Compare commits

...

8 Commits

Author SHA1 Message Date
Jedrzej Kosinski
3b54b0256d Merge branch 'master' into fix-context-window-slicing 2025-09-11 20:23:31 -07:00
comfyanonymous
18de0b2830 Fast preview for hunyuan image. (#9814) 2025-09-11 19:33:02 -04:00
ComfyUI Wiki
df6850fae8 Update template to 0.1.81 (#9811) 2025-09-11 14:59:26 -04:00
comfyanonymous
e01e99d075 Support hunyuan image distilled model. (#9807) 2025-09-10 23:17:34 -04:00
comfyanonymous
72212fef66 ComfyUI version 0.3.59 2025-09-10 17:25:41 -04:00
ComfyUI Wiki
df34f1549a Update template to 0.1.78 (#9806)
* Update template to 0.1.77

* Update template to 0.1.78
2025-09-10 14:16:41 -07:00
Alexander Piskun
9b0553809c add new ByteDanceSeedream (4.0) node (#9802) 2025-09-10 14:13:18 -07:00
Jedrzej Kosinski
2835f7f63e Apply cond slice fix 2025-09-09 17:45:35 -07:00
8 changed files with 306 additions and 8 deletions

View File

@@ -146,11 +146,13 @@ class IndexListContextHandler(ContextHandlerABC):
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
for cond_key, cond_value in new_cond_item.items():
if isinstance(cond_value, torch.Tensor):
if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
if (self.dim < cond_value.ndim and cond_value(self.dim) == x_in.size(self.dim)) or \
(cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim)):
new_cond_item[cond_key] = window.get_tensor(cond_value, device)
# if has cond that is a Tensor, check if needs to be subset
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \
(cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim)):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
elif cond_key == "num_video_frames": # for SVD
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)

View File

@@ -538,6 +538,74 @@ class HunyuanImage21(LatentFormat):
latent_dimensions = 2
scale_factor = 0.75289
latent_rgb_factors = [
[-0.0154, -0.0397, -0.0521],
[ 0.0005, 0.0093, 0.0006],
[-0.0805, -0.0773, -0.0586],
[-0.0494, -0.0487, -0.0498],
[-0.0212, -0.0076, -0.0261],
[-0.0179, -0.0417, -0.0505],
[ 0.0158, 0.0310, 0.0239],
[ 0.0409, 0.0516, 0.0201],
[ 0.0350, 0.0553, 0.0036],
[-0.0447, -0.0327, -0.0479],
[-0.0038, -0.0221, -0.0365],
[-0.0423, -0.0718, -0.0654],
[ 0.0039, 0.0368, 0.0104],
[ 0.0655, 0.0217, 0.0122],
[ 0.0490, 0.1638, 0.2053],
[ 0.0932, 0.0829, 0.0650],
[-0.0186, -0.0209, -0.0135],
[-0.0080, -0.0076, -0.0148],
[-0.0284, -0.0201, 0.0011],
[-0.0642, -0.0294, -0.0777],
[-0.0035, 0.0076, -0.0140],
[ 0.0519, 0.0731, 0.0887],
[-0.0102, 0.0095, 0.0704],
[ 0.0068, 0.0218, -0.0023],
[-0.0726, -0.0486, -0.0519],
[ 0.0260, 0.0295, 0.0263],
[ 0.0250, 0.0333, 0.0341],
[ 0.0168, -0.0120, -0.0174],
[ 0.0226, 0.1037, 0.0114],
[ 0.2577, 0.1906, 0.1604],
[-0.0646, -0.0137, -0.0018],
[-0.0112, 0.0309, 0.0358],
[-0.0347, 0.0146, -0.0481],
[ 0.0234, 0.0179, 0.0201],
[ 0.0157, 0.0313, 0.0225],
[ 0.0423, 0.0675, 0.0524],
[-0.0031, 0.0027, -0.0255],
[ 0.0447, 0.0555, 0.0330],
[-0.0152, 0.0103, 0.0299],
[-0.0755, -0.0489, -0.0635],
[ 0.0853, 0.0788, 0.1017],
[-0.0272, -0.0294, -0.0471],
[ 0.0440, 0.0400, -0.0137],
[ 0.0335, 0.0317, -0.0036],
[-0.0344, -0.0621, -0.0984],
[-0.0127, -0.0630, -0.0620],
[-0.0648, 0.0360, 0.0924],
[-0.0781, -0.0801, -0.0409],
[ 0.0363, 0.0613, 0.0499],
[ 0.0238, 0.0034, 0.0041],
[-0.0135, 0.0258, 0.0310],
[ 0.0614, 0.1086, 0.0589],
[ 0.0428, 0.0350, 0.0205],
[ 0.0153, 0.0173, -0.0018],
[-0.0288, -0.0455, -0.0091],
[ 0.0344, 0.0109, -0.0157],
[-0.0205, -0.0247, -0.0187],
[ 0.0487, 0.0126, 0.0064],
[-0.0220, -0.0013, 0.0074],
[-0.0203, -0.0094, -0.0048],
[-0.0719, 0.0429, -0.0442],
[ 0.1042, 0.0497, 0.0356],
[-0.0659, -0.0578, -0.0280],
[-0.0060, -0.0322, -0.0234]]
latent_rgb_factors_bias = [0.0007, -0.0256, -0.0206]
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1

