_dim - downscale_freq_shift)
inv_freq = torch.exp(exponent)
# pad
if num_channels % 2 == 1:
# well pad a zero at the end of the cos-half
inv_freq = torch.cat([inv_freq, inv_freq.new_zeros(1)])
# register to buffer so it moves with the device
self.register_buffer("inv_freq", inv_freq, persistent = False)
self.scale = scale
def forward(self, timesteps: torch.Tensor):
x = timesteps.float().unsqueeze(1) * self.inv_freq.to(timesteps.device).unsqueeze(0)
# fused CUDA kernels for sin and cos
sin_emb = x.sin()
cos_emb = x.cos()
emb = torch.cat([sin_emb, cos_emb], dim = 1)
# scale factor
if self.scale != 1.0:
emb = emb * self.scale
# If we padded inv_freq for odd, emb is already wide enough; otherwise:
if emb.shape[1] > self.num_channels:
emb = emb[:, :self.num_channels]
return emb
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size = 256, cond_proj_dim = None, operations = None, device = None, dtype = None):
super().__init__()
self.mlp = nn.Sequential(
operations.Linear(hidden_size, frequency_embedding_size, bias=True, device = device, dtype = dtype),
nn.GELU(),
operations.Linear(frequency_embedding_size, hidden_size, bias=True, device = device, dtype = dtype),
)
self.frequency_embedding_size = frequency_embedding_size
if cond_proj_dim is not None:
self.cond_proj = operations.Linear(cond_proj_dim, frequency_embedding_size, bias=False, device = device, dtype = dtype)
self.time_embed = Timesteps(hidden_size)
def forward(self, timesteps, condition):
timestep_embed = self.time_embed(timesteps).type(self.mlp[0].weight.dtype)
if condition is not None:
cond_embed = self.cond_proj(condition)
timestep_embed = timestep_embed + cond_embed
time_conditioned = self.mlp(timestep_embed)
# for broadcasting with image tokens
return time_conditioned.unsqueeze(1)
class MLP(nn.Module):
def __init__(self, *, width: int, operations = None, device = None, dtype = None):
super().__init__()
self.width = width
self.fc1 = operations.Linear(width, width * 4, device = device, dtype = dtype)
self.fc2 = operations.Linear(width * 4, width, device = device, dtype = dtype)
self.gelu = nn.GELU()
def forward(self, x):
return self.fc2(self.gelu(self.fc1(x)))
class CrossAttention(nn.Module):
def __init__(
self,
qdim,
kdim,
num_heads,
qkv_bias=True,
qk_norm=False,
norm_layer=nn.LayerNorm,
use_fp16: bool = False,
operations = None,
dtype = None,
device = None,
**kwargs,
):
super().__init__()
self.qdim = qdim
self.kdim = kdim
self.num_heads = num_heads
self.head_dim = self.qdim // num_heads
self.scale = self.head_dim ** -0.5
self.to_q = operations.Linear(qdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
self.to_k = operations.Linear(kdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
self.to_v = operations.Linear(kdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
if norm_layer == nn.LayerNorm:
norm_layer = operations.LayerNorm
else:
norm_layer = operations.RMSNorm
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.out_proj = operations.Linear(qdim, qdim, bias=True, device = device, dtype = dtype)
def forward(self, x, y):
b, s1, _ = x.shape
_, s2, _ = y.shape
y = y.to(next(self.to_k.parameters()).dtype)
q = self.to_q(x)
k = self.to_k(y)
v = self.to_v(y)
kv = torch.cat((k, v), dim=-1)
split_size = kv.shape[-1] // self.num_heads // 2
kv = kv.view(1, -1, self.num_heads, split_size * 2)
k, v = torch.split(kv, split_size, dim=-1)
q = q.view(b, s1, self.num_heads, self.head_dim)
k = k.view(b, s2, self.num_heads, self.head_dim)
v = v.reshape(b, s2, self.num_heads * self.head_dim)
q = self.q_norm(q)
k = self.k_norm(k)
x = optimized_attention(
q.reshape(b, s1, self.num_heads * self.head_dim),
k.reshape(b, s2, self.num_heads * self.head_dim),
v,
heads=self.num_heads,
)
out = self.out_proj(x)
return out
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads,
qkv_bias = True,
qk_norm = False,
norm_layer = nn.LayerNorm,
use_fp16: bool = False,
operations = None,
device = None,
dtype = None
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = self.dim // num_heads
self.scale = self.head_dim ** -0.5
self.to_q = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
self.to_k = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
self.to_v = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
if norm_layer == nn.LayerNorm:
norm_layer = operations.LayerNorm
else:
norm_layer = operations.RMSNorm
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.out_proj = operations.Linear(dim, dim, device = device, dtype = dtype)
def forward(self, x):
B, N, _ = x.shape
query = self.to_q(x)
key = self.to_k(x)
value = self.to_v(x)
qkv_combined = torch.cat((query, key, value), dim=-1)
split_size = qkv_combined.shape[-1] // self.num_heads // 3
qkv = qkv_combined.view(1, -1, self.num_heads, split_size * 3)
query, key, value = torch.split(qkv, split_size, dim=-1)
query = query.reshape(B, N, self.num_heads, self.head_dim)
key = key.reshape(B, N, self.num_heads, self.head_dim)
value = value.reshape(B, N, self.num_heads * self.head_dim)
query = self.q_norm(query)
key = self.k_norm(key)
x = optimized_attention(
query.reshape(B, N, self.num_heads * self.head_dim),
key.reshape(B, N, self.num_heads * self.head_dim),
value,
heads=self.num_heads,
)
x = self.out_proj(x)
return x
class HunYuanDiTBlock(nn.Module):
def __init__(
self,
hidden_size,
c_emb_size,
num_heads,
text_states_dim=1024,
qk_norm=False,
norm_layer=nn.LayerNorm,
qk_norm_layer=True,
qkv_bias=True,
skip_connection=True,
timested_modulate=False,
use_moe: bool = False,
num_experts: int = 8,
moe_top_k: int = 2,
use_fp16: bool = False,
operations = None,
device = None, dtype = None
):
super().__init__()
# eps can't be 1e-6 in fp16 mode because of numerical stability issues
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
self.norm1 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm,
norm_layer=qk_norm_layer, use_fp16 = use_fp16, device = device, dtype = dtype, operations = operations)
self.norm2 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.timested_modulate = timested_modulate
if self.timested_modulate:
self.default_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(c_emb_size, hidden_size, bias=True, device = device, dtype = dtype)
)
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=qkv_bias,
qk_norm=qk_norm, norm_layer=qk_norm_layer, use_fp16 = use_fp16,
device = device, dtype = dtype, operations = operations)
self.norm3 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
if skip_connection:
self.skip_norm = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, device = device, dtype = dtype)
else:
self.skip_linear = None
self.use_moe = use_moe
if self.use_moe:
self.moe = MoEBlock(
hidden_size,
num_experts = num_experts,
moe_top_k = moe_top_k,
dropout = 0.0,
ff_inner_dim = int(hidden_size * 4.0),
device = device, dtype = dtype,
operations = operations
)
else:
self.mlp = MLP(width=hidden_size, operations=operations, device = device, dtype = dtype)
def forward(self, hidden_states, conditioning=None, text_states=None, skip_tensor=None):
if self.skip_linear is not None:
combined = torch.cat([skip_tensor, hidden_states], dim=-1)
hidden_states = self.skip_linear(combined)
hidden_states = self.skip_norm(hidden_states)
# self attention
if self.timested_modulate:
modulation_shift = self.default_modulation(conditioning).unsqueeze(dim=1)
hidden_states = hidden_states + modulation_shift
self_attn_out = self.attn1(self.norm1(hidden_states))
hidden_states = hidden_states + self_attn_out
# cross attention
hidden_states = hidden_states + self.attn2(self.norm2(hidden_states), text_states)
# MLP Layer
mlp_input = self.norm3(hidden_states)
if self.use_moe:
hidden_states = hidden_states + self.moe(mlp_input)
else:
hidden_states = hidden_states + self.mlp(mlp_input)
return hidden_states
class FinalLayer(nn.Module):
def __init__(self, final_hidden_size, out_channels, operations, use_fp16: bool = False, device = None, dtype = None):
super().__init__()
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.linear = operations.Linear(final_hidden_size, out_channels, bias = True, device = device, dtype = dtype)
def forward(self, x):
x = self.norm_final(x)
x = x[:, 1:]
x = self.linear(x)
return x
class HunYuanDiTPlain(nn.Module):
# init with the defaults values from https://huggingface.co/tencent/Hunyuan3D-2.1/blob/main/hunyuan3d-dit-v2-1/config.yaml
def __init__(
self,
in_channels: int = 64,
hidden_size: int = 2048,
context_dim: int = 1024,
depth: int = 21,
num_heads: int = 16,
qk_norm: bool = True,
qkv_bias: bool = False,
num_moe_layers: int = 6,
guidance_cond_proj_dim = 2048,
norm_type = 'layer',
num_experts: int = 8,
moe_top_k: int = 2,
use_fp16: bool = False,
dtype = None,
device = None,
operations = None,
**kwargs
):
self.dtype = dtype
super().__init__()
self.depth = depth
self.in_channels = in_channels
self.out_channels = in_channels
self.num_heads = num_heads
self.hidden_size = hidden_size
norm = operations.LayerNorm if norm_type == 'layer' else operations.RMSNorm
qk_norm = operations.RMSNorm
self.context_dim = context_dim
self.guidance_cond_proj_dim = guidance_cond_proj_dim
self.x_embedder = operations.Linear(in_channels, hidden_size, bias = True, device = device, dtype = dtype)
self.t_embedder = TimestepEmbedder(hidden_size, hidden_size * 4, cond_proj_dim = guidance_cond_proj_dim, device = device, dtype = dtype, operations = operations)
# HUnYuanDiT Blocks
self.blocks = nn.ModuleList([
HunYuanDiTBlock(hidden_size=hidden_size,
c_emb_size=hidden_size,
num_heads=num_heads,
text_states_dim=context_dim,
qk_norm=qk_norm,
norm_layer = norm,
qk_norm_layer = qk_norm,
skip_connection=layer > depth // 2,
qkv_bias=qkv_bias,
use_moe=True if depth - layer <= num_moe_layers else False,
num_experts=num_experts,
moe_top_k=moe_top_k,
use_fp16 = use_fp16,
device = device, dtype = dtype, operations = operations)
for layer in range(depth)
])
self.depth = depth
self.final_layer = FinalLayer(hidden_size, self.out_channels, use_fp16 = use_fp16, operations = operations, device = device, dtype = dtype)
def forward(self, x, t, context, transformer_options = {}, **kwargs):
x = x.movedim(-1, -2)
uncond_emb, cond_emb = context.chunk(2, dim = 0)
context = torch.cat([cond_emb, uncond_emb], dim = 0)
main_condition = context
t = 1.0 - t
time_embedded = self.t_embedder(t, condition = kwargs.get('guidance_cond'))
x = x.to(dtype = next(self.x_embedder.parameters()).dtype)
x_embedded = self.x_embedder(x)
combined = torch.cat([time_embedded, x_embedded], dim=1)
def block_wrap(args):
return block(
args["x"],
args["t"],
args["cond"],
skip_tensor=args.get("skip"),)
skip_stack = []
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for idx, block in enumerate(self.blocks):
if idx <= self.depth // 2:
skip_input = None
else:
skip_input = skip_stack.pop()
if ("block", idx) in blocks_replace:
combined = blocks_replace[("block", idx)](
{
"x": combined,
"t": time_embedded,
"cond": main_condition,
"skip": skip_input,
},
{"original_block": block_wrap},
)
else:
combined = block(combined, time_embedded, main_condition, skip_tensor=skip_input)
if idx < self.depth // 2:
skip_stack.append(combined)
output = self.final_layer(combined)
output = output.movedim(-2, -1) * (-1.0)
cond_emb, uncond_emb = output.chunk(2, dim = 0)
return torch.cat([uncond_emb, cond_emb])

