Compare commits

...

130 Commits

Author SHA1 Message Date
comfyanonymous
8402c8700a ComfyUI version v0.3.75 2025-11-26 02:41:13 -05:00
comfyanonymous
58b8574661 Fix Flux2 reference image mem estimation. (#10905) 2025-11-26 02:36:19 -05:00
comfyanonymous
90b3995ec8 ComfyUI v0.3.74 2025-11-26 00:34:15 -05:00
comfyanonymous
bdb10a583f Fix loras not working on mixed fp8. (#10899) 2025-11-26 00:07:58 -05:00
comfyanonymous
0e24dbb19f Adjustments to Z Image. (#10893) 2025-11-25 19:02:51 -05:00
comfyanonymous
e9aae31fa2 Z Image model. (#10892) 2025-11-25 18:41:45 -05:00
comfyanonymous
0c18842acb ComfyUI v0.3.73 2025-11-25 14:59:37 -05:00
comfyanonymous
d196a905bb Lower vram usage for flux 2 text encoder. (#10887) 2025-11-25 14:58:39 -05:00
ComfyUI Wiki
18b79acba9 Update workflow templates to v0.7.20 (#10883) 2025-11-25 14:58:21 -05:00
comfyanonymous
dff996ca39 Fix crash. (#10885) 2025-11-25 14:30:24 -05:00
comfyanonymous
828b1b9953 ComfyUI version v0.3.72 2025-11-25 12:40:58 -05:00
comfyanonymous
af81cb962d Add Flux 2 support to README. (#10882) 2025-11-25 11:40:32 -05:00
Alexander Piskun
5c7b08ca58 [API Nodes] add Flux.2 Pro node (#10880) 2025-11-25 11:09:07 -05:00
comfyanonymous
6b573ae0cb Flux 2 (#10879) 2025-11-25 10:50:19 -05:00
comfyanonymous
015a0599d0 I found a case where this is needed (#10875) 2025-11-25 03:23:19 -05:00
comfyanonymous
acfaa5c4a1 Don't try fp8 matrix mult in quantized ops if not supported by hardware. (#10874) 2025-11-25 02:55:49 -05:00
comfyanonymous
b6805429b9 Allow pinning quantized tensors. (#10873) 2025-11-25 02:48:20 -05:00
comfyanonymous
25022e0b09 Cleanup and fix issues with text encoder quants. (#10872) 2025-11-25 01:48:53 -05:00
comfyanonymous
22a2644e57 Bump transformers version in requirements.txt (#10869) 2025-11-24 19:45:54 -05:00
Haoming
b2ef58e2b1 block info (#10844) 2025-11-24 10:40:09 -08:00
Haoming
6a6d456c88 block info (#10842) 2025-11-24 10:38:38 -08:00
Haoming
3d1fdaf9f4 block info (#10843) 2025-11-24 10:30:40 -08:00
Alexander Piskun
1286fcfe40 add get_frame_count and get_frame_rate methods to VideoInput class (#10851) 2025-11-24 10:24:29 -08:00
Alexander Piskun
3bd71554a2 fix(api-nodes): edge cases in responses for Gemini models (#10860) 2025-11-24 09:48:37 -08:00
guill
f66183a541 [fix] Fixes non-async public API access (#10857)
It looks like the synchronous version of the public API broke due to an
addition of `from __future__ import annotations`. This change updates
the async-to-sync adapter to work with both types of type annotations.
2025-11-23 22:56:20 -08:00
comfyanonymous
cbd68e3d58 Add better error message for common error. (#10846) 2025-11-23 04:55:22 -05:00
comfyanonymous
d89c29f259 Add display names to Hunyuan latent video nodes. (#10837) 2025-11-22 22:51:53 -05:00
Christian Byrne
a9c35256bc Update requirements.txt (#10834) 2025-11-22 02:28:29 -08:00
comfyanonymous
532938b16b --disable-api-nodes now sets CSP header to force frontend offline. (#10829) 2025-11-21 17:51:55 -05:00
Christian Byrne
ecb683b057 update frontend to 1.30 (#10793) 2025-11-21 16:34:47 -05:00
comfyanonymous
c55fd74816 ComfyUI 0.3.71 2025-11-21 00:49:13 -05:00
comfyanonymous
3398123752 Fix wrong path. (#10821) 2025-11-20 23:39:37 -05:00
comfyanonymous
943b3b615d HunyuanVideo 1.5 (#10819)
* init

* update

* Update model.py

* Update model.py

* remove print

* Fix text encoding

* Prevent empty negative prompt

Really doesn't work otherwise

* fp16 works

* I2V

* Update model_base.py

* Update nodes_hunyuan.py

* Better latent rgb factors

* Use the correct sigclip output...

* Support HunyuanVideo1.5 SR model

* whitespaces...

* Proper latent channel count

* SR model fixes

This also still needs timesteps scheduling based on the noise scale, can be used with two samplers too already

* vae_refiner: roll the convolution through temporal

Work in progress.

Roll the convolution through time using 2-latent-frame chunks and a
FIFO queue for the convolution seams.

* Support HunyuanVideo15 latent resampler

* fix

* Some cleanup

Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>

* Proper hyvid15 I2V channels

Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>

* Fix TokenRefiner for fp16

Otherwise x.sum has infs, just in case only casting if input is fp16, I don't know if necessary.

* Bugfix for the HunyuanVideo15 SR model

* vae_refiner: roll the convolution through temporal II

Roll the convolution through time using 2-latent-frame chunks and a
FIFO queue for the convolution seams.

Added support for encoder, lowered to 1 latent frame to save more
VRAM, made work for Hunyuan Image 3.0 (as code shared).

Fixed names, cleaned up code.

* Allow any number of input frames in VAE.

* Better VAE encode mem estimation.

* Lowvram fix.

* Fix hunyuan image 2.1 refiner.

* Fix mistake.

* Name changes.

* Rename.

* Whitespace.

* Fix.

* Fix.

---------

Co-authored-by: kijai <40791699+kijai@users.noreply.github.com>
Co-authored-by: Rattus <rattus128@gmail.com>
2025-11-20 22:44:43 -05:00
Christian Byrne
10e90a5757 bump comfyui-workflow-templates for nano banana 2 (#10818)
* bump templates

* bump templates
2025-11-20 18:20:52 -08:00
Alexander Piskun
b75d349f25 fix(KlingLipSyncAudioToVideoNode): convert audio to mp3 format (#10811) 2025-11-20 16:33:54 -08:00
Alexander Piskun
7b8389578e feat(api-nodes): add Nano Banana Pro (#10814)
* feat(api-nodes): add Nano Banana Pro

* frontend bump to 1.28.9
2025-11-20 16:17:47 -08:00
Jedrzej Kosinski
9e00ce5b76 Make Batch Images node add alpha channel when one of the inputs has it (#10816)
* When one Batch Image input has alpha and one does not, add empty alpha channel

* Use torch.nn.functional.pad
2025-11-20 17:42:46 -05:00
comfyanonymous
f5e66d5e47 Fix ImageBatch with different channel count. (#10815) 2025-11-20 15:08:03 -05:00
Christian Byrne
87b0359392 Update server templates handler to use new multi-package distribution (comfyui-workflow-templates versions >=0.3) (#10791)
* update templates for monorepo

* refactor
2025-11-19 22:36:56 -08:00
comfyanonymous
cb96d4d18c Disable workaround on newer cudnn. (#10807) 2025-11-19 23:56:23 -05:00
Alexander Piskun
394348f5ca feat(api-nodes): add Topaz API nodes (#10755) 2025-11-19 17:44:04 -08:00
comfyanonymous
7601e89255 Fix workflow name. (#10806) 2025-11-19 20:17:15 -05:00
Alexander Piskun
6a1d3a1ae1 convert hunyuan3d.py to V3 schema (#10664) 2025-11-19 14:49:01 -08:00
Alexander Piskun
65ee24c978 change display name of PreviewAny node to "Preview as Text" (#10796) 2025-11-19 01:25:28 -08:00
comfyanonymous
17027f2a6a Add a way to disable the final norm in the llama based TE models. (#10794) 2025-11-18 22:36:03 -05:00
comfyanonymous
b5c8be8b1d ComfyUI 0.3.70 2025-11-18 19:37:20 -05:00
Alexander Piskun
24fdb92edf feat(api-nodes): add new Gemini model (#10789) 2025-11-18 14:26:44 -08:00
comfyanonymous
d526974576 Fix hunyuan 3d 2.0 (#10792) 2025-11-18 16:46:19 -05:00
Jukka Seppänen
e1ab6bb394 EasyCache: Fix for mismatch in input/output channels with some models (#10788)
Slices model input with output channels so the caching tracks only the noise channels, resolves channel mismatch with models like WanVideo I2V

Also fix for slicing deprecation in pytorch 2.9
2025-11-18 07:00:21 -08:00
Alexander Piskun
048f49adbd chore(api-nodes): adjusted PR template; set min python version for pylint to 3.10 (#10787) 2025-11-18 03:59:27 -08:00
comfyanonymous
47bfd5a33f Native block swap custom nodes considered harmful. (#10783) 2025-11-18 00:26:44 -05:00
ComfyUI Wiki
fdf49a2861 Fix the portable download link for CUDA 12.6 (#10780) 2025-11-17 22:04:06 -05:00
comfyanonymous
f41e5f398d Update README with new portable download link (#10778) 2025-11-17 19:59:19 -05:00
comfyanonymous
27cbac865e Add release workflow for NVIDIA cu126 (#10777) 2025-11-17 19:04:04 -05:00
comfyanonymous
3d0003c24c ComfyUI version 0.3.69 2025-11-17 17:17:24 -05:00
comfyanonymous
7d6103325e Change ROCm nightly install command to 7.1 (#10764) 2025-11-16 03:01:14 -05:00
Alexander Piskun
2d4a08b717 Revert "chore(api-nodes): mark OpenAIDalle2 and OpenAIDalle3 nodes as deprecated (#10757)" (#10759)
This reverts commit 9a02382568.
2025-11-15 12:37:34 -08:00
Alexander Piskun
9a02382568 chore(api-nodes): mark OpenAIDalle2 and OpenAIDalle3 nodes as deprecated (#10757) 2025-11-15 11:18:49 -08:00
comfyanonymous
bd01d9f7fd Add left padding support to tokenizers. (#10753) 2025-11-15 06:54:40 -05:00
comfyanonymous
443056c401 Fix custom nodes import error. (#10747)
This should fix the import errors but will break if the custom nodes actually try to use the class.
2025-11-14 03:26:05 -05:00
comfyanonymous
f60923590c Use same code for chroma and flux blocks so that optimizations are shared. (#10746) 2025-11-14 01:28:05 -05:00
comfyanonymous
1ef328c007 Better instructions for the portable. (#10743) 2025-11-13 21:32:39 -05:00
rattus
94c298f962 flux: reduce VRAM usage (#10737)
Cleanup a bunch of stack tensors on Flux. This take me from B=19 to B=22
for 1600x1600 on RTX5090.
2025-11-13 16:02:03 -08:00
ric-yu
2fde9597f4 feat: add create_time dict to prompt field in /history and /queue (#10741) 2025-11-13 15:11:52 -08:00
Alexander Piskun
f91078b1ff add PR template for API-Nodes (#10736) 2025-11-13 10:05:26 -08:00
contentis
3b3ef9a77a Quantized Ops fixes (#10715)
* offload support, bug fixes, remove mixins

* add readme
2025-11-12 18:26:52 -05:00
comfyanonymous
8b0b93df51 Update Python 3.14 compatibility notes in README (#10730) 2025-11-12 17:04:41 -05:00
rattus
1c7eaeca10 qwen: reduce VRAM usage (#10725)
Clean up a bunch of stacked and no-longer-needed tensors on the QWEN
VRAM peak (currently FFN).

With this I go from OOMing at B=37x1328x1328 to being able to
succesfully run B=47 (RTX5090).
2025-11-12 16:20:53 -05:00
rattus
18e7d6dba5 mm/mp: always unload re-used but modified models (#10724)
The partial unloader path in model re-use flow skips straight to the
actual unload without any check of the patching UUID. This means that
if you do an upscale flow with a model patch on an existing model, it
will not apply your patchings.

Fix by delaying the partial_unload until after the uuid checks. This
is done by making partial_unload a model of partial_load where extra_mem
is -ve.
2025-11-12 16:19:53 -05:00
Qiacheng Li
e1d85e7577 Update README.md for Intel Arc GPU installation, remove IPEX (#10729)
IPEX is no longer needed for Intel Arc GPUs.  Removing instruction to setup ipex.
2025-11-12 15:21:05 -05:00
comfyanonymous
1199411747 Don't pin tensor if not a torch.nn.parameter.Parameter (#10718) 2025-11-11 19:33:30 -05:00
comfyanonymous
5ebcab3c7d Update CI workflow to remove dead macOS runner. (#10704)
* Update CI workflow to remove dead macOS runner.

* revert

* revert
2025-11-10 15:35:29 -05:00
rattus
c350009236 ops: Put weight cast on the offload stream (#10697)
This needs to be on the offload stream. This reproduced a black screen
with low resolution images on a slow bus when using FP8.
2025-11-09 22:52:11 -05:00
comfyanonymous
dea899f221 Unload weights if vram usage goes up between runs. (#10690) 2025-11-09 18:51:33 -05:00
comfyanonymous
e632e5de28 Add logging for model unloading. (#10692) 2025-11-09 18:06:39 -05:00
comfyanonymous
2abd2b5c20 Make ScaleROPE node work on Flux. (#10686) 2025-11-08 15:52:02 -05:00
comfyanonymous
a1a70362ca Only unpin tensor if it was pinned by ComfyUI (#10677) 2025-11-07 11:15:05 -05:00
rattus
cf97b033ee mm: guard against double pin and unpin explicitly (#10672)
As commented, if you let cuda be the one to detect double pin/unpinning
it actually creates an asyc GPU error.
2025-11-06 21:20:48 -05:00
comfyanonymous
eb1c42f649 Tell users they need to upload their logs in bug reports. (#10671) 2025-11-06 20:24:28 -05:00
comfyanonymous
e05c907126 Clarify release cycle. (#10667) 2025-11-06 04:11:30 -05:00
comfyanonymous
09dc24c8a9 Pinned mem also seems to work on AMD. (#10658) 2025-11-05 19:11:15 -05:00
comfyanonymous
1d69245981 Enable pinned memory by default on Nvidia. (#10656)
Removed the --fast pinned_memory flag.

You can use --disable-pinned-memory to disable it. Please report if it
causes any issues.
2025-11-05 18:08:13 -05:00
comfyanonymous
97f198e421 Fix qwen controlnet regression. (#10657) 2025-11-05 18:07:35 -05:00
Alexander Piskun
bda0eb2448 feat(API-nodes): move Rodin3D nodes to new client; removed old api client.py (#10645) 2025-11-05 02:16:00 -08:00
comfyanonymous
c4a6b389de Lower ltxv mem usage to what it was before previous pr. (#10643)
Bring back qwen behavior to what it was before previous pr.
2025-11-04 22:47:35 -05:00
contentis
4cd881866b Use single apply_rope function across models (#10547) 2025-11-04 20:10:11 -05:00
comfyanonymous
265adad858 ComfyUI version v0.3.68 2025-11-04 19:42:23 -05:00
comfyanonymous
7f3e4d486c Limit amount of pinned memory on windows to prevent issues. (#10638) 2025-11-04 17:37:50 -05:00
rattus
a389ee01bb caching: Handle None outputs tuple case (#10637) 2025-11-04 14:14:10 -08:00
ComfyUI Wiki
9c71a66790 chore: update workflow templates to v0.2.11 (#10634) 2025-11-04 10:51:53 -08:00
comfyanonymous
af4b7b5edb More fp8 torch.compile regressions fixed. (#10625) 2025-11-03 22:14:20 -05:00
comfyanonymous
0f4ef3afa0 This seems to slow things down slightly on Linux. (#10624) 2025-11-03 21:47:14 -05:00
comfyanonymous
6b88478f9f Bring back fp8 torch compile performance to what it should be. (#10622) 2025-11-03 19:22:10 -05:00
comfyanonymous
e199c8cc67 Fixes (#10621) 2025-11-03 17:58:24 -05:00
comfyanonymous
0652cb8e2d Speed up torch.compile (#10620) 2025-11-03 17:37:12 -05:00
comfyanonymous
958a17199a People should update their pytorch versions. (#10618) 2025-11-03 17:08:30 -05:00
ComfyUI Wiki
e974e554ca chore: update embedded docs to v0.3.1 (#10614) 2025-11-03 10:59:44 -08:00
Alexander Piskun
4e2110c794 feat(Pika-API-nodes): use new API client (#10608) 2025-11-03 00:29:08 -08:00
Alexander Piskun
e617cddf24 convert nodes_openai.py to V3 schema (#10604) 2025-11-03 00:28:13 -08:00
Alexander Piskun
1f3f7a2823 convert nodes_hypernetwork.py to V3 schema (#10583) 2025-11-03 00:21:47 -08:00
EverNebula
88df172790 fix(caching): treat bytes as hashable (#10567) 2025-11-03 00:16:40 -08:00
Alexander Piskun
6d6a18b0b7 fix(api-nodes-cloud): stop using sub-folder and absolute path for output of Rodin3D nodes (#10556) 2025-11-03 00:04:56 -08:00
comfyanonymous
97ff9fae7e Clarify help text for --fast argument (#10609)
Updated help text for the --fast argument to clarify potential risks.
2025-11-02 13:14:04 -05:00
rattus
135fa49ec2 Small speed improvements to --async-offload (#10593)
* ops: dont take an offload stream if you dont need one

* ops: prioritize mem transfer

The async offload streams reason for existence is to transfer from
RAM to GPU. The post processing compute steps are a bonus on the side
stream, but if the compute stream is running a long kernel, it can
stall the side stream, as it wait to type-cast the bias before
transferring the weight. So do a pure xfer of the weight straight up,
then do everything bias, then go back to fix the weight type and do
weight patches.
2025-11-01 18:48:53 -04:00
comfyanonymous
44869ff786 Fix issue with pinned memory. (#10597) 2025-11-01 17:25:59 -04:00
Alexander Piskun
20182a393f convert StabilityAI to use new API client (#10582) 2025-11-01 12:14:06 -07:00
Alexander Piskun
5f109fe6a0 added 12s-20s as available output durations for the LTXV API nodes (#10570) 2025-11-01 12:13:39 -07:00
comfyanonymous
c58c13b2ba Fix torch compile regression on fp8 ops. (#10580) 2025-11-01 00:25:17 -04:00
comfyanonymous
7f374e42c8 ScaleROPE now works on Lumina models. (#10578) 2025-10-31 15:41:40 -04:00
comfyanonymous
27d1bd8829 Fix rope scaling. (#10560) 2025-10-30 22:51:58 -04:00
comfyanonymous
614cf9805e Add a ScaleROPE node. Currently only works on WAN models. (#10559) 2025-10-30 22:11:38 -04:00
rattus
513b0c46fb Add RAM Pressure cache mode (#10454)
* execution: Roll the UI cache into the outputs

Currently the UI cache is parallel to the output cache with
expectations of being a content superset of the output cache.
At the same time the UI and output cache are maintained completely
seperately, making it awkward to free the output cache content without
changing the behaviour of the UI cache.

There are two actual users (getters) of the UI cache. The first is
the case of a direct content hit on the output cache when executing a
node. This case is very naturally handled by merging the UI and outputs
cache.

The second case is the history JSON generation at the end of the prompt.
This currently works by asking the cache for all_node_ids and then
pulling the cache contents for those nodes. all_node_ids is the nodes
of the dynamic prompt.

So fold the UI cache into the output cache. The current UI cache setter
now writes to a prompt-scope dict. When the output cache is set, just
get this value from the dict and tuple up with the outputs.

When generating the history, simply iterate prompt-scope dict.

This prepares support for more complex caching strategies (like RAM
pressure caching) where less than 1 workflow will be cached and it
will be desirable to keep the UI cache and output cache in sync.

* sd: Implement RAM getter for VAE

* model_patcher: Implement RAM getter for ModelPatcher

* sd: Implement RAM getter for CLIP

* Implement RAM Pressure cache

Implement a cache sensitive to RAM pressure. When RAM headroom drops
down below a certain threshold, evict RAM-expensive nodes from the
cache.

Models and tensors are measured directly for RAM usage. An OOM score
is then computed based on the RAM usage of the node.

Note the due to indirection through shared objects (like a model
patcher), multiple nodes can account the same RAM as their individual
usage. The intent is this will free chains of nodes particularly
model loaders and associate loras as they all score similar and are
sorted in close to each other.

Has a bias towards unloading model nodes mid flow while being able
to keep results like text encodings and VAE.

* execution: Convert the cache entry to NamedTuple

As commented in review.

Convert this to a named tuple and abstract away the tuple type
completely from graph.py.
2025-10-30 17:39:02 -04:00
Alexander Piskun
dfac94695b fix img2img operation in Dall2 node (#10552) 2025-10-30 10:22:35 -07:00
Alexander Piskun
163b629c70 use new API client in Pixverse and Ideogram nodes (#10543) 2025-10-29 23:49:03 -07:00
Jedrzej Kosinski
998bf60beb Add units/info for the numbers displayed on 'load completely' and 'load partially' log messages (#10538) 2025-10-29 19:37:06 -04:00
comfyanonymous
906c089957 Fix small performance regression with fp8 fast and scaled fp8. (#10537) 2025-10-29 19:29:01 -04:00
comfyanonymous
25de7b1bfa Try to fix slow load issue on low ram hardware with pinned mem. (#10536) 2025-10-29 17:20:27 -04:00
rattus
ab7ab5be23 Fix Race condition in --async-offload that can cause corruption (#10501)
* mm: factor out the current stream getter

Make this a reusable function.

* ops: sync the offload stream with the consumption of w&b

This sync is nessacary as pytorch will queue cuda async frees on the
same stream as created to tensor. In the case of async offload, this
will be on the offload stream.

Weights and biases can go out of scope in python which then
triggers the pytorch garbage collector to queue the free operation on
the offload stream possible before the compute stream has used the
weight. This causes a use after free on weight data leading to total
corruption of some workflows.

So sync the offload stream with the compute stream after the weight
has been used so the free has to wait for the weight to be used.

The cast_bias_weight is extended in a backwards compatible way with
the new behaviour opt-in on a defaulted parameter. This handles
custom node packs calling cast_bias_weight and defeatures
async-offload for them (as they do not handle the race).

The pattern is now:

cast_bias_weight(... , offloadable=True) #This might be offloaded
thing(weight, bias, ...)
uncast_bias_weight(...)

* controlnet: adopt new cast_bias_weight synchronization scheme

This is nessacary for safe async weight offloading.

* mm: sync the last stream in the queue, not the next

Currently this peeks ahead to sync the next stream in the queue of
streams with the compute stream. This doesnt allow a lot of
parallelization, as then end result is you can only get one weight load
ahead regardless of how many streams you have.

Rotate the loop logic here to synchronize the end of the queue before
returning the next stream. This allows weights to be loaded ahead of the
compute streams position.
2025-10-29 17:17:46 -04:00
comfyanonymous
ec4fc2a09a Fix case of weights not being unpinned. (#10533) 2025-10-29 15:48:06 -04:00
comfyanonymous
1a58087ac2 Reduce memory usage for fp8 scaled op. (#10531) 2025-10-29 15:43:51 -04:00
Alexander Piskun
6c14f3afac use new API client in Luma and Minimax nodes (#10528) 2025-10-29 11:14:56 -07:00
comfyanonymous
e525673f72 Fix issue. (#10527) 2025-10-29 00:37:00 -04:00
comfyanonymous
3fa7a5c04a Speed up offloading using pinned memory. (#10526)
To enable this feature use: --fast pinned_memory
2025-10-29 00:21:01 -04:00
Alexander Piskun
210f7a1ba5 convert nodes_recraft.py to V3 schema (#10507) 2025-10-28 14:38:05 -07:00
rattus
d202c2ba74 execution: Allow a subgraph nodes to execute multiple times (#10499)
In the case of --cache-none lazy and subgraph execution can cause
anything to be run multiple times per workflow. If that rerun nodes is
in itself a subgraph generator, this will crash for two reasons.

pending_subgraph_results[] does not cleanup entries after their use.
So when a pending_subgraph_result is consumed, remove it from the list
so that if the corresponding node is fully re-executed this misses
lookup and it fall through to execute the node as it should.

Secondly, theres is an explicit enforcement against dups in the
addition of subgraphs nodes as ephemerals to the dymprompt. Remove this
enforcement as the use case is now valid.
2025-10-28 16:22:08 -04:00
contentis
8817f8fc14 Mixed Precision Quantization System (#10498)
* Implement mixed precision operations with a registry design and metadate for quant spec in checkpoint.

* Updated design using Tensor Subclasses

* Fix FP8 MM

* An actually functional POC

* Remove CK reference and ensure correct compute dtype

* Update unit tests

* ruff lint

* Implement mixed precision operations with a registry design and metadate for quant spec in checkpoint.

* Updated design using Tensor Subclasses

* Fix FP8 MM

* An actually functional POC

* Remove CK reference and ensure correct compute dtype

* Update unit tests

* ruff lint

* Fix missing keys

* Rename quant dtype parameter

* Rename quant dtype parameter

* Fix unittests for CPU build
2025-10-28 16:20:53 -04:00
comfyanonymous
22e40d2ace Tell users to update their nvidia drivers if portable doesn't start. (#10518) 2025-10-28 15:08:08 -04:00
comfyanonymous
3bea4efc6b Tell users to update nvidia drivers if problem with portable. (#10510) 2025-10-28 04:45:45 -04:00
comfyanonymous
8cf2ba4ba6 Remove comfy api key from queue api. (#10502) 2025-10-28 03:23:52 -04:00
comfyanonymous
b61a40cbc9 Bump stable portable to cu130 python 3.13.9 (#10508) 2025-10-28 03:21:45 -04:00
109 changed files with 7321 additions and 4979 deletions

View File

@@ -1,2 +1,3 @@
..\python_embeded\python.exe -s ..\ComfyUI\main.py --windows-standalone-build --disable-api-nodes
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@@ -1,2 +1,3 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@@ -1,2 +1,3 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@@ -8,13 +8,15 @@ body:
Before submitting a **Bug Report**, please ensure the following:
- **1:** You are running the latest version of ComfyUI.
- **2:** You have looked at the existing bug reports and made sure this isn't already reported.
- **2:** You have your ComfyUI logs and relevant workflow on hand and will post them in this bug report.
- **3:** You confirmed that the bug is not caused by a custom node. You can disable all custom nodes by passing
`--disable-all-custom-nodes` command line argument.
`--disable-all-custom-nodes` command line argument. If you have custom node try updating them to the latest version.
- **4:** This is an actual bug in ComfyUI, not just a support question. A bug is when you can specify exact
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
## Very Important
Please make sure that you post ALL your ComfyUI logs in the bug report. A bug report without logs will likely be ignored.
- type: checkboxes
id: custom-nodes-test
attributes:

View File

@@ -0,0 +1,21 @@
<!-- API_NODE_PR_CHECKLIST: do not remove -->
## API Node PR Checklist
### Scope
- [ ] **Is API Node Change**
### Pricing & Billing
- [ ] **Need pricing update**
- [ ] **No pricing update**
If **Need pricing update**:
- [ ] Metronome rate cards updated
- [ ] Autobilling tests updated and passing
### QA
- [ ] **QA done**
- [ ] **QA not required**
### Comms
- [ ] Informed **Kosinkadink**

58
.github/workflows/api-node-template.yml vendored Normal file
View File

@@ -0,0 +1,58 @@
name: Append API Node PR template
on:
pull_request_target:
types: [opened, reopened, synchronize, ready_for_review]
paths:
- 'comfy_api_nodes/**' # only run if these files changed
permissions:
contents: read
pull-requests: write
jobs:
inject:
runs-on: ubuntu-latest
steps:
- name: Ensure template exists and append to PR body
uses: actions/github-script@v7
with:
script: |
const { owner, repo } = context.repo;
const number = context.payload.pull_request.number;
const templatePath = '.github/PULL_REQUEST_TEMPLATE/api-node.md';
const marker = '<!-- API_NODE_PR_CHECKLIST: do not remove -->';
const { data: pr } = await github.rest.pulls.get({ owner, repo, pull_number: number });
let templateText;
try {
const res = await github.rest.repos.getContent({
owner,
repo,
path: templatePath,
ref: pr.base.ref
});
const buf = Buffer.from(res.data.content, res.data.encoding || 'base64');
templateText = buf.toString('utf8');
} catch (e) {
core.setFailed(`Required PR template not found at "${templatePath}" on ${pr.base.ref}. Please add it to the repo.`);
return;
}
// Enforce the presence of the marker inside the template (for idempotence)
if (!templateText.includes(marker)) {
core.setFailed(`Template at "${templatePath}" does not contain the required marker:\n${marker}\nAdd it so we can detect duplicates safely.`);
return;
}
// If the PR already contains the marker, do not append again.
const body = pr.body || '';
if (body.includes(marker)) {
core.info('Template already present in PR body; nothing to inject.');
return;
}
const newBody = (body ? body + '\n\n' : '') + templateText + '\n';
await github.rest.pulls.update({ owner, repo, pull_number: number, body: newBody });
core.notice('API Node template appended to PR description.');

View File

@@ -14,13 +14,13 @@ jobs:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA Default (cu129)"
name: "Release NVIDIA Default (cu130)"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu129"
cache_tag: "cu130"
python_minor: "13"
python_patch: "6"
python_patch: "9"
rel_name: "nvidia"
rel_extra_name: ""
test_release: true
@@ -43,6 +43,23 @@ jobs:
test_release: true
secrets: inherit
release_nvidia_cu126:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA cu126"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu126"
python_minor: "12"
python_patch: "10"
rel_name: "nvidia"
rel_extra_name: "_cu126"
test_release: true
secrets: inherit
release_amd_rocm:
permissions:
contents: "write"

View File

@@ -21,14 +21,15 @@ jobs:
fail-fast: false
matrix:
# os: [macos, linux, windows]
os: [macos, linux]
python_version: ["3.9", "3.10", "3.11", "3.12"]
# os: [macos, linux]
os: [linux]
python_version: ["3.10", "3.11", "3.12"]
cuda_version: ["12.1"]
torch_version: ["stable"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
# - os: macos
# runner_label: [self-hosted, macOS]
# flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""
@@ -73,14 +74,15 @@ jobs:
strategy:
fail-fast: false
matrix:
os: [macos, linux]
# os: [macos, linux]
os: [linux]
python_version: ["3.11"]
cuda_version: ["12.1"]
torch_version: ["nightly"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
# - os: macos
# runner_label: [self-hosted, macOS]
# flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""

168
QUANTIZATION.md Normal file
View File

@@ -0,0 +1,168 @@
# The Comfy guide to Quantization
## How does quantization work?
Quantization aims to map a high-precision value x_f to a lower precision format with minimal loss in accuracy. These smaller formats then serve to reduce the models memory footprint and increase throughput by using specialized hardware.
When simply converting a value from FP16 to FP8 using the round-nearest method we might hit two issues:
- The dynamic range of FP16 (-65,504, 65,504) far exceeds FP8 formats like E4M3 (-448, 448) or E5M2 (-57,344, 57,344), potentially resulting in clipped values
- The original values are concentrated in a small range (e.g. -1,1) leaving many FP8-bits "unused"
By using a scaling factor, we aim to map these values into the quantized-dtype range, making use of the full spectrum. One of the easiest approaches, and common, is using per-tensor absolute-maximum scaling.
```
absmax = max(abs(tensor))
scale = amax / max_dynamic_range_low_precision
# Quantization
tensor_q = (tensor / scale).to(low_precision_dtype)
# De-Quantization
tensor_dq = tensor_q.to(fp16) * scale
tensor_dq ~ tensor
```
Given that additional information (scaling factor) is needed to "interpret" the quantized values, we describe those as derived datatypes.
## Quantization in Comfy
```
QuantizedTensor (torch.Tensor subclass)
↓ __torch_dispatch__
Two-Level Registry (generic + layout handlers)
MixedPrecisionOps + Metadata Detection
```
### Representation
To represent these derived datatypes, ComfyUI uses a subclass of torch.Tensor to implements these using the `QuantizedTensor` class found in `comfy/quant_ops.py`
A `Layout` class defines how a specific quantization format behaves:
- Required parameters
- Quantize method
- De-Quantize method
```python
from comfy.quant_ops import QuantizedLayout
class MyLayout(QuantizedLayout):
@classmethod
def quantize(cls, tensor, **kwargs):
# Convert to quantized format
qdata = ...
params = {'scale': ..., 'orig_dtype': tensor.dtype}
return qdata, params
@staticmethod
def dequantize(qdata, scale, orig_dtype, **kwargs):
return qdata.to(orig_dtype) * scale
```
To then run operations using these QuantizedTensors we use two registry systems to define supported operations.
The first is a **generic registry** that handles operations common to all quantized formats (e.g., `.to()`, `.clone()`, `.reshape()`).
The second registry is layout-specific and allows to implement fast-paths like nn.Linear.
```python
from comfy.quant_ops import register_layout_op
@register_layout_op(torch.ops.aten.linear.default, MyLayout)
def my_linear(func, args, kwargs):
# Extract tensors, call optimized kernel
...
```
When `torch.nn.functional.linear()` is called with QuantizedTensor arguments, `__torch_dispatch__` automatically routes to the registered implementation.
For any unsupported operation, QuantizedTensor will fallback to call `dequantize` and dispatch using the high-precision implementation.
### Mixed Precision
The `MixedPrecisionOps` class (lines 542-648 in `comfy/ops.py`) enables per-layer quantization decisions, allowing different layers in a model to use different precisions. This is activated when a model config contains a `layer_quant_config` dictionary that specifies which layers should be quantized and how.
**Architecture:**
```python
class MixedPrecisionOps(disable_weight_init):
_layer_quant_config = {} # Maps layer names to quantization configs
_compute_dtype = torch.bfloat16 # Default compute / dequantize precision
```
**Key mechanism:**
The custom `Linear._load_from_state_dict()` method inspects each layer during model loading:
- If the layer name is **not** in `_layer_quant_config`: load weight as regular tensor in `_compute_dtype`
- If the layer name **is** in `_layer_quant_config`:
- Load weight as `QuantizedTensor` with the specified layout (e.g., `TensorCoreFP8Layout`)
- Load associated quantization parameters (scales, block_size, etc.)
**Why it's needed:**
Not all layers tolerate quantization equally. Sensitive operations like final projections can be kept in higher precision, while compute-heavy matmuls are quantized. This provides most of the performance benefits while maintaining quality.
The system is selected in `pick_operations()` when `model_config.layer_quant_config` is present, making it the highest-priority operation mode.
## Checkpoint Format
Quantized checkpoints are stored as standard safetensors files with quantized weight tensors and associated scaling parameters, plus a `_quantization_metadata` JSON entry describing the quantization scheme.
The quantized checkpoint will contain the same layers as the original checkpoint but:
- The weights are stored as quantized values, sometimes using a different storage datatype. E.g. uint8 container for fp8.
- For each quantized weight a number of additional scaling parameters are stored alongside depending on the recipe.
- We store a metadata.json in the metadata of the final safetensor containing the `_quantization_metadata` describing which layers are quantized and what layout has been used.
### Scaling Parameters details
We define 4 possible scaling parameters that should cover most recipes in the near-future:
- **weight_scale**: quantization scalers for the weights
- **weight_scale_2**: global scalers in the context of double scaling
- **pre_quant_scale**: scalers used for smoothing salient weights
- **input_scale**: quantization scalers for the activations
| Format | Storage dtype | weight_scale | weight_scale_2 | pre_quant_scale | input_scale |
|--------|---------------|--------------|----------------|-----------------|-------------|
| float8_e4m3fn | float32 | float32 (scalar) | - | - | float32 (scalar) |
You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS).
### Quantization Metadata
The metadata stored alongside the checkpoint contains:
- **format_version**: String to define a version of the standard
- **layers**: A dictionary mapping layer names to their quantization format. The format string maps to the definitions found in `QUANT_ALGOS`.
Example:
```json
{
"_quantization_metadata": {
"format_version": "1.0",
"layers": {
"model.layers.0.mlp.up_proj": "float8_e4m3fn",
"model.layers.0.mlp.down_proj": "float8_e4m3fn",
"model.layers.1.mlp.up_proj": "float8_e4m3fn"
}
}
}
```
## Creating Quantized Checkpoints
To create compatible checkpoints, use any quantization tool provided the output follows the checkpoint format described above and uses a layout defined in `QUANT_ALGOS`.
### Weight Quantization
Weight quantization is straightforward - compute the scaling factor directly from the weight tensor using the absolute maximum method described earlier. Each layer's weights are quantized independently and stored with their corresponding `weight_scale` parameter.
### Calibration (for Activation Quantization)
Activation quantization (e.g., for FP8 Tensor Core operations) requires `input_scale` parameters that cannot be determined from static weights alone. Since activation values depend on actual inputs, we use **post-training calibration (PTQ)**:
1. **Collect statistics**: Run inference on N representative samples
2. **Track activations**: Record the absolute maximum (`amax`) of inputs to each quantized layer
3. **Compute scales**: Derive `input_scale` from collected statistics
4. **Store in checkpoint**: Save `input_scale` parameters alongside weights
The calibration dataset should be representative of your target use case. For diffusion models, this typically means a diverse set of prompts and generation parameters.