View File

@@ -41,6 +41,7 @@ class HunyuanVideoParams:
qkv_bias: bool
guidance_embed: bool
byt5: bool
meanflow: bool
class SelfAttentionRef(nn.Module):
@@ -256,6 +257,11 @@ class HunyuanVideo(nn.Module):
else:
self.byt5_in = None
if params.meanflow:
self.time_r_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
else:
self.time_r_in = None
if final_layer:
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
@@ -282,6 +288,14 @@ class HunyuanVideo(nn.Module):
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
if self.time_r_in is not None:
w = torch.where(transformer_options['sigmas'][0] == transformer_options['sample_sigmas'])[0] # This most likely could be improved
if len(w) > 0:
timesteps_r = transformer_options['sample_sigmas'][w[0] + 1]
timesteps_r = timesteps_r.unsqueeze(0).to(device=timesteps.device, dtype=timesteps.dtype)
vec_r = self.time_r_in(timestep_embedding(timesteps_r, 256, time_factor=1000.0).to(img.dtype))
vec = (vec + vec_r) / 2
if ref_latent is not None:
ref_latent_ids = self.img_ids(ref_latent)
ref_latent = self.img_in(ref_latent)

View File

@@ -142,12 +142,20 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["in_channels"] = in_w.shape[1] #SkyReels img2video has 32 input channels
dit_config["patch_size"] = list(in_w.shape[2:])
dit_config["out_channels"] = out_w.shape[0] // math.prod(dit_config["patch_size"])
if '{}vector_in.in_layer.weight'.format(key_prefix) in state_dict:
if any(s.startswith('{}vector_in.'.format(key_prefix)) for s in state_dict_keys):
dit_config["vec_in_dim"] = 768
dit_config["axes_dim"] = [16, 56, 56]
else:
dit_config["vec_in_dim"] = None
if len(dit_config["patch_size"]) == 2:
dit_config["axes_dim"] = [64, 64]
else:
dit_config["axes_dim"] = [16, 56, 56]
if any(s.startswith('{}time_r_in.'.format(key_prefix)) for s in state_dict_keys):
dit_config["meanflow"] = True
else:
dit_config["meanflow"] = False
dit_config["context_in_dim"] = state_dict['{}txt_in.input_embedder.weight'.format(key_prefix)].shape[1]
dit_config["hidden_size"] = in_w.shape[0]