View File

@@ -40,6 +40,8 @@ class HunyuanVideoParams:
patch_size: list
qkv_bias: bool
guidance_embed: bool
byt5: bool
meanflow: bool
class SelfAttentionRef(nn.Module):
@@ -78,13 +80,13 @@ class TokenRefinerBlock(nn.Module):
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, x, c, mask):
def forward(self, x, c, mask, transformer_options={}):
mod1, mod2 = self.adaLN_modulation(c).chunk(2, dim=1)
norm_x = self.norm1(x)
qkv = self.self_attn.qkv(norm_x)
q, k, v = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, self.heads, -1).permute(2, 0, 3, 1, 4)
attn = optimized_attention(q, k, v, self.heads, mask=mask, skip_reshape=True)
attn = optimized_attention(q, k, v, self.heads, mask=mask, skip_reshape=True, transformer_options=transformer_options)
x = x + self.self_attn.proj(attn) * mod1.unsqueeze(1)
x = x + self.mlp(self.norm2(x)) * mod2.unsqueeze(1)
@@ -115,14 +117,14 @@ class IndividualTokenRefiner(nn.Module):
]
)
def forward(self, x, c, mask):
def forward(self, x, c, mask, transformer_options={}):
m = None
if mask is not None:
m = mask.view(mask.shape[0], 1, 1, mask.shape[1]).repeat(1, 1, mask.shape[1], 1)
m = m + m.transpose(2, 3)
for block in self.blocks:
x = block(x, c, m)
x = block(x, c, m, transformer_options=transformer_options)
return x
@@ -150,6 +152,7 @@ class TokenRefiner(nn.Module):
x,
timesteps,
mask,
transformer_options={},
):
t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
# m = mask.float().unsqueeze(-1)
@@ -158,9 +161,33 @@ class TokenRefiner(nn.Module):
c = t + self.c_embedder(c.to(x.dtype))
x = self.input_embedder(x)
x = self.individual_token_refiner(x, c, mask)
x = self.individual_token_refiner(x, c, mask, transformer_options=transformer_options)
return x
class ByT5Mapper(nn.Module):
def __init__(self, in_dim, out_dim, hidden_dim, out_dim1, use_res=False, dtype=None, device=None, operations=None):
super().__init__()
self.layernorm = operations.LayerNorm(in_dim, dtype=dtype, device=device)
self.fc1 = operations.Linear(in_dim, hidden_dim, dtype=dtype, device=device)
self.fc2 = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
self.fc3 = operations.Linear(out_dim, out_dim1, dtype=dtype, device=device)
self.use_res = use_res
self.act_fn = nn.GELU()
def forward(self, x):
if self.use_res:
res = x
x = self.layernorm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
x2 = self.act_fn(x)
x2 = self.fc3(x2)
if self.use_res:
x2 = x2 + res
return x2
class HunyuanVideo(nn.Module):
"""
Transformer model for flow matching on sequences.
@@ -185,9 +212,13 @@ class HunyuanVideo(nn.Module):
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(None, self.patch_size, self.in_channels, self.hidden_size, conv3d=True, dtype=dtype, device=device, operations=operations)
self.img_in = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(None, self.patch_size, self.in_channels, self.hidden_size, conv3d=len(self.patch_size) == 3, dtype=dtype, device=device, operations=operations)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
if params.vec_in_dim is not None:
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
else:
self.vector_in = None
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
)
@@ -215,6 +246,23 @@ class HunyuanVideo(nn.Module):
]
)
if params.byt5:
self.byt5_in = ByT5Mapper(
in_dim=1472,
out_dim=2048,
hidden_dim=2048,
out_dim1=self.hidden_size,
use_res=False,
dtype=dtype, device=device, operations=operations
)
else:
self.byt5_in = None
if params.meanflow:
self.time_r_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
else:
self.time_r_in = None
if final_layer:
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
@@ -226,10 +274,12 @@ class HunyuanVideo(nn.Module):
txt_ids: Tensor,
txt_mask: Tensor,
timesteps: Tensor,
y: Tensor,
y: Tensor = None,
txt_byt5=None,
guidance: Tensor = None,
guiding_frame_index=None,
ref_latent=None,
disable_time_r=False,
control=None,
transformer_options={},
) -> Tensor:
@@ -240,6 +290,14 @@ class HunyuanVideo(nn.Module):
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
if (self.time_r_in is not None) and (not disable_time_r):
w = torch.where(transformer_options['sigmas'][0] == transformer_options['sample_sigmas'])[0] # This most likely could be improved
if len(w) > 0:
timesteps_r = transformer_options['sample_sigmas'][w[0] + 1]
timesteps_r = timesteps_r.unsqueeze(0).to(device=timesteps.device, dtype=timesteps.dtype)
vec_r = self.time_r_in(timestep_embedding(timesteps_r, 256, time_factor=1000.0).to(img.dtype))
vec = (vec + vec_r) / 2
if ref_latent is not None:
ref_latent_ids = self.img_ids(ref_latent)
ref_latent = self.img_in(ref_latent)
@@ -250,13 +308,17 @@ class HunyuanVideo(nn.Module):
if guiding_frame_index is not None:
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
if self.vector_in is not None:
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
else:
vec = torch.cat([(token_replace_vec).unsqueeze(1), (vec).unsqueeze(1)], dim=1)
frame_tokens = (initial_shape[-1] // self.patch_size[-1]) * (initial_shape[-2] // self.patch_size[-2])
modulation_dims = [(0, frame_tokens, 0), (frame_tokens, None, 1)]
modulation_dims_txt = [(0, None, 1)]
else:
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
if self.vector_in is not None:
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
modulation_dims = None
modulation_dims_txt = None
@@ -267,7 +329,13 @@ class HunyuanVideo(nn.Module):
if txt_mask is not None and not torch.is_floating_point(txt_mask):
txt_mask = (txt_mask - 1).to(img.dtype) * torch.finfo(img.dtype).max
txt = self.txt_in(txt, timesteps, txt_mask)
txt = self.txt_in(txt, timesteps, txt_mask, transformer_options=transformer_options)
if self.byt5_in is not None and txt_byt5 is not None:
txt_byt5 = self.byt5_in(txt_byt5)
txt_byt5_ids = torch.zeros((txt_ids.shape[0], txt_byt5.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt = torch.cat((txt, txt_byt5), dim=1)
txt_ids = torch.cat((txt_ids, txt_byt5_ids), dim=1)
ids = torch.cat((img_ids, txt_ids), dim=1)
pe = self.pe_embedder(ids)
@@ -285,14 +353,14 @@ class HunyuanVideo(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims_img=args["modulation_dims_img"], modulation_dims_txt=args["modulation_dims_txt"])
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims_img=args["modulation_dims_img"], modulation_dims_txt=args["modulation_dims_txt"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims_img': modulation_dims, 'modulation_dims_txt': modulation_dims_txt}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims_img': modulation_dims, 'modulation_dims_txt': modulation_dims_txt, 'transformer_options': transformer_options}, {"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims_img=modulation_dims, modulation_dims_txt=modulation_dims_txt)
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims_img=modulation_dims, modulation_dims_txt=modulation_dims_txt, transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
@@ -307,13 +375,13 @@ class HunyuanVideo(nn.Module):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims=args["modulation_dims"])
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims=args["modulation_dims"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims': modulation_dims}, {"original_block": block_wrap})
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims': modulation_dims, 'transformer_options': transformer_options}, {"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims)
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
@@ -328,12 +396,16 @@ class HunyuanVideo(nn.Module):
img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels)
shape = initial_shape[-3:]
shape = initial_shape[-len(self.patch_size):]
for i in range(len(shape)):
shape[i] = shape[i] // self.patch_size[i]
img = img.reshape([img.shape[0]] + shape + [self.out_channels] + self.patch_size)
img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
if img.ndim == 8:
img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
else:
img = img.permute(0, 3, 1, 4, 2, 5)
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3])
return img
def img_ids(self, x):
@@ -348,16 +420,30 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
return repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
def img_ids_2d(self, x):
bs, c, h, w = x.shape
patch_size = self.patch_size
h_len = ((h + (patch_size[0] // 2)) // patch_size[0])
w_len = ((w + (patch_size[1] // 2)) // patch_size[1])
img_ids = torch.zeros((h_len, w_len, 2), device=x.device, dtype=x.dtype)
img_ids[:, :, 0] = img_ids[:, :, 0] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
return repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, guidance, attention_mask, guiding_frame_index, ref_latent, control, transformer_options, **kwargs)
).execute(x, timestep, context, y, txt_byt5, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
img_ids = self.img_ids(x)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, ref_latent, control=control, transformer_options=transformer_options)
def _forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
bs = x.shape[0]
if len(self.patch_size) == 3:
img_ids = self.img_ids(x)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
else:
img_ids = self.img_ids_2d(x)
txt_ids = torch.zeros((bs, context.shape[1], 2), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
return out

View File

@@ -0,0 +1,136 @@
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock
import comfy.ops
ops = comfy.ops.disable_weight_init
class PixelShuffle2D(nn.Module):
def __init__(self, in_dim, out_dim, op=ops.Conv2d):
super().__init__()
self.conv = op(in_dim, out_dim >> 2, 3, 1, 1)
self.ratio = (in_dim << 2) // out_dim
def forward(self, x):
b, c, h, w = x.shape
h2, w2 = h >> 1, w >> 1
y = self.conv(x).view(b, -1, h2, 2, w2, 2).permute(0, 3, 5, 1, 2, 4).reshape(b, -1, h2, w2)
r = x.view(b, c, h2, 2, w2, 2).permute(0, 3, 5, 1, 2, 4).reshape(b, c << 2, h2, w2)
return y + r.view(b, y.shape[1], self.ratio, h2, w2).mean(2)
class PixelUnshuffle2D(nn.Module):
def __init__(self, in_dim, out_dim, op=ops.Conv2d):
super().__init__()
self.conv = op(in_dim, out_dim << 2, 3, 1, 1)
self.scale = (out_dim << 2) // in_dim
def forward(self, x):
b, c, h, w = x.shape
h2, w2 = h << 1, w << 1
y = self.conv(x).view(b, 2, 2, -1, h, w).permute(0, 3, 4, 1, 5, 2).reshape(b, -1, h2, w2)
r = x.repeat_interleave(self.scale, 1).view(b, 2, 2, -1, h, w).permute(0, 3, 4, 1, 5, 2).reshape(b, -1, h2, w2)
return y + r
class Encoder(nn.Module):
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
ffactor_spatial, downsample_match_channel=True, **_):
super().__init__()
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
self.conv_in = ops.Conv2d(in_channels, block_out_channels[0], 3, 1, 1)
self.down = nn.ModuleList()
ch = block_out_channels[0]
depth = (ffactor_spatial >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=ops.Conv2d)
for j in range(num_res_blocks)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and downsample_match_channel else ch
stage.downsample = PixelShuffle2D(ch, nxt, ops.Conv2d)
ch = nxt
self.down.append(stage)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv2d)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.norm_out = ops.GroupNorm(32, ch, 1e-6, True)
self.conv_out = ops.Conv2d(ch, z_channels << 1, 3, 1, 1)
def forward(self, x):
x = self.conv_in(x)
for stage in self.down:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'downsample'):
x = stage.downsample(x)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
b, c, h, w = x.shape
grp = c // (self.z_channels << 1)
skip = x.view(b, c // grp, grp, h, w).mean(2)
return self.conv_out(F.silu(self.norm_out(x))) + skip
class Decoder(nn.Module):
def __init__(self, z_channels, out_channels, block_out_channels, num_res_blocks,
ffactor_spatial, upsample_match_channel=True, **_):
super().__init__()
block_out_channels = block_out_channels[::-1]
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
ch = block_out_channels[0]
self.conv_in = ops.Conv2d(z_channels, ch, 3, 1, 1)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv2d)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.up = nn.ModuleList()
depth = (ffactor_spatial >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=ops.Conv2d)
for j in range(num_res_blocks + 1)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and upsample_match_channel else ch
stage.upsample = PixelUnshuffle2D(ch, nxt, ops.Conv2d)
ch = nxt
self.up.append(stage)
self.norm_out = ops.GroupNorm(32, ch, 1e-6, True)
self.conv_out = ops.Conv2d(ch, out_channels, 3, 1, 1)
def forward(self, z):
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
for stage in self.up:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'upsample'):
x = stage.upsample(x)
return self.conv_out(F.silu(self.norm_out(x)))