View File

@@ -67,6 +67,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/)
- [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/)
- [Flux 2](https://comfyanonymous.github.io/ComfyUI_examples/flux2/)
- Image Editing Models
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
@@ -112,10 +113,11 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
## Release Process
ComfyUI follows a weekly release cycle targeting Friday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
ComfyUI follows a weekly release cycle targeting Monday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
- Releases a new stable version (e.g., v0.7.0)
- Releases a new stable version (e.g., v0.7.0) roughly every week.
- Commits outside of the stable release tags may be very unstable and break many custom nodes.
- Serves as the foundation for the desktop release
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
@@ -172,15 +174,19 @@ There is a portable standalone build for Windows that should work for running on
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z)
Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
Simply download, extract with [7-Zip](https://7-zip.org) or with the windows explorer on recent windows versions and run. For smaller models you normally only need to put the checkpoints (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints but many of the larger models have multiple files. Make sure to follow the instructions to know which subfolder to put them in ComfyUI\models\
If you have trouble extracting it, right click the file -> properties -> unblock
Update your Nvidia drivers if it doesn't start.
#### Alternative Downloads:
[Experimental portable for AMD GPUs](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_amd.7z)
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z) (Supports Nvidia 10 series and older GPUs).
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z).
[Portable with pytorch cuda 12.6 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu126.7z) (Supports Nvidia 10 series and older GPUs).
#### How do I share models between another UI and ComfyUI?
@@ -197,7 +203,7 @@ comfy install
## Manual Install (Windows, Linux)
Python 3.14 will work if you comment out the `kornia` dependency in the requirements.txt file (breaks the canny node) but it is not recommended.
Python 3.14 works but you may encounter issues with the torch compile node. The free threaded variant is still missing some dependencies.
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
@@ -218,7 +224,7 @@ AMD users can install rocm and pytorch with pip if you don't have it already ins
This is the command to install the nightly with ROCm 7.0 which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.0```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.1```
### AMD GPUs (Experimental: Windows and Linux), RDNA 3, 3.5 and 4 only.
@@ -239,7 +245,7 @@ RDNA 4 (RX 9000 series):
### Intel GPUs (Windows and Linux)
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
1. To install PyTorch xpu, use the following command:
@@ -249,10 +255,6 @@ This is the command to install the Pytorch xpu nightly which might have some per
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
### NVIDIA
Nvidia users should install stable pytorch using this command:

View File

@@ -10,7 +10,8 @@ import importlib
from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
from typing import TypedDict, Optional
from typing import Dict, TypedDict, Optional
from aiohttp import web
from importlib.metadata import version
import requests
@@ -257,7 +258,54 @@ comfyui-frontend-package is not installed.
sys.exit(-1)
@classmethod
def templates_path(cls) -> str:
def template_asset_map(cls) -> Optional[Dict[str, str]]:
"""Return a mapping of template asset names to their absolute paths."""
try:
from comfyui_workflow_templates import (
get_asset_path,
iter_templates,
)
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-workflow-templates is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
return None
try:
template_entries = list(iter_templates())
except Exception as exc:
logging.error(f"Failed to enumerate workflow templates: {exc}")
return None
asset_map: Dict[str, str] = {}
try:
for entry in template_entries:
for asset in entry.assets:
asset_map[asset.filename] = get_asset_path(
entry.template_id, asset.filename
)
except Exception as exc:
logging.error(f"Failed to resolve template asset paths: {exc}")
return None
if not asset_map:
logging.error("No workflow template assets found. Did the packages install correctly?")
return None
return asset_map
@classmethod
def legacy_templates_path(cls) -> Optional[str]:
"""Return the legacy templates directory shipped inside the meta package."""
try:
import comfyui_workflow_templates
@@ -276,6 +324,7 @@ comfyui-workflow-templates is not installed.
********** ERROR ***********
""".strip()
)
return None
@classmethod
def embedded_docs_path(cls) -> str:
@@ -392,3 +441,17 @@ comfyui-workflow-templates is not installed.
logging.info("Falling back to the default frontend.")
check_frontend_version()
return cls.default_frontend_path()
@classmethod
def template_asset_handler(cls):
assets = cls.template_asset_map()
if not assets:
return None
async def serve_template(request: web.Request) -> web.StreamResponse:
rel_path = request.match_info.get("path", "")
target = assets.get(rel_path)
if target is None:
raise web.HTTPNotFound()
return web.FileResponse(target)
return serve_template

View File

@@ -413,7 +413,8 @@ class ControlNet(nn.Module):
out_middle = []
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
if y is None:
raise ValueError("y is None, did you try using a controlnet for SDXL on SD1?")
emb = emb + self.label_emb(y)
h = x

View File

@@ -105,6 +105,7 @@ cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
cache_group.add_argument("--cache-ram", nargs='?', const=4.0, type=float, default=0, help="Use RAM pressure caching with the specified headroom threshold. If available RAM drops below the threhold the cache remove large items to free RAM. Default 4GB")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
@@ -145,7 +146,9 @@ class PerformanceFeature(enum.Enum):
CublasOps = "cublas_ops"
AutoTune = "autotune"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. This is used to test new features so using it might crash your comfyui. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
parser.add_argument("--disable-pinned-memory", action="store_true", help="Disable pinned memory use.")
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")
@@ -157,7 +160,7 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes. Also prevents the frontend from communicating with the internet.")
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")

View File

@@ -310,11 +310,13 @@ class ControlLoraOps:
self.bias = None
def forward(self, input):
weight, bias = comfy.ops.cast_bias_weight(self, input)
weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True)
if self.up is not None:
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
x = torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
else:
return torch.nn.functional.linear(input, weight, bias)
x = torch.nn.functional.linear(input, weight, bias)
comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream)
return x
class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
def __init__(
@@ -350,12 +352,13 @@ class ControlLoraOps:
def forward(self, input):
weight, bias = comfy.ops.cast_bias_weight(self, input)
weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True)
if self.up is not None:
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
x = torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
else:
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
x = torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream)
return x
class ControlLora(ControlNet):
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options

View File

@@ -178,6 +178,15 @@ class Flux(SD3):
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
class Flux2(LatentFormat):
latent_channels = 128
def process_in(self, latent):
return latent
def process_out(self, latent):
return latent
class Mochi(LatentFormat):
latent_channels = 12
latent_dimensions = 3
@@ -611,6 +620,66 @@ class HunyuanImage21Refiner(LatentFormat):
latent_dimensions = 3
scale_factor = 1.03682
def process_in(self, latent):
out = latent * self.scale_factor
out = torch.cat((out[:, :, :1], out), dim=2)
out = out.permute(0, 2, 1, 3, 4)
b, f_times_2, c, h, w = out.shape
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
out = out.permute(0, 2, 1, 3, 4).contiguous()
return out
def process_out(self, latent):
z = latent / self.scale_factor
z = z.permute(0, 2, 1, 3, 4)
b, f, c, h, w = z.shape
z = z.reshape(b, f, 2, c // 2, h, w)
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
z = z.permute(0, 2, 1, 3, 4)
z = z[:, :, 1:]
return z
class HunyuanVideo15(LatentFormat):
latent_rgb_factors = [
[ 0.0568, -0.0521, -0.0131],
[ 0.0014, 0.0735, 0.0326],
[ 0.0186, 0.0531, -0.0138],
[-0.0031, 0.0051, 0.0288],
[ 0.0110, 0.0556, 0.0432],
[-0.0041, -0.0023, -0.0485],
[ 0.0530, 0.0413, 0.0253],
[ 0.0283, 0.0251, 0.0339],
[ 0.0277, -0.0372, -0.0093],
[ 0.0393, 0.0944, 0.1131],
[ 0.0020, 0.0251, 0.0037],
[-0.0017, 0.0012, 0.0234],
[ 0.0468, 0.0436, 0.0203],
[ 0.0354, 0.0439, -0.0233],
[ 0.0090, 0.0123, 0.0346],
[ 0.0382, 0.0029, 0.0217],
[ 0.0261, -0.0300, 0.0030],
[-0.0088, -0.0220, -0.0283],
[-0.0272, -0.0121, -0.0363],
[-0.0664, -0.0622, 0.0144],
[ 0.0414, 0.0479, 0.0529],
[ 0.0355, 0.0612, -0.0247],
[ 0.0147, 0.0264, 0.0174],
[ 0.0438, 0.0038, 0.0542],
[ 0.0431, -0.0573, -0.0033],
[-0.0162, -0.0211, -0.0406],
[-0.0487, -0.0295, -0.0393],
[ 0.0005, -0.0109, 0.0253],
[ 0.0296, 0.0591, 0.0353],
[ 0.0119, 0.0181, -0.0306],
[-0.0085, -0.0362, 0.0229],
[ 0.0005, -0.0106, 0.0242]
]
latent_rgb_factors_bias = [ 0.0456, -0.0202, -0.0644]
latent_channels = 32
latent_dimensions = 3
scale_factor = 1.03682
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1

View File

@@ -1,15 +1,15 @@
import torch
from torch import Tensor, nn
from comfy.ldm.flux.math import attention
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
QKNorm,
SelfAttention,
ModulationOut,
)
# TODO: remove this in a few months
SingleStreamBlock = None
DoubleStreamBlock = None
class ChromaModulationOut(ModulationOut):
@@ -48,124 +48,6 @@ class Approximator(nn.Module):
return x
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}):
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask, transformer_options=transformer_options)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
# calculate the txt bloks
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}) -> Tensor:
mod = vec
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x.addcmul_(mod.gate, output)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()

View File

@@ -11,12 +11,12 @@ import comfy.ldm.common_dit
from comfy.ldm.flux.layers import (
EmbedND,
timestep_embedding,
DoubleStreamBlock,
SingleStreamBlock,
)
from .layers import (
DoubleStreamBlock,
LastLayer,
SingleStreamBlock,
Approximator,
ChromaModulationOut,
)
@@ -90,6 +90,7 @@ class Chroma(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=False,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -98,7 +99,7 @@ class Chroma(nn.Module):
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=False, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
@@ -178,7 +179,10 @@ class Chroma(nn.Module):
pe = self.pe_embedder(ids)
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if i not in self.skip_mmdit:
double_mod = (
self.get_modulations(mod_vectors, "double_img", idx=i),
@@ -221,7 +225,10 @@ class Chroma(nn.Module):
img = torch.cat((txt, img), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if i not in self.skip_dit:
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
if ("single_block", i) in blocks_replace:

View File

@@ -10,12 +10,10 @@ from torch import Tensor, nn
from einops import repeat
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock
from comfy.ldm.chroma.model import Chroma, ChromaParams
from comfy.ldm.chroma.layers import (
DoubleStreamBlock,
SingleStreamBlock,
Approximator,
)
from .layers import (
@@ -89,7 +87,6 @@ class ChromaRadiance(Chroma):
dtype=dtype, device=device, operations=operations
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
@@ -97,6 +94,7 @@ class ChromaRadiance(Chroma):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=False,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -109,6 +107,7 @@ class ChromaRadiance(Chroma):
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
modulation=False,
dtype=dtype, device=device, operations=operations,
)
for _ in range(params.depth_single_blocks)

View File

@@ -48,11 +48,11 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
def __init__(self, in_dim: int, hidden_dim: int, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=bias, dtype=dtype, device=device)
self.silu = nn.SiLU()
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=bias, dtype=dtype, device=device)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
@@ -80,14 +80,14 @@ class QKNorm(torch.nn.Module):
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, dtype=None, device=None, operations=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
self.proj = operations.Linear(dim, dim, bias=proj_bias, dtype=dtype, device=device)
@dataclass
@@ -98,11 +98,11 @@ class ModulationOut:
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
def __init__(self, dim: int, double: bool, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
self.lin = operations.Linear(dim, self.multiplier * dim, bias=bias, dtype=dtype, device=device)
def forward(self, vec: Tensor) -> tuple:
if vec.ndim == 2:
@@ -129,77 +129,129 @@ def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
return tensor
class SiLUActivation(nn.Module):
def __init__(self):
super().__init__()
self.gate_fn = nn.SiLU()
def forward(self, x: Tensor) -> Tensor:
x1, x2 = x.chunk(2, dim=-1)
return self.gate_fn(x1) * x2
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.modulation = modulation
if self.modulation:
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
if mlp_silu_act:
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device),
SiLUActivation(),
operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device),
)
else:
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
if self.modulation:
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
if mlp_silu_act:
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device),
SiLUActivation(),
operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device),
)
else:
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
if self.modulation:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
else:
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img)
img_qkv = self.img_attn.qkv(img_modulated)
del img_modulated
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del img_qkv
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt)
txt_qkv = self.txt_attn.qkv(txt_modulated)
del txt_modulated
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del txt_qkv
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
if self.flipped_img_txt:
q = torch.cat((img_q, txt_q), dim=2)
del img_q, txt_q
k = torch.cat((img_k, txt_k), dim=2)
del img_k, txt_k
v = torch.cat((img_v, txt_v), dim=2)
del img_v, txt_v
# run actual attention
attn = attention(torch.cat((img_q, txt_q), dim=2),
torch.cat((img_k, txt_k), dim=2),
torch.cat((img_v, txt_v), dim=2),
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
else:
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
# calculate the img bloks
img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
del img_attn
img += apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
# calculate the txt bloks
txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt)
del txt_attn
txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt)
if txt.dtype == torch.float16:
@@ -220,6 +272,9 @@ class SingleStreamBlock(nn.Module):
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
modulation=True,
mlp_silu_act=False,
bias=True,
dtype=None,
device=None,
operations=None
@@ -231,30 +286,47 @@ class SingleStreamBlock(nn.Module):
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.mlp_hidden_dim_first = self.mlp_hidden_dim
if mlp_silu_act:
self.mlp_hidden_dim_first = int(hidden_size * mlp_ratio * 2)
self.mlp_act = SiLUActivation()
else:
self.mlp_act = nn.GELU(approximate="tanh")
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim_first, bias=bias, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, bias=bias, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
if modulation:
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
else:
self.modulation = None
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
mod, _ = self.modulation(vec)
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
if self.modulation:
mod, _ = self.modulation(vec)
else:
mod = vec
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim_first], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del qkv
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
mlp = self.mlp_act(mlp)
output = self.linear2(torch.cat((attn, mlp), 2))
x += apply_mod(output, mod.gate, None, modulation_dims)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
@@ -262,11 +334,11 @@ class SingleStreamBlock(nn.Module):
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=bias, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=bias, dtype=dtype, device=device))
def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor:
if vec.ndim == 2:

View File

@@ -7,15 +7,8 @@ import comfy.model_management
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor:
q_shape = q.shape
k_shape = k.shape
if pe is not None:
q = q.to(dtype=pe.dtype).reshape(*q.shape[:-1], -1, 1, 2)
k = k.to(dtype=pe.dtype).reshape(*k.shape[:-1], -1, 1, 2)
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
q, k = apply_rope(q, k, pe)
heads = q.shape[1]
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options)
return x

View File

@@ -15,6 +15,7 @@ from .layers import (
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
Modulation
)
@dataclass
@@ -33,6 +34,11 @@ class FluxParams:
patch_size: int
qkv_bias: bool
guidance_embed: bool
global_modulation: bool = False
mlp_silu_act: bool = False
ops_bias: bool = True
default_ref_method: str = "offset"
ref_index_scale: float = 1.0
class Flux(nn.Module):
@@ -58,13 +64,17 @@ class Flux(nn.Module):
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations)
if params.vec_in_dim is not None:
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
else:
self.vector_in = None
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
self.double_blocks = nn.ModuleList(
[
@@ -73,6 +83,9 @@ class Flux(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=params.global_modulation is False,
mlp_silu_act=params.mlp_silu_act,
proj_bias=params.ops_bias,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -81,13 +94,30 @@ class Flux(nn.Module):
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, bias=params.ops_bias, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
if final_layer:
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, bias=params.ops_bias, dtype=dtype, device=device, operations=operations)
if params.global_modulation:
self.double_stream_modulation_img = Modulation(
self.hidden_size,
double=True,
bias=False,
dtype=dtype, device=device, operations=operations
)
self.double_stream_modulation_txt = Modulation(
self.hidden_size,
double=True,
bias=False,
dtype=dtype, device=device, operations=operations
)
self.single_stream_modulation = Modulation(
self.hidden_size, double=False, bias=False, dtype=dtype, device=device, operations=operations
)
def forward_orig(
self,
@@ -103,9 +133,6 @@ class Flux(nn.Module):
attn_mask: Tensor = None,
) -> Tensor:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches = transformer_options.get("patches", {})
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
@@ -118,9 +145,17 @@ class Flux(nn.Module):
if guidance is not None:
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
if self.vector_in is not None:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
txt = self.txt_in(txt)
vec_orig = vec
if self.params.global_modulation:
vec = (self.double_stream_modulation_img(vec_orig), self.double_stream_modulation_txt(vec_orig))
if "post_input" in patches:
for p in patches["post_input"]:
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
@@ -177,6 +212,9 @@ class Flux(nn.Module):
img = torch.cat((txt, img), 1)
if self.params.global_modulation:
vec, _ = self.single_stream_modulation(vec_orig)
for i, block in enumerate(self.single_blocks):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
@@ -207,10 +245,10 @@ class Flux(nn.Module):
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
img = self.final_layer(img, vec_orig) # (N, T, patch_size ** 2 * out_channels)
return img
def process_img(self, x, index=0, h_offset=0, w_offset=0):
def process_img(self, x, index=0, h_offset=0, w_offset=0, transformer_options={}):
bs, c, h, w = x.shape
patch_size = self.patch_size
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
@@ -222,10 +260,22 @@ class Flux(nn.Module):
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
steps_h = h_len
steps_w = w_len
rope_options = transformer_options.get("rope_options", None)
if rope_options is not None:
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
index += rope_options.get("shift_t", 0.0)
h_offset += rope_options.get("shift_y", 0.0)
w_offset += rope_options.get("shift_x", 0.0)
img_ids = torch.zeros((steps_h, steps_w, len(self.params.axes_dim)), device=x.device, dtype=torch.float32)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=steps_h, device=x.device, dtype=torch.float32).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=steps_w, device=x.device, dtype=torch.float32).unsqueeze(0)
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
@@ -241,16 +291,16 @@ class Flux(nn.Module):
h_len = ((h_orig + (patch_size // 2)) // patch_size)
w_len = ((w_orig + (patch_size // 2)) // patch_size)
img, img_ids = self.process_img(x)
img, img_ids = self.process_img(x, transformer_options=transformer_options)
img_tokens = img.shape[1]
if ref_latents is not None:
h = 0
w = 0
index = 0
ref_latents_method = kwargs.get("ref_latents_method", "offset")
ref_latents_method = kwargs.get("ref_latents_method", self.params.default_ref_method)
for ref in ref_latents:
if ref_latents_method == "index":
index += 1
index += self.params.ref_index_scale
h_offset = 0
w_offset = 0
elif ref_latents_method == "uxo":
@@ -274,7 +324,11 @@ class Flux(nn.Module):
img = torch.cat([img, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
txt_ids = torch.zeros((bs, context.shape[1], len(self.params.axes_dim)), device=x.device, dtype=torch.float32)
if len(self.params.axes_dim) == 4: # Flux 2
txt_ids[:, :, 3] = torch.linspace(0, context.shape[1] - 1, steps=context.shape[1], device=x.device, dtype=torch.float32)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
out = out[:, :img_tokens]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h_orig,:w_orig]

View File

@@ -6,7 +6,6 @@ import comfy.ldm.flux.layers
import comfy.ldm.modules.diffusionmodules.mmdit
from comfy.ldm.modules.attention import optimized_attention
from dataclasses import dataclass
from einops import repeat
@@ -42,6 +41,8 @@ class HunyuanVideoParams:
guidance_embed: bool
byt5: bool
meanflow: bool
use_cond_type_embedding: bool
vision_in_dim: int
class SelfAttentionRef(nn.Module):
@@ -157,7 +158,10 @@ class TokenRefiner(nn.Module):
t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
# m = mask.float().unsqueeze(-1)
# c = (x.float() * m).sum(dim=1) / m.sum(dim=1) #TODO: the following works when the x.shape is the same length as the tokens but might break otherwise
c = x.sum(dim=1) / x.shape[1]
if x.dtype == torch.float16:
c = x.float().sum(dim=1) / x.shape[1]
else:
c = x.sum(dim=1) / x.shape[1]
c = t + self.c_embedder(c.to(x.dtype))
x = self.input_embedder(x)
@@ -196,11 +200,15 @@ class HunyuanVideo(nn.Module):
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
super().__init__()
self.dtype = dtype
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
params = HunyuanVideoParams(**kwargs)
self.params = params
self.patch_size = params.patch_size
self.in_channels = params.in_channels
self.out_channels = params.out_channels
self.use_cond_type_embedding = params.use_cond_type_embedding
self.vision_in_dim = params.vision_in_dim
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
@@ -266,6 +274,18 @@ class HunyuanVideo(nn.Module):
if final_layer:
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
# HunyuanVideo 1.5 specific modules
if self.vision_in_dim is not None:
from comfy.ldm.wan.model import MLPProj
self.vision_in = MLPProj(in_dim=self.vision_in_dim, out_dim=self.hidden_size, operation_settings=operation_settings)
else:
self.vision_in = None
if self.use_cond_type_embedding:
# 0: text_encoder feature 1: byt5 feature 2: vision_encoder feature
self.cond_type_embedding = nn.Embedding(3, self.hidden_size)
else:
self.cond_type_embedding = None
def forward_orig(
self,
img: Tensor,
@@ -276,6 +296,7 @@ class HunyuanVideo(nn.Module):
timesteps: Tensor,
y: Tensor = None,
txt_byt5=None,
clip_fea=None,
guidance: Tensor = None,
guiding_frame_index=None,
ref_latent=None,
@@ -331,12 +352,31 @@ class HunyuanVideo(nn.Module):
txt = self.txt_in(txt, timesteps, txt_mask, transformer_options=transformer_options)
if self.cond_type_embedding is not None:
self.cond_type_embedding.to(txt.device)
cond_emb = self.cond_type_embedding(torch.zeros_like(txt[:, :, 0], device=txt.device, dtype=torch.long))
txt = txt + cond_emb.to(txt.dtype)
if self.byt5_in is not None and txt_byt5 is not None:
txt_byt5 = self.byt5_in(txt_byt5)
if self.cond_type_embedding is not None:
cond_emb = self.cond_type_embedding(torch.ones_like(txt_byt5[:, :, 0], device=txt_byt5.device, dtype=torch.long))
txt_byt5 = txt_byt5 + cond_emb.to(txt_byt5.dtype)
txt = torch.cat((txt_byt5, txt), dim=1) # byt5 first for HunyuanVideo1.5
else:
txt = torch.cat((txt, txt_byt5), dim=1)
txt_byt5_ids = torch.zeros((txt_ids.shape[0], txt_byt5.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt = torch.cat((txt, txt_byt5), dim=1)
txt_ids = torch.cat((txt_ids, txt_byt5_ids), dim=1)
if clip_fea is not None:
txt_vision_states = self.vision_in(clip_fea)
if self.cond_type_embedding is not None:
cond_emb = self.cond_type_embedding(2 * torch.ones_like(txt_vision_states[:, :, 0], dtype=torch.long, device=txt_vision_states.device))
txt_vision_states = txt_vision_states + cond_emb
txt = torch.cat((txt_vision_states.to(txt.dtype), txt), dim=1)
extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1)
ids = torch.cat((img_ids, txt_ids), dim=1)
pe = self.pe_embedder(ids)
@@ -349,7 +389,10 @@ class HunyuanVideo(nn.Module):
attn_mask = None
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -371,7 +414,10 @@ class HunyuanVideo(nn.Module):
img = torch.cat((img, txt), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -430,14 +476,14 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
return repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
def forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, txt_byt5, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
).execute(x, timestep, context, y, txt_byt5, clip_fea, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
def _forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
bs = x.shape[0]
if len(self.patch_size) == 3:
img_ids = self.img_ids(x)
@@ -445,5 +491,5 @@ class HunyuanVideo(nn.Module):
else:
img_ids = self.img_ids_2d(x)
txt_ids = torch.zeros((bs, context.shape[1], 2), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, clip_fea, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
return out

View File

@@ -0,0 +1,120 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm, ResnetBlock, VideoConv3d
import model_management, model_patcher
class SRResidualCausalBlock3D(nn.Module):
def __init__(self, channels: int):
super().__init__()
self.block = nn.Sequential(
VideoConv3d(channels, channels, kernel_size=3),
nn.SiLU(inplace=True),
VideoConv3d(channels, channels, kernel_size=3),
nn.SiLU(inplace=True),
VideoConv3d(channels, channels, kernel_size=3),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.block(x)
class SRModel3DV2(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int = 64,
num_blocks: int = 6,
global_residual: bool = False,
):
super().__init__()
self.in_conv = VideoConv3d(in_channels, hidden_channels, kernel_size=3)
self.blocks = nn.ModuleList([SRResidualCausalBlock3D(hidden_channels) for _ in range(num_blocks)])
self.out_conv = VideoConv3d(hidden_channels, out_channels, kernel_size=3)
self.global_residual = bool(global_residual)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
y = self.in_conv(x)
for blk in self.blocks:
y = blk(y)
y = self.out_conv(y)
if self.global_residual and (y.shape == residual.shape):
y = y + residual
return y
class Upsampler(nn.Module):
def __init__(
self,
z_channels: int,
out_channels: int,
block_out_channels: tuple[int, ...],
num_res_blocks: int = 2,
):
super().__init__()
self.num_res_blocks = num_res_blocks
self.block_out_channels = block_out_channels
self.z_channels = z_channels
ch = block_out_channels[0]
self.conv_in = VideoConv3d(z_channels, ch, kernel_size=3)
self.up = nn.ModuleList()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_shortcut=False,
conv_op=VideoConv3d, norm_op=RMS_norm)
for j in range(num_res_blocks + 1)])
ch = tgt
self.up.append(stage)
self.norm_out = RMS_norm(ch)
self.conv_out = VideoConv3d(ch, out_channels, kernel_size=3)
def forward(self, z):
"""
Args:
z: (B, C, T, H, W)
target_shape: (H, W)
"""
# z to block_in
repeats = self.block_out_channels[0] // (self.z_channels)
x = self.conv_in(z) + z.repeat_interleave(repeats=repeats, dim=1)
# upsampling
for stage in self.up:
for blk in stage.block:
x = blk(x)
out = self.conv_out(F.silu(self.norm_out(x)))
return out
UPSAMPLERS = {
"720p": SRModel3DV2,
"1080p": Upsampler,
}
class HunyuanVideo15SRModel():
def __init__(self, model_type, config):
self.load_device = model_management.vae_device()
offload_device = model_management.vae_offload_device()
self.dtype = model_management.vae_dtype(self.load_device)
self.model_class = UPSAMPLERS.get(model_type)
self.model = self.model_class(**config).eval()
self.patcher = model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=True)
def get_sd(self):
return self.model.state_dict()
def resample_latent(self, latent):
model_management.load_model_gpu(self.patcher)
return self.model(latent.to(self.load_device))

View File

@@ -4,8 +4,40 @@ import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d, Normalize
import comfy.ops
import comfy.ldm.models.autoencoder
import comfy.model_management
ops = comfy.ops.disable_weight_init
class NoPadConv3d(nn.Module):
def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, **kwargs):
super().__init__()
self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs)
def forward(self, x):
return self.conv(x)
def conv_carry_causal_3d(xl, op, conv_carry_in=None, conv_carry_out=None):
x = xl[0]
xl.clear()
if conv_carry_out is not None:
to_push = x[:, :, -2:, :, :].clone()
conv_carry_out.append(to_push)
if isinstance(op, NoPadConv3d):
if conv_carry_in is None:
x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2, 0), mode = 'replicate')
else:
carry_len = conv_carry_in[0].shape[2]
x = torch.cat([conv_carry_in.pop(0), x], dim=2)
x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2 - carry_len, 0), mode = 'replicate')
out = op(x)
return out
class RMS_norm(nn.Module):
def __init__(self, dim):
super().__init__()
@@ -14,7 +46,7 @@ class RMS_norm(nn.Module):
self.gamma = nn.Parameter(torch.empty(shape))
def forward(self, x):
return F.normalize(x, dim=1) * self.scale * self.gamma
return F.normalize(x, dim=1) * self.scale * comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device)
class DnSmpl(nn.Module):
def __init__(self, ic, oc, tds=True, refiner_vae=True, op=VideoConv3d):
@@ -27,11 +59,12 @@ class DnSmpl(nn.Module):
self.tds = tds
self.gs = fct * ic // oc
def forward(self, x):
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
r1 = 2 if self.tds else 1
h = self.conv(x)
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
if self.tds and self.refiner_vae and conv_carry_in is None:
if self.tds and self.refiner_vae:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2)
@@ -39,14 +72,7 @@ class DnSmpl(nn.Module):
hf = hf.reshape(b, 2 * 2 * c, f, ht // 2, wd // 2)
hf = torch.cat([hf, hf], dim=1)
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nf = frms // r1
hn = hn.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
hn = hn.permute(0, 3, 5, 7, 1, 2, 4, 6)
hn = hn.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
h = torch.cat([hf, hn], dim=2)
h = h[:, :, 1:, :, :]
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
@@ -54,34 +80,32 @@ class DnSmpl(nn.Module):
xf = xf.permute(0, 4, 6, 1, 2, 3, 5)
xf = xf.reshape(b, 2 * 2 * ci, f, ht // 2, wd // 2)
B, C, T, H, W = xf.shape
xf = xf.view(B, h.shape[1], self.gs // 2, T, H, W).mean(dim=2)
xf = xf.view(B, hf.shape[1], self.gs // 2, T, H, W).mean(dim=2)
xn = x[:, :, 1:, :, :]
b, ci, frms, ht, wd = xn.shape
nf = frms // r1
xn = xn.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
xn = xn.permute(0, 3, 5, 7, 1, 2, 4, 6)
xn = xn.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = xn.shape
xn = xn.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
x = x[:, :, 1:, :, :]
nf = frms // r1
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
if h.shape[2] == 0:
return hf + xf
b, ci, frms, ht, wd = x.shape
nf = frms // r1
sc = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
sc = sc.permute(0, 3, 5, 7, 1, 2, 4, 6)
sc = sc.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = sc.shape
sc = sc.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
b, c, frms, ht, wd = h.shape
nf = frms // r1
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
return h + sc
b, ci, frms, ht, wd = x.shape
nf = frms // r1
x = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
x = x.permute(0, 3, 5, 7, 1, 2, 4, 6)
x = x.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = x.shape
x = x.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
if self.tds and self.refiner_vae and conv_carry_in is None:
h = torch.cat([hf, h], dim=2)
x = torch.cat([xf, x], dim=2)
return h + x
class UpSmpl(nn.Module):
@@ -94,11 +118,11 @@ class UpSmpl(nn.Module):
self.tus = tus
self.rp = fct * oc // ic
def forward(self, x):
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
r1 = 2 if self.tus else 1
h = self.conv(x)
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
if self.tus and self.refiner_vae:
if self.tus and self.refiner_vae and conv_carry_in is None:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
nc = c // (2 * 2)
@@ -107,14 +131,7 @@ class UpSmpl(nn.Module):
hf = hf.reshape(b, nc, f, ht * 2, wd * 2)
hf = hf[:, : hf.shape[1] // 2]
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nc = c // (r1 * 2 * 2)
hn = hn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
hn = hn.permute(0, 4, 5, 1, 6, 2, 7, 3)
hn = hn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
h = torch.cat([hf, hn], dim=2)
h = h[:, :, 1:, :, :]
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
@@ -125,29 +142,43 @@ class UpSmpl(nn.Module):
xf = xf.permute(0, 3, 4, 5, 1, 6, 2)
xf = xf.reshape(b, nc, f, ht * 2, wd * 2)
xn = x[:, :, 1:, :, :]
xn = xn.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = xn.shape
nc = c // (r1 * 2 * 2)
xn = xn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
xn = xn.permute(0, 4, 5, 1, 6, 2, 7, 3)
xn = xn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
nc = c // (r1 * 2 * 2)
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
x = x[:, :, 1:, :, :]
sc = x.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = sc.shape
nc = c // (r1 * 2 * 2)
sc = sc.reshape(b, r1, 2, 2, nc, frms, ht, wd)
sc = sc.permute(0, 4, 5, 1, 6, 2, 7, 3)
sc = sc.reshape(b, nc, frms * r1, ht * 2, wd * 2)
b, c, frms, ht, wd = h.shape
nc = c // (r1 * 2 * 2)
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
return h + sc
x = x.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = x.shape
nc = c // (r1 * 2 * 2)
x = x.reshape(b, r1, 2, 2, nc, frms, ht, wd)
x = x.permute(0, 4, 5, 1, 6, 2, 7, 3)
x = x.reshape(b, nc, frms * r1, ht * 2, wd * 2)
if self.tus and self.refiner_vae and conv_carry_in is None:
h = torch.cat([hf, h], dim=2)
x = torch.cat([xf, x], dim=2)
return h + x
class HunyuanRefinerResnetBlock(ResnetBlock):
def __init__(self, in_channels, out_channels, conv_op=NoPadConv3d, norm_op=RMS_norm):
super().__init__(in_channels=in_channels, out_channels=out_channels, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
h = x
h = [ self.swish(self.norm1(x)) ]
h = conv_carry_causal_3d(h, self.conv1, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
h = [ self.dropout(self.swish(self.norm2(h))) ]
h = conv_carry_causal_3d(h, self.conv2, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x+h
class Encoder(nn.Module):
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
@@ -160,7 +191,7 @@ class Encoder(nn.Module):
self.refiner_vae = refiner_vae
if self.refiner_vae:
conv_op = VideoConv3d
conv_op = NoPadConv3d
norm_op = RMS_norm
else:
conv_op = ops.Conv3d
@@ -175,10 +206,9 @@ class Encoder(nn.Module):
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=conv_op, norm_op=norm_op)
stage.block = nn.ModuleList([HunyuanRefinerResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
conv_op=conv_op, norm_op=norm_op)
for j in range(num_res_blocks)])
ch = tgt
if i < depth:
@@ -188,9 +218,9 @@ class Encoder(nn.Module):
self.down.append(stage)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.mid.block_1 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.mid.block_2 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.norm_out = norm_op(ch)
self.conv_out = conv_op(ch, z_channels << 1, 3, 1, 1)
@@ -201,31 +231,50 @@ class Encoder(nn.Module):
if not self.refiner_vae and x.shape[2] == 1:
x = x.expand(-1, -1, self.ffactor_temporal, -1, -1)
x = self.conv_in(x)
if self.refiner_vae:
xl = [x[:, :, :1, :, :]]
if x.shape[2] > self.ffactor_temporal:
xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // self.ffactor_temporal) * self.ffactor_temporal, :, :], self.ffactor_temporal * 2, dim=2)
x = xl
else:
x = [x]
out = []
for stage in self.down:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'downsample'):
x = stage.downsample(x)
conv_carry_in = None
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
x1 = [ x1 ]
x1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out)
for stage in self.down:
for blk in stage.block:
x1 = blk(x1, conv_carry_in, conv_carry_out)
if hasattr(stage, 'downsample'):
x1 = stage.downsample(x1, conv_carry_in, conv_carry_out)
out.append(x1)
conv_carry_in = conv_carry_out
if len(out) > 1:
out = torch.cat(out, dim=2)
else:
out = out[0]
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(out)))
del out
b, c, t, h, w = x.shape
grp = c // (self.z_channels << 1)
skip = x.view(b, c // grp, grp, t, h, w).mean(2)
out = self.conv_out(F.silu(self.norm_out(x))) + skip
out = conv_carry_causal_3d([F.silu(self.norm_out(x))], self.conv_out) + skip
if self.refiner_vae:
out = self.regul(out)[0]
out = torch.cat((out[:, :, :1], out), dim=2)
out = out.permute(0, 2, 1, 3, 4)
b, f_times_2, c, h, w = out.shape
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
out = out.permute(0, 2, 1, 3, 4).contiguous()
return out
class Decoder(nn.Module):
@@ -239,7 +288,7 @@ class Decoder(nn.Module):
self.refiner_vae = refiner_vae
if self.refiner_vae:
conv_op = VideoConv3d
conv_op = NoPadConv3d
norm_op = RMS_norm
else:
conv_op = ops.Conv3d
@@ -249,9 +298,9 @@ class Decoder(nn.Module):
self.conv_in = conv_op(z_channels, ch, kernel_size=3, stride=1, padding=1)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.mid.block_1 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.mid.block_2 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.up = nn.ModuleList()
depth = (ffactor_spatial >> 1).bit_length()
@@ -259,10 +308,9 @@ class Decoder(nn.Module):
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=conv_op, norm_op=norm_op)
stage.block = nn.ModuleList([HunyuanRefinerResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
conv_op=conv_op, norm_op=norm_op)
for j in range(num_res_blocks + 1)])
ch = tgt
if i < depth:
@@ -275,27 +323,41 @@ class Decoder(nn.Module):
self.conv_out = conv_op(ch, out_channels, 3, stride=1, padding=1)
def forward(self, z):
if self.refiner_vae:
z = z.permute(0, 2, 1, 3, 4)
b, f, c, h, w = z.shape
z = z.reshape(b, f, 2, c // 2, h, w)
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
z = z.permute(0, 2, 1, 3, 4)
z = z[:, :, 1:]
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = conv_carry_causal_3d([z], self.conv_in) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
for stage in self.up:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'upsample'):
x = stage.upsample(x)
if self.refiner_vae:
x = torch.split(x, 2, dim=2)
else:
x = [ x ]
out = []
out = self.conv_out(F.silu(self.norm_out(x)))
conv_carry_in = None
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
for stage in self.up:
for blk in stage.block:
x1 = blk(x1, conv_carry_in, conv_carry_out)
if hasattr(stage, 'upsample'):
x1 = stage.upsample(x1, conv_carry_in, conv_carry_out)
x1 = [ F.silu(self.norm_out(x1)) ]
x1 = conv_carry_causal_3d(x1, self.conv_out, conv_carry_in, conv_carry_out)
out.append(x1)
conv_carry_in = conv_carry_out
del x
if len(out) > 1:
out = torch.cat(out, dim=2)
else:
out = out[0]
if not self.refiner_vae:
if z.shape[-3] == 1:
out = out[:, :, -1:]
return out