View File

@@ -77,6 +77,22 @@ class Image2ImageTaskCreationRequest(BaseModel):
watermark: Optional[bool] = Field(True)
class Seedream4Options(BaseModel):
max_images: int = Field(15)
class Seedream4TaskCreationRequest(BaseModel):
model: str = Field("seedream-4-0-250828")
prompt: str = Field(...)
response_format: str = Field("url")
image: Optional[list[str]] = Field(None, description="Image URLs")
size: str = Field(...)
seed: int = Field(..., ge=0, le=2147483647)
sequential_image_generation: str = Field("disabled")
sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15))
watermark: bool = Field(True)
class ImageTaskCreationResponse(BaseModel):
model: str = Field(...)
created: int = Field(..., description="Unix timestamp (in seconds) indicating time when the request was created.")
@@ -143,6 +159,19 @@ RECOMMENDED_PRESETS = [
("Custom", None, None),
]
RECOMMENDED_PRESETS_SEEDREAM_4 = [
("2048x2048 (1:1)", 2048, 2048),
("2304x1728 (4:3)", 2304, 1728),
("1728x2304 (3:4)", 1728, 2304),
("2560x1440 (16:9)", 2560, 1440),
("1440x2560 (9:16)", 1440, 2560),
("2496x1664 (3:2)", 2496, 1664),
("1664x2496 (2:3)", 1664, 2496),
("3024x1296 (21:9)", 3024, 1296),
("4096x4096 (1:1)", 4096, 4096),
("Custom", None, None),
]
# The time in this dictionary are given for 10 seconds duration.
VIDEO_TASKS_EXECUTION_TIME = {
"seedance-1-0-lite-t2v-250428": {
@@ -348,7 +377,7 @@ class ByteDanceImageEditNode(comfy_io.ComfyNode):
return comfy_io.Schema(
node_id="ByteDanceImageEditNode",
display_name="ByteDance Image Edit",
category="api node/video/ByteDance",
category="api node/image/ByteDance",
description="Edit images using ByteDance models via api based on prompt",
inputs=[
comfy_io.Combo.Input(
@@ -451,6 +480,182 @@ class ByteDanceImageEditNode(comfy_io.ComfyNode):
return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
class ByteDanceSeedreamNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ByteDanceSeedreamNode",
display_name="ByteDance Seedream 4",
category="api node/image/ByteDance",
description="Unified text-to-image generation and precise single-sentence editing at up to 4K resolution.",
inputs=[
comfy_io.Combo.Input(
"model",
options=["seedream-4-0-250828"],
tooltip="Model name",
),
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Text prompt for creating or editing an image.",
),
comfy_io.Image.Input(
"image",
tooltip="Input image(s) for image-to-image generation. "
"List of 1-10 images for single or multi-reference generation.",
optional=True,
),
comfy_io.Combo.Input(
"size_preset",
options=[label for label, _, _ in RECOMMENDED_PRESETS_SEEDREAM_4],
tooltip="Pick a recommended size. Select Custom to use the width and height below.",
),
comfy_io.Int.Input(
"width",
default=2048,
min=1024,
max=4096,
step=64,
tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`",
optional=True,
),
comfy_io.Int.Input(
"height",
default=2048,
min=1024,
max=4096,
step=64,
tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`",
optional=True,
),
comfy_io.Combo.Input(
"sequential_image_generation",
options=["disabled", "auto"],
tooltip="Group image generation mode. "
"'disabled' generates a single image. "
"'auto' lets the model decide whether to generate multiple related images "
"(e.g., story scenes, character variations).",
optional=True,
),
comfy_io.Int.Input(
"max_images",
default=1,
min=1,
max=15,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Maximum number of images to generate when sequential_image_generation='auto'. "
"Total images (input + generated) cannot exceed 15.",
optional=True,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation.",
optional=True,
),
comfy_io.Boolean.Input(
"watermark",
default=True,
tooltip="Whether to add an \"AI generated\" watermark to the image.",
optional=True,
),
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
image: torch.Tensor = None,
size_preset: str = RECOMMENDED_PRESETS_SEEDREAM_4[0][0],
width: int = 2048,
height: int = 2048,
sequential_image_generation: str = "disabled",
max_images: int = 1,
seed: int = 0,
watermark: bool = True,
) -> comfy_io.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
w = h = None
for label, tw, th in RECOMMENDED_PRESETS_SEEDREAM_4:
if label == size_preset:
w, h = tw, th
break
if w is None or h is None:
w, h = width, height
if not (1024 <= w <= 4096) or not (1024 <= h <= 4096):
raise ValueError(
f"Custom size out of range: {w}x{h}. "
"Both width and height must be between 1024 and 4096 pixels."
)
n_input_images = get_number_of_images(image) if image is not None else 0
if n_input_images > 10:
raise ValueError(f"Maximum of 10 reference images are supported, but {n_input_images} received.")
if sequential_image_generation == "auto" and n_input_images + max_images > 15:
raise ValueError(
"The maximum number of generated images plus the number of reference images cannot exceed 15."
)
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
reference_images_urls = []
if n_input_images:
for i in image:
validate_image_aspect_ratio_range(i, (1, 3), (3, 1))
reference_images_urls = (await upload_images_to_comfyapi(
image,
max_images=n_input_images,
mime_type="image/png",
auth_kwargs=auth_kwargs,
))
payload = Seedream4TaskCreationRequest(
model=model,
prompt=prompt,
image=reference_images_urls,
size=f"{w}x{h}",
seed=seed,
sequential_image_generation=sequential_image_generation,
sequential_image_generation_options=Seedream4Options(max_images=max_images),
watermark=watermark,
)
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path=BYTEPLUS_IMAGE_ENDPOINT,
method=HttpMethod.POST,
request_model=Seedream4TaskCreationRequest,
response_model=ImageTaskCreationResponse,
),
request=payload,
auth_kwargs=auth_kwargs,
).execute()
if len(response.data) == 1:
return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
return comfy_io.NodeOutput(
torch.cat([await download_url_to_image_tensor(str(i["url"])) for i in response.data])
)
class ByteDanceTextToVideoNode(comfy_io.ComfyNode):
@classmethod
@@ -1001,6 +1206,7 @@ class ByteDanceExtension(ComfyExtension):
return [
ByteDanceImageNode,
ByteDanceImageEditNode,
ByteDanceSeedreamNode,
ByteDanceTextToVideoNode,
ByteDanceImageToVideoNode,
ByteDanceFirstLastFrameNode,

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.58"
__version__ = "0.3.59"

View File

@@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.3.58"
version = "0.3.59"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"

View File

@@ -1,5 +1,5 @@
comfyui-frontend-package==1.25.11
comfyui-workflow-templates==0.1.76
comfyui-workflow-templates==0.1.81
comfyui-embedded-docs==0.2.6
torch
torchsde