View File

@@ -0,0 +1,267 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d
import comfy.ops
import comfy.ldm.models.autoencoder
ops = comfy.ops.disable_weight_init
class RMS_norm(nn.Module):
def __init__(self, dim):
super().__init__()
shape = (dim, 1, 1, 1)
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.empty(shape))
def forward(self, x):
return F.normalize(x, dim=1) * self.scale * self.gamma
class DnSmpl(nn.Module):
def __init__(self, ic, oc, tds=True):
super().__init__()
fct = 2 * 2 * 2 if tds else 1 * 2 * 2
assert oc % fct == 0
self.conv = VideoConv3d(ic, oc // fct, kernel_size=3)
self.tds = tds
self.gs = fct * ic // oc
def forward(self, x):
r1 = 2 if self.tds else 1
h = self.conv(x)
if self.tds:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2)
hf = hf.permute(0, 4, 6, 1, 2, 3, 5)
hf = hf.reshape(b, 2 * 2 * c, f, ht // 2, wd // 2)
hf = torch.cat([hf, hf], dim=1)
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nf = frms // r1
hn = hn.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
hn = hn.permute(0, 3, 5, 7, 1, 2, 4, 6)
hn = hn.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
h = torch.cat([hf, hn], dim=2)
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
xf = xf.reshape(b, ci, f, ht // 2, 2, wd // 2, 2)
xf = xf.permute(0, 4, 6, 1, 2, 3, 5)
xf = xf.reshape(b, 2 * 2 * ci, f, ht // 2, wd // 2)
B, C, T, H, W = xf.shape
xf = xf.view(B, h.shape[1], self.gs // 2, T, H, W).mean(dim=2)
xn = x[:, :, 1:, :, :]
b, ci, frms, ht, wd = xn.shape
nf = frms // r1
xn = xn.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
xn = xn.permute(0, 3, 5, 7, 1, 2, 4, 6)
xn = xn.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = xn.shape
xn = xn.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
nf = frms // r1
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
b, ci, frms, ht, wd = x.shape
nf = frms // r1
sc = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
sc = sc.permute(0, 3, 5, 7, 1, 2, 4, 6)
sc = sc.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = sc.shape
sc = sc.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
return h + sc
class UpSmpl(nn.Module):
def __init__(self, ic, oc, tus=True):
super().__init__()
fct = 2 * 2 * 2 if tus else 1 * 2 * 2
self.conv = VideoConv3d(ic, oc * fct, kernel_size=3)
self.tus = tus
self.rp = fct * oc // ic
def forward(self, x):
r1 = 2 if self.tus else 1
h = self.conv(x)
if self.tus:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
nc = c // (2 * 2)
hf = hf.reshape(b, 2, 2, nc, f, ht, wd)
hf = hf.permute(0, 3, 4, 5, 1, 6, 2)
hf = hf.reshape(b, nc, f, ht * 2, wd * 2)
hf = hf[:, : hf.shape[1] // 2]
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nc = c // (r1 * 2 * 2)
hn = hn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
hn = hn.permute(0, 4, 5, 1, 6, 2, 7, 3)
hn = hn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
h = torch.cat([hf, hn], dim=2)
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
xf = xf.repeat_interleave(repeats=self.rp // 2, dim=1)
b, c, f, ht, wd = xf.shape
nc = c // (2 * 2)
xf = xf.reshape(b, 2, 2, nc, f, ht, wd)
xf = xf.permute(0, 3, 4, 5, 1, 6, 2)
xf = xf.reshape(b, nc, f, ht * 2, wd * 2)
xn = x[:, :, 1:, :, :]
xn = xn.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = xn.shape
nc = c // (r1 * 2 * 2)
xn = xn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
xn = xn.permute(0, 4, 5, 1, 6, 2, 7, 3)
xn = xn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
nc = c // (r1 * 2 * 2)
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
sc = x.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = sc.shape
nc = c // (r1 * 2 * 2)
sc = sc.reshape(b, r1, 2, 2, nc, frms, ht, wd)
sc = sc.permute(0, 4, 5, 1, 6, 2, 7, 3)
sc = sc.reshape(b, nc, frms * r1, ht * 2, wd * 2)
return h + sc
class Encoder(nn.Module):
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
ffactor_spatial, ffactor_temporal, downsample_match_channel=True, **_):
super().__init__()
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
self.conv_in = VideoConv3d(in_channels, block_out_channels[0], 3, 1, 1)
self.down = nn.ModuleList()
ch = block_out_channels[0]
depth = (ffactor_spatial >> 1).bit_length()
depth_temporal = ((ffactor_spatial // ffactor_temporal) >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=VideoConv3d, norm_op=RMS_norm)
for j in range(num_res_blocks)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and downsample_match_channel else ch
stage.downsample = DnSmpl(ch, nxt, tds=i >= depth_temporal)
ch = nxt
self.down.append(stage)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=RMS_norm)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.norm_out = RMS_norm(ch)
self.conv_out = VideoConv3d(ch, z_channels << 1, 3, 1, 1)
self.regul = comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer()
def forward(self, x):
x = self.conv_in(x)
for stage in self.down:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'downsample'):
x = stage.downsample(x)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
b, c, t, h, w = x.shape
grp = c // (self.z_channels << 1)
skip = x.view(b, c // grp, grp, t, h, w).mean(2)
out = self.conv_out(F.silu(self.norm_out(x))) + skip
out = self.regul(out)[0]
out = torch.cat((out[:, :, :1], out), dim=2)
out = out.permute(0, 2, 1, 3, 4)
b, f_times_2, c, h, w = out.shape
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
out = out.permute(0, 2, 1, 3, 4).contiguous()
return out
class Decoder(nn.Module):
def __init__(self, z_channels, out_channels, block_out_channels, num_res_blocks,
ffactor_spatial, ffactor_temporal, upsample_match_channel=True, **_):
super().__init__()
block_out_channels = block_out_channels[::-1]
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
ch = block_out_channels[0]
self.conv_in = VideoConv3d(z_channels, ch, 3)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=RMS_norm)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=VideoConv3d, norm_op=RMS_norm)
self.up = nn.ModuleList()
depth = (ffactor_spatial >> 1).bit_length()
depth_temporal = (ffactor_temporal >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=VideoConv3d, norm_op=RMS_norm)
for j in range(num_res_blocks + 1)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and upsample_match_channel else ch
stage.upsample = UpSmpl(ch, nxt, tus=i < depth_temporal)
ch = nxt
self.up.append(stage)
self.norm_out = RMS_norm(ch)
self.conv_out = VideoConv3d(ch, out_channels, 3)
def forward(self, z):
z = z.permute(0, 2, 1, 3, 4)
b, f, c, h, w = z.shape
z = z.reshape(b, f, 2, c // 2, h, w)
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
z = z.permute(0, 2, 1, 3, 4)
z = z[:, :, 1:]
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
for stage in self.up:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'upsample'):
x = stage.upsample(x)
return self.conv_out(F.silu(self.norm_out(x)))

View File

@@ -271,7 +271,7 @@ class CrossAttention(nn.Module):
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def forward(self, x, context=None, mask=None, pe=None):
def forward(self, x, context=None, mask=None, pe=None, transformer_options={}):
q = self.to_q(x)
context = x if context is None else context
k = self.to_k(context)
@@ -285,9 +285,9 @@ class CrossAttention(nn.Module):
k = apply_rotary_emb(k, pe)
if mask is None:
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
else:
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision, transformer_options=transformer_options)
return self.to_out(out)
@@ -303,12 +303,12 @@ class BasicTransformerBlock(nn.Module):
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None):
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe) * gate_msa
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe, transformer_options=transformer_options) * gate_msa
x += self.attn2(x, context=context, mask=attention_mask)
x += self.attn2(x, context=context, mask=attention_mask, transformer_options=transformer_options)
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
x += self.ff(y) * gate_mlp
@@ -479,10 +479,10 @@ class LTXVModel(torch.nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"])
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(
@@ -490,7 +490,8 @@ class LTXVModel(torch.nn.Module):
context=context,
attention_mask=attention_mask,
timestep=timestep,
pe=pe
pe=pe,
transformer_options=transformer_options,
)
# 3. Output

View File

@@ -104,6 +104,7 @@ class JointAttention(nn.Module):
x: torch.Tensor,
x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
transformer_options={},
) -> torch.Tensor:
"""
@@ -140,7 +141,7 @@ class JointAttention(nn.Module):
if n_rep >= 1:
xk = xk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
xv = xv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
output = optimized_attention_masked(xq.movedim(1, 2), xk.movedim(1, 2), xv.movedim(1, 2), self.n_local_heads, x_mask, skip_reshape=True)
output = optimized_attention_masked(xq.movedim(1, 2), xk.movedim(1, 2), xv.movedim(1, 2), self.n_local_heads, x_mask, skip_reshape=True, transformer_options=transformer_options)
return self.out(output)
@@ -268,6 +269,7 @@ class JointTransformerBlock(nn.Module):
x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor]=None,
transformer_options={},
):
"""
Perform a forward pass through the TransformerBlock.
@@ -290,6 +292,7 @@ class JointTransformerBlock(nn.Module):
modulate(self.attention_norm1(x), scale_msa),
x_mask,
freqs_cis,
transformer_options=transformer_options,
)
)
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
@@ -304,6 +307,7 @@ class JointTransformerBlock(nn.Module):
self.attention_norm1(x),
x_mask,
freqs_cis,
transformer_options=transformer_options,
)
)
x = x + self.ffn_norm2(
@@ -494,7 +498,7 @@ class NextDiT(nn.Module):
return imgs
def patchify_and_embed(
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens, transformer_options={}
) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]:
bsz = len(x)
pH = pW = self.patch_size
@@ -554,7 +558,7 @@ class NextDiT(nn.Module):
# refine context
for layer in self.context_refiner:
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis)
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis, transformer_options=transformer_options)
# refine image
flat_x = []
@@ -573,7 +577,7 @@ class NextDiT(nn.Module):
padded_img_embed = self.x_embedder(padded_img_embed)
padded_img_mask = padded_img_mask.unsqueeze(1)
for layer in self.noise_refiner:
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t)
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t, transformer_options=transformer_options)
if cap_mask is not None:
mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device)
@@ -616,12 +620,13 @@ class NextDiT(nn.Module):
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
transformer_options = kwargs.get("transformer_options", {})
x_is_tensor = isinstance(x, torch.Tensor)
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens)
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options)
freqs_cis = freqs_cis.to(x.device)
for layer in self.layers:
x = layer(x, mask, freqs_cis, adaln_input)
x = layer(x, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
x = self.final_layer(x, adaln_input)
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w]

View File

@@ -26,6 +26,12 @@ class DiagonalGaussianRegularizer(torch.nn.Module):
z = posterior.mode()
return z, None
class EmptyRegularizer(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
return z, None
class AbstractAutoencoder(torch.nn.Module):
"""

View File

@@ -5,8 +5,9 @@ import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional
from typing import Optional, Any, Callable, Union
import logging
import functools
from .diffusionmodules.util import AlphaBlender, timestep_embedding
from .sub_quadratic_attention import efficient_dot_product_attention
@@ -17,23 +18,45 @@ if model_management.xformers_enabled():
import xformers
import xformers.ops
if model_management.sage_attention_enabled():
try:
from sageattention import sageattn
except ModuleNotFoundError as e:
SAGE_ATTENTION_IS_AVAILABLE = False
try:
from sageattention import sageattn
SAGE_ATTENTION_IS_AVAILABLE = True
except ImportError as e:
if model_management.sage_attention_enabled():
if e.name == "sageattention":
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
else:
raise e
exit(-1)
if model_management.flash_attention_enabled():
try:
from flash_attn import flash_attn_func
except ModuleNotFoundError:
FLASH_ATTENTION_IS_AVAILABLE = False
try:
from flash_attn import flash_attn_func
FLASH_ATTENTION_IS_AVAILABLE = True
except ImportError:
if model_management.flash_attention_enabled():
logging.error(f"\n\nTo use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install flash-attn")
exit(-1)
REGISTERED_ATTENTION_FUNCTIONS = {}
def register_attention_function(name: str, func: Callable):
# avoid replacing existing functions
if name not in REGISTERED_ATTENTION_FUNCTIONS:
REGISTERED_ATTENTION_FUNCTIONS[name] = func
else:
logging.warning(f"Attention function {name} already registered, skipping registration.")
def get_attention_function(name: str, default: Any=...) -> Union[Callable, None]:
if name == "optimized":
return optimized_attention
elif name not in REGISTERED_ATTENTION_FUNCTIONS:
if default is ...:
raise KeyError(f"Attention function {name} not found.")
else:
return default
return REGISTERED_ATTENTION_FUNCTIONS[name]
from comfy.cli_args import args
import comfy.ops
ops = comfy.ops.disable_weight_init
@@ -91,7 +114,27 @@ class FeedForward(nn.Module):
def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
def wrap_attn(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
remove_attn_wrapper_key = False
try:
if "_inside_attn_wrapper" not in kwargs:
transformer_options = kwargs.get("transformer_options", None)
remove_attn_wrapper_key = True
kwargs["_inside_attn_wrapper"] = True
if transformer_options is not None:
if "optimized_attention_override" in transformer_options:
return transformer_options["optimized_attention_override"](func, *args, **kwargs)
return func(*args, **kwargs)
finally:
if remove_attn_wrapper_key:
del kwargs["_inside_attn_wrapper"]
return wrapper
@wrap_attn
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
attn_precision = get_attn_precision(attn_precision, q.dtype)
if skip_reshape:
@@ -159,8 +202,8 @@ def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
)
return out
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
attn_precision = get_attn_precision(attn_precision, query.dtype)
if skip_reshape:
@@ -230,7 +273,8 @@ def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None,
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
return hidden_states
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
attn_precision = get_attn_precision(attn_precision, q.dtype)
if skip_reshape:
@@ -359,7 +403,8 @@ try:
except:
pass
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
b = q.shape[0]
dim_head = q.shape[-1]
# check to make sure xformers isn't broken
@@ -374,7 +419,7 @@ def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_resh
disabled_xformers = True
if disabled_xformers:
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape, **kwargs)
if skip_reshape:
# b h k d -> b k h d
@@ -427,8 +472,8 @@ else:
#TODO: other GPUs ?
SDP_BATCH_LIMIT = 2**31
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
@@ -470,8 +515,8 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
).transpose(1, 2).reshape(-1, q.shape[2], heads * dim_head)
return out
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
if skip_reshape:
b, _, _, dim_head = q.shape
tensor_layout = "HND"
@@ -501,7 +546,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
lambda t: t.transpose(1, 2),
(q, k, v),
)
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape)
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape, **kwargs)
if tensor_layout == "HND":
if not skip_output_reshape:
@@ -534,8 +579,8 @@ except AttributeError as error:
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
assert False, f"Could not define flash_attn_wrapper: {FLASH_ATTN_ERROR}"
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
@@ -555,7 +600,8 @@ def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
mask = mask.unsqueeze(1)
try:
assert mask is None
if mask is not None:
raise RuntimeError("Mask must not be set for Flash attention")
out = flash_attn_wrapper(
q.transpose(1, 2),
k.transpose(1, 2),
@@ -597,6 +643,19 @@ else:
optimized_attention_masked = optimized_attention
# register core-supported attention functions
if SAGE_ATTENTION_IS_AVAILABLE:
register_attention_function("sage", attention_sage)
if FLASH_ATTENTION_IS_AVAILABLE:
register_attention_function("flash", attention_flash)
if model_management.xformers_enabled():
register_attention_function("xformers", attention_xformers)
register_attention_function("pytorch", attention_pytorch)
register_attention_function("sub_quad", attention_sub_quad)
register_attention_function("split", attention_split)
def optimized_attention_for_device(device, mask=False, small_input=False):
if small_input:
if model_management.pytorch_attention_enabled():
@@ -629,7 +688,7 @@ class CrossAttention(nn.Module):
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def forward(self, x, context=None, value=None, mask=None):
def forward(self, x, context=None, value=None, mask=None, transformer_options={}):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
@@ -640,9 +699,9 @@ class CrossAttention(nn.Module):
v = self.to_v(context)
if mask is None:
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
else:
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision, transformer_options=transformer_options)
return self.to_out(out)
@@ -746,7 +805,7 @@ class BasicTransformerBlock(nn.Module):
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
n = self.attn1.to_out(n)
else:
n = self.attn1(n, context=context_attn1, value=value_attn1)
n = self.attn1(n, context=context_attn1, value=value_attn1, transformer_options=transformer_options)
if "attn1_output_patch" in transformer_patches:
patch = transformer_patches["attn1_output_patch"]
@@ -786,7 +845,7 @@ class BasicTransformerBlock(nn.Module):
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
n = self.attn2.to_out(n)
else:
n = self.attn2(n, context=context_attn2, value=value_attn2)
n = self.attn2(n, context=context_attn2, value=value_attn2, transformer_options=transformer_options)
if "attn2_output_patch" in transformer_patches:
patch = transformer_patches["attn2_output_patch"]
@@ -1017,7 +1076,7 @@ class SpatialVideoTransformer(SpatialTransformer):
B, S, C = x_mix.shape
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
x_mix = mix_block(x_mix, context=time_context, transformer_options=transformer_options)
x_mix = rearrange(
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
)