View File

@@ -3,12 +3,11 @@ from torch import nn
import comfy.patcher_extension
import comfy.ldm.modules.attention
import comfy.ldm.common_dit
from einops import rearrange
import math
from typing import Dict, Optional, Tuple
from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
from comfy.ldm.flux.math import apply_rope1
def get_timestep_embedding(
timesteps: torch.Tensor,
@@ -238,20 +237,6 @@ class FeedForward(nn.Module):
return self.net(x)
def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one
cos_freqs = freqs_cis[0]
sin_freqs = freqs_cis[1]
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
t1, t2 = t_dup.unbind(dim=-1)
t_dup = torch.stack((-t2, t1), dim=-1)
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs
return out
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
super().__init__()
@@ -281,8 +266,8 @@ class CrossAttention(nn.Module):
k = self.k_norm(k)
if pe is not None:
q = apply_rotary_emb(q, pe)
k = apply_rotary_emb(k, pe)
q = apply_rope1(q.unsqueeze(1), pe).squeeze(1)
k = apply_rope1(k.unsqueeze(1), pe).squeeze(1)
if mask is None:
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
@@ -306,12 +291,17 @@ class BasicTransformerBlock(nn.Module):
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe, transformer_options=transformer_options) * gate_msa
attn1_input = comfy.ldm.common_dit.rms_norm(x)
attn1_input = torch.addcmul(attn1_input, attn1_input, scale_msa).add_(shift_msa)
attn1_input = self.attn1(attn1_input, pe=pe, transformer_options=transformer_options)
x.addcmul_(attn1_input, gate_msa)
del attn1_input
x += self.attn2(x, context=context, mask=attention_mask, transformer_options=transformer_options)
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
x += self.ff(y) * gate_mlp
y = comfy.ldm.common_dit.rms_norm(x)
y = torch.addcmul(y, y, scale_mlp).add_(shift_mlp)
x.addcmul_(self.ff(y), gate_mlp)
return x
@@ -327,41 +317,35 @@ def get_fractional_positions(indices_grid, max_pos):
def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
dtype = torch.float32 #self.dtype
dtype = torch.float32
device = indices_grid.device
# Get fractional positions and compute frequency indices
fractional_positions = get_fractional_positions(indices_grid, max_pos)
indices = theta ** torch.linspace(0, 1, dim // 6, device=device, dtype=dtype) * math.pi / 2
start = 1
end = theta
device = fractional_positions.device
# Compute frequencies and apply cos/sin
freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2)
cos_vals = freqs.cos().repeat_interleave(2, dim=-1)
sin_vals = freqs.sin().repeat_interleave(2, dim=-1)
indices = theta ** (
torch.linspace(
math.log(start, theta),
math.log(end, theta),
dim // 6,
device=device,
dtype=dtype,
)
)
indices = indices.to(dtype=dtype)
indices = indices * math.pi / 2
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
# Pad if dim is not divisible by 6
if dim % 6 != 0:
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
return cos_freq.to(out_dtype), sin_freq.to(out_dtype)
padding_size = dim % 6
cos_vals = torch.cat([torch.ones_like(cos_vals[:, :, :padding_size]), cos_vals], dim=-1)
sin_vals = torch.cat([torch.zeros_like(sin_vals[:, :, :padding_size]), sin_vals], dim=-1)
# Reshape and extract one value per pair (since repeat_interleave duplicates each value)
cos_vals = cos_vals.reshape(*cos_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]
sin_vals = sin_vals.reshape(*sin_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]
# Build rotation matrix [[cos, -sin], [sin, cos]] and add heads dimension
freqs_cis = torch.stack([
torch.stack([cos_vals, -sin_vals], dim=-1),
torch.stack([sin_vals, cos_vals], dim=-1)
], dim=-2).unsqueeze(1) # [B, 1, N, dim//2, 2, 2]
return freqs_cis
class LTXVModel(torch.nn.Module):
@@ -501,7 +485,7 @@ class LTXVModel(torch.nn.Module):
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
x = self.norm_out(x)
# Modulation
x = x * (1 + scale) + shift
x = torch.addcmul(x, x, scale).add_(shift)
x = self.proj_out(x)
x = self.patchifier.unpatchify(

View File

@@ -11,6 +11,7 @@ import comfy.ldm.common_dit
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope
import comfy.patcher_extension
@@ -31,6 +32,7 @@ class JointAttention(nn.Module):
n_heads: int,
n_kv_heads: Optional[int],
qk_norm: bool,
out_bias: bool = False,
operation_settings={},
):
"""
@@ -59,7 +61,7 @@ class JointAttention(nn.Module):
self.out = operation_settings.get("operations").Linear(
n_heads * self.head_dim,
dim,
bias=False,
bias=out_bias,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
)
@@ -70,35 +72,6 @@ class JointAttention(nn.Module):
else:
self.q_norm = self.k_norm = nn.Identity()
@staticmethod
def apply_rotary_emb(
x_in: torch.Tensor,
freqs_cis: torch.Tensor,
) -> torch.Tensor:
"""
Apply rotary embeddings to input tensors using the given frequency
tensor.
This function applies rotary embeddings to the given query 'xq' and
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
input tensors are reshaped as complex numbers, and the frequency tensor
is reshaped for broadcasting compatibility. The resulting tensors
contain rotary embeddings and are returned as real tensors.
Args:
x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
exponentials.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
and key tensor with rotary embeddings.
"""
t_ = x_in.reshape(*x_in.shape[:-1], -1, 1, 2)
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
return t_out.reshape(*x_in.shape)
def forward(
self,
x: torch.Tensor,
@@ -134,8 +107,7 @@ class JointAttention(nn.Module):
xq = self.q_norm(xq)
xk = self.k_norm(xk)
xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis)
xq, xk = apply_rope(xq, xk, freqs_cis)
n_rep = self.n_local_heads // self.n_local_kv_heads
if n_rep >= 1:
@@ -215,6 +187,8 @@ class JointTransformerBlock(nn.Module):
norm_eps: float,
qk_norm: bool,
modulation=True,
z_image_modulation=False,
attn_out_bias=False,
operation_settings={},
) -> None:
"""
@@ -235,10 +209,10 @@ class JointTransformerBlock(nn.Module):
super().__init__()
self.dim = dim
self.head_dim = dim // n_heads
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, operation_settings=operation_settings)
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, out_bias=attn_out_bias, operation_settings=operation_settings)
self.feed_forward = FeedForward(
dim=dim,
hidden_dim=4 * dim,
hidden_dim=dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
operation_settings=operation_settings,
@@ -252,16 +226,27 @@ class JointTransformerBlock(nn.Module):
self.modulation = modulation
if modulation:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(dim, 1024),
4 * dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
if z_image_modulation:
self.adaLN_modulation = nn.Sequential(
operation_settings.get("operations").Linear(
min(dim, 256),
4 * dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
else:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(dim, 1024),
4 * dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
def forward(
self,
@@ -323,7 +308,7 @@ class FinalLayer(nn.Module):
The final layer of NextDiT.
"""
def __init__(self, hidden_size, patch_size, out_channels, operation_settings={}):
def __init__(self, hidden_size, patch_size, out_channels, z_image_modulation=False, operation_settings={}):
super().__init__()
self.norm_final = operation_settings.get("operations").LayerNorm(
hidden_size,
@@ -340,10 +325,15 @@ class FinalLayer(nn.Module):
dtype=operation_settings.get("dtype"),
)
if z_image_modulation:
min_mod = 256
else:
min_mod = 1024
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(hidden_size, 1024),
min(hidden_size, min_mod),
hidden_size,
bias=True,
device=operation_settings.get("device"),
@@ -373,12 +363,16 @@ class NextDiT(nn.Module):
n_heads: int = 32,
n_kv_heads: Optional[int] = None,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
ffn_dim_multiplier: float = 4.0,
norm_eps: float = 1e-5,
qk_norm: bool = False,
cap_feat_dim: int = 5120,
axes_dims: List[int] = (16, 56, 56),
axes_lens: List[int] = (1, 512, 512),
rope_theta=10000.0,
z_image_modulation=False,
time_scale=1.0,
pad_tokens_multiple=None,
image_model=None,
device=None,
dtype=None,
@@ -390,6 +384,8 @@ class NextDiT(nn.Module):
self.in_channels = in_channels
self.out_channels = in_channels
self.patch_size = patch_size
self.time_scale = time_scale
self.pad_tokens_multiple = pad_tokens_multiple
self.x_embedder = operation_settings.get("operations").Linear(
in_features=patch_size * patch_size * in_channels,
@@ -411,6 +407,7 @@ class NextDiT(nn.Module):
norm_eps,
qk_norm,
modulation=True,
z_image_modulation=z_image_modulation,
operation_settings=operation_settings,
)
for layer_id in range(n_refiner_layers)
@@ -434,7 +431,7 @@ class NextDiT(nn.Module):
]
)
self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
self.t_embedder = TimestepEmbedder(min(dim, 1024), output_size=256 if z_image_modulation else None, **operation_settings)
self.cap_embedder = nn.Sequential(
operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").Linear(
@@ -457,18 +454,24 @@ class NextDiT(nn.Module):
ffn_dim_multiplier,
norm_eps,
qk_norm,
z_image_modulation=z_image_modulation,
attn_out_bias=False,
operation_settings=operation_settings,
)
for layer_id in range(n_layers)
]
)
self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, z_image_modulation=z_image_modulation, operation_settings=operation_settings)
if self.pad_tokens_multiple is not None:
self.x_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype))
self.cap_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype))
assert (dim // n_heads) == sum(axes_dims)
self.axes_dims = axes_dims
self.axes_lens = axes_lens
self.rope_embedder = EmbedND(dim=dim // n_heads, theta=10000.0, axes_dim=axes_dims)
self.rope_embedder = EmbedND(dim=dim // n_heads, theta=rope_theta, axes_dim=axes_dims)
self.dim = dim
self.n_heads = n_heads
@@ -503,96 +506,42 @@ class NextDiT(nn.Module):
bsz = len(x)
pH = pW = self.patch_size
device = x[0].device
dtype = x[0].dtype
if cap_mask is not None:
l_effective_cap_len = cap_mask.sum(dim=1).tolist()
else:
l_effective_cap_len = [num_tokens] * bsz
if self.pad_tokens_multiple is not None:
pad_extra = (-cap_feats.shape[1]) % self.pad_tokens_multiple
cap_feats = torch.cat((cap_feats, self.cap_pad_token.to(device=cap_feats.device, dtype=cap_feats.dtype).unsqueeze(0).repeat(cap_feats.shape[0], pad_extra, 1)), dim=1)
if cap_mask is not None and not torch.is_floating_point(cap_mask):
cap_mask = (cap_mask - 1).to(dtype) * torch.finfo(dtype).max
cap_pos_ids = torch.zeros(bsz, cap_feats.shape[1], 3, dtype=torch.float32, device=device)
cap_pos_ids[:, :, 0] = torch.arange(cap_feats.shape[1], dtype=torch.float32, device=device) + 1.0
img_sizes = [(img.size(1), img.size(2)) for img in x]
l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes]
B, C, H, W = x.shape
x = self.x_embedder(x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2))
max_seq_len = max(
(cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len))
)
max_cap_len = max(l_effective_cap_len)
max_img_len = max(l_effective_img_len)
H_tokens, W_tokens = H // pH, W // pW
x_pos_ids = torch.zeros((bsz, x.shape[1], 3), dtype=torch.float32, device=device)
x_pos_ids[:, :, 0] = cap_feats.shape[1] + 1
x_pos_ids[:, :, 1] = torch.arange(H_tokens, dtype=torch.float32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
x_pos_ids[:, :, 2] = torch.arange(W_tokens, dtype=torch.float32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device)
if self.pad_tokens_multiple is not None:
pad_extra = (-x.shape[1]) % self.pad_tokens_multiple
x = torch.cat((x, self.x_pad_token.to(device=x.device, dtype=x.dtype).unsqueeze(0).repeat(x.shape[0], pad_extra, 1)), dim=1)
x_pos_ids = torch.nn.functional.pad(x_pos_ids, (0, 0, 0, pad_extra))
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
H, W = img_sizes[i]
H_tokens, W_tokens = H // pH, W // pW
assert H_tokens * W_tokens == img_len
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device)
position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
position_ids[i, cap_len:cap_len+img_len, 2] = col_ids
freqs_cis = self.rope_embedder(position_ids).movedim(1, 2).to(dtype)
# build freqs_cis for cap and image individually
cap_freqs_cis_shape = list(freqs_cis.shape)
# cap_freqs_cis_shape[1] = max_cap_len
cap_freqs_cis_shape[1] = cap_feats.shape[1]
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
img_freqs_cis_shape = list(freqs_cis.shape)
img_freqs_cis_shape[1] = max_img_len
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len]
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len]
freqs_cis = self.rope_embedder(torch.cat((cap_pos_ids, x_pos_ids), dim=1)).movedim(1, 2)
# refine context
for layer in self.context_refiner:
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis, transformer_options=transformer_options)
cap_feats = layer(cap_feats, cap_mask, freqs_cis[:, :cap_pos_ids.shape[1]], transformer_options=transformer_options)
# refine image
flat_x = []
for i in range(bsz):
img = x[i]
C, H, W = img.size()
img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1)
flat_x.append(img)
x = flat_x
padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype)
padded_img_mask = torch.zeros(bsz, max_img_len, dtype=dtype, device=device)
for i in range(bsz):
padded_img_embed[i, :l_effective_img_len[i]] = x[i]
padded_img_mask[i, l_effective_img_len[i]:] = -torch.finfo(dtype).max
padded_img_embed = self.x_embedder(padded_img_embed)
padded_img_mask = padded_img_mask.unsqueeze(1)
padded_img_mask = None
for layer in self.noise_refiner:
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t, transformer_options=transformer_options)
if cap_mask is not None:
mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device)
mask[:, :max_cap_len] = cap_mask[:, :max_cap_len]
else:
mask = None
padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype)
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len]
padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len]
x = layer(x, padded_img_mask, freqs_cis[:, cap_pos_ids.shape[1]:], t, transformer_options=transformer_options)
padded_full_embed = torch.cat((cap_feats, x), dim=1)
mask = None
img_sizes = [(H, W)] * bsz
l_effective_cap_len = [cap_feats.shape[1]] * bsz
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
@@ -615,7 +564,7 @@ class NextDiT(nn.Module):
y: (N,) tensor of text tokens/features
"""
t = self.t_embedder(t, dtype=x.dtype) # (N, D)
t = self.t_embedder(t * self.time_scale, dtype=x.dtype) # (N, D)
adaln_input = t
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute

View File

@@ -9,6 +9,8 @@ from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistri
from comfy.ldm.util import get_obj_from_str, instantiate_from_config
from comfy.ldm.modules.ema import LitEma
import comfy.ops
from einops import rearrange
import comfy.model_management
class DiagonalGaussianRegularizer(torch.nn.Module):
def __init__(self, sample: bool = False):
@@ -179,6 +181,21 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
self.post_quant_conv = conv_op(embed_dim, ddconfig["z_channels"], 1)
self.embed_dim = embed_dim
if ddconfig.get("batch_norm_latent", False):
self.bn_eps = 1e-4
self.bn_momentum = 0.1
self.ps = [2, 2]
self.bn = torch.nn.BatchNorm2d(math.prod(self.ps) * ddconfig["z_channels"],
eps=self.bn_eps,
momentum=self.bn_momentum,
affine=False,
track_running_stats=True,
)
self.bn.eval()
else:
self.bn = None
def get_autoencoder_params(self) -> list:
params = super().get_autoencoder_params()
return params
@@ -201,11 +218,36 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
z = torch.cat(z, 0)
z, reg_log = self.regularization(z)
if self.bn is not None:
z = rearrange(z,
"... c (i pi) (j pj) -> ... (c pi pj) i j",
pi=self.ps[0],
pj=self.ps[1],
)
z = torch.nn.functional.batch_norm(z,
comfy.model_management.cast_to(self.bn.running_mean, dtype=z.dtype, device=z.device),
comfy.model_management.cast_to(self.bn.running_var, dtype=z.dtype, device=z.device),
momentum=self.bn_momentum,
eps=self.bn_eps)
if return_reg_log:
return z, reg_log
return z
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
if self.bn is not None:
s = torch.sqrt(comfy.model_management.cast_to(self.bn.running_var.view(1, -1, 1, 1), dtype=z.dtype, device=z.device) + self.bn_eps)
m = comfy.model_management.cast_to(self.bn.running_mean.view(1, -1, 1, 1), dtype=z.dtype, device=z.device)
z = z * s + m
z = rearrange(
z,
"... (c pi pj) i j -> ... c (i pi) (j pj)",
pi=self.ps[0],
pj=self.ps[1],
)
if self.max_batch_size is None:
dec = self.post_quant_conv(z)
dec = self.decoder(dec, **decoder_kwargs)

View File

@@ -211,12 +211,14 @@ class TimestepEmbedder(nn.Module):
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
def __init__(self, hidden_size, frequency_embedding_size=256, output_size=None, dtype=None, device=None, operations=None):
super().__init__()
if output_size is None:
output_size = hidden_size
self.mlp = nn.Sequential(
operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
operations.Linear(hidden_size, output_size, bias=True, dtype=dtype, device=device),
)
self.frequency_embedding_size = frequency_embedding_size

View File

@@ -44,7 +44,7 @@ class QwenImageControlNetModel(QwenImageTransformer2DModel):
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous()
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states) + self.controlnet_x_embedder(hint)

View File

@@ -10,6 +10,7 @@ from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
import comfy.ldm.common_dit
import comfy.patcher_extension
from comfy.ldm.flux.math import apply_rope1
class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
@@ -134,33 +135,34 @@ class Attention(nn.Module):
image_rotary_emb: Optional[torch.Tensor] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = hidden_states.shape[0]
seq_img = hidden_states.shape[1]
seq_txt = encoder_hidden_states.shape[1]
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
# Project and reshape to BHND format (batch, heads, seq, dim)
img_query = self.to_q(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous()
img_key = self.to_k(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous()
img_value = self.to_v(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2)
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_query = self.add_q_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous()
txt_key = self.add_k_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous()
txt_value = self.add_v_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2)
img_query = self.norm_q(img_query)
img_key = self.norm_k(img_key)
txt_query = self.norm_added_q(txt_query)
txt_key = self.norm_added_k(txt_key)
joint_query = torch.cat([txt_query, img_query], dim=1)
joint_key = torch.cat([txt_key, img_key], dim=1)
joint_value = torch.cat([txt_value, img_value], dim=1)
joint_query = torch.cat([txt_query, img_query], dim=2)
joint_key = torch.cat([txt_key, img_key], dim=2)
joint_value = torch.cat([txt_value, img_value], dim=2)
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
joint_query = apply_rope1(joint_query, image_rotary_emb)
joint_key = apply_rope1(joint_key, image_rotary_emb)
joint_query = joint_query.flatten(start_dim=2)
joint_key = joint_key.flatten(start_dim=2)
joint_value = joint_value.flatten(start_dim=2)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask, transformer_options=transformer_options)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads,
attention_mask, transformer_options=transformer_options,
skip_reshape=True)
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
img_attn_output = joint_hidden_states[:, seq_txt:, :]
@@ -234,10 +236,10 @@ class QwenImageTransformerBlock(nn.Module):
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)
img_normed = self.img_norm1(hidden_states)
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
txt_normed = self.txt_norm1(encoder_hidden_states)
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
img_modulated, img_gate1 = self._modulate(self.img_norm1(hidden_states), img_mod1)
del img_mod1
txt_modulated, txt_gate1 = self._modulate(self.txt_norm1(encoder_hidden_states), txt_mod1)
del txt_mod1
img_attn_output, txt_attn_output = self.attn(
hidden_states=img_modulated,
@@ -246,16 +248,20 @@ class QwenImageTransformerBlock(nn.Module):
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
del img_modulated
del txt_modulated
hidden_states = hidden_states + img_gate1 * img_attn_output
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
del img_attn_output
del txt_attn_output
del img_gate1
del txt_gate1
img_normed2 = self.img_norm2(hidden_states)
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
img_modulated2, img_gate2 = self._modulate(self.img_norm2(hidden_states), img_mod2)
hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2))
txt_normed2 = self.txt_norm2(encoder_hidden_states)
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
txt_modulated2, txt_gate2 = self._modulate(self.txt_norm2(encoder_hidden_states), txt_mod2)
encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2))
return encoder_hidden_states, hidden_states
@@ -413,7 +419,7 @@ class QwenImageTransformer2DModel(nn.Module):
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous()
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states)
@@ -433,7 +439,10 @@ class QwenImageTransformer2DModel(nn.Module):
patches = transformer_options.get("patches", {})
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.transformer_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.transformer_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}

View File

@@ -232,6 +232,7 @@ class WanAttentionBlock(nn.Module):
# assert e[0].dtype == torch.float32
# self-attention
x = x.contiguous() # otherwise implicit in LayerNorm
y = self.self_attn(
torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)),
freqs, transformer_options=transformer_options)
@@ -588,7 +589,7 @@ class WanModel(torch.nn.Module):
x = self.unpatchify(x, grid_sizes)
return x
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None):
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}):
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
@@ -601,10 +602,22 @@ class WanModel(torch.nn.Module):
if steps_w is None:
steps_w = w_len
h_start = 0
w_start = 0
rope_options = transformer_options.get("rope_options", None)
if rope_options is not None:
t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
t_start += rope_options.get("shift_t", 0.0)
h_start += rope_options.get("shift_y", 0.0)
w_start += rope_options.get("shift_x", 0.0)
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
freqs = self.rope_embedder(img_ids).movedim(1, 2)
@@ -630,7 +643,7 @@ class WanModel(torch.nn.Module):
if self.ref_conv is not None and "reference_latent" in kwargs:
t_len += 1
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype)
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options)
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
def unpatchify(self, x, grid_sizes):

View File

@@ -134,7 +134,7 @@ class BaseModel(torch.nn.Module):
if not unet_config.get("disable_unet_model_creation", False):
if model_config.custom_operations is None:
fp8 = model_config.optimizations.get("fp8", False)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8, model_config=model_config)
else:
operations = model_config.custom_operations
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
@@ -333,6 +333,14 @@ class BaseModel(torch.nn.Module):
if self.model_config.scaled_fp8 is not None:
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8)
# Save mixed precision metadata
if hasattr(self.model_config, 'layer_quant_config') and self.model_config.layer_quant_config:
metadata = {
"format_version": "1.0",
"layers": self.model_config.layer_quant_config
}
unet_state_dict["_quantization_metadata"] = metadata
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
if self.model_type == ModelType.V_PREDICTION:
@@ -890,12 +898,13 @@ class Flux(BaseModel):
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
shape = kwargs["noise"].shape
mask_ref_size = kwargs["attention_mask_img_shape"]
# the model will pad to the patch size, and then divide
# essentially dividing and rounding up
(h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size))
attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok))
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
mask_ref_size = kwargs.get("attention_mask_img_shape", None)
if mask_ref_size is not None:
# the model will pad to the patch size, and then divide
# essentially dividing and rounding up
(h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size))
attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok))
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
guidance = kwargs.get("guidance", 3.5)
if guidance is not None:
@@ -917,9 +926,19 @@ class Flux(BaseModel):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()[2:]), ref_latents))])
return out
class Flux2(Flux):
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
target_text_len = 512
if cross_attn.shape[1] < target_text_len:
cross_attn = torch.nn.functional.pad(cross_attn, (0, 0, target_text_len - cross_attn.shape[1], 0))
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
class GenmoMochi(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
@@ -1095,9 +1114,13 @@ class Lumina2(BaseModel):
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item()))
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
if 'num_tokens' not in out:
out['num_tokens'] = comfy.conds.CONDConstant(cross_attn.shape[1])
return out
class WAN21(BaseModel):
@@ -1528,3 +1551,94 @@ class HunyuanImage21Refiner(HunyuanImage21):
out = super().extra_conds(**kwargs)
out['disable_time_r'] = comfy.conds.CONDConstant(True)
return out
class HunyuanVideo15(HunyuanVideo):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
extra_channels = self.diffusion_model.img_in.proj.weight.shape[1] - noise.shape[1] - 1 #noise 32 img cond 32 + mask 1
if extra_channels == 0:
return None
image = kwargs.get("concat_latent_image", None)
device = kwargs["device"]
if image is None:
shape_image = list(noise.shape)
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
latent_dim = self.latent_format.latent_channels
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], latent_dim):
image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim])
image = utils.resize_to_batch_size(image, noise.shape[0])
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :1]
else:
mask = 1.0 - mask
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((image, mask), dim=1)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_byt5small = kwargs.get("conditioning_byt5small", None)
if conditioning_byt5small is not None:
out['txt_byt5'] = comfy.conds.CONDRegular(conditioning_byt5small)
guidance = kwargs.get("guidance", 6.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
clip_vision_output = kwargs.get("clip_vision_output", None)
if clip_vision_output is not None:
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.last_hidden_state)
return out
class HunyuanVideo15_SR_Distilled(HunyuanVideo15):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
image = kwargs.get("concat_latent_image", None)
noise_augmentation = kwargs.get("noise_augmentation", 0.0)
device = kwargs["device"]
if image is None:
image = torch.zeros([noise.shape[0], noise.shape[1] * 2 + 2, noise.shape[-3], noise.shape[-2], noise.shape[-1]], device=comfy.model_management.intermediate_device())
else:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
#image = self.process_latent_in(image) # scaling wasn't applied in reference code
image = utils.resize_to_batch_size(image, noise.shape[0])
lq_image_slice = slice(noise.shape[1] + 1, 2 * noise.shape[1] + 1)
if noise_augmentation > 0:
generator = torch.Generator(device="cpu")
generator.manual_seed(kwargs.get("seed", 0) - 10)
noise = torch.randn(image[:, lq_image_slice].shape, generator=generator, dtype=image.dtype, device="cpu").to(image.device)
image[:, lq_image_slice] = noise_augmentation * noise + min(1.0 - noise_augmentation, 0.75) * image[:, lq_image_slice]
else:
image[:, lq_image_slice] = 0.75 * image[:, lq_image_slice]
return image
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
out['disable_time_r'] = comfy.conds.CONDConstant(False)
return out

View File

@@ -6,6 +6,20 @@ import math
import logging
import torch
def detect_layer_quantization(metadata):
quant_key = "_quantization_metadata"
if metadata is not None and quant_key in metadata:
quant_metadata = metadata.pop(quant_key)
quant_metadata = json.loads(quant_metadata)
if isinstance(quant_metadata, dict) and "layers" in quant_metadata:
logging.info(f"Found quantization metadata (version {quant_metadata.get('format_version', 'unknown')})")
return quant_metadata["layers"]
else:
raise ValueError("Invalid quantization metadata format")
return None
def count_blocks(state_dict_keys, prefix_string):
count = 0
while True:
@@ -172,30 +186,68 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
guidance_keys = list(filter(lambda a: a.startswith("{}guidance_in.".format(key_prefix)), state_dict_keys))
dit_config["guidance_embed"] = len(guidance_keys) > 0
# HunyuanVideo 1.5
if '{}cond_type_embedding.weight'.format(key_prefix) in state_dict_keys:
dit_config["use_cond_type_embedding"] = True
else:
dit_config["use_cond_type_embedding"] = False
if '{}vision_in.proj.0.weight'.format(key_prefix) in state_dict_keys:
dit_config["vision_in_dim"] = state_dict['{}vision_in.proj.0.weight'.format(key_prefix)].shape[0]
else:
dit_config["vision_in_dim"] = None
return dit_config
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
dit_config = {}
dit_config["image_model"] = "flux"
if '{}double_stream_modulation_img.lin.weight'.format(key_prefix) in state_dict_keys:
dit_config["image_model"] = "flux2"
dit_config["axes_dim"] = [32, 32, 32, 32]
dit_config["num_heads"] = 48
dit_config["mlp_ratio"] = 3.0
dit_config["theta"] = 2000
dit_config["out_channels"] = 128
dit_config["global_modulation"] = True
dit_config["vec_in_dim"] = None
dit_config["mlp_silu_act"] = True
dit_config["qkv_bias"] = False
dit_config["ops_bias"] = False
dit_config["default_ref_method"] = "index"
dit_config["ref_index_scale"] = 10.0
patch_size = 1
else:
dit_config["image_model"] = "flux"
dit_config["axes_dim"] = [16, 56, 56]
dit_config["num_heads"] = 24
dit_config["mlp_ratio"] = 4.0
dit_config["theta"] = 10000
dit_config["out_channels"] = 16
dit_config["qkv_bias"] = True
patch_size = 2
dit_config["in_channels"] = 16
patch_size = 2
dit_config["hidden_size"] = 3072
dit_config["context_in_dim"] = 4096
dit_config["patch_size"] = patch_size
in_key = "{}img_in.weight".format(key_prefix)
if in_key in state_dict_keys:
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size)
dit_config["out_channels"] = 16
w = state_dict[in_key]
dit_config["in_channels"] = w.shape[1] // (patch_size * patch_size)
dit_config["hidden_size"] = w.shape[0]
txt_in_key = "{}txt_in.weight".format(key_prefix)
if txt_in_key in state_dict_keys:
w = state_dict[txt_in_key]
dit_config["context_in_dim"] = w.shape[1]
dit_config["hidden_size"] = w.shape[0]
vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix)
if vec_in_key in state_dict_keys:
dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1]
dit_config["context_in_dim"] = 4096
dit_config["hidden_size"] = 3072
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 24
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
dit_config["axes_dim"] = [16, 56, 56]
dit_config["theta"] = 10000
dit_config["qkv_bias"] = True
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
dit_config["image_model"] = "chroma"
dit_config["in_channels"] = 64
@@ -364,14 +416,31 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["image_model"] = "lumina2"
dit_config["patch_size"] = 2
dit_config["in_channels"] = 16
dit_config["dim"] = 2304
dit_config["cap_feat_dim"] = state_dict['{}cap_embedder.1.weight'.format(key_prefix)].shape[1]
w = state_dict['{}cap_embedder.1.weight'.format(key_prefix)]
dit_config["dim"] = w.shape[0]
dit_config["cap_feat_dim"] = w.shape[1]
dit_config["n_layers"] = count_blocks(state_dict_keys, '{}layers.'.format(key_prefix) + '{}.')
dit_config["n_heads"] = 24
dit_config["n_kv_heads"] = 8
dit_config["qk_norm"] = True
dit_config["axes_dims"] = [32, 32, 32]
dit_config["axes_lens"] = [300, 512, 512]
if dit_config["dim"] == 2304: # Original Lumina 2
dit_config["n_heads"] = 24
dit_config["n_kv_heads"] = 8
dit_config["axes_dims"] = [32, 32, 32]
dit_config["axes_lens"] = [300, 512, 512]
dit_config["rope_theta"] = 10000.0
dit_config["ffn_dim_multiplier"] = 4.0
elif dit_config["dim"] == 3840: # Z image
dit_config["n_heads"] = 30
dit_config["n_kv_heads"] = 30
dit_config["axes_dims"] = [32, 48, 48]
dit_config["axes_lens"] = [1536, 512, 512]
dit_config["rope_theta"] = 256.0
dit_config["ffn_dim_multiplier"] = (8.0 / 3.0)
dit_config["z_image_modulation"] = True
dit_config["time_scale"] = 1000.0
if '{}cap_pad_token'.format(key_prefix) in state_dict_keys:
dit_config["pad_tokens_multiple"] = 32
return dit_config
if '{}head.modulation'.format(key_prefix) in state_dict_keys: # Wan 2.1
@@ -701,6 +770,12 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
else:
model_config.optimizations["fp8"] = True
# Detect per-layer quantization (mixed precision)
layer_quant_config = detect_layer_quantization(metadata)
if layer_quant_config:
model_config.layer_quant_config = layer_quant_config
logging.info(f"Detected mixed precision quantization: {len(layer_quant_config)} layers quantized")
return model_config
def unet_prefix_from_state_dict(state_dict):