View File

@@ -606,7 +606,7 @@ def block_mixing(*args, use_checkpoint=True, **kwargs):
return _block_mixing(*args, **kwargs)
def _block_mixing(context, x, context_block, x_block, c):
def _block_mixing(context, x, context_block, x_block, c, transformer_options={}):
context_qkv, context_intermediates = context_block.pre_attention(context, c)
if x_block.x_block_self_attn:
@@ -622,6 +622,7 @@ def _block_mixing(context, x, context_block, x_block, c):
attn = optimized_attention(
qkv[0], qkv[1], qkv[2],
heads=x_block.attn.num_heads,
transformer_options=transformer_options,
)
context_attn, x_attn = (
attn[:, : context_qkv[0].shape[1]],
@@ -637,6 +638,7 @@ def _block_mixing(context, x, context_block, x_block, c):
attn2 = optimized_attention(
x_qkv2[0], x_qkv2[1], x_qkv2[2],
heads=x_block.attn2.num_heads,
transformer_options=transformer_options,
)
x = x_block.post_attention_x(x_attn, attn2, *x_intermediates)
else:
@@ -958,10 +960,10 @@ class MMDiT(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = self.joint_blocks[i](args["txt"], args["img"], c=args["vec"])
out["txt"], out["img"] = self.joint_blocks[i](args["txt"], args["img"], c=args["vec"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": c_mod}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": c_mod, "transformer_options": transformer_options}, {"original_block": block_wrap})
context = out["txt"]
x = out["img"]
else:
@@ -970,6 +972,7 @@ class MMDiT(nn.Module):
x,
c=c_mod,
use_checkpoint=self.use_checkpoint,
transformer_options=transformer_options,
)
if control is not None:
control_o = control.get("output")

View File

@@ -145,7 +145,7 @@ class Downsample(nn.Module):
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
dropout, temb_channels=512, conv_op=ops.Conv2d):
dropout=0.0, temb_channels=512, conv_op=ops.Conv2d, norm_op=Normalize):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
@@ -153,7 +153,7 @@ class ResnetBlock(nn.Module):
self.use_conv_shortcut = conv_shortcut
self.swish = torch.nn.SiLU(inplace=True)
self.norm1 = Normalize(in_channels)
self.norm1 = norm_op(in_channels)
self.conv1 = conv_op(in_channels,
out_channels,
kernel_size=3,
@@ -162,7 +162,7 @@ class ResnetBlock(nn.Module):
if temb_channels > 0:
self.temb_proj = ops.Linear(temb_channels,
out_channels)
self.norm2 = Normalize(out_channels)
self.norm2 = norm_op(out_channels)
self.dropout = torch.nn.Dropout(dropout, inplace=True)
self.conv2 = conv_op(out_channels,
out_channels,
@@ -183,7 +183,7 @@ class ResnetBlock(nn.Module):
stride=1,
padding=0)
def forward(self, x, temb):
def forward(self, x, temb=None):
h = x
h = self.norm1(h)
h = self.swish(h)
@@ -305,11 +305,11 @@ def vae_attention():
return normal_attention
class AttnBlock(nn.Module):
def __init__(self, in_channels, conv_op=ops.Conv2d):
def __init__(self, in_channels, conv_op=ops.Conv2d, norm_op=Normalize):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.norm = norm_op(in_channels)
self.q = conv_op(in_channels,
in_channels,
kernel_size=1,

View File

@@ -120,7 +120,7 @@ class Attention(nn.Module):
nn.Dropout(0.0)
)
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None) -> torch.Tensor:
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, transformer_options={}) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
query = self.to_q(hidden_states)
@@ -146,7 +146,7 @@ class Attention(nn.Module):
key = key.repeat_interleave(self.heads // self.kv_heads, dim=1)
value = value.repeat_interleave(self.heads // self.kv_heads, dim=1)
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True)
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True, transformer_options=transformer_options)
hidden_states = self.to_out[0](hidden_states)
return hidden_states
@@ -182,16 +182,16 @@ class OmniGen2TransformerBlock(nn.Module):
self.norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.ffn_norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None, transformer_options={}) -> torch.Tensor:
if self.modulation:
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb, transformer_options=transformer_options)
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
else:
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb, transformer_options=transformer_options)
hidden_states = hidden_states + self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
hidden_states = hidden_states + self.ffn_norm2(mlp_output)
@@ -390,7 +390,7 @@ class OmniGen2Transformer2DModel(nn.Module):
ref_img_sizes, img_sizes,
)
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb):
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb, transformer_options={}):
batch_size = len(hidden_states)
hidden_states = self.x_embedder(hidden_states)
@@ -405,17 +405,17 @@ class OmniGen2Transformer2DModel(nn.Module):
shift += ref_img_len
for layer in self.noise_refiner:
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb, transformer_options=transformer_options)
if ref_image_hidden_states is not None:
for layer in self.ref_image_refiner:
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb)
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb, transformer_options=transformer_options)
hidden_states = torch.cat([ref_image_hidden_states, hidden_states], dim=1)
return hidden_states
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, **kwargs):
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, transformer_options={}, **kwargs):
B, C, H, W = x.shape
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
_, _, H_padded, W_padded = hidden_states.shape
@@ -444,7 +444,7 @@ class OmniGen2Transformer2DModel(nn.Module):
)
for layer in self.context_refiner:
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb, transformer_options=transformer_options)
img_len = hidden_states.shape[1]
combined_img_hidden_states = self.img_patch_embed_and_refine(
@@ -453,13 +453,14 @@ class OmniGen2Transformer2DModel(nn.Module):
noise_rotary_emb, ref_img_rotary_emb,
l_effective_ref_img_len, l_effective_img_len,
temb,
transformer_options=transformer_options,
)
hidden_states = torch.cat([text_hidden_states, combined_img_hidden_states], dim=1)
attention_mask = None
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb, transformer_options=transformer_options)
hidden_states = self.norm_out(hidden_states, temb)

View File

@@ -132,6 +132,7 @@ class Attention(nn.Module):
encoder_hidden_states_mask: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
seq_txt = encoder_hidden_states.shape[1]
@@ -159,7 +160,7 @@ class Attention(nn.Module):
joint_key = joint_key.flatten(start_dim=2)
joint_value = joint_value.flatten(start_dim=2)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask, transformer_options=transformer_options)
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
img_attn_output = joint_hidden_states[:, seq_txt:, :]
@@ -226,6 +227,7 @@ class QwenImageTransformerBlock(nn.Module):
encoder_hidden_states_mask: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
img_mod_params = self.img_mod(temb)
txt_mod_params = self.txt_mod(temb)
@@ -242,6 +244,7 @@ class QwenImageTransformerBlock(nn.Module):
encoder_hidden_states=txt_modulated,
encoder_hidden_states_mask=encoder_hidden_states_mask,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
hidden_states = hidden_states + img_gate1 * img_attn_output
@@ -434,9 +437,9 @@ class QwenImageTransformer2DModel(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"])
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
else:
@@ -446,11 +449,12 @@ class QwenImageTransformer2DModel(nn.Module):
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
if "double_block" in patches:
for p in patches["double_block"]:
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i})
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i, "transformer_options": transformer_options})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]

View File

@@ -8,7 +8,7 @@ from einops import rearrange
from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope
from comfy.ldm.flux.math import apply_rope1
import comfy.ldm.common_dit
import comfy.model_management
import comfy.patcher_extension
@@ -34,7 +34,9 @@ class WanSelfAttention(nn.Module):
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6, operation_settings={}):
eps=1e-6,
kv_dim=None,
operation_settings={}):
assert dim % num_heads == 0
super().__init__()
self.dim = dim
@@ -43,16 +45,18 @@ class WanSelfAttention(nn.Module):
self.window_size = window_size
self.qk_norm = qk_norm
self.eps = eps
if kv_dim is None:
kv_dim = dim
# layers
self.q = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.k = operation_settings.get("operations").Linear(kv_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v = operation_settings.get("operations").Linear(kv_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.norm_q = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, freqs):
def forward(self, x, freqs, transformer_options={}):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
@@ -60,21 +64,26 @@ class WanSelfAttention(nn.Module):
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# query, key, value function
def qkv_fn(x):
def qkv_fn_q(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n * d)
return q, k, v
return apply_rope1(q, freqs)
q, k, v = qkv_fn(x)
q, k = apply_rope(q, k, freqs)
def qkv_fn_k(x):
k = self.norm_k(self.k(x)).view(b, s, n, d)
return apply_rope1(k, freqs)
#These two are VRAM hogs, so we want to do all of q computation and
#have pytorch garbage collect the intermediates on the sub function
#return before we touch k
q = qkv_fn_q(x)
k = qkv_fn_k(x)
x = optimized_attention(
q.view(b, s, n * d),
k.view(b, s, n * d),
v,
self.v(x).view(b, s, n * d),
heads=self.num_heads,
transformer_options=transformer_options,
)
x = self.o(x)
@@ -83,7 +92,7 @@ class WanSelfAttention(nn.Module):
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context, **kwargs):
def forward(self, x, context, transformer_options={}, **kwargs):
r"""
Args:
x(Tensor): Shape [B, L1, C]
@@ -95,7 +104,7 @@ class WanT2VCrossAttention(WanSelfAttention):
v = self.v(context)
# compute attention
x = optimized_attention(q, k, v, heads=self.num_heads)
x = optimized_attention(q, k, v, heads=self.num_heads, transformer_options=transformer_options)
x = self.o(x)
return x
@@ -116,7 +125,7 @@ class WanI2VCrossAttention(WanSelfAttention):
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, context, context_img_len):
def forward(self, x, context, context_img_len, transformer_options={}):
r"""
Args:
x(Tensor): Shape [B, L1, C]
@@ -131,9 +140,9 @@ class WanI2VCrossAttention(WanSelfAttention):
v = self.v(context)
k_img = self.norm_k_img(self.k_img(context_img))
v_img = self.v_img(context_img)
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads)
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads, transformer_options=transformer_options)
# compute attention
x = optimized_attention(q, k, v, heads=self.num_heads)
x = optimized_attention(q, k, v, heads=self.num_heads, transformer_options=transformer_options)
# output
x = x + img_x
@@ -206,6 +215,7 @@ class WanAttentionBlock(nn.Module):
freqs,
context,
context_img_len=257,
transformer_options={},
):
r"""
Args:
@@ -224,12 +234,12 @@ class WanAttentionBlock(nn.Module):
# self-attention
y = self.self_attn(
torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)),
freqs)
freqs, transformer_options=transformer_options)
x = torch.addcmul(x, y, repeat_e(e[2], x))
# cross-attention & ffn
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len)
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len, transformer_options=transformer_options)
y = self.ffn(torch.addcmul(repeat_e(e[3], x), self.norm2(x), 1 + repeat_e(e[4], x)))
x = torch.addcmul(x, y, repeat_e(e[5], x))
return x
@@ -396,6 +406,7 @@ class WanModel(torch.nn.Module):
eps=1e-6,
flf_pos_embed_token_number=None,
in_dim_ref_conv=None,
wan_attn_block_class=WanAttentionBlock,
image_model=None,
device=None,
dtype=None,
@@ -473,8 +484,8 @@ class WanModel(torch.nn.Module):
# blocks
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
self.blocks = nn.ModuleList([
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
wan_attn_block_class(cross_attn_type, dim, ffn_dim, num_heads,
window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
for _ in range(num_layers)
])
@@ -559,12 +570,12 @@ class WanModel(torch.nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
# head
x = self.head(x, e)
@@ -742,17 +753,17 @@ class VaceWanModel(WanModel):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
ii = self.vace_layers_mapping.get(i, None)
if ii is not None:
for iii in range(len(c)):
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
x += c_skip * vace_strength[iii]
del c_skip
# head
@@ -841,12 +852,12 @@ class CameraWanModel(WanModel):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
# head
x = self.head(x, e)
@@ -1319,3 +1330,250 @@ class WanModel_S2V(WanModel):
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
class WanT2VCrossAttentionGather(WanSelfAttention):
def forward(self, x, context, transformer_options={}, **kwargs):
r"""
Args:
x(Tensor): Shape [B, L1, C] - video tokens
context(Tensor): Shape [B, L2, C] - audio tokens with shape [B, frames*16, 1536]
"""
b, n, d = x.size(0), self.num_heads, self.head_dim
q = self.norm_q(self.q(x))
k = self.norm_k(self.k(context))
v = self.v(context)
# Handle audio temporal structure (16 tokens per frame)
k = k.reshape(-1, 16, n, d).transpose(1, 2)
v = v.reshape(-1, 16, n, d).transpose(1, 2)
# Handle video spatial structure
q = q.reshape(k.shape[0], -1, n, d).transpose(1, 2)
x = optimized_attention(q, k, v, heads=self.num_heads, skip_reshape=True, skip_output_reshape=True, transformer_options=transformer_options)
x = x.transpose(1, 2).reshape(b, -1, n * d)
x = self.o(x)
return x
class AudioCrossAttentionWrapper(nn.Module):
def __init__(self, dim, kv_dim, num_heads, qk_norm=True, eps=1e-6, operation_settings={}):
super().__init__()
self.audio_cross_attn = WanT2VCrossAttentionGather(dim, num_heads, qk_norm=qk_norm, kv_dim=kv_dim, eps=eps, operation_settings=operation_settings)
self.norm1_audio = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, x, audio, transformer_options={}):
x = x + self.audio_cross_attn(self.norm1_audio(x), audio, transformer_options=transformer_options)
return x
class WanAttentionBlockAudio(WanAttentionBlock):
def __init__(self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6, operation_settings={}):
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, operation_settings)
self.audio_cross_attn_wrapper = AudioCrossAttentionWrapper(dim, 1536, num_heads, qk_norm, eps, operation_settings=operation_settings)
def forward(
self,
x,
e,
freqs,
context,
context_img_len=257,
audio=None,
transformer_options={},
):
r"""
Args:
x(Tensor): Shape [B, L, C]
e(Tensor): Shape [B, 6, C]
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
# assert e.dtype == torch.float32
if e.ndim < 4:
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1)
else:
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device).unsqueeze(0) + e).unbind(2)
# assert e[0].dtype == torch.float32
# self-attention
y = self.self_attn(
torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)),
freqs, transformer_options=transformer_options)
x = torch.addcmul(x, y, repeat_e(e[2], x))
# cross-attention & ffn
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len, transformer_options=transformer_options)
if audio is not None:
x = self.audio_cross_attn_wrapper(x, audio, transformer_options=transformer_options)
y = self.ffn(torch.addcmul(repeat_e(e[3], x), self.norm2(x), 1 + repeat_e(e[4], x)))
x = torch.addcmul(x, y, repeat_e(e[5], x))
return x
class DummyAdapterLayer(nn.Module):
def __init__(self, layer):
super().__init__()
self.layer = layer
def forward(self, *args, **kwargs):
return self.layer(*args, **kwargs)
class AudioProjModel(nn.Module):
def __init__(
self,
seq_len=5,
blocks=13, # add a new parameter blocks
channels=768, # add a new parameter channels
intermediate_dim=512,
output_dim=1536,
context_tokens=16,
device=None,
dtype=None,
operations=None,
):
super().__init__()
self.seq_len = seq_len
self.blocks = blocks
self.channels = channels
self.input_dim = seq_len * blocks * channels # update input_dim to be the product of blocks and channels.
self.intermediate_dim = intermediate_dim
self.context_tokens = context_tokens
self.output_dim = output_dim
# define multiple linear layers
self.audio_proj_glob_1 = DummyAdapterLayer(operations.Linear(self.input_dim, intermediate_dim, dtype=dtype, device=device))
self.audio_proj_glob_2 = DummyAdapterLayer(operations.Linear(intermediate_dim, intermediate_dim, dtype=dtype, device=device))
self.audio_proj_glob_3 = DummyAdapterLayer(operations.Linear(intermediate_dim, context_tokens * output_dim, dtype=dtype, device=device))
self.audio_proj_glob_norm = DummyAdapterLayer(operations.LayerNorm(output_dim, dtype=dtype, device=device))
def forward(self, audio_embeds):
video_length = audio_embeds.shape[1]
audio_embeds = rearrange(audio_embeds, "bz f w b c -> (bz f) w b c")
batch_size, window_size, blocks, channels = audio_embeds.shape
audio_embeds = audio_embeds.view(batch_size, window_size * blocks * channels)
audio_embeds = torch.relu(self.audio_proj_glob_1(audio_embeds))
audio_embeds = torch.relu(self.audio_proj_glob_2(audio_embeds))
context_tokens = self.audio_proj_glob_3(audio_embeds).reshape(batch_size, self.context_tokens, self.output_dim)
context_tokens = self.audio_proj_glob_norm(context_tokens)
context_tokens = rearrange(context_tokens, "(bz f) m c -> bz f m c", f=video_length)
return context_tokens
class HumoWanModel(WanModel):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='humo',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
image_model=None,
audio_token_num=16,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, wan_attn_block_class=WanAttentionBlockAudio, image_model=image_model, device=device, dtype=dtype, operations=operations)
self.audio_proj = AudioProjModel(seq_len=8, blocks=5, channels=1280, intermediate_dim=512, output_dim=1536, context_tokens=audio_token_num, dtype=dtype, device=device, operations=operations)
def forward_orig(
self,
x,
t,
context,
freqs=None,
audio_embed=None,
reference_latent=None,
transformer_options={},
**kwargs,
):
bs, _, time, height, width = x.shape
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
e = e.reshape(t.shape[0], -1, e.shape[-1])
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
if reference_latent is not None:
ref = self.patch_embedding(reference_latent.float()).to(x.dtype)
ref = ref.flatten(2).transpose(1, 2)
freqs_ref = self.rope_encode(reference_latent.shape[-3], reference_latent.shape[-2], reference_latent.shape[-1], t_start=time, device=x.device, dtype=x.dtype)
x = torch.cat([x, ref], dim=1)
freqs = torch.cat([freqs, freqs_ref], dim=1)
del ref, freqs_ref
# context
context = self.text_embedding(context)
context_img_len = None
if audio_embed is not None:
if reference_latent is not None:
zero_audio_pad = torch.zeros(audio_embed.shape[0], reference_latent.shape[-3], *audio_embed.shape[2:], device=audio_embed.device, dtype=audio_embed.dtype)
audio_embed = torch.cat([audio_embed, zero_audio_pad], dim=1)
audio = self.audio_proj(audio_embed).permute(0, 3, 1, 2).flatten(2).transpose(1, 2)
else:
audio = None
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, audio=audio, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, audio=audio, transformer_options=transformer_options)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x

View File

@@ -0,0 +1,548 @@
from torch import nn
import torch
from typing import Tuple, Optional
from einops import rearrange
import torch.nn.functional as F
import math
from .model import WanModel, sinusoidal_embedding_1d
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
class CausalConv1d(nn.Module):
def __init__(self, chan_in, chan_out, kernel_size=3, stride=1, dilation=1, pad_mode="replicate", operations=None, **kwargs):
super().__init__()
self.pad_mode = pad_mode
padding = (kernel_size - 1, 0) # T
self.time_causal_padding = padding
self.conv = operations.Conv1d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs)
def forward(self, x):
x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
return self.conv(x)
class FaceEncoder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int, num_heads=int, dtype=None, device=None, operations=None):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.num_heads = num_heads
self.conv1_local = CausalConv1d(in_dim, 1024 * num_heads, 3, stride=1, operations=operations, **factory_kwargs)
self.norm1 = operations.LayerNorm(hidden_dim // 8, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.act = nn.SiLU()
self.conv2 = CausalConv1d(1024, 1024, 3, stride=2, operations=operations, **factory_kwargs)
self.conv3 = CausalConv1d(1024, 1024, 3, stride=2, operations=operations, **factory_kwargs)
self.out_proj = operations.Linear(1024, hidden_dim, **factory_kwargs)
self.norm1 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.norm2 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.norm3 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.padding_tokens = nn.Parameter(torch.empty(1, 1, 1, hidden_dim, **factory_kwargs))
def forward(self, x):
x = rearrange(x, "b t c -> b c t")
b, c, t = x.shape
x = self.conv1_local(x)
x = rearrange(x, "b (n c) t -> (b n) t c", n=self.num_heads)
x = self.norm1(x)
x = self.act(x)
x = rearrange(x, "b t c -> b c t")
x = self.conv2(x)
x = rearrange(x, "b c t -> b t c")
x = self.norm2(x)
x = self.act(x)
x = rearrange(x, "b t c -> b c t")
x = self.conv3(x)
x = rearrange(x, "b c t -> b t c")
x = self.norm3(x)
x = self.act(x)
x = self.out_proj(x)
x = rearrange(x, "(b n) t c -> b t n c", b=b)
padding = comfy.model_management.cast_to(self.padding_tokens, dtype=x.dtype, device=x.device).repeat(b, x.shape[1], 1, 1)
x = torch.cat([x, padding], dim=-2)
x_local = x.clone()
return x_local
def get_norm_layer(norm_layer, operations=None):
"""
Get the normalization layer.
Args:
norm_layer (str): The type of normalization layer.
Returns:
norm_layer (nn.Module): The normalization layer.
"""
if norm_layer == "layer":
return operations.LayerNorm
elif norm_layer == "rms":
return operations.RMSNorm
else:
raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")
class FaceAdapter(nn.Module):
def __init__(
self,
hidden_dim: int,
heads_num: int,
qk_norm: bool = True,
qk_norm_type: str = "rms",
num_adapter_layers: int = 1,
dtype=None, device=None, operations=None
):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.hidden_size = hidden_dim
self.heads_num = heads_num
self.fuser_blocks = nn.ModuleList(
[
FaceBlock(
self.hidden_size,
self.heads_num,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
operations=operations,
**factory_kwargs,
)
for _ in range(num_adapter_layers)
]
)
def forward(
self,
x: torch.Tensor,
motion_embed: torch.Tensor,
idx: int,
freqs_cis_q: Tuple[torch.Tensor, torch.Tensor] = None,
freqs_cis_k: Tuple[torch.Tensor, torch.Tensor] = None,
) -> torch.Tensor:
return self.fuser_blocks[idx](x, motion_embed, freqs_cis_q, freqs_cis_k)
class FaceBlock(nn.Module):
def __init__(
self,
hidden_size: int,
heads_num: int,
qk_norm: bool = True,
qk_norm_type: str = "rms",
qk_scale: float = None,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
operations=None
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.deterministic = False
self.hidden_size = hidden_size
self.heads_num = heads_num
head_dim = hidden_size // heads_num
self.scale = qk_scale or head_dim**-0.5
self.linear1_kv = operations.Linear(hidden_size, hidden_size * 2, **factory_kwargs)
self.linear1_q = operations.Linear(hidden_size, hidden_size, **factory_kwargs)
self.linear2 = operations.Linear(hidden_size, hidden_size, **factory_kwargs)
qk_norm_layer = get_norm_layer(qk_norm_type, operations=operations)
self.q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.pre_norm_feat = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.pre_norm_motion = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
def forward(
self,
x: torch.Tensor,
motion_vec: torch.Tensor,
motion_mask: Optional[torch.Tensor] = None,
# use_context_parallel=False,
) -> torch.Tensor:
B, T, N, C = motion_vec.shape
T_comp = T
x_motion = self.pre_norm_motion(motion_vec)
x_feat = self.pre_norm_feat(x)
kv = self.linear1_kv(x_motion)
q = self.linear1_q(x_feat)
k, v = rearrange(kv, "B L N (K H D) -> K B L N H D", K=2, H=self.heads_num)
q = rearrange(q, "B S (H D) -> B S H D", H=self.heads_num)
# Apply QK-Norm if needed.
q = self.q_norm(q).to(v)
k = self.k_norm(k).to(v)
k = rearrange(k, "B L N H D -> (B L) N H D")
v = rearrange(v, "B L N H D -> (B L) N H D")
q = rearrange(q, "B (L S) H D -> (B L) S (H D)", L=T_comp)
attn = optimized_attention(q, k, v, heads=self.heads_num)
attn = rearrange(attn, "(B L) S C -> B (L S) C", L=T_comp)
output = self.linear2(attn)
if motion_mask is not None:
output = output * rearrange(motion_mask, "B T H W -> B (T H W)").unsqueeze(-1)
return output
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/ops/upfirdn2d/upfirdn2d.py#L162
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
_, minor, in_h, in_w = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, minor, in_h, 1, in_w, 1)
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0)]
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
return out[:, :, ::down_y, ::down_x]
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/ops/fused_act/fused_act.py#L81
class FusedLeakyReLU(torch.nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5, dtype=None, device=None):
super().__init__()
self.bias = torch.nn.Parameter(torch.empty(1, channel, 1, 1, dtype=dtype, device=device))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
return fused_leaky_relu(input, comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype), self.negative_slope, self.scale)
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return F.leaky_relu(input + bias, negative_slope) * scale
class Blur(torch.nn.Module):
def __init__(self, kernel, pad, dtype=None, device=None):
super().__init__()
kernel = torch.tensor(kernel, dtype=dtype, device=device)
kernel = kernel[None, :] * kernel[:, None]
kernel = kernel / kernel.sum()
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
return upfirdn2d(input, comfy.model_management.cast_to(self.kernel, dtype=input.dtype, device=input.device), pad=self.pad)
#https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L590
class ScaledLeakyReLU(torch.nn.Module):
def __init__(self, negative_slope=0.2):
super().__init__()
self.negative_slope = negative_slope
def forward(self, input):
return F.leaky_relu(input, negative_slope=self.negative_slope)
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L605
class EqualConv2d(torch.nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(out_channel, in_channel, kernel_size, kernel_size, device=device, dtype=dtype))
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
self.stride = stride
self.padding = padding
self.bias = torch.nn.Parameter(torch.empty(out_channel, device=device, dtype=dtype)) if bias else None
def forward(self, input):
if self.bias is None:
bias = None
else:
bias = comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype)
return F.conv2d(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale, bias=bias, stride=self.stride, padding=self.padding)
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L134
class EqualLinear(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None, dtype=None, device=None, operations=None):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(out_dim, in_dim, device=device, dtype=dtype))
self.bias = torch.nn.Parameter(torch.empty(out_dim, device=device, dtype=dtype)) if bias else None
self.activation = activation
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.bias is None:
bias = None
else:
bias = comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype) * self.lr_mul
if self.activation:
out = F.linear(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale)
return fused_leaky_relu(out, bias)
return F.linear(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale, bias=bias)
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L654
class ConvLayer(torch.nn.Sequential):
def __init__(self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, dtype=None, device=None, operations=None):
layers = []
if downsample:
factor = 2
p = (len(blur_kernel) - factor) + (kernel_size - 1)
layers.append(Blur(blur_kernel, pad=((p + 1) // 2, p // 2)))
stride, padding = 2, 0
else:
stride, padding = 1, kernel_size // 2
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias and not activate, dtype=dtype, device=device, operations=operations))
if activate:
layers.append(FusedLeakyReLU(out_channel) if bias else ScaledLeakyReLU(0.2))
super().__init__(*layers)
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L704
class ResBlock(torch.nn.Module):
def __init__(self, in_channel, out_channel, dtype=None, device=None, operations=None):
super().__init__()
self.conv1 = ConvLayer(in_channel, in_channel, 3, dtype=dtype, device=device, operations=operations)
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True, dtype=dtype, device=device, operations=operations)
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False, dtype=dtype, device=device, operations=operations)
def forward(self, input):
out = self.conv2(self.conv1(input))
skip = self.skip(input)
return (out + skip) / math.sqrt(2)
class EncoderApp(torch.nn.Module):
def __init__(self, w_dim=512, dtype=None, device=None, operations=None):
super().__init__()
kwargs = {"device": device, "dtype": dtype, "operations": operations}
self.convs = torch.nn.ModuleList([
ConvLayer(3, 32, 1, **kwargs), ResBlock(32, 64, **kwargs),
ResBlock(64, 128, **kwargs), ResBlock(128, 256, **kwargs),
ResBlock(256, 512, **kwargs), ResBlock(512, 512, **kwargs),
ResBlock(512, 512, **kwargs), ResBlock(512, 512, **kwargs),
EqualConv2d(512, w_dim, 4, padding=0, bias=False, **kwargs)
])
def forward(self, x):
h = x
for conv in self.convs:
h = conv(h)
return h.squeeze(-1).squeeze(-1)
class Encoder(torch.nn.Module):
def __init__(self, dim=512, motion_dim=20, dtype=None, device=None, operations=None):
super().__init__()
self.net_app = EncoderApp(dim, dtype=dtype, device=device, operations=operations)
self.fc = torch.nn.Sequential(*[EqualLinear(dim, dim, dtype=dtype, device=device, operations=operations) for _ in range(4)] + [EqualLinear(dim, motion_dim, dtype=dtype, device=device, operations=operations)])
def encode_motion(self, x):
return self.fc(self.net_app(x))
class Direction(torch.nn.Module):
def __init__(self, motion_dim, dtype=None, device=None, operations=None):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(512, motion_dim, device=device, dtype=dtype))
self.motion_dim = motion_dim
def forward(self, input):
stabilized_weight = comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) + 1e-8 * torch.eye(512, self.motion_dim, device=input.device, dtype=input.dtype)
Q, _ = torch.linalg.qr(stabilized_weight.float())
if input is None:
return Q
return torch.sum(input.unsqueeze(-1) * Q.T.to(input.dtype), dim=1)
class Synthesis(torch.nn.Module):
def __init__(self, motion_dim, dtype=None, device=None, operations=None):
super().__init__()
self.direction = Direction(motion_dim, dtype=dtype, device=device, operations=operations)
class Generator(torch.nn.Module):
def __init__(self, style_dim=512, motion_dim=20, dtype=None, device=None, operations=None):
super().__init__()
self.enc = Encoder(style_dim, motion_dim, dtype=dtype, device=device, operations=operations)
self.dec = Synthesis(motion_dim, dtype=dtype, device=device, operations=operations)
def get_motion(self, img):
motion_feat = self.enc.encode_motion(img)
return self.dec.direction(motion_feat)
class AnimateWanModel(WanModel):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='animate',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
motion_encoder_dim=512,
image_model=None,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
self.pose_patch_embedding = operations.Conv3d(
16, dim, kernel_size=patch_size, stride=patch_size, device=device, dtype=dtype
)
self.motion_encoder = Generator(style_dim=512, motion_dim=20, device=device, dtype=dtype, operations=operations)
self.face_adapter = FaceAdapter(
heads_num=self.num_heads,
hidden_dim=self.dim,
num_adapter_layers=self.num_layers // 5,
device=device, dtype=dtype, operations=operations
)
self.face_encoder = FaceEncoder(
in_dim=motion_encoder_dim,
hidden_dim=self.dim,
num_heads=4,
device=device, dtype=dtype, operations=operations
)
def after_patch_embedding(self, x, pose_latents, face_pixel_values):
if pose_latents is not None:
pose_latents = self.pose_patch_embedding(pose_latents)
x[:, :, 1:pose_latents.shape[2] + 1] += pose_latents[:, :, :x.shape[2] - 1]
if face_pixel_values is None:
return x, None
b, c, T, h, w = face_pixel_values.shape
face_pixel_values = rearrange(face_pixel_values, "b c t h w -> (b t) c h w")
encode_bs = 8
face_pixel_values_tmp = []
for i in range(math.ceil(face_pixel_values.shape[0] / encode_bs)):
face_pixel_values_tmp.append(self.motion_encoder.get_motion(face_pixel_values[i * encode_bs: (i + 1) * encode_bs]))
motion_vec = torch.cat(face_pixel_values_tmp)
motion_vec = rearrange(motion_vec, "(b t) c -> b t c", t=T)
motion_vec = self.face_encoder(motion_vec)
B, L, H, C = motion_vec.shape
pad_face = torch.zeros(B, 1, H, C).type_as(motion_vec)
motion_vec = torch.cat([pad_face, motion_vec], dim=1)
if motion_vec.shape[1] < x.shape[2]:
B, L, H, C = motion_vec.shape
pad = torch.zeros(B, x.shape[2] - motion_vec.shape[1], H, C).type_as(motion_vec)
motion_vec = torch.cat([motion_vec, pad], dim=1)
else:
motion_vec = motion_vec[:, :x.shape[2]]
return x, motion_vec
def forward_orig(
self,
x,
t,
context,
clip_fea=None,
pose_latents=None,
face_pixel_values=None,
freqs=None,
transformer_options={},
**kwargs,
):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
x, motion_vec = self.after_patch_embedding(x, pose_latents, face_pixel_values)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
e = e.reshape(t.shape[0], -1, e.shape[-1])
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
full_ref = None
if self.ref_conv is not None:
full_ref = kwargs.get("reference_latent", None)
if full_ref is not None:
full_ref = self.ref_conv(full_ref).flatten(2).transpose(1, 2)
x = torch.concat((full_ref, x), dim=1)
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
if i % 5 == 0 and motion_vec is not None:
x = x + self.face_adapter.fuser_blocks[i // 5](x, motion_vec)
# head
x = self.head(x, e)
if full_ref is not None:
x = x[:, full_ref.shape[1]:]
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x