View File

@@ -504,6 +504,7 @@ class LoadedModel:
if use_more_vram == 0:
use_more_vram = 1e32
self.model_use_more_vram(use_more_vram, force_patch_weights=force_patch_weights)
real_model = self.model.model
if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and real_model is not None:
@@ -689,7 +690,10 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
current_free_mem = get_free_memory(torch_dev) + loaded_memory
lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
lowvram_model_memory = lowvram_model_memory - loaded_memory
if lowvram_model_memory == 0:
lowvram_model_memory = 0.1
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 0.1
@@ -1013,6 +1017,16 @@ if args.async_offload:
NUM_STREAMS = 2
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
def current_stream(device):
if device is None:
return None
if is_device_cuda(device):
return torch.cuda.current_stream()
elif is_device_xpu(device):
return torch.xpu.current_stream()
else:
return None
stream_counters = {}
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
@@ -1021,21 +1035,17 @@ def get_offload_stream(device):
if device in STREAMS:
ss = STREAMS[device]
s = ss[stream_counter]
#Sync the oldest stream in the queue with the current
ss[stream_counter].wait_stream(current_stream(device))
stream_counter = (stream_counter + 1) % len(ss)
if is_device_cuda(device):
ss[stream_counter].wait_stream(torch.cuda.current_stream())
elif is_device_xpu(device):
ss[stream_counter].wait_stream(torch.xpu.current_stream())
stream_counters[device] = stream_counter
return s
return ss[stream_counter]
elif is_device_cuda(device):
ss = []
for k in range(NUM_STREAMS):
ss.append(torch.cuda.Stream(device=device, priority=0))
STREAMS[device] = ss
s = ss[stream_counter]
stream_counter = (stream_counter + 1) % len(ss)
stream_counters[device] = stream_counter
return s
elif is_device_xpu(device):
@@ -1044,18 +1054,14 @@ def get_offload_stream(device):
ss.append(torch.xpu.Stream(device=device, priority=0))
STREAMS[device] = ss
s = ss[stream_counter]
stream_counter = (stream_counter + 1) % len(ss)
stream_counters[device] = stream_counter
return s
return None
def sync_stream(device, stream):
if stream is None:
if stream is None or current_stream(device) is None:
return
if is_device_cuda(device):
torch.cuda.current_stream().wait_stream(stream)
elif is_device_xpu(device):
torch.xpu.current_stream().wait_stream(stream)
current_stream(device).wait_stream(stream)
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
if device is None or weight.device == device:
@@ -1080,6 +1086,83 @@ def cast_to_device(tensor, device, dtype, copy=False):
non_blocking = device_supports_non_blocking(device)
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)
PINNED_MEMORY = {}
TOTAL_PINNED_MEMORY = 0
MAX_PINNED_MEMORY = -1
if not args.disable_pinned_memory:
if is_nvidia() or is_amd():
if WINDOWS:
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.45 # Windows limit is apparently 50%
else:
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95
logging.info("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024)))
PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"])
def pin_memory(tensor):
global TOTAL_PINNED_MEMORY
if MAX_PINNED_MEMORY <= 0:
return False
if type(tensor).__name__ not in PINNING_ALLOWED_TYPES:
return False
if not is_device_cpu(tensor.device):
return False
if tensor.is_pinned():
#NOTE: Cuda does detect when a tensor is already pinned and would
#error below, but there are proven cases where this also queues an error
#on the GPU async. So dont trust the CUDA API and guard here
return False
if not tensor.is_contiguous():
return False
size = tensor.numel() * tensor.element_size()
if (TOTAL_PINNED_MEMORY + size) > MAX_PINNED_MEMORY:
return False
ptr = tensor.data_ptr()
if ptr == 0:
return False
if torch.cuda.cudart().cudaHostRegister(ptr, size, 1) == 0:
PINNED_MEMORY[ptr] = size
TOTAL_PINNED_MEMORY += size
return True
return False
def unpin_memory(tensor):
global TOTAL_PINNED_MEMORY
if MAX_PINNED_MEMORY <= 0:
return False
if not is_device_cpu(tensor.device):
return False
ptr = tensor.data_ptr()
size = tensor.numel() * tensor.element_size()
size_stored = PINNED_MEMORY.get(ptr, None)
if size_stored is None:
logging.warning("Tried to unpin tensor not pinned by ComfyUI")
return False
if size != size_stored:
logging.warning("Size of pinned tensor changed")
return False
if torch.cuda.cudart().cudaHostUnregister(ptr) == 0:
TOTAL_PINNED_MEMORY -= PINNED_MEMORY.pop(ptr)
if len(PINNED_MEMORY) == 0:
TOTAL_PINNED_MEMORY = 0
return True
return False
def sage_attention_enabled():
return args.use_sage_attention

View File

@@ -132,7 +132,7 @@ class LowVramPatch:
def __call__(self, weight):
intermediate_dtype = weight.dtype
if self.convert_func is not None:
weight = self.convert_func(weight.to(dtype=torch.float32, copy=True), inplace=True)
weight = self.convert_func(weight, inplace=False)
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
intermediate_dtype = torch.float32
@@ -231,13 +231,13 @@ class ModelPatcher:
self.object_patches_backup = {}
self.weight_wrapper_patches = {}
self.model_options = {"transformer_options":{}}
self.model_size()
self.load_device = load_device
self.offload_device = offload_device
self.weight_inplace_update = weight_inplace_update
self.force_cast_weights = False
self.patches_uuid = uuid.uuid4()
self.parent = None
self.pinned = set()
self.attachments: dict[str] = {}
self.additional_models: dict[str, list[ModelPatcher]] = {}
@@ -275,6 +275,9 @@ class ModelPatcher:
self.size = comfy.model_management.module_size(self.model)
return self.size
def get_ram_usage(self):
return self.model_size()
def loaded_size(self):
return self.model.model_loaded_weight_memory
@@ -282,7 +285,7 @@ class ModelPatcher:
return self.model.lowvram_patch_counter
def clone(self):
n = self.__class__(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
n = self.__class__(self.model, self.load_device, self.offload_device, self.model_size(), weight_inplace_update=self.weight_inplace_update)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
@@ -294,6 +297,7 @@ class ModelPatcher:
n.backup = self.backup
n.object_patches_backup = self.object_patches_backup
n.parent = self
n.pinned = self.pinned
n.force_cast_weights = self.force_cast_weights
@@ -450,6 +454,19 @@ class ModelPatcher:
def set_model_post_input_patch(self, patch):
self.set_model_patch(patch, "post_input")
def set_model_rope_options(self, scale_x, shift_x, scale_y, shift_y, scale_t, shift_t, **kwargs):
rope_options = self.model_options["transformer_options"].get("rope_options", {})
rope_options["scale_x"] = scale_x
rope_options["scale_y"] = scale_y
rope_options["scale_t"] = scale_t
rope_options["shift_x"] = shift_x
rope_options["shift_y"] = shift_y
rope_options["shift_t"] = shift_t
self.model_options["transformer_options"]["rope_options"] = rope_options
def add_object_patch(self, name, obj):
self.object_patches[name] = obj
@@ -618,6 +635,21 @@ class ModelPatcher:
else:
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
def pin_weight_to_device(self, key):
weight, set_func, convert_func = get_key_weight(self.model, key)
if comfy.model_management.pin_memory(weight):
self.pinned.add(key)
def unpin_weight(self, key):
if key in self.pinned:
weight, set_func, convert_func = get_key_weight(self.model, key)
comfy.model_management.unpin_memory(weight)
self.pinned.remove(key)
def unpin_all_weights(self):
for key in list(self.pinned):
self.unpin_weight(key)
def _load_list(self):
loading = []
for n, m in self.model.named_modules():
@@ -639,9 +671,11 @@ class ModelPatcher:
mem_counter = 0
patch_counter = 0
lowvram_counter = 0
lowvram_mem_counter = 0
loading = self._load_list()
load_completely = []
offloaded = []
loading.sort(reverse=True)
for x in loading:
n = x[1]
@@ -658,6 +692,7 @@ class ModelPatcher:
if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True
lowvram_counter += 1
lowvram_mem_counter += module_mem
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
continue
@@ -683,6 +718,7 @@ class ModelPatcher:
patch_counter += 1
cast_weight = True
offloaded.append((module_mem, n, m, params))
else:
if hasattr(m, "comfy_cast_weights"):
wipe_lowvram_weight(m)
@@ -713,7 +749,9 @@ class ModelPatcher:
continue
for param in params:
self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to)
key = "{}.{}".format(n, param)
self.unpin_weight(key)
self.patch_weight_to_device(key, device_to=device_to)
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
m.comfy_patched_weights = True
@@ -721,11 +759,17 @@ class ModelPatcher:
for x in load_completely:
x[2].to(device_to)
for x in offloaded:
n = x[1]
params = x[3]
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
if lowvram_counter > 0:
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), patch_counter))
self.model.model_lowvram = True
else:
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
self.model.model_lowvram = False
if full_load:
self.model.to(device_to)
@@ -762,6 +806,7 @@ class ModelPatcher:
self.eject_model()
if unpatch_weights:
self.unpatch_hooks()
self.unpin_all_weights()
if self.model.model_lowvram:
for m in self.model.modules():
move_weight_functions(m, device_to)
@@ -797,7 +842,7 @@ class ModelPatcher:
self.object_patches_backup.clear()
def partially_unload(self, device_to, memory_to_free=0):
def partially_unload(self, device_to, memory_to_free=0, force_patch_weights=False):
with self.use_ejected():
hooks_unpatched = False
memory_freed = 0
@@ -841,13 +886,19 @@ class ModelPatcher:
module_mem += move_weight_functions(m, device_to)
if lowvram_possible:
if weight_key in self.patches:
_, set_func, convert_func = get_key_weight(self.model, weight_key)
m.weight_function.append(LowVramPatch(weight_key, self.patches, convert_func, set_func))
patch_counter += 1
if force_patch_weights:
self.patch_weight_to_device(weight_key)
else:
_, set_func, convert_func = get_key_weight(self.model, weight_key)
m.weight_function.append(LowVramPatch(weight_key, self.patches, convert_func, set_func))
patch_counter += 1
if bias_key in self.patches:
_, set_func, convert_func = get_key_weight(self.model, bias_key)
m.bias_function.append(LowVramPatch(bias_key, self.patches, convert_func, set_func))
patch_counter += 1
if force_patch_weights:
self.patch_weight_to_device(bias_key)
else:
_, set_func, convert_func = get_key_weight(self.model, bias_key)
m.bias_function.append(LowVramPatch(bias_key, self.patches, convert_func, set_func))
patch_counter += 1
cast_weight = True
if cast_weight:
@@ -857,9 +908,13 @@ class ModelPatcher:
memory_freed += module_mem
logging.debug("freed {}".format(n))
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
self.model.model_lowvram = True
self.model.lowvram_patch_counter += patch_counter
self.model.model_loaded_weight_memory -= memory_freed
logging.info("loaded partially: {:.2f} MB loaded, lowvram patches: {}".format(self.model.model_loaded_weight_memory / (1024 * 1024), self.model.lowvram_patch_counter))
return memory_freed
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
@@ -872,6 +927,9 @@ class ModelPatcher:
extra_memory += (used - self.model.model_loaded_weight_memory)
self.patch_model(load_weights=False)
if extra_memory < 0 and not unpatch_weights:
self.partially_unload(self.offload_device, -extra_memory, force_patch_weights=force_patch_weights)
return 0
full_load = False
if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0:
self.apply_hooks(self.forced_hooks, force_apply=True)
@@ -1259,5 +1317,6 @@ class ModelPatcher:
self.clear_cached_hook_weights()
def __del__(self):
self.unpin_all_weights()
self.detach(unpatch_all=False)

View File

@@ -35,7 +35,7 @@ def scaled_dot_product_attention(q, k, v, *args, **kwargs):
try:
if torch.cuda.is_available():
if torch.cuda.is_available() and comfy.model_management.WINDOWS:
from torch.nn.attention import SDPBackend, sdpa_kernel
import inspect
if "set_priority" in inspect.signature(sdpa_kernel).parameters:
@@ -58,7 +58,8 @@ except (ModuleNotFoundError, TypeError):
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = False
try:
if comfy.model_management.is_nvidia():
if torch.backends.cudnn.version() >= 91002 and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10):
cudnn_version = torch.backends.cudnn.version()
if (cudnn_version >= 91002 and cudnn_version < 91500) and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10):
#TODO: change upper bound version once it's fixed'
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = True
logging.info("working around nvidia conv3d memory bug.")
@@ -70,42 +71,76 @@ cast_to = comfy.model_management.cast_to #TODO: remove once no more references
def cast_to_input(weight, input, non_blocking=False, copy=True):
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
@torch.compiler.disable()
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False):
# NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass
# offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This
# will add async-offload support to your cast and improve performance.
if input is not None:
if dtype is None:
dtype = input.dtype
if isinstance(input, QuantizedTensor):
dtype = input._layout_params["orig_dtype"]
else:
dtype = input.dtype
if bias_dtype is None:
bias_dtype = dtype
if device is None:
device = input.device
offload_stream = comfy.model_management.get_offload_stream(device)
if offloadable and (device != s.weight.device or
(s.bias is not None and device != s.bias.device)):
offload_stream = comfy.model_management.get_offload_stream(device)
else:
offload_stream = None
if offload_stream is not None:
wf_context = offload_stream
else:
wf_context = contextlib.nullcontext()
bias = None
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if s.bias is not None:
has_function = len(s.bias_function) > 0
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
if has_function:
weight_has_function = len(s.weight_function) > 0
bias_has_function = len(s.bias_function) > 0
weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream)
bias = None
if s.bias is not None:
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
if bias_has_function:
with wf_context:
for f in s.bias_function:
bias = f(bias)
has_function = len(s.weight_function) > 0
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
if has_function:
if weight_has_function or weight.dtype != dtype:
with wf_context:
weight = weight.to(dtype=dtype)
if isinstance(weight, QuantizedTensor):
weight = weight.dequantize()
for f in s.weight_function:
weight = f(weight)
comfy.model_management.sync_stream(device, offload_stream)
return weight, bias
if offloadable:
return weight, bias, offload_stream
else:
#Legacy function signature
return weight, bias
def uncast_bias_weight(s, weight, bias, offload_stream):
if offload_stream is None:
return
if weight is not None:
device = weight.device
else:
if bias is None:
return
device = bias.device
offload_stream.wait_stream(comfy.model_management.current_stream(device))
class CastWeightBiasOp:
comfy_cast_weights = False
@@ -118,8 +153,10 @@ class disable_weight_init:
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = torch.nn.functional.linear(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
@@ -133,8 +170,10 @@ class disable_weight_init:
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._conv_forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
@@ -148,8 +187,10 @@ class disable_weight_init:
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._conv_forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
@@ -172,8 +213,10 @@ class disable_weight_init:
return super()._conv_forward(input, weight, bias, *args, **kwargs)
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._conv_forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
@@ -187,8 +230,10 @@ class disable_weight_init:
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
@@ -203,11 +248,14 @@ class disable_weight_init:
def forward_comfy_cast_weights(self, input):
if self.weight is not None:
weight, bias = cast_bias_weight(self, input)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
else:
weight = None
bias = None
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
offload_stream = None
x = torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
@@ -223,11 +271,15 @@ class disable_weight_init:
def forward_comfy_cast_weights(self, input):
if self.weight is not None:
weight, bias = cast_bias_weight(self, input)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
else:
weight = None
return comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
# return torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
bias = None
offload_stream = None
x = comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
# x = torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
@@ -246,10 +298,12 @@ class disable_weight_init:
input, output_size, self.stride, self.padding, self.kernel_size,
num_spatial_dims, self.dilation)
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.conv_transpose2d(
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = torch.nn.functional.conv_transpose2d(
input, weight, bias, self.stride, self.padding,
output_padding, self.groups, self.dilation)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
@@ -268,10 +322,12 @@ class disable_weight_init:
input, output_size, self.stride, self.padding, self.kernel_size,
num_spatial_dims, self.dilation)
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.conv_transpose1d(
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = torch.nn.functional.conv_transpose1d(
input, weight, bias, self.stride, self.padding,
output_padding, self.groups, self.dilation)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
@@ -289,8 +345,11 @@ class disable_weight_init:
output_dtype = out_dtype
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
out_dtype = None
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
weight, bias, offload_stream = cast_bias_weight(self, device=input.device, dtype=out_dtype, offloadable=True)
x = torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
@@ -344,20 +403,18 @@ class manual_cast(disable_weight_init):
def fp8_linear(self, input):
"""
Legacy FP8 linear function for backward compatibility.
Uses QuantizedTensor subclass for dispatch.
"""
dtype = self.weight.dtype
if dtype not in [torch.float8_e4m3fn]:
return None
tensor_2d = False
if len(input.shape) == 2:
tensor_2d = True
input = input.unsqueeze(1)
input_shape = input.shape
input_dtype = input.dtype
if len(input.shape) == 3:
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype)
w = w.t()
if input.ndim == 3 or input.ndim == 2:
w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True)
scale_weight = self.scale_weight
scale_input = self.scale_input
@@ -369,23 +426,20 @@ def fp8_linear(self, input):
if scale_input is None:
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
input = torch.clamp(input, min=-448, max=448, out=input)
input = input.reshape(-1, input_shape[2]).to(dtype).contiguous()
layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype}
quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight)
else:
scale_input = scale_input.to(input.device)
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype).contiguous()
quantized_input = QuantizedTensor.from_float(input, "TensorCoreFP8Layout", scale=scale_input, dtype=dtype)
if bias is not None:
o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
else:
o = torch._scaled_mm(input, w, out_dtype=input_dtype, scale_a=scale_input, scale_b=scale_weight)
# Wrap weight in QuantizedTensor - this enables unified dispatch
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
layout_params_weight = {'scale': scale_weight, 'orig_dtype': input_dtype}
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
if isinstance(o, tuple):
o = o[0]
if tensor_2d:
return o.reshape(input_shape[0], -1)
return o.reshape((-1, input_shape[1], self.weight.shape[0]))
uncast_bias_weight(self, w, bias, offload_stream)
return o
return None
@@ -405,8 +459,10 @@ class fp8_ops(manual_cast):
except Exception as e:
logging.info("Exception during fp8 op: {}".format(e))
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = torch.nn.functional.linear(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
@@ -434,19 +490,21 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
if out is not None:
return out
weight, bias = cast_bias_weight(self, input)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
if weight.numel() < input.numel(): #TODO: optimize
return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
x = torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
else:
return torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
x = torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def convert_weight(self, weight, inplace=False, **kwargs):
if inplace:
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
return weight
else:
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
return weight.to(dtype=torch.float32) * self.scale_weight.to(device=weight.device, dtype=torch.float32)
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
@@ -478,8 +536,142 @@ if CUBLAS_IS_AVAILABLE:
def forward(self, *args, **kwargs):
return super().forward(*args, **kwargs)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
# ==============================================================================
# Mixed Precision Operations
# ==============================================================================
from .quant_ops import QuantizedTensor, QUANT_ALGOS
def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False):
class MixedPrecisionOps(manual_cast):
_layer_quant_config = layer_quant_config
_compute_dtype = compute_dtype
_full_precision_mm = full_precision_mm
class Linear(torch.nn.Module, CastWeightBiasOp):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
super().__init__()
self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype}
# self.factory_kwargs = {"device": device, "dtype": dtype}
self.in_features = in_features
self.out_features = out_features
if bias:
self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs))
else:
self.register_parameter("bias", None)
self.tensor_class = None
self._full_precision_mm = MixedPrecisionOps._full_precision_mm
def reset_parameters(self):
return None
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys, error_msgs):
device = self.factory_kwargs["device"]
layer_name = prefix.rstrip('.')
weight_key = f"{prefix}weight"
weight = state_dict.pop(weight_key, None)
if weight is None:
raise ValueError(f"Missing weight for layer {layer_name}")
manually_loaded_keys = [weight_key]
if layer_name not in MixedPrecisionOps._layer_quant_config:
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False)
else:
quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None)
if quant_format is None:
raise ValueError(f"Unknown quantization format for layer {layer_name}")
qconfig = QUANT_ALGOS[quant_format]
self.layout_type = qconfig["comfy_tensor_layout"]
weight_scale_key = f"{prefix}weight_scale"
layout_params = {
'scale': state_dict.pop(weight_scale_key, None),
'orig_dtype': MixedPrecisionOps._compute_dtype,
'block_size': qconfig.get("group_size", None),
}
if layout_params['scale'] is not None:
manually_loaded_keys.append(weight_scale_key)
self.weight = torch.nn.Parameter(
QuantizedTensor(weight.to(device=device), self.layout_type, layout_params),
requires_grad=False
)
for param_name in qconfig["parameters"]:
param_key = f"{prefix}{param_name}"
_v = state_dict.pop(param_key, None)
if _v is None:
continue
setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
manually_loaded_keys.append(param_key)
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
for key in manually_loaded_keys:
if key in missing_keys:
missing_keys.remove(key)
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
def forward_comfy_cast_weights(self, input):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, input, *args, **kwargs):
run_every_op()
if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(input, *args, **kwargs)
if (getattr(self, 'layout_type', None) is not None and
getattr(self, 'input_scale', None) is not None and
not isinstance(input, QuantizedTensor)):
input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype)
return self._forward(input, self.weight, self.bias)
def convert_weight(self, weight, inplace=False, **kwargs):
if isinstance(weight, QuantizedTensor):
return weight.dequantize()
else:
return weight
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
if getattr(self, 'layout_type', None) is not None:
weight = QuantizedTensor.from_float(weight, self.layout_type, scale=None, dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True)
else:
weight = weight.to(self.weight.dtype)
if return_weight:
return weight
assert inplace_update is False # TODO: eventually remove the inplace_update stuff
self.weight = torch.nn.Parameter(weight, requires_grad=False)
return MixedPrecisionOps
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular
if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config:
logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers")
return mixed_precision_ops(model_config.layer_quant_config, compute_dtype, full_precision_mm=not fp8_compute)
if scaled_fp8 is not None:
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)

572
comfy/quant_ops.py Normal file
View File

@@ -0,0 +1,572 @@
import torch
import logging
from typing import Tuple, Dict
import comfy.float
_LAYOUT_REGISTRY = {}
_GENERIC_UTILS = {}
def register_layout_op(torch_op, layout_type):
"""
Decorator to register a layout-specific operation handler.
Args:
torch_op: PyTorch operation (e.g., torch.ops.aten.linear.default)
layout_type: Layout class (e.g., TensorCoreFP8Layout)
Example:
@register_layout_op(torch.ops.aten.linear.default, TensorCoreFP8Layout)
def fp8_linear(func, args, kwargs):
# FP8-specific linear implementation
...
"""
def decorator(handler_func):
if torch_op not in _LAYOUT_REGISTRY:
_LAYOUT_REGISTRY[torch_op] = {}
_LAYOUT_REGISTRY[torch_op][layout_type] = handler_func
return handler_func
return decorator
def register_generic_util(torch_op):
"""
Decorator to register a generic utility that works for all layouts.
Args:
torch_op: PyTorch operation (e.g., torch.ops.aten.detach.default)
Example:
@register_generic_util(torch.ops.aten.detach.default)
def generic_detach(func, args, kwargs):
# Works for any layout
...
"""
def decorator(handler_func):
_GENERIC_UTILS[torch_op] = handler_func
return handler_func
return decorator
def _get_layout_from_args(args):
for arg in args:
if isinstance(arg, QuantizedTensor):
return arg._layout_type
elif isinstance(arg, (list, tuple)):
for item in arg:
if isinstance(item, QuantizedTensor):
return item._layout_type
return None
def _move_layout_params_to_device(params, device):
new_params = {}
for k, v in params.items():
if isinstance(v, torch.Tensor):
new_params[k] = v.to(device=device)
else:
new_params[k] = v
return new_params
def _copy_layout_params(params):
new_params = {}
for k, v in params.items():
if isinstance(v, torch.Tensor):
new_params[k] = v.clone()
else:
new_params[k] = v
return new_params
def _copy_layout_params_inplace(src, dst, non_blocking=False):
for k, v in src.items():
if isinstance(v, torch.Tensor):
dst[k].copy_(v, non_blocking=non_blocking)
else:
dst[k] = v
class QuantizedLayout:
"""
Base class for quantization layouts.
A layout encapsulates the format-specific logic for quantization/dequantization
and provides a uniform interface for extracting raw tensors needed for computation.
New quantization formats should subclass this and implement the required methods.
"""
@classmethod
def quantize(cls, tensor, **kwargs) -> Tuple[torch.Tensor, Dict]:
raise NotImplementedError(f"{cls.__name__} must implement quantize()")
@staticmethod
def dequantize(qdata, **layout_params) -> torch.Tensor:
raise NotImplementedError("TensorLayout must implement dequantize()")
@classmethod
def get_plain_tensors(cls, qtensor) -> torch.Tensor:
raise NotImplementedError(f"{cls.__name__} must implement get_plain_tensors()")
class QuantizedTensor(torch.Tensor):
"""
Universal quantized tensor that works with any layout.
This tensor subclass uses a pluggable layout system to support multiple
quantization formats (FP8, INT4, INT8, etc.) without code duplication.
The layout_type determines format-specific behavior, while common operations
(detach, clone, to) are handled generically.
Attributes:
_qdata: The quantized tensor data
_layout_type: Layout class (e.g., TensorCoreFP8Layout)
_layout_params: Dict with layout-specific params (scale, zero_point, etc.)
"""
@staticmethod
def __new__(cls, qdata, layout_type, layout_params):
"""
Create a quantized tensor.
Args:
qdata: The quantized data tensor
layout_type: Layout class (subclass of QuantizedLayout)
layout_params: Dict with layout-specific parameters
"""
return torch.Tensor._make_wrapper_subclass(cls, qdata.shape, device=qdata.device, dtype=qdata.dtype, requires_grad=False)
def __init__(self, qdata, layout_type, layout_params):
self._qdata = qdata
self._layout_type = layout_type
self._layout_params = layout_params
def __repr__(self):
layout_name = self._layout_type
param_str = ", ".join(f"{k}={v}" for k, v in list(self._layout_params.items())[:2])
return f"QuantizedTensor(shape={self.shape}, layout={layout_name}, {param_str})"
@property
def layout_type(self):
return self._layout_type
def __tensor_flatten__(self):
"""
Tensor flattening protocol for proper device movement.
"""
inner_tensors = ["_qdata"]
ctx = {
"layout_type": self._layout_type,
}
tensor_params = {}
non_tensor_params = {}
for k, v in self._layout_params.items():
if isinstance(v, torch.Tensor):
tensor_params[k] = v
else:
non_tensor_params[k] = v
ctx["tensor_param_keys"] = list(tensor_params.keys())
ctx["non_tensor_params"] = non_tensor_params
for k, v in tensor_params.items():
attr_name = f"_layout_param_{k}"
object.__setattr__(self, attr_name, v)
inner_tensors.append(attr_name)
return inner_tensors, ctx
@staticmethod
def __tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride):
"""
Tensor unflattening protocol for proper device movement.
Reconstructs the QuantizedTensor after device movement.
"""
layout_type = ctx["layout_type"]
layout_params = dict(ctx["non_tensor_params"])
for key in ctx["tensor_param_keys"]:
attr_name = f"_layout_param_{key}"
layout_params[key] = inner_tensors[attr_name]
return QuantizedTensor(inner_tensors["_qdata"], layout_type, layout_params)
@classmethod
def from_float(cls, tensor, layout_type, **quantize_kwargs) -> 'QuantizedTensor':
qdata, layout_params = LAYOUTS[layout_type].quantize(tensor, **quantize_kwargs)
return cls(qdata, layout_type, layout_params)
def dequantize(self) -> torch.Tensor:
return LAYOUTS[self._layout_type].dequantize(self._qdata, **self._layout_params)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
# Step 1: Check generic utilities first (detach, clone, to, etc.)
if func in _GENERIC_UTILS:
return _GENERIC_UTILS[func](func, args, kwargs)
# Step 2: Check layout-specific handlers (linear, matmul, etc.)
layout_type = _get_layout_from_args(args)
if layout_type and func in _LAYOUT_REGISTRY:
handler = _LAYOUT_REGISTRY[func].get(layout_type)
if handler:
return handler(func, args, kwargs)
# Step 3: Fallback to dequantization
if isinstance(args[0] if args else None, QuantizedTensor):
logging.info(f"QuantizedTensor: Unhandled operation {func}, falling back to dequantization. kwargs={kwargs}")
return cls._dequant_and_fallback(func, args, kwargs)
@classmethod
def _dequant_and_fallback(cls, func, args, kwargs):
def dequant_arg(arg):
if isinstance(arg, QuantizedTensor):
return arg.dequantize()
elif isinstance(arg, (list, tuple)):
return type(arg)(dequant_arg(a) for a in arg)
return arg
new_args = dequant_arg(args)
new_kwargs = dequant_arg(kwargs)
return func(*new_args, **new_kwargs)
def data_ptr(self):
return self._qdata.data_ptr()
def is_pinned(self):
return self._qdata.is_pinned()
def is_contiguous(self):
return self._qdata.is_contiguous()
# ==============================================================================
# Generic Utilities (Layout-Agnostic Operations)
# ==============================================================================
def _create_transformed_qtensor(qt, transform_fn):
new_data = transform_fn(qt._qdata)
new_params = _copy_layout_params(qt._layout_params)
return QuantizedTensor(new_data, qt._layout_type, new_params)
def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"):
if target_dtype is not None and target_dtype != qt.dtype:
logging.warning(
f"QuantizedTensor: dtype conversion requested to {target_dtype}, "
f"but not supported for quantized tensors. Ignoring dtype."
)
if target_layout is not None and target_layout != torch.strided:
logging.warning(
f"QuantizedTensor: layout change requested to {target_layout}, "
f"but not supported. Ignoring layout."
)
# Handle device transfer
current_device = qt._qdata.device
if target_device is not None:
# Normalize device for comparison
if isinstance(target_device, str):
target_device = torch.device(target_device)
if isinstance(current_device, str):
current_device = torch.device(current_device)
if target_device != current_device:
logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}")
new_q_data = qt._qdata.to(device=target_device)
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params)
logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}")
return new_qt
logging.debug(f"QuantizedTensor.{op_name}: No device change needed, returning original")
return qt
@register_generic_util(torch.ops.aten.detach.default)
def generic_detach(func, args, kwargs):
"""Detach operation - creates a detached copy of the quantized tensor."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _create_transformed_qtensor(qt, lambda x: x.detach())
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten.clone.default)
def generic_clone(func, args, kwargs):
"""Clone operation - creates a deep copy of the quantized tensor."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _create_transformed_qtensor(qt, lambda x: x.clone())
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten._to_copy.default)
def generic_to_copy(func, args, kwargs):
"""Device/dtype transfer operation - handles .to(device) calls."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _handle_device_transfer(
qt,
target_device=kwargs.get('device', None),
target_dtype=kwargs.get('dtype', None),
op_name="_to_copy"
)
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten.to.dtype_layout)
def generic_to_dtype_layout(func, args, kwargs):
"""Handle .to(device) calls using the dtype_layout variant."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _handle_device_transfer(
qt,
target_device=kwargs.get('device', None),
target_dtype=kwargs.get('dtype', None),
target_layout=kwargs.get('layout', None),
op_name="to"
)
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten.copy_.default)
def generic_copy_(func, args, kwargs):
qt_dest = args[0]
src = args[1]
non_blocking = args[2] if len(args) > 2 else False
if isinstance(qt_dest, QuantizedTensor):
if isinstance(src, QuantizedTensor):
# Copy from another quantized tensor
qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking)
qt_dest._layout_type = src._layout_type
_copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking)
else:
# Copy from regular tensor - just copy raw data
qt_dest._qdata.copy_(src)
return qt_dest
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten.to.dtype)
def generic_to_dtype(func, args, kwargs):
"""Handle .to(dtype) calls - dtype conversion only."""
src = args[0]
if isinstance(src, QuantizedTensor):
# For dtype-only conversion, just change the orig_dtype, no real cast is needed
target_dtype = args[1] if len(args) > 1 else kwargs.get('dtype')
src._layout_params["orig_dtype"] = target_dtype
return src
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten._has_compatible_shallow_copy_type.default)
def generic_has_compatible_shallow_copy_type(func, args, kwargs):
return True
@register_generic_util(torch.ops.aten.empty_like.default)
def generic_empty_like(func, args, kwargs):
"""Empty_like operation - creates an empty tensor with the same quantized structure."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
# Create empty tensor with same shape and dtype as the quantized data
hp_dtype = kwargs.pop('dtype', qt._layout_params["orig_dtype"])
new_qdata = torch.empty_like(qt._qdata, **kwargs)
# Handle device transfer for layout params
target_device = kwargs.get('device', new_qdata.device)
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
# Update orig_dtype if dtype is specified
new_params['orig_dtype'] = hp_dtype
return QuantizedTensor(new_qdata, qt._layout_type, new_params)
return func(*args, **kwargs)
# ==============================================================================
# FP8 Layout + Operation Handlers
# ==============================================================================
class TensorCoreFP8Layout(QuantizedLayout):
"""
Storage format:
- qdata: FP8 tensor (torch.float8_e4m3fn or torch.float8_e5m2)
- scale: Scalar tensor (float32) for dequantization
- orig_dtype: Original dtype before quantization (for casting back)
"""
@classmethod
def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn, stochastic_rounding=0, inplace_ops=False):
orig_dtype = tensor.dtype
if scale is None:
scale = torch.amax(tensor.abs()) / torch.finfo(dtype).max
if not isinstance(scale, torch.Tensor):
scale = torch.tensor(scale)
scale = scale.to(device=tensor.device, dtype=torch.float32)
if inplace_ops:
tensor *= (1.0 / scale).to(tensor.dtype)
else:
tensor = tensor * (1.0 / scale).to(tensor.dtype)
if stochastic_rounding > 0:
tensor = comfy.float.stochastic_rounding(tensor, dtype=dtype, seed=stochastic_rounding)
else:
lp_amax = torch.finfo(dtype).max
torch.clamp(tensor, min=-lp_amax, max=lp_amax, out=tensor)
tensor = tensor.to(dtype, memory_format=torch.contiguous_format)
layout_params = {
'scale': scale,
'orig_dtype': orig_dtype
}
return tensor, layout_params
@staticmethod
def dequantize(qdata, scale, orig_dtype, **kwargs):
plain_tensor = torch.ops.aten._to_copy.default(qdata, dtype=orig_dtype)
return plain_tensor * scale
@classmethod
def get_plain_tensors(cls, qtensor):
return qtensor._qdata, qtensor._layout_params['scale']
QUANT_ALGOS = {
"float8_e4m3fn": {
"storage_t": torch.float8_e4m3fn,
"parameters": {"weight_scale", "input_scale"},
"comfy_tensor_layout": "TensorCoreFP8Layout",
},
}
LAYOUTS = {
"TensorCoreFP8Layout": TensorCoreFP8Layout,
}
@register_layout_op(torch.ops.aten.linear.default, "TensorCoreFP8Layout")
def fp8_linear(func, args, kwargs):
input_tensor = args[0]
weight = args[1]
bias = args[2] if len(args) > 2 else None
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight)
out_dtype = kwargs.get("out_dtype")
if out_dtype is None:
out_dtype = input_tensor._layout_params['orig_dtype']
weight_t = plain_weight.t()
tensor_2d = False
if len(plain_input.shape) == 2:
tensor_2d = True
plain_input = plain_input.unsqueeze(1)
input_shape = plain_input.shape
if len(input_shape) != 3:
return None
try:
output = torch._scaled_mm(
plain_input.reshape(-1, input_shape[2]).contiguous(),
weight_t,
bias=bias,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=out_dtype,
)
if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4
output = output[0]
if not tensor_2d:
output = output.reshape((-1, input_shape[1], weight.shape[0]))
if output.dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
output_scale = scale_a * scale_b
output_params = {
'scale': output_scale,
'orig_dtype': input_tensor._layout_params['orig_dtype']
}
return QuantizedTensor(output, "TensorCoreFP8Layout", output_params)
else:
return output
except Exception as e:
raise RuntimeError(f"FP8 _scaled_mm failed, falling back to dequantization: {e}")
# Case 2: DQ Fallback
if isinstance(weight, QuantizedTensor):
weight = weight.dequantize()
if isinstance(input_tensor, QuantizedTensor):
input_tensor = input_tensor.dequantize()
return torch.nn.functional.linear(input_tensor, weight, bias)
def fp8_mm_(input_tensor, weight, bias=None, out_dtype=None):
if out_dtype is None:
out_dtype = input_tensor._layout_params['orig_dtype']
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight)
output = torch._scaled_mm(
plain_input.contiguous(),
plain_weight,
bias=bias,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=out_dtype,
)
if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4
output = output[0]
return output
@register_layout_op(torch.ops.aten.addmm.default, "TensorCoreFP8Layout")
def fp8_addmm(func, args, kwargs):
input_tensor = args[1]
weight = args[2]
bias = args[0]
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
return fp8_mm_(input_tensor, weight, bias=bias, out_dtype=kwargs.get("out_dtype", None))
a = list(args)
if isinstance(args[0], QuantizedTensor):
a[0] = args[0].dequantize()
if isinstance(args[1], QuantizedTensor):
a[1] = args[1].dequantize()
if isinstance(args[2], QuantizedTensor):
a[2] = args[2].dequantize()
return func(*a, **kwargs)
@register_layout_op(torch.ops.aten.mm.default, "TensorCoreFP8Layout")
def fp8_mm(func, args, kwargs):
input_tensor = args[0]
weight = args[1]
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
return fp8_mm_(input_tensor, weight, bias=None, out_dtype=kwargs.get("out_dtype", None))
a = list(args)
if isinstance(args[0], QuantizedTensor):
a[0] = args[0].dequantize()
if isinstance(args[1], QuantizedTensor):
a[1] = args[1].dequantize()
return func(*a, **kwargs)
@register_layout_op(torch.ops.aten.view.default, "TensorCoreFP8Layout")
@register_layout_op(torch.ops.aten.t.default, "TensorCoreFP8Layout")
def fp8_func(func, args, kwargs):
input_tensor = args[0]
if isinstance(input_tensor, QuantizedTensor):
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
ar = list(args)
ar[0] = plain_input
return QuantizedTensor(func(*ar, **kwargs), "TensorCoreFP8Layout", input_tensor._layout_params)
return func(*args, **kwargs)