View File

@@ -260,6 +260,10 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
for k in sdk:
hidden_size = model.model_config.unet_config.get("hidden_size", 0)
if k.endswith(".weight") and ".linear1." in k:
key_map["{}".format(k.replace(".linear1.weight", ".linear1_qkv"))] = (k, (0, 0, hidden_size * 3))
if isinstance(model, comfy.model_base.GenmoMochi):
for k in sdk:
@@ -293,6 +297,12 @@ def model_lora_keys_unet(model, key_map={}):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
if isinstance(model, comfy.model_base.Omnigen2):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
if isinstance(model, comfy.model_base.QwenImage):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"): #QwenImage lora format

View File

@@ -15,10 +15,29 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
def convert_lora_wan_fun(sd): #Wan Fun loras
return comfy.utils.state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
def convert_uso_lora(sd):
sd_out = {}
for k in sd:
tensor = sd[k]
k_to = "diffusion_model.{}".format(k.replace(".down.weight", ".lora_down.weight")
.replace(".up.weight", ".lora_up.weight")
.replace(".qkv_lora2.", ".txt_attn.qkv.")
.replace(".qkv_lora1.", ".img_attn.qkv.")
.replace(".proj_lora1.", ".img_attn.proj.")
.replace(".proj_lora2.", ".txt_attn.proj.")
.replace(".qkv_lora.", ".linear1_qkv.")
.replace(".proj_lora.", ".linear2.")
.replace(".processor.", ".")
)
sd_out[k_to] = tensor
return sd_out
def convert_lora(sd):
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
return convert_lora_bfl_control(sd)
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
return convert_lora_wan_fun(sd)
if "single_blocks.37.processor.qkv_lora.up.weight" in sd and "double_blocks.18.processor.qkv_lora2.up.weight" in sd:
return convert_uso_lora(sd)
return sd

View File

@@ -16,6 +16,8 @@
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import comfy.ldm.hunyuan3dv2_1
import comfy.ldm.hunyuan3dv2_1.hunyuandit
import torch
import logging
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
@@ -37,9 +39,11 @@ import comfy.ldm.cosmos.model
import comfy.ldm.cosmos.predict2
import comfy.ldm.lumina.model
import comfy.ldm.wan.model
import comfy.ldm.wan.model_animate
import comfy.ldm.hunyuan3d.model
import comfy.ldm.hidream.model
import comfy.ldm.chroma.model
import comfy.ldm.chroma_radiance.model
import comfy.ldm.ace.model
import comfy.ldm.omnigen.omnigen2
import comfy.ldm.qwen_image.model
@@ -1210,6 +1214,63 @@ class WAN21_Camera(WAN21):
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
return out
class WAN21_HuMo(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.HumoWanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
noise = kwargs.get("noise", None)
audio_embed = kwargs.get("audio_embed", None)
if audio_embed is not None:
out['audio_embed'] = comfy.conds.CONDRegular(audio_embed)
if "c_concat" not in out: # 1.7B model
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1]))
else:
noise_shape = list(noise.shape)
noise_shape[1] += 4
concat_latent = torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)
zero_vae_values_first = torch.tensor([0.8660, -0.4326, -0.0017, -0.4884, -0.5283, 0.9207, -0.9896, 0.4433, -0.5543, -0.0113, 0.5753, -0.6000, -0.8346, -0.3497, -0.1926, -0.6938]).view(1, 16, 1, 1, 1)
zero_vae_values_second = torch.tensor([1.0869, -1.2370, 0.0206, -0.4357, -0.6411, 2.0307, -1.5972, 1.2659, -0.8595, -0.4654, 0.9638, -1.6330, -1.4310, -0.1098, -0.3856, -1.4583]).view(1, 16, 1, 1, 1)
zero_vae_values = torch.tensor([0.8642, -1.8583, 0.1577, 0.1350, -0.3641, 2.5863, -1.9670, 1.6065, -1.0475, -0.8678, 1.1734, -1.8138, -1.5933, -0.7721, -0.3289, -1.3745]).view(1, 16, 1, 1, 1)
concat_latent[:, 4:] = zero_vae_values
concat_latent[:, 4:, :1] = zero_vae_values_first
concat_latent[:, 4:, 1:2] = zero_vae_values_second
out['c_concat'] = comfy.conds.CONDNoiseShape(concat_latent)
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
ref_latent = self.process_latent_in(reference_latents[-1])
ref_latent_shape = list(ref_latent.shape)
ref_latent_shape[1] += 4 + ref_latent_shape[1]
ref_latent_full = torch.zeros(ref_latent_shape, device=ref_latent.device, dtype=ref_latent.dtype)
ref_latent_full[:, 20:] = ref_latent
ref_latent_full[:, 16:20] = 1.0
out['reference_latent'] = comfy.conds.CONDRegular(ref_latent_full)
return out
class WAN22_Animate(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model_animate.AnimateWanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
face_video_pixels = kwargs.get("face_video_pixels", None)
if face_video_pixels is not None:
out['face_pixel_values'] = comfy.conds.CONDRegular(face_video_pixels)
pose_latents = kwargs.get("pose_video_latent", None)
if pose_latents is not None:
out['pose_latents'] = comfy.conds.CONDRegular(self.process_latent_in(pose_latents))
return out
class WAN22_S2V(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel_S2V)
@@ -1282,6 +1343,21 @@ class Hunyuan3Dv2(BaseModel):
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class Hunyuan3Dv2_1(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan3dv2_1.hunyuandit.HunYuanDiTPlain)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
guidance = kwargs.get("guidance", 5.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class HiDream(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hidream.model.HiDreamImageTransformer2DModel)
@@ -1303,8 +1379,8 @@ class HiDream(BaseModel):
return out
class Chroma(Flux):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma.model.Chroma)
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.chroma.model.Chroma):
super().__init__(model_config, model_type, device=device, unet_model=unet_model)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
@@ -1314,6 +1390,10 @@ class Chroma(Flux):
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class ChromaRadiance(Chroma):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma_radiance.model.ChromaRadiance)
class ACEStep(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.ace.model.ACEStepTransformer2DModel)
@@ -1391,3 +1471,55 @@ class QwenImage(BaseModel):
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out
class HunyuanImage21(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_byt5small = kwargs.get("conditioning_byt5small", None)
if conditioning_byt5small is not None:
out['txt_byt5'] = comfy.conds.CONDRegular(conditioning_byt5small)
guidance = kwargs.get("guidance", 6.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class HunyuanImage21Refiner(HunyuanImage21):
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
image = kwargs.get("concat_latent_image", None)
noise_augmentation = kwargs.get("noise_augmentation", 0.0)
device = kwargs["device"]
if image is None:
shape_image = list(noise.shape)
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = self.process_latent_in(image)
image = utils.resize_to_batch_size(image, noise.shape[0])
if noise_augmentation > 0:
generator = torch.Generator(device="cpu")
generator.manual_seed(kwargs.get("seed", 0) - 10)
noise = torch.randn(image.shape, generator=generator, dtype=image.dtype, device="cpu").to(image.device)
image = noise_augmentation * noise + min(1.0 - noise_augmentation, 0.75) * image
else:
image = 0.75 * image
return image
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
out['disable_time_r'] = comfy.conds.CONDConstant(True)
return out

View File

@@ -136,25 +136,45 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}txt_in.individual_token_refiner.blocks.0.norm1.weight'.format(key_prefix) in state_dict_keys: #Hunyuan Video
dit_config = {}
in_w = state_dict['{}img_in.proj.weight'.format(key_prefix)]
out_w = state_dict['{}final_layer.linear.weight'.format(key_prefix)]
dit_config["image_model"] = "hunyuan_video"
dit_config["in_channels"] = state_dict['{}img_in.proj.weight'.format(key_prefix)].shape[1] #SkyReels img2video has 32 input channels
dit_config["patch_size"] = [1, 2, 2]
dit_config["out_channels"] = 16
dit_config["vec_in_dim"] = 768
dit_config["context_in_dim"] = 4096
dit_config["hidden_size"] = 3072
dit_config["in_channels"] = in_w.shape[1] #SkyReels img2video has 32 input channels
dit_config["patch_size"] = list(in_w.shape[2:])
dit_config["out_channels"] = out_w.shape[0] // math.prod(dit_config["patch_size"])
if any(s.startswith('{}vector_in.'.format(key_prefix)) for s in state_dict_keys):
dit_config["vec_in_dim"] = 768
else:
dit_config["vec_in_dim"] = None
if len(dit_config["patch_size"]) == 2:
dit_config["axes_dim"] = [64, 64]
else:
dit_config["axes_dim"] = [16, 56, 56]
if any(s.startswith('{}time_r_in.'.format(key_prefix)) for s in state_dict_keys):
dit_config["meanflow"] = True
else:
dit_config["meanflow"] = False
dit_config["context_in_dim"] = state_dict['{}txt_in.input_embedder.weight'.format(key_prefix)].shape[1]
dit_config["hidden_size"] = in_w.shape[0]
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 24
dit_config["num_heads"] = in_w.shape[0] // 128
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
dit_config["axes_dim"] = [16, 56, 56]
dit_config["theta"] = 256
dit_config["qkv_bias"] = True
if '{}byt5_in.fc1.weight'.format(key_prefix) in state_dict:
dit_config["byt5"] = True
else:
dit_config["byt5"] = False
guidance_keys = list(filter(lambda a: a.startswith("{}guidance_in.".format(key_prefix)), state_dict_keys))
dit_config["guidance_embed"] = len(guidance_keys) > 0
return dit_config
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and '{}img_in.weight'.format(key_prefix) in state_dict_keys: #Flux
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
dit_config = {}
dit_config["image_model"] = "flux"
dit_config["in_channels"] = 16
@@ -184,6 +204,18 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["out_dim"] = 3072
dit_config["hidden_dim"] = 5120
dit_config["n_layers"] = 5
if f"{key_prefix}nerf_blocks.0.norm.scale" in state_dict_keys: #Chroma Radiance
dit_config["image_model"] = "chroma_radiance"
dit_config["in_channels"] = 3
dit_config["out_channels"] = 3
dit_config["patch_size"] = 16
dit_config["nerf_hidden_size"] = 64
dit_config["nerf_mlp_ratio"] = 4
dit_config["nerf_depth"] = 4
dit_config["nerf_max_freqs"] = 8
dit_config["nerf_tile_size"] = 32
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
dit_config["nerf_embedder_dtype"] = torch.float32
else:
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
@@ -370,6 +402,10 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["model_type"] = "camera_2.2"
elif '{}casual_audio_encoder.encoder.final_linear.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "s2v"
elif '{}audio_proj.audio_proj_glob_1.layer.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "humo"
elif '{}face_adapter.fuser_blocks.0.k_norm.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "animate"
else:
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"
@@ -400,6 +436,20 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
if f"{key_prefix}t_embedder.mlp.2.weight" in state_dict_keys: # Hunyuan 3D 2.1
dit_config = {}
dit_config["image_model"] = "hunyuan3d2_1"
dit_config["in_channels"] = state_dict[f"{key_prefix}x_embedder.weight"].shape[1]
dit_config["context_dim"] = 1024
dit_config["hidden_size"] = state_dict[f"{key_prefix}x_embedder.weight"].shape[0]
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 16
dit_config["depth"] = count_blocks(state_dict_keys, f"{key_prefix}blocks.{{}}")
dit_config["qkv_bias"] = False
dit_config["guidance_cond_proj_dim"] = None#f"{key_prefix}t_embedder.cond_proj.weight" in state_dict_keys
return dit_config
if '{}caption_projection.0.linear.weight'.format(key_prefix) in state_dict_keys: # HiDream
dit_config = {}
dit_config["image_model"] = "hidream"

View File

@@ -22,6 +22,7 @@ from enum import Enum
from comfy.cli_args import args, PerformanceFeature
import torch
import sys
import importlib
import platform
import weakref
import gc
@@ -289,6 +290,24 @@ def is_amd():
return True
return False
def amd_min_version(device=None, min_rdna_version=0):
if not is_amd():
return False
if is_device_cpu(device):
return False
arch = torch.cuda.get_device_properties(device).gcnArchName
if arch.startswith('gfx') and len(arch) == 7:
try:
cmp_rdna_version = int(arch[4]) + 2
except:
cmp_rdna_version = 0
if cmp_rdna_version >= min_rdna_version:
return True
return False
MIN_WEIGHT_MEMORY_RATIO = 0.4
if is_nvidia():
MIN_WEIGHT_MEMORY_RATIO = 0.0
@@ -321,14 +340,15 @@ try:
logging.info("AMD arch: {}".format(arch))
logging.info("ROCm version: {}".format(rocm_version))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
ENABLE_PYTORCH_ATTENTION = True
# if torch_version_numeric >= (2, 8):
# if any((a in arch) for a in ["gfx1201"]):
# ENABLE_PYTORCH_ATTENTION = True
if importlib.util.find_spec('triton') is not None: # AMD efficient attention implementation depends on triton. TODO: better way of detecting if it's compiled in or not.
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
ENABLE_PYTORCH_ATTENTION = True
# if torch_version_numeric >= (2, 8):
# if any((a in arch) for a in ["gfx1201"]):
# ENABLE_PYTORCH_ATTENTION = True
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
if any((a in arch) for a in ["gfx1201", "gfx942", "gfx950"]): # TODO: more arches
if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx942", "gfx950"]): # TODO: more arches
SUPPORT_FP8_OPS = True
except:
@@ -625,7 +645,9 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
if loaded_model.model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload
for i in to_unload:
current_loaded_models.pop(i).model.detach(unpatch_all=False)
model_to_unload = current_loaded_models.pop(i)
model_to_unload.model.detach(unpatch_all=False)
model_to_unload.model_finalizer.detach()
total_memory_required = {}
for loaded_model in models_to_load:
@@ -905,7 +927,9 @@ def vae_dtype(device=None, allowed_dtypes=[]):
# NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32
# slowness still a problem on pytorch nightly 2.9.0.dev20250720+rocm6.4 tested on RDNA3
if d == torch.bfloat16 and (not is_amd()) and should_use_bf16(device):
# also a problem on RDNA4 except fp32 is also slow there.
# This is due to large bf16 convolutions being extremely slow.
if d == torch.bfloat16 and ((not is_amd()) or amd_min_version(device, min_rdna_version=4)) and should_use_bf16(device):
return d
return torch.float32

View File

@@ -433,6 +433,9 @@ class ModelPatcher:
def set_model_double_block_patch(self, patch):
self.set_model_patch(patch, "double_block")
def set_model_post_input_patch(self, patch):
self.set_model_patch(patch, "post_input")
def add_object_patch(self, name, obj):
self.object_patches[name] = obj

View File

@@ -52,6 +52,9 @@ except (ModuleNotFoundError, TypeError):
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast:
torch.backends.cudnn.benchmark = True
def cast_to_input(weight, input, non_blocking=False, copy=True):
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
@@ -362,12 +365,13 @@ class fp8_ops(manual_cast):
return None
def forward_comfy_cast_weights(self, input):
try:
out = fp8_linear(self, input)
if out is not None:
return out
except Exception as e:
logging.info("Exception during fp8 op: {}".format(e))
if not self.training:
try:
out = fp8_linear(self, input)
if out is not None:
return out
except Exception as e:
logging.info("Exception during fp8 op: {}".format(e))
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)

View File

@@ -0,0 +1,16 @@
import torch
# "Fake" VAE that converts from IMAGE B, H, W, C and values on the scale of 0..1
# to LATENT B, C, H, W and values on the scale of -1..1.
class PixelspaceConversionVAE(torch.nn.Module):
def __init__(self):
super().__init__()
self.pixel_space_vae = torch.nn.Parameter(torch.tensor(1.0))
def encode(self, pixels: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
return pixels
def decode(self, samples: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
return samples

View File

@@ -360,7 +360,7 @@ def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None):
if "sampler_cfg_function" in model_options:
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options, "input_cond": cond, "input_uncond": uncond}
cfg_result = x - model_options["sampler_cfg_function"](args)
else:
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
@@ -390,7 +390,7 @@ def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_option
for fn in model_options.get("sampler_pre_cfg_function", []):
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
"input": x, "sigma": timestep, "model": model, "model_options": model_options}
out = fn(args)
out = fn(args)
return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)

View File

@@ -17,6 +17,8 @@ import comfy.ldm.wan.vae
import comfy.ldm.wan.vae2_2
import comfy.ldm.hunyuan3d.vae
import comfy.ldm.ace.vae.music_dcae_pipeline
import comfy.ldm.hunyuan_video.vae
import comfy.pixel_space_convert
import yaml
import math
import os
@@ -48,6 +50,7 @@ import comfy.text_encoders.hidream
import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.text_encoders.hunyuan_image
import comfy.model_patcher
import comfy.lora
@@ -283,6 +286,7 @@ class VAE:
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32]
self.disable_offload = False
self.not_video = False
self.downscale_index_formula = None
self.upscale_index_formula = None
@@ -328,6 +332,19 @@ class VAE:
self.first_stage_model = StageC_coder()
self.downscale_ratio = 32
self.latent_channels = 16
elif "decoder.conv_in.weight" in sd and sd['decoder.conv_in.weight'].shape[1] == 64:
ddconfig = {"block_out_channels": [128, 256, 512, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 32, "downsample_match_channel": True, "upsample_match_channel": True}
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
self.downscale_ratio = 32
self.upscale_ratio = 32
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype)
elif "decoder.conv_in.weight" in sd:
#default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
@@ -394,6 +411,23 @@ class VAE:
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32)
self.downscale_index_formula = (8, 32, 32)
self.working_dtypes = [torch.bfloat16, torch.float32]
elif "decoder.conv_in.conv.weight" in sd and sd['decoder.conv_in.conv.weight'].shape[1] == 32:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True}
ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
self.latent_channels = 64
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
self.latent_dim = 3
self.not_video = True
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.EmptyRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (1400 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1400 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
elif "decoder.conv_in.conv.weight" in sd:
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
ddconfig["conv3d"] = True
@@ -446,17 +480,29 @@ class VAE:
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
# Hunyuan 3d v2 2.0 & 2.1
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
self.latent_dim = 1
ln_post = "geo_decoder.ln_post.weight" in sd
inner_size = sd["geo_decoder.output_proj.weight"].shape[1]
downsample_ratio = sd["post_kl.weight"].shape[0] // inner_size
mlp_expand = sd["geo_decoder.cross_attn_decoder.mlp.c_fc.weight"].shape[0] // inner_size
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) # TODO
self.memory_used_decode = lambda shape, dtype: (1024 * 1024 * 1024 * 2.0) * model_management.dtype_size(dtype) # TODO
ddconfig = {"embed_dim": 64, "num_freqs": 8, "include_pi": False, "heads": 16, "width": 1024, "num_decoder_layers": 16, "qkv_bias": False, "qk_norm": True, "geo_decoder_mlp_expand_ratio": mlp_expand, "geo_decoder_downsample_ratio": downsample_ratio, "geo_decoder_ln_post": ln_post}
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE(**ddconfig)
def estimate_memory(shape, dtype, num_layers = 16, kv_cache_multiplier = 2):
batch, num_tokens, hidden_dim = shape
dtype_size = model_management.dtype_size(dtype)
total_mem = batch * num_tokens * hidden_dim * dtype_size * (1 + kv_cache_multiplier * num_layers)
return total_mem
# better memory estimations
self.memory_used_encode = lambda shape, dtype, num_layers = 8, kv_cache_multiplier = 0:\
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
self.memory_used_decode = lambda shape, dtype, num_layers = 16, kv_cache_multiplier = 2: \
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE()
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
elif "vocoder.backbone.channel_layers.0.0.bias" in sd: #Ace Step Audio
self.first_stage_model = comfy.ldm.ace.vae.music_dcae_pipeline.MusicDCAE(source_sample_rate=44100)
self.memory_used_encode = lambda shape, dtype: (shape[2] * 330) * model_management.dtype_size(dtype)
@@ -471,6 +517,15 @@ class VAE:
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.disable_offload = True
self.extra_1d_channel = 16
elif "pixel_space_vae" in sd:
self.first_stage_model = comfy.pixel_space_convert.PixelspaceConversionVAE()
self.memory_used_encode = lambda shape, dtype: (1 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.downscale_ratio = 1
self.upscale_ratio = 1
self.latent_channels = 3
self.latent_dim = 2
self.output_channels = 3
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@@ -643,7 +698,10 @@ class VAE:
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
pixel_samples = pixel_samples.movedim(-1, 1)
if self.latent_dim == 3 and pixel_samples.ndim < 5:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
if not self.not_video:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
else:
pixel_samples = pixel_samples.unsqueeze(2)
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
@@ -677,7 +735,10 @@ class VAE:
dims = self.latent_dim
pixel_samples = pixel_samples.movedim(-1, 1)
if dims == 3:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
if not self.not_video:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
else:
pixel_samples = pixel_samples.unsqueeze(2)
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
@@ -734,6 +795,7 @@ class VAE:
except:
return None
class StyleModel:
def __init__(self, model, device="cpu"):
self.model = model
@@ -773,6 +835,7 @@ class CLIPType(Enum):
ACE = 16
OMNIGEN2 = 17
QWEN_IMAGE = 18
HUNYUAN_IMAGE = 19
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@@ -794,6 +857,7 @@ class TEModel(Enum):
GEMMA_2_2B = 9
QWEN25_3B = 10
QWEN25_7B = 11
BYT5_SMALL_GLYPH = 12
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@@ -811,6 +875,9 @@ def detect_te_model(sd):
if 'encoder.block.23.layer.1.DenseReluDense.wi.weight' in sd:
return TEModel.T5_XXL_OLD
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
weight = sd['encoder.block.0.layer.0.SelfAttention.k.weight']
if weight.shape[0] == 384:
return TEModel.BYT5_SMALL_GLYPH
return TEModel.T5_BASE
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
return TEModel.GEMMA_2_2B
@@ -925,8 +992,12 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.omnigen2.Omnigen2Tokenizer
elif te_model == TEModel.QWEN25_7B:
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
if clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(byt5=False, **llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
else:
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
else:
# clip_l
if clip_type == CLIPType.SD3:
@@ -970,6 +1041,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, **t5_kwargs, **llama_kwargs)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
elif clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer

View File

@@ -20,6 +20,7 @@ import comfy.text_encoders.wan
import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.text_encoders.hunyuan_image
from . import supported_models_base
from . import latent_formats
@@ -994,7 +995,7 @@ class WAN21_T2V(supported_models_base.BASE):
unet_extra_config = {}
latent_format = latent_formats.Wan21
memory_usage_factor = 1.0
memory_usage_factor = 0.9
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
@@ -1003,7 +1004,7 @@ class WAN21_T2V(supported_models_base.BASE):
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = self.unet_config.get("dim", 2000) / 2000
self.memory_usage_factor = self.unet_config.get("dim", 2000) / 2222
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, device=device)
@@ -1072,6 +1073,16 @@ class WAN21_Vace(WAN21_T2V):
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
return out
class WAN21_HuMo(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "humo",
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21_HuMo(self, image_to_video=False, device=device)
return out
class WAN22_S2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
@@ -1085,6 +1096,19 @@ class WAN22_S2V(WAN21_T2V):
out = model_base.WAN22_S2V(self, device=device)
return out
class WAN22_Animate(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "animate",
}
def __init__(self, unet_config):
super().__init__(unet_config)
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN22_Animate(self, device=device)
return out
class WAN22_T2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
@@ -1128,6 +1152,17 @@ class Hunyuan3Dv2(supported_models_base.BASE):
def clip_target(self, state_dict={}):
return None
class Hunyuan3Dv2_1(Hunyuan3Dv2):
unet_config = {
"image_model": "hunyuan3d2_1",
}
latent_format = latent_formats.Hunyuan3Dv2_1
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Hunyuan3Dv2_1(self, device = device)
return out
class Hunyuan3Dv2mini(Hunyuan3Dv2):
unet_config = {
"image_model": "hunyuan3d2",
@@ -1193,6 +1228,19 @@ class Chroma(supported_models_base.BASE):
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.pixart_t5.PixArtTokenizer, comfy.text_encoders.pixart_t5.pixart_te(**t5_detect))
class ChromaRadiance(Chroma):
unet_config = {
"image_model": "chroma_radiance",
}
latent_format = comfy.latent_formats.ChromaRadiance
# Pixel-space model, no spatial compression for model input.
memory_usage_factor = 0.038
def get_model(self, state_dict, prefix="", device=None):
return model_base.ChromaRadiance(self, device=device)
class ACEStep(supported_models_base.BASE):
unet_config = {
"audio_model": "ace",
@@ -1284,7 +1332,48 @@ class QwenImage(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.qwen_image.QwenImageTokenizer, comfy.text_encoders.qwen_image.te(**hunyuan_detect))
class HunyuanImage21(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"vec_in_dim": None,
}
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
sampling_settings = {
"shift": 5.0,
}
latent_format = latent_formats.HunyuanImage21
memory_usage_factor = 7.7
supported_inference_dtypes = [torch.bfloat16, torch.float32]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanImage21(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
class HunyuanImage21Refiner(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"patch_size": [1, 1, 1],
"vec_in_dim": None,
}
sampling_settings = {
"shift": 4.0,
}
latent_format = latent_formats.HunyuanImage21Refiner
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanImage21Refiner(self, device=device)
return out
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage]
models += [SVD_img2vid]

View File

@@ -0,0 +1,22 @@
{
"d_ff": 3584,
"d_kv": 64,
"d_model": 1472,
"decoder_start_token_id": 0,
"dropout_rate": 0.1,
"eos_token_id": 1,
"dense_act_fn": "gelu_pytorch_tanh",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": true,
"layer_norm_epsilon": 1e-06,
"model_type": "t5",
"num_decoder_layers": 4,
"num_heads": 6,
"num_layers": 12,
"output_past": true,
"pad_token_id": 0,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"vocab_size": 1510
}

View File

@@ -0,0 +1,127 @@
{
"<extra_id_0>": 259,
"<extra_id_100>": 359,
"<extra_id_101>": 360,
"<extra_id_102>": 361,
"<extra_id_103>": 362,
"<extra_id_104>": 363,
"<extra_id_105>": 364,
"<extra_id_106>": 365,
"<extra_id_107>": 366,
"<extra_id_108>": 367,
"<extra_id_109>": 368,
"<extra_id_10>": 269,
"<extra_id_110>": 369,
"<extra_id_111>": 370,
"<extra_id_112>": 371,
"<extra_id_113>": 372,
"<extra_id_114>": 373,
"<extra_id_115>": 374,
"<extra_id_116>": 375,
"<extra_id_117>": 376,
"<extra_id_118>": 377,
"<extra_id_119>": 378,
"<extra_id_11>": 270,
"<extra_id_120>": 379,
"<extra_id_121>": 380,
"<extra_id_122>": 381,
"<extra_id_123>": 382,
"<extra_id_124>": 383,
"<extra_id_12>": 271,
"<extra_id_13>": 272,
"<extra_id_14>": 273,
"<extra_id_15>": 274,
"<extra_id_16>": 275,
"<extra_id_17>": 276,
"<extra_id_18>": 277,
"<extra_id_19>": 278,
"<extra_id_1>": 260,
"<extra_id_20>": 279,
"<extra_id_21>": 280,
"<extra_id_22>": 281,
"<extra_id_23>": 282,
"<extra_id_24>": 283,
"<extra_id_25>": 284,
"<extra_id_26>": 285,
"<extra_id_27>": 286,
"<extra_id_28>": 287,
"<extra_id_29>": 288,
"<extra_id_2>": 261,
"<extra_id_30>": 289,
"<extra_id_31>": 290,
"<extra_id_32>": 291,
"<extra_id_33>": 292,
"<extra_id_34>": 293,
"<extra_id_35>": 294,
"<extra_id_36>": 295,
"<extra_id_37>": 296,
"<extra_id_38>": 297,
"<extra_id_39>": 298,
"<extra_id_3>": 262,
"<extra_id_40>": 299,
"<extra_id_41>": 300,
"<extra_id_42>": 301,
"<extra_id_43>": 302,
"<extra_id_44>": 303,
"<extra_id_45>": 304,
"<extra_id_46>": 305,
"<extra_id_47>": 306,
"<extra_id_48>": 307,
"<extra_id_49>": 308,
"<extra_id_4>": 263,
"<extra_id_50>": 309,
"<extra_id_51>": 310,
"<extra_id_52>": 311,
"<extra_id_53>": 312,
"<extra_id_54>": 313,
"<extra_id_55>": 314,
"<extra_id_56>": 315,
"<extra_id_57>": 316,
"<extra_id_58>": 317,
"<extra_id_59>": 318,
"<extra_id_5>": 264,
"<extra_id_60>": 319,
"<extra_id_61>": 320,
"<extra_id_62>": 321,
"<extra_id_63>": 322,
"<extra_id_64>": 323,
"<extra_id_65>": 324,
"<extra_id_66>": 325,
"<extra_id_67>": 326,
"<extra_id_68>": 327,
"<extra_id_69>": 328,
"<extra_id_6>": 265,
"<extra_id_70>": 329,
"<extra_id_71>": 330,
"<extra_id_72>": 331,
"<extra_id_73>": 332,
"<extra_id_74>": 333,
"<extra_id_75>": 334,
"<extra_id_76>": 335,
"<extra_id_77>": 336,
"<extra_id_78>": 337,
"<extra_id_79>": 338,
"<extra_id_7>": 266,
"<extra_id_80>": 339,
"<extra_id_81>": 340,
"<extra_id_82>": 341,
"<extra_id_83>": 342,
"<extra_id_84>": 343,
"<extra_id_85>": 344,
"<extra_id_86>": 345,
"<extra_id_87>": 346,
"<extra_id_88>": 347,
"<extra_id_89>": 348,
"<extra_id_8>": 267,
"<extra_id_90>": 349,
"<extra_id_91>": 350,
"<extra_id_92>": 351,
"<extra_id_93>": 352,
"<extra_id_94>": 353,
"<extra_id_95>": 354,
"<extra_id_96>": 355,
"<extra_id_97>": 356,
"<extra_id_98>": 357,
"<extra_id_99>": 358,
"<extra_id_9>": 268
}

View File

@@ -0,0 +1,150 @@
{
"additional_special_tokens": [
"<extra_id_0>",
"<extra_id_1>",
"<extra_id_2>",
"<extra_id_3>",
"<extra_id_4>",
"<extra_id_5>",
"<extra_id_6>",
"<extra_id_7>",
"<extra_id_8>",
"<extra_id_9>",
"<extra_id_10>",
"<extra_id_11>",
"<extra_id_12>",
"<extra_id_13>",
"<extra_id_14>",
"<extra_id_15>",
"<extra_id_16>",
"<extra_id_17>",
"<extra_id_18>",
"<extra_id_19>",
"<extra_id_20>",
"<extra_id_21>",
"<extra_id_22>",
"<extra_id_23>",
"<extra_id_24>",
"<extra_id_25>",
"<extra_id_26>",
"<extra_id_27>",
"<extra_id_28>",
"<extra_id_29>",
"<extra_id_30>",
"<extra_id_31>",
"<extra_id_32>",
"<extra_id_33>",
"<extra_id_34>",
"<extra_id_35>",
"<extra_id_36>",
"<extra_id_37>",
"<extra_id_38>",
"<extra_id_39>",
"<extra_id_40>",
"<extra_id_41>",
"<extra_id_42>",
"<extra_id_43>",
"<extra_id_44>",
"<extra_id_45>",
"<extra_id_46>",
"<extra_id_47>",
"<extra_id_48>",
"<extra_id_49>",
"<extra_id_50>",
"<extra_id_51>",
"<extra_id_52>",
"<extra_id_53>",
"<extra_id_54>",
"<extra_id_55>",
"<extra_id_56>",
"<extra_id_57>",
"<extra_id_58>",
"<extra_id_59>",
"<extra_id_60>",
"<extra_id_61>",
"<extra_id_62>",
"<extra_id_63>",
"<extra_id_64>",
"<extra_id_65>",
"<extra_id_66>",
"<extra_id_67>",
"<extra_id_68>",
"<extra_id_69>",
"<extra_id_70>",
"<extra_id_71>",
"<extra_id_72>",
"<extra_id_73>",
"<extra_id_74>",
"<extra_id_75>",
"<extra_id_76>",
"<extra_id_77>",
"<extra_id_78>",
"<extra_id_79>",
"<extra_id_80>",
"<extra_id_81>",
"<extra_id_82>",
"<extra_id_83>",
"<extra_id_84>",
"<extra_id_85>",
"<extra_id_86>",
"<extra_id_87>",
"<extra_id_88>",
"<extra_id_89>",
"<extra_id_90>",
"<extra_id_91>",
"<extra_id_92>",
"<extra_id_93>",
"<extra_id_94>",
"<extra_id_95>",
"<extra_id_96>",
"<extra_id_97>",
"<extra_id_98>",
"<extra_id_99>",
"<extra_id_100>",
"<extra_id_101>",
"<extra_id_102>",
"<extra_id_103>",
"<extra_id_104>",
"<extra_id_105>",
"<extra_id_106>",
"<extra_id_107>",
"<extra_id_108>",
"<extra_id_109>",
"<extra_id_110>",
"<extra_id_111>",
"<extra_id_112>",
"<extra_id_113>",
"<extra_id_114>",
"<extra_id_115>",
"<extra_id_116>",
"<extra_id_117>",
"<extra_id_118>",
"<extra_id_119>",
"<extra_id_120>",
"<extra_id_121>",
"<extra_id_122>",
"<extra_id_123>",
"<extra_id_124>"
],
"eos_token": {
"content": "</s>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "<pad>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"unk_token": {
"content": "<unk>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
}
}

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More