View File

@@ -52,6 +52,7 @@ import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.text_encoders.hunyuan_image
import comfy.text_encoders.z_image
import comfy.model_patcher
import comfy.lora
@@ -143,6 +144,9 @@ class CLIP:
n.apply_hooks_to_conds = self.apply_hooks_to_conds
return n
def get_ram_usage(self):
return self.patcher.get_ram_usage()
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
return self.patcher.add_patches(patches, strength_patch, strength_model)
@@ -293,6 +297,7 @@ class VAE:
self.working_dtypes = [torch.bfloat16, torch.float32]
self.disable_offload = False
self.not_video = False
self.size = None
self.downscale_index_formula = None
self.upscale_index_formula = None
@@ -352,7 +357,7 @@ class VAE:
self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype)
elif sd['decoder.conv_in.weight'].shape[1] == 32:
elif sd['decoder.conv_in.weight'].shape[1] == 32 and sd['decoder.conv_in.weight'].ndim == 5:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True, "refiner_vae": False}
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
@@ -378,6 +383,17 @@ class VAE:
self.upscale_ratio = 4
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
if 'decoder.post_quant_conv.weight' in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"decoder.post_quant_conv.": "post_quant_conv.", "encoder.quant_conv.": "quant_conv."})
if 'bn.running_mean' in sd:
ddconfig["batch_norm_latent"] = True
self.downscale_ratio *= 2
self.upscale_ratio *= 2
self.latent_channels *= 4
old_memory_used_decode = self.memory_used_decode
self.memory_used_decode = lambda shape, dtype: old_memory_used_decode(shape, dtype) * 4.0
if 'post_quant_conv.weight' in sd:
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
else:
@@ -437,20 +453,20 @@ class VAE:
elif "decoder.conv_in.conv.weight" in sd and sd['decoder.conv_in.conv.weight'].shape[1] == 32:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True}
ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
self.latent_channels = 64
self.latent_channels = 32
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
self.latent_dim = 3
self.not_video = True
self.not_video = False
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.EmptyRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (1400 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1400 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (1400 * 9 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (2800 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
elif "decoder.conv_in.conv.weight" in sd:
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
ddconfig["conv3d"] = True
@@ -595,6 +611,16 @@ class VAE:
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
self.model_size()
def model_size(self):
if self.size is not None:
return self.size
self.size = comfy.model_management.module_size(self.first_stage_model)
return self.size
def get_ram_usage(self):
return self.model_size()
def throw_exception_if_invalid(self):
if self.first_stage_model is None:
@@ -897,12 +923,18 @@ class CLIPType(Enum):
OMNIGEN2 = 17
QWEN_IMAGE = 18
HUNYUAN_IMAGE = 19
HUNYUAN_VIDEO_15 = 20
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
clip_data = []
for p in ckpt_paths:
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
sd, metadata = comfy.utils.load_torch_file(p, safe_load=True, return_metadata=True)
if metadata is not None:
quant_metadata = metadata.get("_quantization_metadata", None)
if quant_metadata is not None:
sd["_quantization_metadata"] = quant_metadata
clip_data.append(sd)
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
@@ -920,6 +952,10 @@ class TEModel(Enum):
QWEN25_7B = 11
BYT5_SMALL_GLYPH = 12
GEMMA_3_4B = 13
MISTRAL3_24B = 14
MISTRAL3_24B_PRUNED_FLUX2 = 15
QWEN3_4B = 16
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@@ -952,6 +988,15 @@ def detect_te_model(sd):
if weight.shape[0] == 512:
return TEModel.QWEN25_7B
if "model.layers.0.post_attention_layernorm.weight" in sd:
if 'model.layers.0.self_attn.q_norm.weight' in sd:
return TEModel.QWEN3_4B
weight = sd['model.layers.0.post_attention_layernorm.weight']
if weight.shape[0] == 5120:
if "model.layers.39.post_attention_layernorm.weight" in sd:
return TEModel.MISTRAL3_24B
else:
return TEModel.MISTRAL3_24B_PRUNED_FLUX2
return TEModel.LLAMA3_8
return None
@@ -1066,6 +1111,13 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
else:
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
elif te_model == TEModel.MISTRAL3_24B or te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2:
clip_target.clip = comfy.text_encoders.flux.flux2_te(**llama_detect(clip_data), pruned=te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2)
clip_target.tokenizer = comfy.text_encoders.flux.Flux2Tokenizer
tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None)
elif te_model == TEModel.QWEN3_4B:
clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer
else:
# clip_l
if clip_type == CLIPType.SD3:
@@ -1112,6 +1164,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
elif clip_type == CLIPType.HUNYUAN_VIDEO_15:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
@@ -1124,6 +1179,8 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
parameters = 0
for c in clip_data:
if "_quantization_metadata" in c:
c.pop("_quantization_metadata")
parameters += comfy.utils.calculate_parameters(c)
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options)
@@ -1262,7 +1319,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
return (model_patcher, clip, vae, clipvision)
def load_diffusion_model_state_dict(sd, model_options={}):
def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
"""
Loads a UNet diffusion model from a state dictionary, supporting both diffusers and regular formats.
@@ -1296,7 +1353,7 @@ def load_diffusion_model_state_dict(sd, model_options={}):
weight_dtype = comfy.utils.weight_dtype(sd)
load_device = model_management.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, "")
model_config = model_detection.model_config_from_unet(sd, "", metadata=metadata)
if model_config is not None:
new_sd = sd
@@ -1330,7 +1387,10 @@ def load_diffusion_model_state_dict(sd, model_options={}):
else:
unet_dtype = dtype
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
if model_config.layer_quant_config is not None:
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
else:
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
if model_options.get("fp8_optimizations", False):
@@ -1346,8 +1406,8 @@ def load_diffusion_model_state_dict(sd, model_options={}):
def load_diffusion_model(unet_path, model_options={}):
sd = comfy.utils.load_torch_file(unet_path)
model = load_diffusion_model_state_dict(sd, model_options=model_options)
sd, metadata = comfy.utils.load_torch_file(unet_path, return_metadata=True)
model = load_diffusion_model_state_dict(sd, model_options=model_options, metadata=metadata)
if model is None:
logging.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(unet_path, model_detection_error_hint(unet_path, sd)))

View File

@@ -90,7 +90,6 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
if textmodel_json_config is None:
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
@@ -109,13 +108,23 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
operations = model_options.get("custom_operations", None)
scaled_fp8 = None
quantization_metadata = model_options.get("quantization_metadata", None)
if operations is None:
scaled_fp8 = model_options.get("scaled_fp8", None)
if scaled_fp8 is not None:
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8)
layer_quant_config = None
if quantization_metadata is not None:
layer_quant_config = json.loads(quantization_metadata).get("layers", None)
if layer_quant_config is not None:
operations = comfy.ops.mixed_precision_ops(layer_quant_config, dtype, full_precision_mm=True)
logging.info(f"Using MixedPrecisionOps for text encoder: {len(layer_quant_config)} quantized layers")
else:
operations = comfy.ops.manual_cast
# Fallback to scaled_fp8_ops for backward compatibility
scaled_fp8 = model_options.get("scaled_fp8", None)
if scaled_fp8 is not None:
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8)
else:
operations = comfy.ops.manual_cast
self.operations = operations
self.transformer = model_class(config, dtype, device, self.operations)
@@ -154,7 +163,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
def set_clip_options(self, options):
layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
if self.layer == "all":
if isinstance(self.layer, list) or self.layer == "all":
pass
elif layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
@@ -256,7 +265,9 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if self.enable_attention_masks:
attention_mask_model = attention_mask
if self.layer == "all":
if isinstance(self.layer, list):
intermediate_output = self.layer
elif self.layer == "all":
intermediate_output = "all"
else:
intermediate_output = self.layer_idx
@@ -460,7 +471,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
return embed_out
class SDTokenizer:
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}):
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, tokenizer_data={}, tokenizer_args={}):
if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
@@ -468,6 +479,7 @@ class SDTokenizer:
self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length)
self.end_token = None
self.min_padding = min_padding
self.pad_left = pad_left
empty = self.tokenizer('')["input_ids"]
self.tokenizer_adds_end_token = has_end_token
@@ -522,6 +534,12 @@ class SDTokenizer:
return (embed, "{} {}".format(embedding_name[len(stripped):], leftover))
return (embed, leftover)
def pad_tokens(self, tokens, amount):
if self.pad_left:
for i in range(amount):
tokens.insert(0, (self.pad_token, 1.0, 0))
else:
tokens.extend([(self.pad_token, 1.0, 0)] * amount)
def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs):
'''
@@ -600,7 +618,7 @@ class SDTokenizer:
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length))
self.pad_tokens(batch, remaining_length)
#start new batch
batch = []
if self.start_token is not None:
@@ -614,11 +632,11 @@ class SDTokenizer:
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if min_padding is not None:
batch.extend([(self.pad_token, 1.0, 0)] * min_padding)
self.pad_tokens(batch, min_padding)
if self.pad_to_max_length and len(batch) < self.max_length:
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
self.pad_tokens(batch, self.max_length - len(batch))
if min_length is not None and len(batch) < min_length:
batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch)))
self.pad_tokens(batch, min_length - len(batch))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]

View File

@@ -21,6 +21,7 @@ import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.text_encoders.hunyuan_image
import comfy.text_encoders.z_image
from . import supported_models_base
from . import latent_formats
@@ -741,6 +742,37 @@ class FluxSchnell(Flux):
out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device)
return out
class Flux2(Flux):
unet_config = {
"image_model": "flux2",
}
sampling_settings = {
"shift": 2.02,
}
unet_extra_config = {}
latent_format = latent_formats.Flux2
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = self.memory_usage_factor * (2.0 * 2.0) * 2.36
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Flux2(self, device=device)
return out
def clip_target(self, state_dict={}):
return None # TODO
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect))
class GenmoMochi(supported_models_base.BASE):
unet_config = {
"image_model": "mochi_preview",
@@ -963,7 +995,7 @@ class Lumina2(supported_models_base.BASE):
"shift": 6.0,
}
memory_usage_factor = 1.2
memory_usage_factor = 1.4
unet_extra_config = {}
latent_format = latent_formats.Flux
@@ -982,6 +1014,24 @@ class Lumina2(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}gemma2_2b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.lumina2.LuminaTokenizer, comfy.text_encoders.lumina2.te(**hunyuan_detect))
class ZImage(Lumina2):
unet_config = {
"image_model": "lumina2",
"dim": 3840,
}
sampling_settings = {
"multiplier": 1.0,
"shift": 3.0,
}
memory_usage_factor = 1.7
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.z_image.ZImageTokenizer, comfy.text_encoders.z_image.te(**hunyuan_detect))
class WAN21_T2V(supported_models_base.BASE):
unet_config = {
"image_model": "wan2.1",
@@ -1374,6 +1424,55 @@ class HunyuanImage21Refiner(HunyuanVideo):
out = model_base.HunyuanImage21Refiner(self, device=device)
return out
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage]
class HunyuanVideo15(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"vision_in_dim": 1152,
}
sampling_settings = {
"shift": 7.0,
}
memory_usage_factor = 4.0 #TODO
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
latent_format = latent_formats.HunyuanVideo15
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideo15(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
class HunyuanVideo15_SR_Distilled(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"vision_in_dim": 1152,
"in_channels": 98,
}
sampling_settings = {
"shift": 2.0,
}
memory_usage_factor = 4.0 #TODO
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
latent_format = latent_formats.HunyuanVideo15
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideo15_SR_Distilled(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2]
models += [SVD_img2vid]

View File

@@ -50,6 +50,7 @@ class BASE:
manual_cast_dtype = None
custom_operations = None
scaled_fp8 = None
layer_quant_config = None # Per-layer quantization configuration for mixed precision
optimizations = {"fp8": False}
@classmethod

View File

@@ -1,10 +1,13 @@
from comfy import sd1_clip
import comfy.text_encoders.t5
import comfy.text_encoders.sd3_clip
import comfy.text_encoders.llama
import comfy.model_management
from transformers import T5TokenizerFast
from transformers import T5TokenizerFast, LlamaTokenizerFast
import torch
import os
import json
import base64
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
@@ -68,3 +71,106 @@ def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None):
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
return FluxClipModel_
def load_mistral_tokenizer(data):
if torch.is_tensor(data):
data = data.numpy().tobytes()
try:
from transformers.integrations.mistral import MistralConverter
except ModuleNotFoundError:
from transformers.models.pixtral.convert_pixtral_weights_to_hf import MistralConverter
mistral_vocab = json.loads(data)
special_tokens = {}
vocab = {}
max_vocab = mistral_vocab["config"]["default_vocab_size"]
max_vocab -= len(mistral_vocab["special_tokens"])
for w in mistral_vocab["vocab"]:
r = w["rank"]
if r >= max_vocab:
continue
vocab[base64.b64decode(w["token_bytes"])] = r
for w in mistral_vocab["special_tokens"]:
if "token_bytes" in w:
special_tokens[base64.b64decode(w["token_bytes"])] = w["rank"]
else:
special_tokens[w["token_str"]] = w["rank"]
all_special = []
for v in special_tokens:
all_special.append(v)
special_tokens.update(vocab)
vocab = special_tokens
return {"tokenizer_object": MistralConverter(vocab=vocab, additional_special_tokens=all_special).converted(), "legacy": False}
class MistralTokenizerClass:
@staticmethod
def from_pretrained(path, **kwargs):
return LlamaTokenizerFast(**kwargs)
class Mistral3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.tekken_data = tokenizer_data.get("tekken_model", None)
super().__init__("", pad_with_end=False, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
def state_dict(self):
return {"tekken_model": self.tekken_data}
class Flux2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="mistral3_24b", tokenizer=Mistral3Tokenizer)
self.llama_template = '[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]{}[/INST]'
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
return tokens
class Mistral3_24BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer=[10, 20, 30], layer_idx=None, dtype=None, attention_mask=True, model_options={}):
textmodel_json_config = {}
num_layers = model_options.get("num_layers", None)
if num_layers is not None:
textmodel_json_config["num_hidden_layers"] = num_layers
if num_layers < 40:
textmodel_json_config["final_norm"] = False
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 1, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Mistral3Small24B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Flux2TEModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, name="mistral3_24b", clip_model=Mistral3_24BModel):
super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options)
def encode_token_weights(self, token_weight_pairs):
out, pooled, extra = super().encode_token_weights(token_weight_pairs)
out = torch.stack((out[:, 0], out[:, 1], out[:, 2]), dim=1)
out = out.movedim(1, 2)
out = out.reshape(out.shape[0], out.shape[1], -1)
return out, pooled, extra
def flux2_te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None, pruned=False):
class Flux2TEModel_(Flux2TEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
if llama_quantization_metadata is not None:
model_options["quantization_metadata"] = llama_quantization_metadata
if pruned:
model_options = model_options.copy()
model_options["num_layers"] = 30
super().__init__(device=device, dtype=dtype, model_options=model_options)
return Flux2TEModel_

View File

@@ -1,6 +1,7 @@
from comfy import sd1_clip
import comfy.model_management
import comfy.text_encoders.llama
from .hunyuan_image import HunyuanImageTokenizer
from transformers import LlamaTokenizerFast
import torch
import os
@@ -17,6 +18,9 @@ def llama_detect(state_dict, prefix=""):
if scaled_fp8_key in state_dict:
out["llama_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
if "_quantization_metadata" in state_dict:
out["llama_quantization_metadata"] = state_dict["_quantization_metadata"]
return out
@@ -73,6 +77,14 @@ class HunyuanVideoTokenizer:
return {}
class HunyuanVideo15Tokenizer(HunyuanImageTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.llama_template = "<|im_start|>system\nYou are a helpful assistant. Describe the video by detailing the following aspects:\n1. The main content and theme of the video.\n2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.\n3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.\n4. background environment, light, style and atmosphere.\n5. camera angles, movements, and transitions used in the video.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
return super().tokenize_with_weights(text, return_word_ids, prevent_empty_text=True, **kwargs)
class HunyuanVideoClipModel(torch.nn.Module):
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
super().__init__()

View File

@@ -32,6 +32,29 @@ class Llama2Config:
q_norm = None
k_norm = None
rope_scale = None
final_norm: bool = True
@dataclass
class Mistral3Small24BConfig:
vocab_size: int = 131072
hidden_size: int = 5120
intermediate_size: int = 32768
num_hidden_layers: int = 40
num_attention_heads: int = 32
num_key_value_heads: int = 8
max_position_embeddings: int = 8192
rms_norm_eps: float = 1e-5
rope_theta: float = 1000000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = None
k_norm = None
rope_scale = None
final_norm: bool = True
@dataclass
class Qwen25_3BConfig:
@@ -53,6 +76,29 @@ class Qwen25_3BConfig:
q_norm = None
k_norm = None
rope_scale = None
final_norm: bool = True
@dataclass
class Qwen3_4BConfig:
vocab_size: int = 151936
hidden_size: int = 2560
intermediate_size: int = 9728
num_hidden_layers: int = 36
num_attention_heads: int = 32
num_key_value_heads: int = 8
max_position_embeddings: int = 40960
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
@dataclass
class Qwen25_7BVLI_Config:
@@ -74,6 +120,7 @@ class Qwen25_7BVLI_Config:
q_norm = None
k_norm = None
rope_scale = None
final_norm: bool = True
@dataclass
class Gemma2_2B_Config:
@@ -96,6 +143,7 @@ class Gemma2_2B_Config:
k_norm = None
sliding_attention = None
rope_scale = None
final_norm: bool = True
@dataclass
class Gemma3_4B_Config:
@@ -118,6 +166,7 @@ class Gemma3_4B_Config:
k_norm = "gemma3"
sliding_attention = [False, False, False, False, False, 1024]
rope_scale = [1.0, 8.0]
final_norm: bool = True
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None):
@@ -366,7 +415,12 @@ class Llama2_(nn.Module):
transformer(config, index=i, device=device, dtype=dtype, ops=ops)
for i in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
if config.final_norm:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
else:
self.norm = None
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]):
@@ -402,8 +456,12 @@ class Llama2_(nn.Module):
intermediate = None
all_intermediate = None
only_layers = None
if intermediate_output is not None:
if intermediate_output == "all":
if isinstance(intermediate_output, list):
all_intermediate = []
only_layers = set(intermediate_output)
elif intermediate_output == "all":
all_intermediate = []
intermediate_output = None
elif intermediate_output < 0:
@@ -411,7 +469,8 @@ class Llama2_(nn.Module):
for i, layer in enumerate(self.layers):
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if only_layers is None or (i in only_layers):
all_intermediate.append(x.unsqueeze(1).clone())
x = layer(
x=x,
attention_mask=mask,
@@ -421,14 +480,17 @@ class Llama2_(nn.Module):
if i == intermediate_output:
intermediate = x.clone()
x = self.norm(x)
if self.norm is not None:
x = self.norm(x)
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if only_layers is None or ((i + 1) in only_layers):
all_intermediate.append(x.unsqueeze(1).clone())
if all_intermediate is not None:
intermediate = torch.cat(all_intermediate, dim=1)
if intermediate is not None and final_layer_norm_intermediate:
if intermediate is not None and final_layer_norm_intermediate and self.norm is not None:
intermediate = self.norm(intermediate)
return x, intermediate
@@ -453,6 +515,15 @@ class Llama2(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Mistral3Small24B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Mistral3Small24BConfig(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen25_3B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
@@ -462,6 +533,15 @@ class Qwen25_3B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_4B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_4BConfig(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen25_7BVLI(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()

View File

@@ -17,12 +17,14 @@ class QwenImageTokenizer(sd1_clip.SD1Tokenizer):
self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
self.llama_template_images = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], **kwargs):
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], prevent_empty_text=False, **kwargs):
skip_template = False
if text.startswith('<|im_start|>'):
skip_template = True
if text.startswith('<|start_header_id|>'):
skip_template = True
if prevent_empty_text and text == '':
text = ' '
if skip_template:
llama_text = text

View File

@@ -0,0 +1,48 @@
from transformers import Qwen2Tokenizer
import comfy.text_encoders.llama
from comfy import sd1_clip
import os
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class ZImageTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_4b", tokenizer=Qwen3Tokenizer)
self.llama_template = "<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
return tokens
class Qwen3_4BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class ZImageTEModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="qwen3_4b", clip_model=Qwen3_4BModel, model_options=model_options)
def te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None):
class ZImageTEModel_(ZImageTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
if llama_quantization_metadata is not None:
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, dtype=dtype, model_options=model_options)
return ZImageTEModel_

View File

@@ -194,6 +194,7 @@ class LoRAAdapter(WeightAdapterBase):
lora_diff = torch.mm(
mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)
).reshape(weight.shape)
del mat1, mat2
if dora_scale is not None:
weight = weight_decompose(
dora_scale,

View File

@@ -8,7 +8,7 @@ import os
import textwrap
import threading
from enum import Enum
from typing import Optional, Type, get_origin, get_args
from typing import Optional, Type, get_origin, get_args, get_type_hints
class TypeTracker:
@@ -220,11 +220,18 @@ class AsyncToSyncConverter:
self._async_instance = async_class(*args, **kwargs)
# Handle annotated class attributes (like execution: Execution)
# Get all annotations from the class hierarchy
all_annotations = {}
for base_class in reversed(inspect.getmro(async_class)):
if hasattr(base_class, "__annotations__"):
all_annotations.update(base_class.__annotations__)
# Get all annotations from the class hierarchy and resolve string annotations
try:
# get_type_hints resolves string annotations to actual type objects
# This handles classes using 'from __future__ import annotations'
all_annotations = get_type_hints(async_class)
except Exception:
# Fallback to raw annotations if get_type_hints fails
# (e.g., for undefined forward references)
all_annotations = {}
for base_class in reversed(inspect.getmro(async_class)):
if hasattr(base_class, "__annotations__"):
all_annotations.update(base_class.__annotations__)
# For each annotated attribute, check if it needs to be created or wrapped
for attr_name, attr_type in all_annotations.items():
@@ -625,15 +632,19 @@ class AsyncToSyncConverter:
"""Extract class attributes that are classes themselves."""
class_attributes = []
# Get resolved type hints to handle string annotations
try:
type_hints = get_type_hints(async_class)
except Exception:
type_hints = {}
# Look for class attributes that are classes
for name, attr in sorted(inspect.getmembers(async_class)):
if isinstance(attr, type) and not name.startswith("_"):
class_attributes.append((name, attr))
elif (
hasattr(async_class, "__annotations__")
and name in async_class.__annotations__
):
annotation = async_class.__annotations__[name]
elif name in type_hints:
# Use resolved type hint instead of raw annotation
annotation = type_hints[name]
if isinstance(annotation, type):
class_attributes.append((name, annotation))
@@ -908,11 +919,15 @@ class AsyncToSyncConverter:
attribute_mappings = {}
# First check annotations for typed attributes (including from parent classes)
# Collect all annotations from the class hierarchy
all_annotations = {}
for base_class in reversed(inspect.getmro(async_class)):
if hasattr(base_class, "__annotations__"):
all_annotations.update(base_class.__annotations__)
# Resolve string annotations to actual types
try:
all_annotations = get_type_hints(async_class)
except Exception:
# Fallback to raw annotations
all_annotations = {}
for base_class in reversed(inspect.getmro(async_class)):
if hasattr(base_class, "__annotations__"):
all_annotations.update(base_class.__annotations__)
for attr_name, attr_type in sorted(all_annotations.items()):
for class_name, class_type in class_attributes:

View File

@@ -7,7 +7,7 @@ from comfy_api.internal.singleton import ProxiedSingleton
from comfy_api.internal.async_to_sync import create_sync_class
from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput
from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents
from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents
from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL
from . import _io as io
from . import _ui as ui
# from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401
@@ -104,6 +104,8 @@ class Types:
VideoCodec = VideoCodec
VideoContainer = VideoContainer
VideoComponents = VideoComponents
MESH = MESH
VOXEL = VOXEL
ComfyAPI = ComfyAPI_latest

View File

@@ -1,5 +1,6 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from fractions import Fraction
from typing import Optional, Union, IO
import io
import av
@@ -72,6 +73,33 @@ class VideoInput(ABC):
frame_count = components.images.shape[0]
return float(frame_count / components.frame_rate)
def get_frame_count(self) -> int:
"""
Returns the number of frames in the video.
Default implementation uses :meth:`get_components`, which may require
loading all frames into memory. File-based implementations should
override this method and use container/stream metadata instead.
Returns:
Total number of frames as an integer.
"""
return int(self.get_components().images.shape[0])
def get_frame_rate(self) -> Fraction:
"""
Returns the frame rate of the video.
Default implementation materializes the video into memory via
`get_components()`. Subclasses that can inspect the underlying
container (e.g. `VideoFromFile`) should override this with a more
efficient implementation.
Returns:
Frame rate as a Fraction.
"""
return self.get_components().frame_rate
def get_container_format(self) -> str:
"""
Returns the container format of the video (e.g., 'mp4', 'mov', 'avi').

View File

@@ -121,6 +121,71 @@ class VideoFromFile(VideoInput):
raise ValueError(f"Could not determine duration for file '{self.__file}'")
def get_frame_count(self) -> int:
"""
Returns the number of frames in the video without materializing them as
torch tensors.
"""
if isinstance(self.__file, io.BytesIO):
self.__file.seek(0)
with av.open(self.__file, mode="r") as container:
video_stream = self._get_first_video_stream(container)
# 1. Prefer the frames field if available
if video_stream.frames and video_stream.frames > 0:
return int(video_stream.frames)
# 2. Try to estimate from duration and average_rate using only metadata
if container.duration is not None and video_stream.average_rate:
duration_seconds = float(container.duration / av.time_base)
estimated_frames = int(round(duration_seconds * float(video_stream.average_rate)))
if estimated_frames > 0:
return estimated_frames
if (
getattr(video_stream, "duration", None) is not None
and getattr(video_stream, "time_base", None) is not None
and video_stream.average_rate
):
duration_seconds = float(video_stream.duration * video_stream.time_base)
estimated_frames = int(round(duration_seconds * float(video_stream.average_rate)))
if estimated_frames > 0:
return estimated_frames
# 3. Last resort: decode frames and count them (streaming)
frame_count = 0
container.seek(0)
for packet in container.demux(video_stream):
for _ in packet.decode():
frame_count += 1
if frame_count == 0:
raise ValueError(f"Could not determine frame count for file '{self.__file}'")
return frame_count
def get_frame_rate(self) -> Fraction:
"""
Returns the average frame rate of the video using container metadata
without decoding all frames.
"""
if isinstance(self.__file, io.BytesIO):
self.__file.seek(0)
with av.open(self.__file, mode="r") as container:
video_stream = self._get_first_video_stream(container)
# Preferred: use PyAV's average_rate (usually already a Fraction-like)
if video_stream.average_rate:
return Fraction(video_stream.average_rate)
# Fallback: estimate from frames + duration if available
if video_stream.frames and container.duration:
duration_seconds = float(container.duration / av.time_base)
if duration_seconds > 0:
return Fraction(video_stream.frames / duration_seconds).limit_denominator()
# Last resort: match get_components_internal default
return Fraction(1)
def get_container_format(self) -> str:
"""
Returns the container format of the video (e.g., 'mp4', 'mov', 'avi').
@@ -238,6 +303,13 @@ class VideoFromFile(VideoInput):
packet.stream = stream_map[packet.stream]
output_container.mux(packet)
def _get_first_video_stream(self, container: InputContainer):
video_stream = next((s for s in container.streams if s.type == "video"), None)
if video_stream is None:
raise ValueError(f"No video stream found in file '{self.__file}'")
return video_stream
class VideoFromComponents(VideoInput):
"""
Class representing video input from tensors.

View File

@@ -27,6 +27,7 @@ from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classpr
prune_dict, shallow_clone_class)
from comfy_api.latest._resources import Resources, ResourcesLocal
from comfy_execution.graph_utils import ExecutionBlocker
from ._util import MESH, VOXEL
# from comfy_extras.nodes_images import SVG as SVG_ # NOTE: needs to be moved before can be imported due to circular reference
@@ -628,6 +629,10 @@ class UpscaleModel(ComfyTypeIO):
if TYPE_CHECKING:
Type = ImageModelDescriptor
@comfytype(io_type="LATENT_UPSCALE_MODEL")
class LatentUpscaleModel(ComfyTypeIO):
Type = Any
@comfytype(io_type="AUDIO")
class Audio(ComfyTypeIO):
class AudioDict(TypedDict):
@@ -656,11 +661,11 @@ class LossMap(ComfyTypeIO):
@comfytype(io_type="VOXEL")
class Voxel(ComfyTypeIO):
Type = Any # TODO: VOXEL class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3
Type = VOXEL
@comfytype(io_type="MESH")
class Mesh(ComfyTypeIO):
Type = Any # TODO: MESH class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3
Type = MESH
@comfytype(io_type="HOOKS")
class Hooks(ComfyTypeIO):

View File

@@ -1,8 +1,11 @@
from .video_types import VideoContainer, VideoCodec, VideoComponents
from .geometry_types import VOXEL, MESH
__all__ = [
# Utility Types
"VideoContainer",
"VideoCodec",
"VideoComponents",
"VOXEL",
"MESH",
]

View File

@@ -0,0 +1,12 @@
import torch
class VOXEL:
def __init__(self, data: torch.Tensor):
self.data = data
class MESH:
def __init__(self, vertices: torch.Tensor, faces: torch.Tensor):
self.vertices = vertices
self.faces = faces

View File

@@ -1,261 +0,0 @@
from __future__ import annotations
import aiohttp
import mimetypes
from typing import Optional, Union
from comfy.utils import common_upscale
from comfy_api_nodes.apis.client import (
ApiClient,
ApiEndpoint,
HttpMethod,
SynchronousOperation,
UploadRequest,
UploadResponse,
)
from server import PromptServer
from comfy.cli_args import args
import numpy as np
from PIL import Image
import torch
import math
import base64
from .util import tensor_to_bytesio, bytesio_to_image_tensor
from io import BytesIO
async def validate_and_cast_response(
response, timeout: int = None, node_id: Union[str, None] = None
) -> torch.Tensor:
"""Validates and casts a response to a torch.Tensor.
Args:
response: The response to validate and cast.
timeout: Request timeout in seconds. Defaults to None (no timeout).
Returns:
A torch.Tensor representing the image (1, H, W, C).
Raises:
ValueError: If the response is not valid.
"""
# validate raw JSON response
data = response.data
if not data or len(data) == 0:
raise ValueError("No images returned from API endpoint")
# Initialize list to store image tensors
image_tensors: list[torch.Tensor] = []
# Process each image in the data array
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=timeout)) as session:
for img_data in data:
img_bytes: bytes
if img_data.b64_json:
img_bytes = base64.b64decode(img_data.b64_json)
elif img_data.url:
if node_id:
PromptServer.instance.send_progress_text(f"Result URL: {img_data.url}", node_id)
async with session.get(img_data.url) as resp:
if resp.status != 200:
raise ValueError("Failed to download generated image")
img_bytes = await resp.read()
else:
raise ValueError("Invalid image payload neither URL nor base64 data present.")
pil_img = Image.open(BytesIO(img_bytes)).convert("RGBA")
arr = np.asarray(pil_img).astype(np.float32) / 255.0
image_tensors.append(torch.from_numpy(arr))
return torch.stack(image_tensors, dim=0)
def validate_aspect_ratio(
aspect_ratio: str,
minimum_ratio: float,
maximum_ratio: float,
minimum_ratio_str: str,
maximum_ratio_str: str,
) -> float:
"""Validates and casts an aspect ratio string to a float.
Args:
aspect_ratio: The aspect ratio string to validate.
minimum_ratio: The minimum aspect ratio.
maximum_ratio: The maximum aspect ratio.
minimum_ratio_str: The minimum aspect ratio string.
maximum_ratio_str: The maximum aspect ratio string.
Returns:
The validated and cast aspect ratio.
Raises:
Exception: If the aspect ratio is not valid.
"""
# get ratio values
numbers = aspect_ratio.split(":")
if len(numbers) != 2:
raise TypeError(
f"Aspect ratio must be in the format X:Y, such as 16:9, but was {aspect_ratio}."
)
try:
numerator = int(numbers[0])
denominator = int(numbers[1])
except ValueError as exc:
raise TypeError(
f"Aspect ratio must contain numbers separated by ':', such as 16:9, but was {aspect_ratio}."
) from exc
calculated_ratio = numerator / denominator
# if not close to minimum and maximum, check bounds
if not math.isclose(calculated_ratio, minimum_ratio) or not math.isclose(
calculated_ratio, maximum_ratio
):
if calculated_ratio < minimum_ratio:
raise TypeError(
f"Aspect ratio cannot reduce to any less than {minimum_ratio_str} ({minimum_ratio}), but was {aspect_ratio} ({calculated_ratio})."
)
if calculated_ratio > maximum_ratio:
raise TypeError(
f"Aspect ratio cannot reduce to any greater than {maximum_ratio_str} ({maximum_ratio}), but was {aspect_ratio} ({calculated_ratio})."
)
return aspect_ratio
async def download_url_to_bytesio(
url: str, timeout: int = None, auth_kwargs: Optional[dict[str, str]] = None
) -> BytesIO:
"""Downloads content from a URL using requests and returns it as BytesIO.
Args:
url: The URL to download.
timeout: Request timeout in seconds. Defaults to None (no timeout).
Returns:
BytesIO object containing the downloaded content.
"""
headers = {}
if url.startswith("/proxy/"):
url = str(args.comfy_api_base).rstrip("/") + url
auth_token = auth_kwargs.get("auth_token")
comfy_api_key = auth_kwargs.get("comfy_api_key")
if auth_token:
headers["Authorization"] = f"Bearer {auth_token}"
elif comfy_api_key:
headers["X-API-KEY"] = comfy_api_key
timeout_cfg = aiohttp.ClientTimeout(total=timeout) if timeout else None
async with aiohttp.ClientSession(timeout=timeout_cfg) as session:
async with session.get(url, headers=headers) as resp:
resp.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX)
return BytesIO(await resp.read())
def process_image_response(response_content: bytes | str) -> torch.Tensor:
"""Uses content from a Response object and converts it to a torch.Tensor"""
return bytesio_to_image_tensor(BytesIO(response_content))
def text_filepath_to_base64_string(filepath: str) -> str:
"""Converts a text file to a base64 string."""
with open(filepath, "rb") as f:
file_content = f.read()
return base64.b64encode(file_content).decode("utf-8")
def text_filepath_to_data_uri(filepath: str) -> str:
"""Converts a text file to a data URI."""
base64_string = text_filepath_to_base64_string(filepath)
mime_type, _ = mimetypes.guess_type(filepath)
if mime_type is None:
mime_type = "application/octet-stream"
return f"data:{mime_type};base64,{base64_string}"
async def upload_file_to_comfyapi(
file_bytes_io: BytesIO,
filename: str,
upload_mime_type: Optional[str],
auth_kwargs: Optional[dict[str, str]] = None,
) -> str:
"""
Uploads a single file to ComfyUI API and returns its download URL.
Args:
file_bytes_io: BytesIO object containing the file data.
filename: The filename of the file.
upload_mime_type: MIME type of the file.
auth_kwargs: Optional authentication token(s).
Returns:
The download URL for the uploaded file.
"""
if upload_mime_type is None:
request_object = UploadRequest(file_name=filename)
else:
request_object = UploadRequest(file_name=filename, content_type=upload_mime_type)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/customers/storage",
method=HttpMethod.POST,
request_model=UploadRequest,
response_model=UploadResponse,
),
request=request_object,
auth_kwargs=auth_kwargs,
)
response: UploadResponse = await operation.execute()
await ApiClient.upload_file(response.upload_url, file_bytes_io, content_type=upload_mime_type)
return response.download_url
async def upload_images_to_comfyapi(
image: torch.Tensor,
max_images=8,
auth_kwargs: Optional[dict[str, str]] = None,
mime_type: Optional[str] = None,
) -> list[str]:
"""
Uploads images to ComfyUI API and returns download URLs.
To upload multiple images, stack them in the batch dimension first.
Args:
image: Input torch.Tensor image.
max_images: Maximum number of images to upload.
auth_kwargs: Optional authentication token(s).
mime_type: Optional MIME type for the image.
"""
# if batch, try to upload each file if max_images is greater than 0
download_urls: list[str] = []
is_batch = len(image.shape) > 3
batch_len = image.shape[0] if is_batch else 1
for idx in range(min(batch_len, max_images)):
tensor = image[idx] if is_batch else image
img_io = tensor_to_bytesio(tensor, mime_type=mime_type)
url = await upload_file_to_comfyapi(img_io, img_io.name, mime_type, auth_kwargs)
download_urls.append(url)
return download_urls
def resize_mask_to_image(
mask: torch.Tensor,
image: torch.Tensor,
upscale_method="nearest-exact",
crop="disabled",
allow_gradient=True,
add_channel_dim=False,
):
"""
Resize mask to be the same dimensions as an image, while maintaining proper format for API calls.
"""
_, H, W, _ = image.shape
mask = mask.unsqueeze(-1)
mask = mask.movedim(-1, 1)
mask = common_upscale(
mask, width=W, height=H, upscale_method=upscale_method, crop=crop
)
mask = mask.movedim(1, -1)
if not add_channel_dim:
mask = mask.squeeze(-1)
if not allow_gradient:
mask = (mask > 0.5).float()
return mask

View File

@@ -1,17 +0,0 @@
# generated by datamodel-codegen:
# filename: filtered-openapi.yaml
# timestamp: 2025-04-29T23:44:54+00:00
from __future__ import annotations
from typing import Optional
from pydantic import BaseModel
from . import PixverseDto
class ResponseData(BaseModel):
ErrCode: Optional[int] = None
ErrMsg: Optional[str] = None
Resp: Optional[PixverseDto.V2OpenAPII2VResp] = None

View File

@@ -1,57 +0,0 @@
# generated by datamodel-codegen:
# filename: filtered-openapi.yaml
# timestamp: 2025-04-29T23:44:54+00:00
from __future__ import annotations
from typing import Optional
from pydantic import BaseModel, Field
class V2OpenAPII2VResp(BaseModel):
video_id: Optional[int] = Field(None, description='Video_id')
class V2OpenAPIT2VReq(BaseModel):
aspect_ratio: str = Field(
..., description='Aspect ratio (16:9, 4:3, 1:1, 3:4, 9:16)', examples=['16:9']
)
duration: int = Field(
...,
description='Video duration (5, 8 seconds, --model=v3.5 only allows 5,8; --quality=1080p does not support 8s)',
examples=[5],
)
model: str = Field(
..., description='Model version (only supports v3.5)', examples=['v3.5']
)
motion_mode: Optional[str] = Field(
'normal',
description='Motion mode (normal, fast, --fast only available when duration=5; --quality=1080p does not support fast)',
examples=['normal'],
)
negative_prompt: Optional[str] = Field(
None, description='Negative prompt\n', max_length=2048
)
prompt: str = Field(..., description='Prompt', max_length=2048)
quality: str = Field(
...,
description='Video quality ("360p"(Turbo model), "540p", "720p", "1080p")',
examples=['540p'],
)
seed: Optional[int] = Field(None, description='Random seed, range: 0 - 2147483647')
style: Optional[str] = Field(
None,
description='Style (effective when model=v3.5, "anime", "3d_animation", "clay", "comic", "cyberpunk") Do not include style parameter unless needed',
examples=['anime'],
)
template_id: Optional[int] = Field(
None,
description='Template ID (template_id must be activated before use)',
examples=[302325299692608],
)
water_mark: Optional[bool] = Field(
False,
description='Watermark (true: add watermark, false: no watermark)',
examples=[False],
)

View File

@@ -70,6 +70,29 @@ class BFLFluxProGenerateRequest(BaseModel):
# )
class Flux2ProGenerateRequest(BaseModel):
prompt: str = Field(...)
width: int = Field(1024, description="Must be a multiple of 32.")
height: int = Field(768, description="Must be a multiple of 32.")
seed: int | None = Field(None)
prompt_upsampling: bool | None = Field(None)
input_image: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_2: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_3: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_4: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_5: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_6: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_7: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_8: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
input_image_9: str | None = Field(None, description="Base64 encoded image for image-to-image generation")
safety_tolerance: int | None = Field(
5, description="Tolerance level for input and output moderation. Value 0 being most strict.", ge=0, le=5
)
output_format: str | None = Field(
"png", description="Output format for the generated image. Can be 'jpeg' or 'png'."
)
class BFLFluxKontextProGenerateRequest(BaseModel):
prompt: str = Field(..., description='The text prompt for what you wannt to edit.')
input_image: Optional[str] = Field(None, description='Image to edit in base64 format')
@@ -109,8 +132,9 @@ class BFLFluxProUltraGenerateRequest(BaseModel):
class BFLFluxProGenerateResponse(BaseModel):
id: str = Field(..., description='The unique identifier for the generation task.')
polling_url: str = Field(..., description='URL to poll for the generation result.')
id: str = Field(..., description="The unique identifier for the generation task.")
polling_url: str = Field(..., description="URL to poll for the generation result.")
cost: float | None = Field(None, description="Price in cents")
class BFLStatus(str, Enum):

View File

@@ -1,981 +0,0 @@
"""
API Client Framework for api.comfy.org.
This module provides a flexible framework for making API requests from ComfyUI nodes.
It supports both synchronous and asynchronous API operations with proper type validation.
Key Components:
--------------
1. ApiClient - Handles HTTP requests with authentication and error handling
2. ApiEndpoint - Defines a single HTTP endpoint with its request/response models
3. ApiOperation - Executes a single synchronous API operation
Usage Examples:
--------------
# Example 1: Synchronous API Operation
# ------------------------------------
# For a simple API call that returns the result immediately:
# 1. Create the API client
api_client = ApiClient(
base_url="https://api.example.com",
auth_token="your_auth_token_here",
comfy_api_key="your_comfy_api_key_here",
timeout=30.0,
verify_ssl=True
)
# 2. Define the endpoint
user_info_endpoint = ApiEndpoint(
path="/v1/users/me",
method=HttpMethod.GET,
request_model=EmptyRequest, # No request body needed
response_model=UserProfile, # Pydantic model for the response
query_params=None
)
# 3. Create the request object
request = EmptyRequest()
# 4. Create and execute the operation
operation = ApiOperation(
endpoint=user_info_endpoint,
request=request
)
user_profile = await operation.execute(client=api_client) # Returns immediately with the result
# Example 2: Asynchronous API Operation with Polling
# -------------------------------------------------
# For an API that starts a task and requires polling for completion:
# 1. Define the endpoints (initial request and polling)
generate_image_endpoint = ApiEndpoint(
path="/v1/images/generate",
method=HttpMethod.POST,
request_model=ImageGenerationRequest,
response_model=TaskCreatedResponse,
query_params=None
)
check_task_endpoint = ApiEndpoint(
path="/v1/tasks/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=ImageGenerationResult,
query_params=None
)
# 2. Create the request object
request = ImageGenerationRequest(
prompt="a beautiful sunset over mountains",
width=1024,
height=1024,
num_images=1
)
# 3. Create and execute the polling operation
operation = PollingOperation(
initial_endpoint=generate_image_endpoint,
initial_request=request,
poll_endpoint=check_task_endpoint,
task_id_field="task_id",
status_field="status",
completed_statuses=["completed"],
failed_statuses=["failed", "error"]
)
# This will make the initial request and then poll until completion
result = await operation.execute(client=api_client) # Returns the final ImageGenerationResult when done
"""
from __future__ import annotations
import aiohttp
import asyncio
import logging
import io
import os
import socket
from aiohttp.client_exceptions import ClientError, ClientResponseError
from typing import Type, Optional, Any, TypeVar, Generic, Callable
from enum import Enum
import json
from urllib.parse import urljoin, urlparse
from pydantic import BaseModel, Field
import uuid # For generating unique operation IDs
from server import PromptServer
from comfy.cli_args import args
from comfy import utils
from . import request_logger
T = TypeVar("T", bound=BaseModel)
R = TypeVar("R", bound=BaseModel)
P = TypeVar("P", bound=BaseModel) # For poll response
PROGRESS_BAR_MAX = 100
class NetworkError(Exception):
"""Base exception for network-related errors with diagnostic information."""
pass
class LocalNetworkError(NetworkError):
"""Exception raised when local network connectivity issues are detected."""
pass
class ApiServerError(NetworkError):
"""Exception raised when the API server is unreachable but internet is working."""
pass
class EmptyRequest(BaseModel):
"""Base class for empty request bodies.
For GET requests, fields will be sent as query parameters."""
pass
class UploadRequest(BaseModel):
file_name: str = Field(..., description="Filename to upload")
content_type: Optional[str] = Field(
None,
description="Mime type of the file. For example: image/png, image/jpeg, video/mp4, etc.",
)
class UploadResponse(BaseModel):
download_url: str = Field(..., description="URL to GET uploaded file")
upload_url: str = Field(..., description="URL to PUT file to upload")
class HttpMethod(str, Enum):
GET = "GET"
POST = "POST"
PUT = "PUT"
DELETE = "DELETE"
PATCH = "PATCH"
class ApiClient:
"""
Client for making HTTP requests to an API with authentication, error handling, and retry logic.
"""
def __init__(
self,
base_url: str,
auth_token: Optional[str] = None,
comfy_api_key: Optional[str] = None,
timeout: float = 3600.0,
verify_ssl: bool = True,
max_retries: int = 3,
retry_delay: float = 1.0,
retry_backoff_factor: float = 2.0,
retry_status_codes: Optional[tuple[int, ...]] = None,
session: Optional[aiohttp.ClientSession] = None,
):
self.base_url = base_url
self.auth_token = auth_token
self.comfy_api_key = comfy_api_key
self.timeout = timeout
self.verify_ssl = verify_ssl
self.max_retries = max_retries
self.retry_delay = retry_delay
self.retry_backoff_factor = retry_backoff_factor
# Default retry status codes: 408 (Request Timeout), 429 (Too Many Requests),
# 500, 502, 503, 504 (Server Errors)
self.retry_status_codes = retry_status_codes or (408, 429, 500, 502, 503, 504)
self._session: Optional[aiohttp.ClientSession] = session
self._owns_session = session is None # Track if we have to close it
@staticmethod
def _generate_operation_id(path: str) -> str:
"""Generates a unique operation ID for logging."""
return f"{path.strip('/').replace('/', '_')}_{uuid.uuid4().hex[:8]}"
@staticmethod
def _create_json_payload_args(
data: Optional[dict[str, Any]] = None,
headers: Optional[dict[str, str]] = None,
) -> dict[str, Any]:
return {
"json": data,
"headers": headers,
}
def _create_form_data_args(
self,
data: dict[str, Any] | None,
files: dict[str, Any] | None,
headers: Optional[dict[str, str]] = None,
multipart_parser: Callable | None = None,
) -> dict[str, Any]:
if headers and "Content-Type" in headers:
del headers["Content-Type"]
if multipart_parser and data:
data = multipart_parser(data)
if isinstance(data, aiohttp.FormData):
form = data # If the parser already returned a FormData, pass it through
else:
form = aiohttp.FormData(default_to_multipart=True)
if data: # regular text fields
for k, v in data.items():
if v is None:
continue # aiohttp fails to serialize "None" values
# aiohttp expects strings or bytes; convert enums etc.
form.add_field(k, str(v) if not isinstance(v, (bytes, bytearray)) else v)
if files:
file_iter = files if isinstance(files, list) else files.items()
for field_name, file_obj in file_iter:
if file_obj is None:
continue # aiohttp fails to serialize "None" values
# file_obj can be (filename, bytes/io.BytesIO, content_type) tuple
if isinstance(file_obj, tuple):
filename, file_value, content_type = self._unpack_tuple(file_obj)
else:
file_value = file_obj
filename = getattr(file_obj, "name", field_name)
content_type = "application/octet-stream"
form.add_field(
name=field_name,
value=file_value,
filename=filename,
content_type=content_type,
)
return {"data": form, "headers": headers or {}}
@staticmethod
def _create_urlencoded_form_data_args(
data: dict[str, Any],
headers: Optional[dict[str, str]] = None,
) -> dict[str, Any]:
headers = headers or {}
headers["Content-Type"] = "application/x-www-form-urlencoded"
return {
"data": data,
"headers": headers,
}
def get_headers(self) -> dict[str, str]:
"""Get headers for API requests, including authentication if available"""
headers = {"Content-Type": "application/json", "Accept": "application/json"}
if self.auth_token:
headers["Authorization"] = f"Bearer {self.auth_token}"
elif self.comfy_api_key:
headers["X-API-KEY"] = self.comfy_api_key
return headers
async def _check_connectivity(self, target_url: str) -> dict[str, bool]:
"""
Check connectivity to determine if network issues are local or server-related.
Args:
target_url: URL to check connectivity to
Returns:
Dictionary with connectivity status details
"""
results = {
"internet_accessible": False,
"api_accessible": False,
"is_local_issue": False,
"is_api_issue": False,
}
timeout = aiohttp.ClientTimeout(total=5.0)
async with aiohttp.ClientSession(timeout=timeout) as session:
try:
async with session.get("https://www.google.com", ssl=self.verify_ssl) as resp:
results["internet_accessible"] = resp.status < 500
except (ClientError, asyncio.TimeoutError, socket.gaierror):
results["is_local_issue"] = True
return results # cannot reach the internet early exit
# Now check API health endpoint
parsed = urlparse(target_url)
health_url = f"{parsed.scheme}://{parsed.netloc}/health"
try:
async with session.get(health_url, ssl=self.verify_ssl) as resp:
results["api_accessible"] = resp.status < 500
except ClientError:
pass # leave as False
results["is_api_issue"] = results["internet_accessible"] and not results["api_accessible"]
return results
async def request(
self,
method: str,
path: str,
params: Optional[dict[str, Any]] = None,
data: Optional[dict[str, Any]] = None,
files: Optional[dict[str, Any] | list[tuple[str, Any]]] = None,
headers: Optional[dict[str, str]] = None,
content_type: str = "application/json",
multipart_parser: Callable | None = None,
retry_count: int = 0, # Used internally for tracking retries
) -> dict[str, Any]:
"""
Make an HTTP request to the API with automatic retries for transient errors.
Args:
method: HTTP method (GET, POST, etc.)
path: API endpoint path (will be joined with base_url)
params: Query parameters
data: body data
files: Files to upload
headers: Additional headers
content_type: Content type of the request. Defaults to application/json.
retry_count: Internal parameter for tracking retries, do not set manually
Returns:
Parsed JSON response
Raises:
LocalNetworkError: If local network connectivity issues are detected
ApiServerError: If the API server is unreachable but internet is working
Exception: For other request failures
"""
# Build full URL and merge headers
relative_path = path.lstrip("/")
url = urljoin(self.base_url, relative_path)
self._check_auth(self.auth_token, self.comfy_api_key)
request_headers = self.get_headers()
if headers:
request_headers.update(headers)
if files:
request_headers.pop("Content-Type", None)
if params:
params = {k: v for k, v in params.items() if v is not None} # aiohttp fails to serialize None values
logging.debug("[DEBUG] Request Headers: %s", request_headers)
logging.debug("[DEBUG] Files: %s", files)
logging.debug("[DEBUG] Params: %s", params)
logging.debug("[DEBUG] Data: %s", data)
if content_type == "application/x-www-form-urlencoded":
payload_args = self._create_urlencoded_form_data_args(data or {}, request_headers)
elif content_type == "multipart/form-data":
payload_args = self._create_form_data_args(data, files, request_headers, multipart_parser)
else:
payload_args = self._create_json_payload_args(data, request_headers)
operation_id = self._generate_operation_id(path)
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=request_headers,
request_params=params,
request_data=data if content_type == "application/json" else "[form-data or other]",
)
session = await self._get_session()
try:
async with session.request(
method,
url,
params=params,
ssl=self.verify_ssl,
**payload_args,
) as resp:
if resp.status >= 400:
try:
error_data = await resp.json()
except (aiohttp.ContentTypeError, json.JSONDecodeError):
error_data = await resp.text()
return await self._handle_http_error(
ClientResponseError(resp.request_info, resp.history, status=resp.status, message=error_data),
operation_id,
method,
url,
params,
data,
files,
headers,
content_type,
multipart_parser,
retry_count=retry_count,
response_content=error_data,
)
# Success parse JSON (safely) and log
try:
payload = await resp.json()
response_content_to_log = payload
except (aiohttp.ContentTypeError, json.JSONDecodeError):
payload = {}
response_content_to_log = await resp.text()
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=response_content_to_log,
)
return payload
except (ClientError, asyncio.TimeoutError, socket.gaierror) as e:
# Treat as *connection* problem optionally retry, else escalate
if retry_count < self.max_retries:
delay = self.retry_delay * (self.retry_backoff_factor ** retry_count)
logging.warning("Connection error. Retrying in %.2fs (%s/%s): %s", delay, retry_count + 1,
self.max_retries, str(e))
await asyncio.sleep(delay)
return await self.request(
method,
path,
params=params,
data=data,
files=files,
headers=headers,
content_type=content_type,
multipart_parser=multipart_parser,
retry_count=retry_count + 1,
)
# One final connectivity check for diagnostics
connectivity = await self._check_connectivity(self.base_url)
if connectivity["is_local_issue"]:
raise LocalNetworkError(
"Unable to connect to the API server due to local network issues. "
"Please check your internet connection and try again."
) from e
raise ApiServerError(
f"The API server at {self.base_url} is currently unreachable. "
f"The service may be experiencing issues. Please try again later."
) from e
@staticmethod
def _check_auth(auth_token, comfy_api_key):
"""Verify that an auth token is present or comfy_api_key is present"""
if auth_token is None and comfy_api_key is None:
raise Exception("Unauthorized: Please login first to use this node.")
return auth_token or comfy_api_key
@staticmethod
async def upload_file(
upload_url: str,
file: io.BytesIO | str,
content_type: str | None = None,
max_retries: int = 3,
retry_delay: float = 1.0,
retry_backoff_factor: float = 2.0,
) -> aiohttp.ClientResponse:
"""Upload a file to the API with retry logic.
Args:
upload_url: The URL to upload to
file: Either a file path string, BytesIO object, or tuple of (file_path, filename)
content_type: Optional mime type to set for the upload
max_retries: Maximum number of retry attempts
retry_delay: Initial delay between retries in seconds
retry_backoff_factor: Multiplier for the delay after each retry
"""
headers: dict[str, str] = {}
skip_auto_headers: set[str] = set()
if content_type:
headers["Content-Type"] = content_type
else:
# tell aiohttp not to add Content-Type that will break the request signature and result in a 403 status.
skip_auto_headers.add("Content-Type")
# Extract file bytes
if isinstance(file, io.BytesIO):
file.seek(0)
data = file.read()
elif isinstance(file, str):
with open(file, "rb") as f:
data = f.read()
else:
raise ValueError("File must be BytesIO or str path")
parsed = urlparse(upload_url)
basename = os.path.basename(parsed.path) or parsed.netloc or "upload"
operation_id = f"upload_{basename}_{uuid.uuid4().hex[:8]}"
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
request_headers=headers,
request_data=f"[File data {len(data)} bytes]",
)
delay = retry_delay
for attempt in range(max_retries + 1):
try:
timeout = aiohttp.ClientTimeout(total=None) # honour server side timeouts
async with aiohttp.ClientSession(timeout=timeout) as session:
async with session.put(
upload_url, data=data, headers=headers, skip_auto_headers=skip_auto_headers,
) as resp:
resp.raise_for_status()
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content="File uploaded successfully.",
)
return resp
except (ClientError, asyncio.TimeoutError) as e:
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
response_status_code=e.status if hasattr(e, "status") else None,
response_headers=dict(e.headers) if hasattr(e, "headers") else None,
response_content=None,
error_message=f"{type(e).__name__}: {str(e)}",
)
if attempt < max_retries:
logging.warning(
"Upload failed (%s/%s). Retrying in %.2fs. %s", attempt + 1, max_retries, delay, str(e)
)
await asyncio.sleep(delay)
delay *= retry_backoff_factor
else:
raise NetworkError(f"Failed to upload file after {max_retries + 1} attempts: {e}") from e
async def _handle_http_error(
self,
exc: ClientResponseError,
operation_id: str,
*req_meta,
retry_count: int,
response_content: dict | str = "",
) -> dict[str, Any]:
status_code = exc.status
if status_code == 401:
user_friendly = "Unauthorized: Please login first to use this node."
elif status_code == 402:
user_friendly = "Payment Required: Please add credits to your account to use this node."
elif status_code == 409:
user_friendly = "There is a problem with your account. Please contact support@comfy.org."
elif status_code == 429:
user_friendly = "Rate Limit Exceeded: Please try again later."
else:
if isinstance(response_content, dict):
if "error" in response_content and "message" in response_content["error"]:
user_friendly = f"API Error: {response_content['error']['message']}"
if "type" in response_content["error"]:
user_friendly += f" (Type: {response_content['error']['type']})"
else: # Handle cases where error is just a JSON dict with unknown format
user_friendly = f"API Error: {json.dumps(response_content)}"
else:
if len(response_content) < 200: # Arbitrary limit for display
user_friendly = f"API Error (raw): {response_content}"
else:
user_friendly = f"API Error (raw, status {response_content})"
request_logger.log_request_response(
operation_id=operation_id,
request_method=req_meta[0],
request_url=req_meta[1],
response_status_code=exc.status,
response_headers=dict(req_meta[5]) if req_meta[5] else None,
response_content=response_content,
error_message=f"HTTP Error {exc.status}",
)
logging.debug("[DEBUG] API Error: %s (Status: %s)", user_friendly, status_code)
if response_content:
logging.debug("[DEBUG] Response content: %s", response_content)
# Retry if eligible
if status_code in self.retry_status_codes and retry_count < self.max_retries:
delay = self.retry_delay * (self.retry_backoff_factor ** retry_count)
logging.warning(
"HTTP error %s. Retrying in %.2fs (%s/%s)",
status_code,
delay,
retry_count + 1,
self.max_retries,
)
await asyncio.sleep(delay)
return await self.request(
req_meta[0], # method
req_meta[1].replace(self.base_url, ""), # path
params=req_meta[2],
data=req_meta[3],
files=req_meta[4],
headers=req_meta[5],
content_type=req_meta[6],
multipart_parser=req_meta[7],
retry_count=retry_count + 1,
)
raise Exception(user_friendly) from exc
@staticmethod
def _unpack_tuple(t):
"""Helper to normalise (filename, file, content_type) tuples."""
if len(t) == 3:
return t
elif len(t) == 2:
return t[0], t[1], "application/octet-stream"
else:
raise ValueError("files tuple must be (filename, file[, content_type])")
async def _get_session(self) -> aiohttp.ClientSession:
if self._session is None or self._session.closed:
timeout = aiohttp.ClientTimeout(total=self.timeout)
self._session = aiohttp.ClientSession(timeout=timeout)
self._owns_session = True
return self._session
async def close(self) -> None:
if self._owns_session and self._session and not self._session.closed:
await self._session.close()
async def __aenter__(self) -> "ApiClient":
"""Allow usage as asynccontextmanager ensures clean teardown"""
return self
async def __aexit__(self, exc_type, exc, tb):
await self.close()
class ApiEndpoint(Generic[T, R]):
"""Defines an API endpoint with its request and response types"""
def __init__(
self,
path: str,
method: HttpMethod,
request_model: Type[T],
response_model: Type[R],
query_params: Optional[dict[str, Any]] = None,
):
"""Initialize an API endpoint definition.
Args:
path: The URL path for this endpoint, can include placeholders like {id}
method: The HTTP method to use (GET, POST, etc.)
request_model: Pydantic model class that defines the structure and validation rules for API requests to this endpoint
response_model: Pydantic model class that defines the structure and validation rules for API responses from this endpoint
query_params: Optional dictionary of query parameters to include in the request
"""
self.path = path
self.method = method
self.request_model = request_model
self.response_model = response_model
self.query_params = query_params or {}
class SynchronousOperation(Generic[T, R]):
"""Represents a single synchronous API operation."""
def __init__(
self,
endpoint: ApiEndpoint[T, R],
request: T,
files: Optional[dict[str, Any] | list[tuple[str, Any]]] = None,
api_base: str | None = None,
auth_token: Optional[str] = None,
comfy_api_key: Optional[str] = None,
auth_kwargs: Optional[dict[str, str]] = None,
timeout: float = 7200.0,
verify_ssl: bool = True,
content_type: str = "application/json",
multipart_parser: Callable | None = None,
max_retries: int = 3,
retry_delay: float = 1.0,
retry_backoff_factor: float = 2.0,
) -> None:
self.endpoint = endpoint
self.request = request
self.files = files
self.api_base: str = api_base or args.comfy_api_base
self.auth_token = auth_token
self.comfy_api_key = comfy_api_key
if auth_kwargs is not None:
self.auth_token = auth_kwargs.get("auth_token", self.auth_token)
self.comfy_api_key = auth_kwargs.get("comfy_api_key", self.comfy_api_key)
self.timeout = timeout
self.verify_ssl = verify_ssl
self.content_type = content_type
self.multipart_parser = multipart_parser
self.max_retries = max_retries
self.retry_delay = retry_delay
self.retry_backoff_factor = retry_backoff_factor
async def execute(self, client: Optional[ApiClient] = None) -> R:
owns_client = client is None
if owns_client:
client = ApiClient(
base_url=self.api_base,
auth_token=self.auth_token,
comfy_api_key=self.comfy_api_key,
timeout=self.timeout,
verify_ssl=self.verify_ssl,
max_retries=self.max_retries,
retry_delay=self.retry_delay,
retry_backoff_factor=self.retry_backoff_factor,
)
try:
request_dict: Optional[dict[str, Any]]
if isinstance(self.request, EmptyRequest):
request_dict = None
else:
request_dict = self.request.model_dump(exclude_none=True)
for k, v in list(request_dict.items()):
if isinstance(v, Enum):
request_dict[k] = v.value
logging.debug("[DEBUG] API Request: %s %s", self.endpoint.method.value, self.endpoint.path)
logging.debug("[DEBUG] Request Data: %s", json.dumps(request_dict, indent=2))
logging.debug("[DEBUG] Query Params: %s", self.endpoint.query_params)
response_json = await client.request(
self.endpoint.method.value,
self.endpoint.path,
params=self.endpoint.query_params,
data=request_dict,
files=self.files,
content_type=self.content_type,
multipart_parser=self.multipart_parser,
)
logging.debug("=" * 50)
logging.debug("[DEBUG] RESPONSE DETAILS:")
logging.debug("[DEBUG] Status Code: 200 (Success)")
logging.debug("[DEBUG] Response Body: %s", json.dumps(response_json, indent=2))
logging.debug("=" * 50)
parsed_response = self.endpoint.response_model.model_validate(response_json)
logging.debug("[DEBUG] Parsed Response: %s", parsed_response)
return parsed_response
finally:
if owns_client:
await client.close()
class TaskStatus(str, Enum):
"""Enum for task status values"""
COMPLETED = "completed"
FAILED = "failed"
PENDING = "pending"
class PollingOperation(Generic[T, R]):
"""Represents an asynchronous API operation that requires polling for completion."""
def __init__(
self,
poll_endpoint: ApiEndpoint[EmptyRequest, R],
completed_statuses: list[str],
failed_statuses: list[str],
*,
status_extractor: Callable[[R], Optional[str]],
progress_extractor: Callable[[R], Optional[float]] | None = None,
result_url_extractor: Callable[[R], Optional[str]] | None = None,
price_extractor: Callable[[R], Optional[float]] | None = None,
request: Optional[T] = None,
api_base: str | None = None,
auth_token: Optional[str] = None,
comfy_api_key: Optional[str] = None,
auth_kwargs: Optional[dict[str, str]] = None,
poll_interval: float = 5.0,
max_poll_attempts: int = 120, # Default max polling attempts (10 minutes with 5s interval)
max_retries: int = 3, # Max retries per individual API call
retry_delay: float = 1.0,
retry_backoff_factor: float = 2.0,
estimated_duration: Optional[float] = None,
node_id: Optional[str] = None,
) -> None:
self.poll_endpoint = poll_endpoint
self.request = request
self.api_base: str = api_base or args.comfy_api_base
self.auth_token = auth_token
self.comfy_api_key = comfy_api_key
if auth_kwargs is not None:
self.auth_token = auth_kwargs.get("auth_token", self.auth_token)
self.comfy_api_key = auth_kwargs.get("comfy_api_key", self.comfy_api_key)
self.poll_interval = poll_interval
self.max_poll_attempts = max_poll_attempts
self.max_retries = max_retries
self.retry_delay = retry_delay
self.retry_backoff_factor = retry_backoff_factor
self.estimated_duration = estimated_duration
self.status_extractor = status_extractor or (lambda x: getattr(x, "status", None))
self.progress_extractor = progress_extractor
self.result_url_extractor = result_url_extractor
self.price_extractor = price_extractor
self.node_id = node_id
self.completed_statuses = completed_statuses
self.failed_statuses = failed_statuses
self.final_response: Optional[R] = None
self.extracted_price: Optional[float] = None
async def execute(self, client: Optional[ApiClient] = None) -> R:
owns_client = client is None
if owns_client:
client = ApiClient(
base_url=self.api_base,
auth_token=self.auth_token,
comfy_api_key=self.comfy_api_key,
max_retries=self.max_retries,
retry_delay=self.retry_delay,
retry_backoff_factor=self.retry_backoff_factor,
)
try:
return await self._poll_until_complete(client)
finally:
if owns_client:
await client.close()
def _display_text_on_node(self, text: str):
if not self.node_id:
return
if self.extracted_price is not None:
text = f"Price: ${self.extracted_price}\n{text}"
PromptServer.instance.send_progress_text(text, self.node_id)
def _display_time_progress_on_node(self, time_completed: int | float):
if not self.node_id:
return
if self.estimated_duration is not None:
remaining = max(0, int(self.estimated_duration) - time_completed)
message = f"Task in progress: {time_completed}s (~{remaining}s remaining)"
else:
message = f"Task in progress: {time_completed}s"
self._display_text_on_node(message)
def _check_task_status(self, response: R) -> TaskStatus:
try:
status = self.status_extractor(response)
if status in self.completed_statuses:
return TaskStatus.COMPLETED
if status in self.failed_statuses:
return TaskStatus.FAILED
return TaskStatus.PENDING
except Exception as e:
logging.error("Error extracting status: %s", e)
return TaskStatus.PENDING
async def _poll_until_complete(self, client: ApiClient) -> R:
"""Poll until the task is complete"""
consecutive_errors = 0
max_consecutive_errors = min(5, self.max_retries * 2) # Limit consecutive errors
if self.progress_extractor:
progress = utils.ProgressBar(PROGRESS_BAR_MAX)
status = TaskStatus.PENDING
for poll_count in range(1, self.max_poll_attempts + 1):
try:
logging.debug("[DEBUG] Polling attempt #%s", poll_count)
request_dict = None if self.request is None else self.request.model_dump(exclude_none=True)
if poll_count == 1:
logging.debug(
"[DEBUG] Poll Request: %s %s",
self.poll_endpoint.method.value,
self.poll_endpoint.path,
)
logging.debug(
"[DEBUG] Poll Request Data: %s",
json.dumps(request_dict, indent=2) if request_dict else "None",
)
# Query task status
resp = await client.request(
self.poll_endpoint.method.value,
self.poll_endpoint.path,
params=self.poll_endpoint.query_params,
data=request_dict,
)
consecutive_errors = 0 # reset on success
response_obj: R = self.poll_endpoint.response_model.model_validate(resp)
# Check if task is complete
status = self._check_task_status(response_obj)
logging.debug("[DEBUG] Task Status: %s", status)
# If progress extractor is provided, extract progress
if self.progress_extractor:
new_progress = self.progress_extractor(response_obj)
if new_progress is not None:
progress.update_absolute(new_progress, total=PROGRESS_BAR_MAX)
if self.price_extractor:
price = self.price_extractor(response_obj)
if price is not None:
self.extracted_price = price
if status == TaskStatus.COMPLETED:
message = "Task completed successfully"
if self.result_url_extractor:
result_url = self.result_url_extractor(response_obj)
if result_url:
message = f"Result URL: {result_url}"
logging.debug("[DEBUG] %s", message)
self._display_text_on_node(message)
self.final_response = response_obj
if self.progress_extractor:
progress.update(100)
return self.final_response
if status == TaskStatus.FAILED:
message = f"Task failed: {json.dumps(resp)}"
logging.error("[DEBUG] %s", message)
raise Exception(message)
logging.debug("[DEBUG] Task still pending, continuing to poll...")
# Task pending wait
for i in range(int(self.poll_interval)):
self._display_time_progress_on_node((poll_count - 1) * self.poll_interval + i)
await asyncio.sleep(1)
except (LocalNetworkError, ApiServerError, NetworkError) as e:
consecutive_errors += 1
if consecutive_errors >= max_consecutive_errors:
raise Exception(
f"Polling aborted after {consecutive_errors} network errors: {str(e)}"
) from e
logging.warning(
"Network error (%s/%s): %s",
consecutive_errors,
max_consecutive_errors,
str(e),
)
await asyncio.sleep(self.poll_interval)
except Exception as e:
# For other errors, increment count and potentially abort
consecutive_errors += 1
if consecutive_errors >= max_consecutive_errors or status == TaskStatus.FAILED:
raise Exception(
f"Polling aborted after {consecutive_errors} consecutive errors: {str(e)}"
) from e
logging.error("[DEBUG] Polling error: %s", str(e))
logging.warning(
"Error during polling (attempt %s/%s): %s. Will retry in %s seconds.",
poll_count,
self.max_poll_attempts,
str(e),
self.poll_interval,
)
await asyncio.sleep(self.poll_interval)
# If we've exhausted all polling attempts
raise Exception(
f"Polling timed out after {self.max_poll_attempts} attempts (" f"{self.max_poll_attempts * self.poll_interval} seconds). "
"The operation may still be running on the server but is taking longer than expected."
)

View File

@@ -1,22 +1,230 @@
from typing import Optional
from datetime import date
from enum import Enum
from typing import Any
from comfy_api_nodes.apis import GeminiGenerationConfig, GeminiContent, GeminiSafetySetting, GeminiSystemInstructionContent, GeminiTool, GeminiVideoMetadata
from pydantic import BaseModel
from pydantic import BaseModel, Field
class GeminiSafetyCategory(str, Enum):
HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"
HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"
HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"
HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
class GeminiSafetyThreshold(str, Enum):
OFF = "OFF"
BLOCK_NONE = "BLOCK_NONE"
BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE"
BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE"
BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH"
class GeminiSafetySetting(BaseModel):
category: GeminiSafetyCategory
threshold: GeminiSafetyThreshold
class GeminiRole(str, Enum):
user = "user"
model = "model"
class GeminiMimeType(str, Enum):
application_pdf = "application/pdf"
audio_mpeg = "audio/mpeg"
audio_mp3 = "audio/mp3"
audio_wav = "audio/wav"
image_png = "image/png"
image_jpeg = "image/jpeg"
image_webp = "image/webp"
text_plain = "text/plain"
video_mov = "video/mov"
video_mpeg = "video/mpeg"
video_mp4 = "video/mp4"
video_mpg = "video/mpg"
video_avi = "video/avi"
video_wmv = "video/wmv"
video_mpegps = "video/mpegps"
video_flv = "video/flv"
class GeminiInlineData(BaseModel):
data: str | None = Field(
None,
description="The base64 encoding of the image, PDF, or video to include inline in the prompt. "
"When including media inline, you must also specify the media type (mimeType) of the data. Size limit: 20MB",
)
mimeType: GeminiMimeType | None = Field(None)
class GeminiPart(BaseModel):
inlineData: GeminiInlineData | None = Field(None)
text: str | None = Field(None)
class GeminiTextPart(BaseModel):
text: str | None = Field(None)
class GeminiContent(BaseModel):
parts: list[GeminiPart] = Field([])
role: GeminiRole = Field(..., examples=["user"])
class GeminiSystemInstructionContent(BaseModel):
parts: list[GeminiTextPart] = Field(
...,
description="A list of ordered parts that make up a single message. "
"Different parts may have different IANA MIME types.",
)
role: GeminiRole = Field(
...,
description="The identity of the entity that creates the message. "
"The following values are supported: "
"user: This indicates that the message is sent by a real person, typically a user-generated message. "
"model: This indicates that the message is generated by the model. "
"The model value is used to insert messages from model into the conversation during multi-turn conversations. "
"For non-multi-turn conversations, this field can be left blank or unset.",
)
class GeminiFunctionDeclaration(BaseModel):
description: str | None = Field(None)
name: str = Field(...)
parameters: dict[str, Any] = Field(..., description="JSON schema for the function parameters")
class GeminiTool(BaseModel):
functionDeclarations: list[GeminiFunctionDeclaration] | None = Field(None)
class GeminiOffset(BaseModel):
nanos: int | None = Field(None, ge=0, le=999999999)
seconds: int | None = Field(None, ge=-315576000000, le=315576000000)
class GeminiVideoMetadata(BaseModel):
endOffset: GeminiOffset | None = Field(None)
startOffset: GeminiOffset | None = Field(None)
class GeminiGenerationConfig(BaseModel):
maxOutputTokens: int | None = Field(None, ge=16, le=8192)
seed: int | None = Field(None)
stopSequences: list[str] | None = Field(None)
temperature: float | None = Field(None, ge=0.0, le=2.0)
topK: int | None = Field(None, ge=1)
topP: float | None = Field(None, ge=0.0, le=1.0)
class GeminiImageConfig(BaseModel):
aspectRatio: Optional[str] = None
aspectRatio: str | None = Field(None)
imageSize: str | None = Field(None)
class GeminiImageGenerationConfig(GeminiGenerationConfig):
responseModalities: Optional[list[str]] = None
imageConfig: Optional[GeminiImageConfig] = None
responseModalities: list[str] | None = Field(None)
imageConfig: GeminiImageConfig | None = Field(None)
class GeminiImageGenerateContentRequest(BaseModel):
contents: list[GeminiContent]
generationConfig: Optional[GeminiImageGenerationConfig] = None
safetySettings: Optional[list[GeminiSafetySetting]] = None
systemInstruction: Optional[GeminiSystemInstructionContent] = None
tools: Optional[list[GeminiTool]] = None
videoMetadata: Optional[GeminiVideoMetadata] = None
contents: list[GeminiContent] = Field(...)
generationConfig: GeminiImageGenerationConfig | None = Field(None)
safetySettings: list[GeminiSafetySetting] | None = Field(None)
systemInstruction: GeminiSystemInstructionContent | None = Field(None)
tools: list[GeminiTool] | None = Field(None)
videoMetadata: GeminiVideoMetadata | None = Field(None)
class GeminiGenerateContentRequest(BaseModel):
contents: list[GeminiContent] = Field(...)
generationConfig: GeminiGenerationConfig | None = Field(None)
safetySettings: list[GeminiSafetySetting] | None = Field(None)
systemInstruction: GeminiSystemInstructionContent | None = Field(None)
tools: list[GeminiTool] | None = Field(None)
videoMetadata: GeminiVideoMetadata | None = Field(None)
class Modality(str, Enum):
MODALITY_UNSPECIFIED = "MODALITY_UNSPECIFIED"
TEXT = "TEXT"
IMAGE = "IMAGE"
VIDEO = "VIDEO"
AUDIO = "AUDIO"
DOCUMENT = "DOCUMENT"
class ModalityTokenCount(BaseModel):
modality: Modality | None = None
tokenCount: int | None = Field(None, description="Number of tokens for the given modality.")
class Probability(str, Enum):
NEGLIGIBLE = "NEGLIGIBLE"
LOW = "LOW"
MEDIUM = "MEDIUM"
HIGH = "HIGH"
UNKNOWN = "UNKNOWN"
class GeminiSafetyRating(BaseModel):
category: GeminiSafetyCategory | None = None
probability: Probability | None = Field(
None,
description="The probability that the content violates the specified safety category",
)
class GeminiCitation(BaseModel):
authors: list[str] | None = None
endIndex: int | None = None
license: str | None = None
publicationDate: date | None = None
startIndex: int | None = None
title: str | None = None
uri: str | None = None
class GeminiCitationMetadata(BaseModel):
citations: list[GeminiCitation] | None = None
class GeminiCandidate(BaseModel):
citationMetadata: GeminiCitationMetadata | None = None
content: GeminiContent | None = None
finishReason: str | None = None
safetyRatings: list[GeminiSafetyRating] | None = None
class GeminiPromptFeedback(BaseModel):
blockReason: str | None = None
blockReasonMessage: str | None = None
safetyRatings: list[GeminiSafetyRating] | None = None
class GeminiUsageMetadata(BaseModel):
cachedContentTokenCount: int | None = Field(
None,
description="Output only. Number of tokens in the cached part in the input (the cached content).",
)
candidatesTokenCount: int | None = Field(None, description="Number of tokens in the response(s).")
candidatesTokensDetails: list[ModalityTokenCount] | None = Field(
None, description="Breakdown of candidate tokens by modality."
)
promptTokenCount: int | None = Field(
None,
description="Number of tokens in the request. When cachedContent is set, this is still the total effective prompt size meaning this includes the number of tokens in the cached content.",
)
promptTokensDetails: list[ModalityTokenCount] | None = Field(
None, description="Breakdown of prompt tokens by modality."
)
thoughtsTokenCount: int | None = Field(None, description="Number of tokens present in thoughts output.")
toolUsePromptTokenCount: int | None = Field(None, description="Number of tokens present in tool-use prompt(s).")
class GeminiGenerateContentResponse(BaseModel):
candidates: list[GeminiCandidate] | None = Field(None)
promptFeedback: GeminiPromptFeedback | None = Field(None)
usageMetadata: GeminiUsageMetadata | None = Field(None)
modelVersion: str | None = Field(None)

View File

@@ -0,0 +1,120 @@
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field
class MinimaxBaseResponse(BaseModel):
status_code: int = Field(
...,
description='Status code. 0 indicates success, other values indicate errors.',
)
status_msg: str = Field(
..., description='Specific error details or success message.'
)
class File(BaseModel):
bytes: Optional[int] = Field(None, description='File size in bytes')
created_at: Optional[int] = Field(
None, description='Unix timestamp when the file was created, in seconds'
)
download_url: Optional[str] = Field(
None, description='The URL to download the video'
)
backup_download_url: Optional[str] = Field(
None, description='The backup URL to download the video'
)
file_id: Optional[int] = Field(None, description='Unique identifier for the file')
filename: Optional[str] = Field(None, description='The name of the file')
purpose: Optional[str] = Field(None, description='The purpose of using the file')
class MinimaxFileRetrieveResponse(BaseModel):
base_resp: MinimaxBaseResponse
file: File
class MiniMaxModel(str, Enum):
T2V_01_Director = 'T2V-01-Director'
I2V_01_Director = 'I2V-01-Director'
S2V_01 = 'S2V-01'
I2V_01 = 'I2V-01'
I2V_01_live = 'I2V-01-live'
T2V_01 = 'T2V-01'
Hailuo_02 = 'MiniMax-Hailuo-02'
class Status6(str, Enum):
Queueing = 'Queueing'
Preparing = 'Preparing'
Processing = 'Processing'
Success = 'Success'
Fail = 'Fail'
class MinimaxTaskResultResponse(BaseModel):
base_resp: MinimaxBaseResponse
file_id: Optional[str] = Field(
None,
description='After the task status changes to Success, this field returns the file ID corresponding to the generated video.',
)
status: Status6 = Field(
...,
description="Task status: 'Queueing' (in queue), 'Preparing' (task is preparing), 'Processing' (generating), 'Success' (task completed successfully), or 'Fail' (task failed).",
)
task_id: str = Field(..., description='The task ID being queried.')
class SubjectReferenceItem(BaseModel):
image: Optional[str] = Field(
None, description='URL or base64 encoding of the subject reference image.'
)
mask: Optional[str] = Field(
None,
description='URL or base64 encoding of the mask for the subject reference image.',
)
class MinimaxVideoGenerationRequest(BaseModel):
callback_url: Optional[str] = Field(
None,
description='Optional. URL to receive real-time status updates about the video generation task.',
)
first_frame_image: Optional[str] = Field(
None,
description='URL or base64 encoding of the first frame image. Required when model is I2V-01, I2V-01-Director, or I2V-01-live.',
)
model: MiniMaxModel = Field(
...,
description='Required. ID of model. Options: T2V-01-Director, I2V-01-Director, S2V-01, I2V-01, I2V-01-live, T2V-01',
)
prompt: Optional[str] = Field(
None,
description='Description of the video. Should be less than 2000 characters. Supports camera movement instructions in [brackets].',
max_length=2000,
)
prompt_optimizer: Optional[bool] = Field(
True,
description='If true (default), the model will automatically optimize the prompt. Set to false for more precise control.',
)
subject_reference: Optional[list[SubjectReferenceItem]] = Field(
None,
description='Only available when model is S2V-01. The model will generate a video based on the subject uploaded through this parameter.',
)
duration: Optional[int] = Field(
None,
description="The length of the output video in seconds."
)
resolution: Optional[str] = Field(
None,
description="The dimensions of the video display. 1080p corresponds to 1920 x 1080 pixels, 768p corresponds to 1366 x 768 pixels."
)
class MinimaxVideoGenerationResponse(BaseModel):
base_resp: MinimaxBaseResponse
task_id: str = Field(
..., description='The task ID for the asynchronous video generation task.'
)

View File

@@ -0,0 +1,133 @@
from typing import Optional, Union
from pydantic import BaseModel, Field
class ImageEnhanceRequest(BaseModel):
model: str = Field("Reimagine")
output_format: str = Field("jpeg")
subject_detection: str = Field("All")
face_enhancement: bool = Field(True)
face_enhancement_creativity: float = Field(0, description="Is ignored if face_enhancement is false")
face_enhancement_strength: float = Field(0.8, description="Is ignored if face_enhancement is false")
source_url: str = Field(...)
output_width: Optional[int] = Field(None)
output_height: Optional[int] = Field(None)
crop_to_fill: bool = Field(False)
prompt: Optional[str] = Field(None, description="Text prompt for creative upscaling guidance")
creativity: int = Field(3, description="Creativity settings range from 1 to 9")
face_preservation: str = Field("true", description="To preserve the identity of characters")
color_preservation: str = Field("true", description="To preserve the original color")
class ImageAsyncTaskResponse(BaseModel):
process_id: str = Field(...)
class ImageStatusResponse(BaseModel):
process_id: str = Field(...)
status: str = Field(...)
progress: Optional[int] = Field(None)
credits: int = Field(...)
class ImageDownloadResponse(BaseModel):
download_url: str = Field(...)
expiry: int = Field(...)
class Resolution(BaseModel):
width: int = Field(...)
height: int = Field(...)
class CreateCreateVideoRequestSource(BaseModel):
container: str = Field(...)
size: int = Field(..., description="Size of the video file in bytes")
duration: int = Field(..., description="Duration of the video file in seconds")
frameCount: int = Field(..., description="Total number of frames in the video")
frameRate: int = Field(...)
resolution: Resolution = Field(...)
class VideoFrameInterpolationFilter(BaseModel):
model: str = Field(...)
slowmo: Optional[int] = Field(None)
fps: int = Field(...)
duplicate: bool = Field(...)
duplicate_threshold: float = Field(...)
class VideoEnhancementFilter(BaseModel):
model: str = Field(...)
auto: Optional[str] = Field(None, description="Auto, Manual, Relative")
focusFixLevel: Optional[str] = Field(None, description="Downscales video input for correction of blurred subjects")
compression: Optional[float] = Field(None, description="Strength of compression recovery")
details: Optional[float] = Field(None, description="Amount of detail reconstruction")
prenoise: Optional[float] = Field(None, description="Amount of noise to add to input to reduce over-smoothing")
noise: Optional[float] = Field(None, description="Amount of noise reduction")
halo: Optional[float] = Field(None, description="Amount of halo reduction")
preblur: Optional[float] = Field(None, description="Anti-aliasing and deblurring strength")
blur: Optional[float] = Field(None, description="Amount of sharpness applied")
grain: Optional[float] = Field(None, description="Grain after AI model processing")
grainSize: Optional[float] = Field(None, description="Size of generated grain")
recoverOriginalDetailValue: Optional[float] = Field(None, description="Source details into the output video")
creativity: Optional[str] = Field(None, description="Creativity level(high, low) for slc-1 only")
isOptimizedMode: Optional[bool] = Field(None, description="Set to true for Starlight Creative (slc-1) only")
class OutputInformationVideo(BaseModel):
resolution: Resolution = Field(...)
frameRate: int = Field(...)
audioCodec: Optional[str] = Field(..., description="Required if audioTransfer is Copy or Convert")
audioTransfer: str = Field(..., description="Copy, Convert, None")
dynamicCompressionLevel: str = Field(..., description="Low, Mid, High")
class Overrides(BaseModel):
isPaidDiffusion: bool = Field(True)
class CreateVideoRequest(BaseModel):
source: CreateCreateVideoRequestSource = Field(...)
filters: list[Union[VideoFrameInterpolationFilter, VideoEnhancementFilter]] = Field(...)
output: OutputInformationVideo = Field(...)
overrides: Overrides = Field(Overrides(isPaidDiffusion=True))
class CreateVideoResponse(BaseModel):
requestId: str = Field(...)
class VideoAcceptResponse(BaseModel):
uploadId: str = Field(...)
urls: list[str] = Field(...)
class VideoCompleteUploadRequestPart(BaseModel):
partNum: int = Field(...)
eTag: str = Field(...)
class VideoCompleteUploadRequest(BaseModel):
uploadResults: list[VideoCompleteUploadRequestPart] = Field(...)
class VideoCompleteUploadResponse(BaseModel):
message: str = Field(..., description="Confirmation message")
class VideoStatusResponseEstimates(BaseModel):
cost: list[int] = Field(...)
class VideoStatusResponseDownloadUrl(BaseModel):
url: str = Field(...)
class VideoStatusResponse(BaseModel):
status: str = Field(...)
estimates: Optional[VideoStatusResponseEstimates] = Field(None)
progress: Optional[float] = Field(None)
message: Optional[str] = Field("")
download: Optional[VideoStatusResponseDownloadUrl] = Field(None)

View File

@@ -1,30 +1,29 @@
from inspect import cleandoc
from typing import Optional
import torch
from pydantic import BaseModel
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension
from comfy_api_nodes.apinode_utils import (
resize_mask_to_image,
validate_aspect_ratio,
)
from comfy_api_nodes.apis.bfl_api import (
BFLFluxExpandImageRequest,
BFLFluxFillImageRequest,
BFLFluxKontextProGenerateRequest,
BFLFluxProGenerateRequest,
BFLFluxProGenerateResponse,
BFLFluxProUltraGenerateRequest,
BFLFluxStatusResponse,
BFLStatus,
Flux2ProGenerateRequest,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_image_tensor,
get_number_of_images,
poll_op,
resize_mask_to_image,
sync_op,
tensor_to_base64_string,
validate_aspect_ratio_string,
validate_string,
)
@@ -43,11 +42,6 @@ class FluxProUltraImageNode(IO.ComfyNode):
Generates images using Flux Pro 1.1 Ultra via api based on prompt and resolution.
"""
MINIMUM_RATIO = 1 / 4
MAXIMUM_RATIO = 4 / 1
MINIMUM_RATIO_STR = "1:4"
MAXIMUM_RATIO_STR = "4:1"
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
@@ -112,16 +106,7 @@ class FluxProUltraImageNode(IO.ComfyNode):
@classmethod
def validate_inputs(cls, aspect_ratio: str):
try:
validate_aspect_ratio(
aspect_ratio,
minimum_ratio=cls.MINIMUM_RATIO,
maximum_ratio=cls.MAXIMUM_RATIO,
minimum_ratio_str=cls.MINIMUM_RATIO_STR,
maximum_ratio_str=cls.MAXIMUM_RATIO_STR,
)
except Exception as e:
return str(e)
validate_aspect_ratio_string(aspect_ratio, (1, 4), (4, 1))
return True
@classmethod
@@ -132,7 +117,7 @@ class FluxProUltraImageNode(IO.ComfyNode):
prompt_upsampling: bool = False,
raw: bool = False,
seed: int = 0,
image_prompt: Optional[torch.Tensor] = None,
image_prompt: torch.Tensor | None = None,
image_prompt_strength: float = 0.1,
) -> IO.NodeOutput:
if image_prompt is None:
@@ -145,13 +130,7 @@ class FluxProUltraImageNode(IO.ComfyNode):
prompt=prompt,
prompt_upsampling=prompt_upsampling,
seed=seed,
aspect_ratio=validate_aspect_ratio(
aspect_ratio,
minimum_ratio=cls.MINIMUM_RATIO,
maximum_ratio=cls.MAXIMUM_RATIO,
minimum_ratio_str=cls.MINIMUM_RATIO_STR,
maximum_ratio_str=cls.MAXIMUM_RATIO_STR,
),
aspect_ratio=aspect_ratio,
raw=raw,
image_prompt=(image_prompt if image_prompt is None else tensor_to_base64_string(image_prompt)),
image_prompt_strength=(None if image_prompt is None else round(image_prompt_strength, 2)),
@@ -180,11 +159,6 @@ class FluxKontextProImageNode(IO.ComfyNode):
Edits images using Flux.1 Kontext [pro] via api based on prompt and aspect ratio.
"""
MINIMUM_RATIO = 1 / 4
MAXIMUM_RATIO = 4 / 1
MINIMUM_RATIO_STR = "1:4"
MAXIMUM_RATIO_STR = "4:1"
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
@@ -257,17 +231,11 @@ class FluxKontextProImageNode(IO.ComfyNode):
aspect_ratio: str,
guidance: float,
steps: int,
input_image: Optional[torch.Tensor] = None,
input_image: torch.Tensor | None = None,
seed=0,
prompt_upsampling=False,
) -> IO.NodeOutput:
aspect_ratio = validate_aspect_ratio(
aspect_ratio,
minimum_ratio=cls.MINIMUM_RATIO,
maximum_ratio=cls.MAXIMUM_RATIO,
minimum_ratio_str=cls.MINIMUM_RATIO_STR,
maximum_ratio_str=cls.MAXIMUM_RATIO_STR,
)
validate_aspect_ratio_string(aspect_ratio, (1, 4), (4, 1))
if input_image is None:
validate_string(prompt, strip_whitespace=False)
initial_response = await sync_op(
@@ -313,124 +281,6 @@ class FluxKontextMaxImageNode(FluxKontextProImageNode):
DISPLAY_NAME = "Flux.1 Kontext [max] Image"
class FluxProImageNode(IO.ComfyNode):
"""
Generates images synchronously based on prompt and resolution.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="FluxProImageNode",
display_name="Flux 1.1 [pro] Image",
category="api node/image/BFL",
description=cleandoc(cls.__doc__ or ""),
inputs=[
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Prompt for the image generation",
),
IO.Boolean.Input(
"prompt_upsampling",
default=False,
tooltip="Whether to perform upsampling on the prompt. "
"If active, automatically modifies the prompt for more creative generation, "
"but results are nondeterministic (same seed will not produce exactly the same result).",
),
IO.Int.Input(
"width",
default=1024,
min=256,
max=1440,
step=32,
),
IO.Int.Input(
"height",
default=768,
min=256,
max=1440,
step=32,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFFFFFFFFFF,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
),
IO.Image.Input(
"image_prompt",
optional=True,
),
# "image_prompt_strength": (
# IO.FLOAT,
# {
# "default": 0.1,
# "min": 0.0,
# "max": 1.0,
# "step": 0.01,
# "tooltip": "Blend between the prompt and the image prompt.",
# },
# ),
],
outputs=[IO.Image.Output()],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
prompt: str,
prompt_upsampling,
width: int,
height: int,
seed=0,
image_prompt=None,
# image_prompt_strength=0.1,
) -> IO.NodeOutput:
image_prompt = image_prompt if image_prompt is None else tensor_to_base64_string(image_prompt)
initial_response = await sync_op(
cls,
ApiEndpoint(
path="/proxy/bfl/flux-pro-1.1/generate",
method="POST",
),
response_model=BFLFluxProGenerateResponse,
data=BFLFluxProGenerateRequest(
prompt=prompt,
prompt_upsampling=prompt_upsampling,
width=width,
height=height,
seed=seed,
image_prompt=image_prompt,
),
)
response = await poll_op(
cls,
ApiEndpoint(initial_response.polling_url),
response_model=BFLFluxStatusResponse,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
completed_statuses=[BFLStatus.ready],
failed_statuses=[
BFLStatus.request_moderated,
BFLStatus.content_moderated,
BFLStatus.error,
BFLStatus.task_not_found,
],
queued_statuses=[],
)
return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"]))
class FluxProExpandNode(IO.ComfyNode):
"""
Outpaints image based on prompt.
@@ -673,16 +523,125 @@ class FluxProFillNode(IO.ComfyNode):
return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"]))
class Flux2ProImageNode(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="Flux2ProImageNode",
display_name="Flux.2 [pro] Image",
category="api node/image/BFL",
description="Generates images synchronously based on prompt and resolution.",
inputs=[
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Prompt for the image generation or edit",
),
IO.Int.Input(
"width",
default=1024,
min=256,
max=2048,
step=32,
),
IO.Int.Input(
"height",
default=768,
min=256,
max=2048,
step=32,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFFFFFFFFFF,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
),
IO.Boolean.Input(
"prompt_upsampling",
default=False,
tooltip="Whether to perform upsampling on the prompt. "
"If active, automatically modifies the prompt for more creative generation, "
"but results are nondeterministic (same seed will not produce exactly the same result).",
),
IO.Image.Input("images", optional=True, tooltip="Up to 4 images to be used as references."),
],
outputs=[IO.Image.Output()],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
prompt: str,
width: int,
height: int,
seed: int,
prompt_upsampling: bool,
images: torch.Tensor | None = None,
) -> IO.NodeOutput:
reference_images = {}
if images is not None:
if get_number_of_images(images) > 9:
raise ValueError("The current maximum number of supported images is 9.")
for image_index in range(images.shape[0]):
key_name = f"input_image_{image_index + 1}" if image_index else "input_image"
reference_images[key_name] = tensor_to_base64_string(images[image_index], total_pixels=2048 * 2048)
initial_response = await sync_op(
cls,
ApiEndpoint(path="/proxy/bfl/flux-2-pro/generate", method="POST"),
response_model=BFLFluxProGenerateResponse,
data=Flux2ProGenerateRequest(
prompt=prompt,
width=width,
height=height,
seed=seed,
prompt_upsampling=prompt_upsampling,
**reference_images,
),
)
def price_extractor(_r: BaseModel) -> float | None:
return None if initial_response.cost is None else initial_response.cost / 100
response = await poll_op(
cls,
ApiEndpoint(initial_response.polling_url),
response_model=BFLFluxStatusResponse,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
price_extractor=price_extractor,
completed_statuses=[BFLStatus.ready],
failed_statuses=[
BFLStatus.request_moderated,
BFLStatus.content_moderated,
BFLStatus.error,
BFLStatus.task_not_found,
],
queued_statuses=[],
)
return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"]))
class BFLExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
FluxProUltraImageNode,
# FluxProImageNode,
FluxKontextProImageNode,
FluxKontextMaxImageNode,
FluxProExpandNode,
FluxProFillNode,
Flux2ProImageNode,
]

View File

@@ -17,7 +17,7 @@ from comfy_api_nodes.util import (
poll_op,
sync_op,
upload_images_to_comfyapi,
validate_image_aspect_ratio_range,
validate_image_aspect_ratio,
validate_image_dimensions,
validate_string,
)
@@ -403,7 +403,7 @@ class ByteDanceImageEditNode(IO.ComfyNode):
validate_string(prompt, strip_whitespace=True, min_length=1)
if get_number_of_images(image) != 1:
raise ValueError("Exactly one input image is required.")
validate_image_aspect_ratio_range(image, (1, 3), (3, 1))
validate_image_aspect_ratio(image, (1, 3), (3, 1))
source_url = (await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png"))[0]
payload = Image2ImageTaskCreationRequest(
model=model,
@@ -565,7 +565,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
reference_images_urls = []
if n_input_images:
for i in image:
validate_image_aspect_ratio_range(i, (1, 3), (3, 1))
validate_image_aspect_ratio(i, (1, 3), (3, 1))
reference_images_urls = await upload_images_to_comfyapi(
cls,
image,
@@ -798,7 +798,7 @@ class ByteDanceImageToVideoNode(IO.ComfyNode):
validate_string(prompt, strip_whitespace=True, min_length=1)
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"])
validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000)
validate_image_aspect_ratio_range(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
validate_image_aspect_ratio(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
image_url = (await upload_images_to_comfyapi(cls, image, max_images=1))[0]
prompt = (
@@ -923,7 +923,7 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode):
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"])
for i in (first_frame, last_frame):
validate_image_dimensions(i, min_width=300, min_height=300, max_width=6000, max_height=6000)
validate_image_aspect_ratio_range(i, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
validate_image_aspect_ratio(i, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
download_urls = await upload_images_to_comfyapi(
cls,
@@ -1045,7 +1045,7 @@ class ByteDanceImageReferenceNode(IO.ComfyNode):
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "watermark"])
for image in images:
validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000)
validate_image_aspect_ratio_range(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
validate_image_aspect_ratio(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
image_urls = await upload_images_to_comfyapi(cls, images, max_images=4, mime_type="image/png")
prompt = (

View File

@@ -3,8 +3,6 @@ API Nodes for Gemini Multimodal LLM Usage via Remote API
See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
"""
from __future__ import annotations
import base64
import json
import os
@@ -12,7 +10,7 @@ import time
import uuid
from enum import Enum
from io import BytesIO
from typing import Literal, Optional
from typing import Literal
import torch
from typing_extensions import override
@@ -20,23 +18,24 @@ from typing_extensions import override
import folder_paths
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api.util import VideoCodec, VideoContainer
from comfy_api_nodes.apis import (
from comfy_api_nodes.apis.gemini_api import (
GeminiContent,
GeminiGenerateContentRequest,
GeminiGenerateContentResponse,
GeminiInlineData,
GeminiMimeType,
GeminiPart,
)
from comfy_api_nodes.apis.gemini_api import (
GeminiImageConfig,
GeminiImageGenerateContentRequest,
GeminiImageGenerationConfig,
GeminiInlineData,
GeminiMimeType,
GeminiPart,
GeminiRole,
Modality,
)
from comfy_api_nodes.util import (
ApiEndpoint,
audio_to_base64_string,
bytesio_to_image_tensor,
get_number_of_images,
sync_op,
tensor_to_base64_string,
validate_string,
@@ -57,6 +56,7 @@ class GeminiModel(str, Enum):
gemini_2_5_flash_preview_04_17 = "gemini-2.5-flash-preview-04-17"
gemini_2_5_pro = "gemini-2.5-pro"
gemini_2_5_flash = "gemini-2.5-flash"
gemini_3_0_pro = "gemini-3-pro-preview"
class GeminiImageModel(str, Enum):
@@ -103,6 +103,16 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera
Returns:
List of response parts matching the requested type.
"""
if response.candidates is None:
if response.promptFeedback and response.promptFeedback.blockReason:
feedback = response.promptFeedback
raise ValueError(
f"Gemini API blocked the request. Reason: {feedback.blockReason} ({feedback.blockReasonMessage})"
)
raise ValueError(
"Gemini API returned no response candidates. If you are using the `IMAGE` modality, "
"try changing it to `IMAGE+TEXT` to view the model's reasoning and understand why image generation failed."
)
parts = []
for part in response.candidates[0].content.parts:
if part_type == "text" and hasattr(part, "text") and part.text:
@@ -139,6 +149,50 @@ def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Te
return torch.cat(image_tensors, dim=0)
def calculate_tokens_price(response: GeminiGenerateContentResponse) -> float | None:
if not response.modelVersion:
return None
# Define prices (Cost per 1,000,000 tokens), see https://cloud.google.com/vertex-ai/generative-ai/pricing
if response.modelVersion in ("gemini-2.5-pro-preview-05-06", "gemini-2.5-pro"):
input_tokens_price = 1.25
output_text_tokens_price = 10.0
output_image_tokens_price = 0.0
elif response.modelVersion in (
"gemini-2.5-flash-preview-04-17",
"gemini-2.5-flash",
):
input_tokens_price = 0.30
output_text_tokens_price = 2.50
output_image_tokens_price = 0.0
elif response.modelVersion in (
"gemini-2.5-flash-image-preview",
"gemini-2.5-flash-image",
):
input_tokens_price = 0.30
output_text_tokens_price = 2.50
output_image_tokens_price = 30.0
elif response.modelVersion == "gemini-3-pro-preview":
input_tokens_price = 2
output_text_tokens_price = 12.0
output_image_tokens_price = 0.0
elif response.modelVersion == "gemini-3-pro-image-preview":
input_tokens_price = 2
output_text_tokens_price = 12.0
output_image_tokens_price = 120.0
else:
return None
final_price = response.usageMetadata.promptTokenCount * input_tokens_price
if response.usageMetadata.candidatesTokensDetails:
for i in response.usageMetadata.candidatesTokensDetails:
if i.modality == Modality.IMAGE:
final_price += output_image_tokens_price * i.tokenCount # for Nano Banana models
else:
final_price += output_text_tokens_price * i.tokenCount
if response.usageMetadata.thoughtsTokenCount:
final_price += output_text_tokens_price * response.usageMetadata.thoughtsTokenCount
return final_price / 1_000_000.0
class GeminiNode(IO.ComfyNode):
"""
Node to generate text responses from a Gemini model.
@@ -272,10 +326,10 @@ class GeminiNode(IO.ComfyNode):
prompt: str,
model: str,
seed: int,
images: Optional[torch.Tensor] = None,
audio: Optional[Input.Audio] = None,
video: Optional[Input.Video] = None,
files: Optional[list[GeminiPart]] = None,
images: torch.Tensor | None = None,
audio: Input.Audio | None = None,
video: Input.Video | None = None,
files: list[GeminiPart] | None = None,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=False)
@@ -300,15 +354,15 @@ class GeminiNode(IO.ComfyNode):
data=GeminiGenerateContentRequest(
contents=[
GeminiContent(
role="user",
role=GeminiRole.user,
parts=parts,
)
]
),
response_model=GeminiGenerateContentResponse,
price_extractor=calculate_tokens_price,
)
# Get result output
output_text = get_text_from_response(response)
if output_text:
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
@@ -406,7 +460,7 @@ class GeminiInputFiles(IO.ComfyNode):
)
@classmethod
def execute(cls, file: str, GEMINI_INPUT_FILES: Optional[list[GeminiPart]] = None) -> IO.NodeOutput:
def execute(cls, file: str, GEMINI_INPUT_FILES: list[GeminiPart] | None = None) -> IO.NodeOutput:
"""Loads and formats input files for Gemini API."""
if GEMINI_INPUT_FILES is None:
GEMINI_INPUT_FILES = []
@@ -421,7 +475,7 @@ class GeminiImage(IO.ComfyNode):
def define_schema(cls):
return IO.Schema(
node_id="GeminiImageNode",
display_name="Google Gemini Image",
display_name="Nano Banana (Google Gemini Image)",
category="api node/image/Gemini",
description="Edit images synchronously via Google API.",
inputs=[
@@ -469,6 +523,13 @@ class GeminiImage(IO.ComfyNode):
"or otherwise generates 1:1 squares.",
optional=True,
),
IO.Combo.Input(
"response_modalities",
options=["IMAGE+TEXT", "IMAGE"],
tooltip="Choose 'IMAGE' for image-only output, or "
"'IMAGE+TEXT' to return both the generated image and a text response.",
optional=True,
),
],
outputs=[
IO.Image.Output(),
@@ -488,9 +549,10 @@ class GeminiImage(IO.ComfyNode):
prompt: str,
model: str,
seed: int,
images: Optional[torch.Tensor] = None,
files: Optional[list[GeminiPart]] = None,
images: torch.Tensor | None = None,
files: list[GeminiPart] | None = None,
aspect_ratio: str = "auto",
response_modalities: str = "IMAGE+TEXT",
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
parts: list[GeminiPart] = [GeminiPart(text=prompt)]
@@ -510,20 +572,19 @@ class GeminiImage(IO.ComfyNode):
endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
data=GeminiImageGenerateContentRequest(
contents=[
GeminiContent(role="user", parts=parts),
GeminiContent(role=GeminiRole.user, parts=parts),
],
generationConfig=GeminiImageGenerationConfig(
responseModalities=["TEXT", "IMAGE"],
responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]),
imageConfig=None if aspect_ratio == "auto" else image_config,
),
),
response_model=GeminiGenerateContentResponse,
price_extractor=calculate_tokens_price,
)
output_image = get_image_from_response(response)
output_text = get_text_from_response(response)
if output_text:
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
render_spec = {
"node_id": cls.hidden.unique_id,
"component": "ChatHistoryWidget",
@@ -544,9 +605,150 @@ class GeminiImage(IO.ComfyNode):
"display_component",
render_spec,
)
return IO.NodeOutput(get_image_from_response(response), output_text)
output_text = output_text or "Empty response from Gemini model..."
return IO.NodeOutput(output_image, output_text)
class GeminiImage2(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="GeminiImage2Node",
display_name="Nano Banana Pro (Google Gemini Image)",
category="api node/image/Gemini",
description="Generate or edit images synchronously via Google Vertex API.",
inputs=[
IO.String.Input(
"prompt",
multiline=True,
tooltip="Text prompt describing the image to generate or the edits to apply. "
"Include any constraints, styles, or details the model should follow.",
default="",
),
IO.Combo.Input(
"model",
options=["gemini-3-pro-image-preview"],
),
IO.Int.Input(
"seed",
default=42,
min=0,
max=0xFFFFFFFFFFFFFFFF,
control_after_generate=True,
tooltip="When the seed is fixed to a specific value, the model makes a best effort to provide "
"the same response for repeated requests. Deterministic output isn't guaranteed. "
"Also, changing the model or parameter settings, such as the temperature, "
"can cause variations in the response even when you use the same seed value. "
"By default, a random seed value is used.",
),
IO.Combo.Input(
"aspect_ratio",
options=["auto", "1:1", "2:3", "3:2", "3:4", "4:3", "4:5", "5:4", "9:16", "16:9", "21:9"],
default="auto",
tooltip="If set to 'auto', matches your input image's aspect ratio; "
"if no image is provided, a 16:9 square is usually generated.",
),
IO.Combo.Input(
"resolution",
options=["1K", "2K", "4K"],
tooltip="Target output resolution. For 2K/4K the native Gemini upscaler is used.",
),
IO.Combo.Input(
"response_modalities",
options=["IMAGE+TEXT", "IMAGE"],
tooltip="Choose 'IMAGE' for image-only output, or "
"'IMAGE+TEXT' to return both the generated image and a text response.",
),
IO.Image.Input(
"images",
optional=True,
tooltip="Optional reference image(s). "
"To include multiple images, use the Batch Images node (up to 14).",
),
IO.Custom("GEMINI_INPUT_FILES").Input(
"files",
optional=True,
tooltip="Optional file(s) to use as context for the model. "
"Accepts inputs from the Gemini Generate Content Input Files node.",
),
],
outputs=[
IO.Image.Output(),
IO.String.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
prompt: str,
model: str,
seed: int,
aspect_ratio: str,
resolution: str,
response_modalities: str,
images: torch.Tensor | None = None,
files: list[GeminiPart] | None = None,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
parts: list[GeminiPart] = [GeminiPart(text=prompt)]
if images is not None:
if get_number_of_images(images) > 14:
raise ValueError("The current maximum number of supported images is 14.")
parts.extend(create_image_parts(images))
if files is not None:
parts.extend(files)
image_config = GeminiImageConfig(imageSize=resolution)
if aspect_ratio != "auto":
image_config.aspectRatio = aspect_ratio
response = await sync_op(
cls,
ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
data=GeminiImageGenerateContentRequest(
contents=[
GeminiContent(role=GeminiRole.user, parts=parts),
],
generationConfig=GeminiImageGenerationConfig(
responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]),
imageConfig=image_config,
),
),
response_model=GeminiGenerateContentResponse,
price_extractor=calculate_tokens_price,
)
output_text = get_text_from_response(response)
if output_text:
render_spec = {
"node_id": cls.hidden.unique_id,
"component": "ChatHistoryWidget",
"props": {
"history": json.dumps(
[
{
"prompt": prompt,
"response": output_text,
"response_id": str(uuid.uuid4()),
"timestamp": time.time(),
}
]
),
},
}
PromptServer.instance.send_sync(
"display_component",
render_spec,
)
return IO.NodeOutput(get_image_from_response(response), output_text)
class GeminiExtension(ComfyExtension):
@@ -555,6 +757,7 @@ class GeminiExtension(ComfyExtension):
return [
GeminiNode,
GeminiImage,
GeminiImage2,
GeminiInputFiles,
]

View File

@@ -1,6 +1,6 @@
from io import BytesIO
from typing_extensions import override
from comfy_api.latest import ComfyExtension, IO
from comfy_api.latest import IO, ComfyExtension
from PIL import Image
import numpy as np
import torch
@@ -11,19 +11,13 @@ from comfy_api_nodes.apis import (
IdeogramV3Request,
IdeogramV3EditRequest,
)
from comfy_api_nodes.apis.client import (
from comfy_api_nodes.util import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
)
from comfy_api_nodes.apinode_utils import (
download_url_to_bytesio,
bytesio_to_image_tensor,
download_url_as_bytesio,
resize_mask_to_image,
sync_op,
)
from server import PromptServer
V1_V1_RES_MAP = {
"Auto":"AUTO",
@@ -220,7 +214,7 @@ async def download_and_process_images(image_urls):
for image_url in image_urls:
# Using functions from apinode_utils.py to handle downloading and processing
image_bytesio = await download_url_to_bytesio(image_url) # Download image content to BytesIO
image_bytesio = await download_url_as_bytesio(image_url) # Download image content to BytesIO
img_tensor = bytesio_to_image_tensor(image_bytesio, mode="RGB") # Convert to torch.Tensor with RGB mode
image_tensors.append(img_tensor)
@@ -233,19 +227,6 @@ async def download_and_process_images(image_urls):
return stacked_tensors
def display_image_urls_on_node(image_urls, node_id):
if node_id and image_urls:
if len(image_urls) == 1:
PromptServer.instance.send_progress_text(
f"Generated Image URL:\n{image_urls[0]}", node_id
)
else:
urls_text = "Generated Image URLs:\n" + "\n".join(
f"{i+1}. {url}" for i, url in enumerate(image_urls)
)
PromptServer.instance.send_progress_text(urls_text, node_id)
class IdeogramV1(IO.ComfyNode):
@classmethod
@@ -334,44 +315,30 @@ class IdeogramV1(IO.ComfyNode):
aspect_ratio = V1_V2_RATIO_MAP.get(aspect_ratio, None)
model = "V_1_TURBO" if turbo else "V_1"
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/ideogram/generate",
method=HttpMethod.POST,
request_model=IdeogramGenerateRequest,
response_model=IdeogramGenerateResponse,
),
request=IdeogramGenerateRequest(
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/ideogram/generate", method="POST"),
response_model=IdeogramGenerateResponse,
data=IdeogramGenerateRequest(
image_request=ImageRequest(
prompt=prompt,
model=model,
num_images=num_images,
seed=seed,
aspect_ratio=aspect_ratio if aspect_ratio != "ASPECT_1_1" else None,
magic_prompt_option=(
magic_prompt_option if magic_prompt_option != "AUTO" else None
),
magic_prompt_option=(magic_prompt_option if magic_prompt_option != "AUTO" else None),
negative_prompt=negative_prompt if negative_prompt else None,
)
),
auth_kwargs=auth,
max_retries=1,
)
response = await operation.execute()
if not response.data or len(response.data) == 0:
raise Exception("No images were generated in the response")
image_urls = [image_data.url for image_data in response.data if image_data.url]
if not image_urls:
raise Exception("No image URLs were generated in the response")
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
return IO.NodeOutput(await download_and_process_images(image_urls))
@@ -500,18 +467,11 @@ class IdeogramV2(IO.ComfyNode):
else:
final_aspect_ratio = aspect_ratio if aspect_ratio != "ASPECT_1_1" else None
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/ideogram/generate",
method=HttpMethod.POST,
request_model=IdeogramGenerateRequest,
response_model=IdeogramGenerateResponse,
),
request=IdeogramGenerateRequest(
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/ideogram/generate", method="POST"),
response_model=IdeogramGenerateResponse,
data=IdeogramGenerateRequest(
image_request=ImageRequest(
prompt=prompt,
model=model,
@@ -519,28 +479,20 @@ class IdeogramV2(IO.ComfyNode):
seed=seed,
aspect_ratio=final_aspect_ratio,
resolution=final_resolution,
magic_prompt_option=(
magic_prompt_option if magic_prompt_option != "AUTO" else None
),
magic_prompt_option=(magic_prompt_option if magic_prompt_option != "AUTO" else None),
style_type=style_type if style_type != "NONE" else None,
negative_prompt=negative_prompt if negative_prompt else None,
color_palette=color_palette if color_palette else None,
)
),
auth_kwargs=auth,
max_retries=1,
)
response = await operation.execute()
if not response.data or len(response.data) == 0:
raise Exception("No images were generated in the response")
image_urls = [image_data.url for image_data in response.data if image_data.url]
if not image_urls:
raise Exception("No image URLs were generated in the response")
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
return IO.NodeOutput(await download_and_process_images(image_urls))
@@ -656,10 +608,6 @@ class IdeogramV3(IO.ComfyNode):
character_image=None,
character_mask=None,
):
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
if rendering_speed == "BALANCED": # for backward compatibility
rendering_speed = "DEFAULT"
@@ -694,9 +642,6 @@ class IdeogramV3(IO.ComfyNode):
# Check if both image and mask are provided for editing mode
if image is not None and mask is not None:
# Edit mode
path = "/proxy/ideogram/ideogram-v3/edit"
# Process image and mask
input_tensor = image.squeeze().cpu()
# Resize mask to match image dimension
@@ -749,27 +694,20 @@ class IdeogramV3(IO.ComfyNode):
if character_mask_binary:
files["character_mask_binary"] = character_mask_binary
# Execute the operation for edit mode
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=IdeogramV3EditRequest,
response_model=IdeogramGenerateResponse,
),
request=edit_request,
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/ideogram/ideogram-v3/edit", method="POST"),
response_model=IdeogramGenerateResponse,
data=edit_request,
files=files,
content_type="multipart/form-data",
auth_kwargs=auth,
max_retries=1,
)
elif image is not None or mask is not None:
# If only one of image or mask is provided, raise an error
raise Exception("Ideogram V3 image editing requires both an image AND a mask")
else:
# Generation mode
path = "/proxy/ideogram/ideogram-v3/generate"
# Create generation request
gen_request = IdeogramV3Request(
prompt=prompt,
@@ -800,32 +738,22 @@ class IdeogramV3(IO.ComfyNode):
if files:
gen_request.style_type = "AUTO"
# Execute the operation for generation mode
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=IdeogramV3Request,
response_model=IdeogramGenerateResponse,
),
request=gen_request,
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/ideogram/ideogram-v3/generate", method="POST"),
response_model=IdeogramGenerateResponse,
data=gen_request,
files=files if files else None,
content_type="multipart/form-data",
auth_kwargs=auth,
max_retries=1,
)
# Execute the operation and process response
response = await operation.execute()
if not response.data or len(response.data) == 0:
raise Exception("No images were generated in the response")
image_urls = [image_data.url for image_data in response.data if image_data.url]
if not image_urls:
raise Exception("No image URLs were generated in the response")
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
return IO.NodeOutput(await download_and_process_images(image_urls))
@@ -838,5 +766,6 @@ class IdeogramExtension(ComfyExtension):
IdeogramV3,
]
async def comfy_entrypoint() -> IdeogramExtension:
return IdeogramExtension()

View File

@@ -282,7 +282,7 @@ def validate_input_image(image: torch.Tensor) -> None:
See: https://app.klingai.com/global/dev/document-api/apiReference/model/imageToVideo
"""
validate_image_dimensions(image, min_width=300, min_height=300)
validate_image_aspect_ratio(image, min_aspect_ratio=1 / 2.5, max_aspect_ratio=2.5)
validate_image_aspect_ratio(image, (1, 2.5), (2.5, 1))
def get_video_from_response(response) -> KlingVideoResult:
@@ -518,7 +518,9 @@ async def execute_lipsync(
# Upload the audio file to Comfy API and get download URL
if audio:
audio_url = await upload_audio_to_comfyapi(cls, audio)
audio_url = await upload_audio_to_comfyapi(
cls, audio, container_format="mp3", codec_name="libmp3lame", mime_type="audio/mpeg", filename="output.mp3"
)
logging.info("Uploaded audio to Comfy API. URL: %s", audio_url)
else:
audio_url = None

View File

@@ -46,7 +46,7 @@ class TextToVideoNode(IO.ComfyNode):
multiline=True,
default="",
),
IO.Combo.Input("duration", options=[6, 8, 10], default=8),
IO.Combo.Input("duration", options=[6, 8, 10, 12, 14, 16, 18, 20], default=8),
IO.Combo.Input(
"resolution",
options=[
@@ -85,6 +85,10 @@ class TextToVideoNode(IO.ComfyNode):
generate_audio: bool = False,
) -> IO.NodeOutput:
validate_string(prompt, min_length=1, max_length=10000)
if duration > 10 and (model != "LTX-2 (Fast)" or resolution != "1920x1080" or fps != 25):
raise ValueError(
"Durations over 10s are only available for the Fast model at 1920x1080 resolution and 25 FPS."
)
response = await sync_op_raw(
cls,
ApiEndpoint("/proxy/ltx/v1/text-to-video", "POST"),
@@ -118,7 +122,7 @@ class ImageToVideoNode(IO.ComfyNode):
multiline=True,
default="",
),
IO.Combo.Input("duration", options=[6, 8, 10], default=8),
IO.Combo.Input("duration", options=[6, 8, 10, 12, 14, 16, 18, 20], default=8),
IO.Combo.Input(
"resolution",
options=[
@@ -158,6 +162,10 @@ class ImageToVideoNode(IO.ComfyNode):
generate_audio: bool = False,
) -> IO.NodeOutput:
validate_string(prompt, min_length=1, max_length=10000)
if duration > 10 and (model != "LTX-2 (Fast)" or resolution != "1920x1080" or fps != 25):
raise ValueError(
"Durations over 10s are only available for the Fast model at 1920x1080 resolution and 25 FPS."
)
if get_number_of_images(image) != 1:
raise ValueError("Currently only one input image is supported.")
response = await sync_op_raw(

View File

@@ -1,69 +1,51 @@
from __future__ import annotations
from inspect import cleandoc
from typing import Optional
import torch
from typing_extensions import override
from comfy_api.latest import ComfyExtension, IO
from comfy_api.input_impl.video_types import VideoFromFile
from comfy_api.latest import IO, ComfyExtension
from comfy_api_nodes.apis.luma_api import (
LumaImageModel,
LumaVideoModel,
LumaVideoOutputResolution,
LumaVideoModelOutputDuration,
LumaAspectRatio,
LumaState,
LumaImageGenerationRequest,
LumaGenerationRequest,
LumaGeneration,
LumaCharacterRef,
LumaModifyImageRef,
LumaConceptChain,
LumaGeneration,
LumaGenerationRequest,
LumaImageGenerationRequest,
LumaImageIdentity,
LumaImageModel,
LumaImageReference,
LumaIO,
LumaKeyframes,
LumaModifyImageRef,
LumaReference,
LumaReferenceChain,
LumaImageReference,
LumaKeyframes,
LumaConceptChain,
LumaIO,
LumaVideoModel,
LumaVideoModelOutputDuration,
LumaVideoOutputResolution,
get_luma_concepts,
)
from comfy_api_nodes.apis.client import (
from comfy_api_nodes.util import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
download_url_to_image_tensor,
download_url_to_video_output,
poll_op,
sync_op,
upload_images_to_comfyapi,
process_image_response,
validate_string,
)
from server import PromptServer
from comfy_api_nodes.util import validate_string
import aiohttp
import torch
from io import BytesIO
LUMA_T2V_AVERAGE_DURATION = 105
LUMA_I2V_AVERAGE_DURATION = 100
def image_result_url_extractor(response: LumaGeneration):
return response.assets.image if hasattr(response, "assets") and hasattr(response.assets, "image") else None
def video_result_url_extractor(response: LumaGeneration):
return response.assets.video if hasattr(response, "assets") and hasattr(response.assets, "video") else None
class LumaReferenceNode(IO.ComfyNode):
"""
Holds an image and weight for use with Luma Generate Image node.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="LumaReferenceNode",
display_name="Luma Reference",
category="api node/image/Luma",
description=cleandoc(cls.__doc__ or ""),
description="Holds an image and weight for use with Luma Generate Image node.",
inputs=[
IO.Image.Input(
"image",
@@ -83,17 +65,10 @@ class LumaReferenceNode(IO.ComfyNode):
),
],
outputs=[IO.Custom(LumaIO.LUMA_REF).Output(display_name="luma_ref")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
)
@classmethod
def execute(
cls, image: torch.Tensor, weight: float, luma_ref: LumaReferenceChain = None
) -> IO.NodeOutput:
def execute(cls, image: torch.Tensor, weight: float, luma_ref: LumaReferenceChain = None) -> IO.NodeOutput:
if luma_ref is not None:
luma_ref = luma_ref.clone()
else:
@@ -103,17 +78,13 @@ class LumaReferenceNode(IO.ComfyNode):
class LumaConceptsNode(IO.ComfyNode):
"""
Holds one or more Camera Concepts for use with Luma Text to Video and Luma Image to Video nodes.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="LumaConceptsNode",
display_name="Luma Concepts",
category="api node/video/Luma",
description=cleandoc(cls.__doc__ or ""),
description="Camera Concepts for use with Luma Text to Video and Luma Image to Video nodes.",
inputs=[
IO.Combo.Input(
"concept1",
@@ -138,11 +109,6 @@ class LumaConceptsNode(IO.ComfyNode):
),
],
outputs=[IO.Custom(LumaIO.LUMA_CONCEPTS).Output(display_name="luma_concepts")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
)
@classmethod
@@ -161,17 +127,13 @@ class LumaConceptsNode(IO.ComfyNode):
class LumaImageGenerationNode(IO.ComfyNode):
"""
Generates images synchronously based on prompt and aspect ratio.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="LumaImageNode",
display_name="Luma Text to Image",
category="api node/image/Luma",
description=cleandoc(cls.__doc__ or ""),
description="Generates images synchronously based on prompt and aspect ratio.",
inputs=[
IO.String.Input(
"prompt",
@@ -237,45 +199,30 @@ class LumaImageGenerationNode(IO.ComfyNode):
aspect_ratio: str,
seed,
style_image_weight: float,
image_luma_ref: LumaReferenceChain = None,
style_image: torch.Tensor = None,
character_image: torch.Tensor = None,
image_luma_ref: Optional[LumaReferenceChain] = None,
style_image: Optional[torch.Tensor] = None,
character_image: Optional[torch.Tensor] = None,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=3)
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
# handle image_luma_ref
api_image_ref = None
if image_luma_ref is not None:
api_image_ref = await cls._convert_luma_refs(
image_luma_ref, max_refs=4, auth_kwargs=auth_kwargs,
)
api_image_ref = await cls._convert_luma_refs(image_luma_ref, max_refs=4)
# handle style_luma_ref
api_style_ref = None
if style_image is not None:
api_style_ref = await cls._convert_style_image(
style_image, weight=style_image_weight, auth_kwargs=auth_kwargs,
)
api_style_ref = await cls._convert_style_image(style_image, weight=style_image_weight)
# handle character_ref images
character_ref = None
if character_image is not None:
download_urls = await upload_images_to_comfyapi(
character_image, max_images=4, auth_kwargs=auth_kwargs,
)
character_ref = LumaCharacterRef(
identity0=LumaImageIdentity(images=download_urls)
)
download_urls = await upload_images_to_comfyapi(cls, character_image, max_images=4)
character_ref = LumaCharacterRef(identity0=LumaImageIdentity(images=download_urls))
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/luma/generations/image",
method=HttpMethod.POST,
request_model=LumaImageGenerationRequest,
response_model=LumaGeneration,
),
request=LumaImageGenerationRequest(
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/luma/generations/image", method="POST"),
response_model=LumaGeneration,
data=LumaImageGenerationRequest(
prompt=prompt,
model=model,
aspect_ratio=aspect_ratio,
@@ -283,41 +230,21 @@ class LumaImageGenerationNode(IO.ComfyNode):
style_ref=api_style_ref,
character_ref=character_ref,
),
auth_kwargs=auth_kwargs,
)
response_api: LumaGeneration = await operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/luma/generations/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=LumaGeneration,
),
completed_statuses=[LumaState.completed],
failed_statuses=[LumaState.failed],
response_poll = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"),
response_model=LumaGeneration,
status_extractor=lambda x: x.state,
result_url_extractor=image_result_url_extractor,
node_id=cls.hidden.unique_id,
auth_kwargs=auth_kwargs,
)
response_poll = await operation.execute()
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.assets.image) as img_response:
img = process_image_response(await img_response.content.read())
return IO.NodeOutput(img)
return IO.NodeOutput(await download_url_to_image_tensor(response_poll.assets.image))
@classmethod
async def _convert_luma_refs(
cls, luma_ref: LumaReferenceChain, max_refs: int, auth_kwargs: Optional[dict[str,str]] = None
):
async def _convert_luma_refs(cls, luma_ref: LumaReferenceChain, max_refs: int):
luma_urls = []
ref_count = 0
for ref in luma_ref.refs:
download_urls = await upload_images_to_comfyapi(
ref.image, max_images=1, auth_kwargs=auth_kwargs
)
download_urls = await upload_images_to_comfyapi(cls, ref.image, max_images=1)
luma_urls.append(download_urls[0])
ref_count += 1
if ref_count >= max_refs:
@@ -325,27 +252,19 @@ class LumaImageGenerationNode(IO.ComfyNode):
return luma_ref.create_api_model(download_urls=luma_urls, max_refs=max_refs)
@classmethod
async def _convert_style_image(
cls, style_image: torch.Tensor, weight: float, auth_kwargs: Optional[dict[str,str]] = None
):
chain = LumaReferenceChain(
first_ref=LumaReference(image=style_image, weight=weight)
)
return await cls._convert_luma_refs(chain, max_refs=1, auth_kwargs=auth_kwargs)
async def _convert_style_image(cls, style_image: torch.Tensor, weight: float):
chain = LumaReferenceChain(first_ref=LumaReference(image=style_image, weight=weight))
return await cls._convert_luma_refs(chain, max_refs=1)
class LumaImageModifyNode(IO.ComfyNode):
"""
Modifies images synchronously based on prompt and aspect ratio.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="LumaImageModifyNode",
display_name="Luma Image to Image",
category="api node/image/Luma",
description=cleandoc(cls.__doc__ or ""),
description="Modifies images synchronously based on prompt and aspect ratio.",
inputs=[
IO.Image.Input(
"image",
@@ -395,68 +314,37 @@ class LumaImageModifyNode(IO.ComfyNode):
image_weight: float,
seed,
) -> IO.NodeOutput:
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
# first, upload image
download_urls = await upload_images_to_comfyapi(
image, max_images=1, auth_kwargs=auth_kwargs,
)
download_urls = await upload_images_to_comfyapi(cls, image, max_images=1)
image_url = download_urls[0]
# next, make Luma call with download url provided
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/luma/generations/image",
method=HttpMethod.POST,
request_model=LumaImageGenerationRequest,
response_model=LumaGeneration,
),
request=LumaImageGenerationRequest(
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/luma/generations/image", method="POST"),
response_model=LumaGeneration,
data=LumaImageGenerationRequest(
prompt=prompt,
model=model,
modify_image_ref=LumaModifyImageRef(
url=image_url, weight=round(max(min(1.0-image_weight, 0.98), 0.0), 2)
url=image_url, weight=round(max(min(1.0 - image_weight, 0.98), 0.0), 2)
),
),
auth_kwargs=auth_kwargs,
)
response_api: LumaGeneration = await operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/luma/generations/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=LumaGeneration,
),
completed_statuses=[LumaState.completed],
failed_statuses=[LumaState.failed],
response_poll = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"),
response_model=LumaGeneration,
status_extractor=lambda x: x.state,
result_url_extractor=image_result_url_extractor,
node_id=cls.hidden.unique_id,
auth_kwargs=auth_kwargs,
)
response_poll = await operation.execute()
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.assets.image) as img_response:
img = process_image_response(await img_response.content.read())
return IO.NodeOutput(img)
return IO.NodeOutput(await download_url_to_image_tensor(response_poll.assets.image))
class LumaTextToVideoGenerationNode(IO.ComfyNode):
"""
Generates videos synchronously based on prompt and output_size.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="LumaVideoNode",
display_name="Luma Text to Video",
category="api node/video/Luma",
description=cleandoc(cls.__doc__ or ""),
description="Generates videos synchronously based on prompt and output_size.",
inputs=[
IO.String.Input(
"prompt",
@@ -498,7 +386,7 @@ class LumaTextToVideoGenerationNode(IO.ComfyNode):
"luma_concepts",
tooltip="Optional Camera Concepts to dictate camera motion via the Luma Concepts node.",
optional=True,
)
),
],
outputs=[IO.Video.Output()],
hidden=[
@@ -519,24 +407,17 @@ class LumaTextToVideoGenerationNode(IO.ComfyNode):
duration: str,
loop: bool,
seed,
luma_concepts: LumaConceptChain = None,
luma_concepts: Optional[LumaConceptChain] = None,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=False, min_length=3)
duration = duration if model != LumaVideoModel.ray_1_6 else None
resolution = resolution if model != LumaVideoModel.ray_1_6 else None
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/luma/generations",
method=HttpMethod.POST,
request_model=LumaGenerationRequest,
response_model=LumaGeneration,
),
request=LumaGenerationRequest(
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/luma/generations", method="POST"),
response_model=LumaGeneration,
data=LumaGenerationRequest(
prompt=prompt,
model=model,
resolution=resolution,
@@ -545,47 +426,25 @@ class LumaTextToVideoGenerationNode(IO.ComfyNode):
loop=loop,
concepts=luma_concepts.create_api_model() if luma_concepts else None,
),
auth_kwargs=auth_kwargs,
)
response_api: LumaGeneration = await operation.execute()
if cls.hidden.unique_id:
PromptServer.instance.send_progress_text(f"Luma video generation started: {response_api.id}", cls.hidden.unique_id)
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/luma/generations/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=LumaGeneration,
),
completed_statuses=[LumaState.completed],
failed_statuses=[LumaState.failed],
response_poll = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"),
response_model=LumaGeneration,
status_extractor=lambda x: x.state,
result_url_extractor=video_result_url_extractor,
node_id=cls.hidden.unique_id,
estimated_duration=LUMA_T2V_AVERAGE_DURATION,
auth_kwargs=auth_kwargs,
)
response_poll = await operation.execute()
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.assets.video) as vid_response:
return IO.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read())))
return IO.NodeOutput(await download_url_to_video_output(response_poll.assets.video))
class LumaImageToVideoGenerationNode(IO.ComfyNode):
"""
Generates videos synchronously based on prompt, input images, and output_size.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="LumaImageToVideoNode",
display_name="Luma Image to Video",
category="api node/video/Luma",
description=cleandoc(cls.__doc__ or ""),
description="Generates videos synchronously based on prompt, input images, and output_size.",
inputs=[
IO.String.Input(
"prompt",
@@ -637,7 +496,7 @@ class LumaImageToVideoGenerationNode(IO.ComfyNode):
"luma_concepts",
tooltip="Optional Camera Concepts to dictate camera motion via the Luma Concepts node.",
optional=True,
)
),
],
outputs=[IO.Video.Output()],
hidden=[
@@ -662,25 +521,15 @@ class LumaImageToVideoGenerationNode(IO.ComfyNode):
luma_concepts: LumaConceptChain = None,
) -> IO.NodeOutput:
if first_image is None and last_image is None:
raise Exception(
"At least one of first_image and last_image requires an input."
)
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
keyframes = await cls._convert_to_keyframes(first_image, last_image, auth_kwargs=auth_kwargs)
raise Exception("At least one of first_image and last_image requires an input.")
keyframes = await cls._convert_to_keyframes(first_image, last_image)
duration = duration if model != LumaVideoModel.ray_1_6 else None
resolution = resolution if model != LumaVideoModel.ray_1_6 else None
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/luma/generations",
method=HttpMethod.POST,
request_model=LumaGenerationRequest,
response_model=LumaGeneration,
),
request=LumaGenerationRequest(
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/luma/generations", method="POST"),
response_model=LumaGeneration,
data=LumaGenerationRequest(
prompt=prompt,
model=model,
aspect_ratio=LumaAspectRatio.ratio_16_9, # ignored, but still needed by the API for some reason
@@ -690,54 +539,31 @@ class LumaImageToVideoGenerationNode(IO.ComfyNode):
keyframes=keyframes,
concepts=luma_concepts.create_api_model() if luma_concepts else None,
),
auth_kwargs=auth_kwargs,
)
response_api: LumaGeneration = await operation.execute()
if cls.hidden.unique_id:
PromptServer.instance.send_progress_text(f"Luma video generation started: {response_api.id}", cls.hidden.unique_id)
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/luma/generations/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=LumaGeneration,
),
completed_statuses=[LumaState.completed],
failed_statuses=[LumaState.failed],
response_poll = await poll_op(
cls,
poll_endpoint=ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"),
response_model=LumaGeneration,
status_extractor=lambda x: x.state,
result_url_extractor=video_result_url_extractor,
node_id=cls.hidden.unique_id,
estimated_duration=LUMA_I2V_AVERAGE_DURATION,
auth_kwargs=auth_kwargs,
)
response_poll = await operation.execute()
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.assets.video) as vid_response:
return IO.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read())))
return IO.NodeOutput(await download_url_to_video_output(response_poll.assets.video))
@classmethod
async def _convert_to_keyframes(
cls,
first_image: torch.Tensor = None,
last_image: torch.Tensor = None,
auth_kwargs: Optional[dict[str,str]] = None,
):
if first_image is None and last_image is None:
return None
frame0 = None
frame1 = None
if first_image is not None:
download_urls = await upload_images_to_comfyapi(
first_image, max_images=1, auth_kwargs=auth_kwargs,
)
download_urls = await upload_images_to_comfyapi(cls, first_image, max_images=1)
frame0 = LumaImageReference(type="image", url=download_urls[0])
if last_image is not None:
download_urls = await upload_images_to_comfyapi(
last_image, max_images=1, auth_kwargs=auth_kwargs,
)
download_urls = await upload_images_to_comfyapi(cls, last_image, max_images=1)
frame1 = LumaImageReference(type="image", url=download_urls[0])
return LumaKeyframes(frame0=frame0, frame1=frame1)

View File

@@ -1,71 +1,57 @@
from inspect import cleandoc
from typing import Optional
import logging
import torch
import torch
from typing_extensions import override
from comfy_api.latest import ComfyExtension, IO
from comfy_api.input_impl.video_types import VideoFromFile
from comfy_api_nodes.apis import (
from comfy_api.latest import IO, ComfyExtension
from comfy_api_nodes.apis.minimax_api import (
MinimaxFileRetrieveResponse,
MiniMaxModel,
MinimaxTaskResultResponse,
MinimaxVideoGenerationRequest,
MinimaxVideoGenerationResponse,
MinimaxFileRetrieveResponse,
MinimaxTaskResultResponse,
SubjectReferenceItem,
MiniMaxModel,
)
from comfy_api_nodes.apis.client import (
from comfy_api_nodes.util import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
download_url_to_bytesio,
download_url_to_video_output,
poll_op,
sync_op,
upload_images_to_comfyapi,
validate_string,
)
from comfy_api_nodes.util import validate_string
from server import PromptServer
I2V_AVERAGE_DURATION = 114
T2V_AVERAGE_DURATION = 234
async def _generate_mm_video(
cls: type[IO.ComfyNode],
*,
auth: dict[str, str],
node_id: str,
prompt_text: str,
seed: int,
model: str,
image: Optional[torch.Tensor] = None, # used for ImageToVideo
subject: Optional[torch.Tensor] = None, # used for SubjectToVideo
image: Optional[torch.Tensor] = None, # used for ImageToVideo
subject: Optional[torch.Tensor] = None, # used for SubjectToVideo
average_duration: Optional[int] = None,
) -> IO.NodeOutput:
if image is None:
validate_string(prompt_text, field_name="prompt_text")
# upload image, if passed in
image_url = None
if image is not None:
image_url = (await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=auth))[0]
image_url = (await upload_images_to_comfyapi(cls, image, max_images=1))[0]
# TODO: figure out how to deal with subject properly, API returns invalid params when using S2V-01 model
subject_reference = None
if subject is not None:
subject_url = (await upload_images_to_comfyapi(subject, max_images=1, auth_kwargs=auth))[0]
subject_url = (await upload_images_to_comfyapi(cls, subject, max_images=1))[0]
subject_reference = [SubjectReferenceItem(image=subject_url)]
video_generate_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/video_generation",
method=HttpMethod.POST,
request_model=MinimaxVideoGenerationRequest,
response_model=MinimaxVideoGenerationResponse,
),
request=MinimaxVideoGenerationRequest(
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/minimax/video_generation", method="POST"),
response_model=MinimaxVideoGenerationResponse,
data=MinimaxVideoGenerationRequest(
model=MiniMaxModel(model),
prompt=prompt_text,
callback_url=None,
@@ -73,81 +59,50 @@ async def _generate_mm_video(
subject_reference=subject_reference,
prompt_optimizer=None,
),
auth_kwargs=auth,
)
response = await video_generate_operation.execute()
task_id = response.task_id
if not task_id:
raise Exception(f"MiniMax generation failed: {response.base_resp}")
video_generate_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path="/proxy/minimax/query/video_generation",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxTaskResultResponse,
query_params={"task_id": task_id},
),
completed_statuses=["Success"],
failed_statuses=["Fail"],
task_result = await poll_op(
cls,
ApiEndpoint(path="/proxy/minimax/query/video_generation", query_params={"task_id": task_id}),
response_model=MinimaxTaskResultResponse,
status_extractor=lambda x: x.status.value,
estimated_duration=average_duration,
node_id=node_id,
auth_kwargs=auth,
)
task_result = await video_generate_operation.execute()
file_id = task_result.file_id
if file_id is None:
raise Exception("Request was not successful. Missing file ID.")
file_retrieve_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/files/retrieve",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxFileRetrieveResponse,
query_params={"file_id": int(file_id)},
),
request=EmptyRequest(),
auth_kwargs=auth,
file_result = await sync_op(
cls,
ApiEndpoint(path="/proxy/minimax/files/retrieve", query_params={"file_id": int(file_id)}),
response_model=MinimaxFileRetrieveResponse,
)
file_result = await file_retrieve_operation.execute()
file_url = file_result.file.download_url
if file_url is None:
raise Exception(
f"No video was found in the response. Full response: {file_result.model_dump()}"
)
logging.info("Generated video URL: %s", file_url)
if node_id:
if hasattr(file_result.file, "backup_download_url"):
message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}"
else:
message = f"Result URL: {file_url}"
PromptServer.instance.send_progress_text(message, node_id)
# Download and return as VideoFromFile
video_io = await download_url_to_bytesio(file_url)
if video_io is None:
error_msg = f"Failed to download video from {file_url}"
logging.error(error_msg)
raise Exception(error_msg)
return IO.NodeOutput(VideoFromFile(video_io))
raise Exception(f"No video was found in the response. Full response: {file_result.model_dump()}")
if file_result.file.backup_download_url:
try:
return IO.NodeOutput(await download_url_to_video_output(file_url, timeout=10, max_retries=2))
except Exception: # if we have a second URL to retrieve the result, try again using that one
return IO.NodeOutput(
await download_url_to_video_output(file_result.file.backup_download_url, max_retries=3)
)
return IO.NodeOutput(await download_url_to_video_output(file_url))
class MinimaxTextToVideoNode(IO.ComfyNode):
"""
Generates videos synchronously based on a prompt, and optional parameters using MiniMax's API.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="MinimaxTextToVideoNode",
display_name="MiniMax Text to Video",
category="api node/video/MiniMax",
description=cleandoc(cls.__doc__ or ""),
description="Generates videos synchronously based on a prompt, and optional parameters.",
inputs=[
IO.String.Input(
"prompt_text",
@@ -189,11 +144,7 @@ class MinimaxTextToVideoNode(IO.ComfyNode):
seed: int = 0,
) -> IO.NodeOutput:
return await _generate_mm_video(
auth={
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
},
node_id=cls.hidden.unique_id,
cls,
prompt_text=prompt_text,
seed=seed,
model=model,
@@ -204,17 +155,13 @@ class MinimaxTextToVideoNode(IO.ComfyNode):
class MinimaxImageToVideoNode(IO.ComfyNode):
"""
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="MinimaxImageToVideoNode",
display_name="MiniMax Image to Video",
category="api node/video/MiniMax",
description=cleandoc(cls.__doc__ or ""),
description="Generates videos synchronously based on an image and prompt, and optional parameters.",
inputs=[
IO.Image.Input(
"image",
@@ -261,11 +208,7 @@ class MinimaxImageToVideoNode(IO.ComfyNode):
seed: int = 0,
) -> IO.NodeOutput:
return await _generate_mm_video(
auth={
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
},
node_id=cls.hidden.unique_id,
cls,
prompt_text=prompt_text,
seed=seed,
model=model,
@@ -276,17 +219,13 @@ class MinimaxImageToVideoNode(IO.ComfyNode):
class MinimaxSubjectToVideoNode(IO.ComfyNode):
"""
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="MinimaxSubjectToVideoNode",
display_name="MiniMax Subject to Video",
category="api node/video/MiniMax",
description=cleandoc(cls.__doc__ or ""),
description="Generates videos synchronously based on an image and prompt, and optional parameters.",
inputs=[
IO.Image.Input(
"subject",
@@ -333,11 +272,7 @@ class MinimaxSubjectToVideoNode(IO.ComfyNode):
seed: int = 0,
) -> IO.NodeOutput:
return await _generate_mm_video(
auth={
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
},
node_id=cls.hidden.unique_id,
cls,
prompt_text=prompt_text,
seed=seed,
model=model,
@@ -348,15 +283,13 @@ class MinimaxSubjectToVideoNode(IO.ComfyNode):
class MinimaxHailuoVideoNode(IO.ComfyNode):
"""Generates videos from prompt, with optional start frame using the new MiniMax Hailuo-02 model."""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="MinimaxHailuoVideoNode",
display_name="MiniMax Hailuo Video",
category="api node/video/MiniMax",
description=cleandoc(cls.__doc__ or ""),
description="Generates videos from prompt, with optional start frame using the new MiniMax Hailuo-02 model.",
inputs=[
IO.String.Input(
"prompt_text",
@@ -420,10 +353,6 @@ class MinimaxHailuoVideoNode(IO.ComfyNode):
resolution: str = "768P",
model: str = "MiniMax-Hailuo-02",
) -> IO.NodeOutput:
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
if first_frame_image is None:
validate_string(prompt_text, field_name="prompt_text")
@@ -435,16 +364,13 @@ class MinimaxHailuoVideoNode(IO.ComfyNode):
# upload image, if passed in
image_url = None
if first_frame_image is not None:
image_url = (await upload_images_to_comfyapi(first_frame_image, max_images=1, auth_kwargs=auth))[0]
image_url = (await upload_images_to_comfyapi(cls, first_frame_image, max_images=1))[0]
video_generate_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/video_generation",
method=HttpMethod.POST,
request_model=MinimaxVideoGenerationRequest,
response_model=MinimaxVideoGenerationResponse,
),
request=MinimaxVideoGenerationRequest(
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/minimax/video_generation", method="POST"),
response_model=MinimaxVideoGenerationResponse,
data=MinimaxVideoGenerationRequest(
model=MiniMaxModel(model),
prompt=prompt_text,
callback_url=None,
@@ -453,67 +379,42 @@ class MinimaxHailuoVideoNode(IO.ComfyNode):
duration=duration,
resolution=resolution,
),
auth_kwargs=auth,
)
response = await video_generate_operation.execute()
task_id = response.task_id
if not task_id:
raise Exception(f"MiniMax generation failed: {response.base_resp}")
average_duration = 120 if resolution == "768P" else 240
video_generate_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path="/proxy/minimax/query/video_generation",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxTaskResultResponse,
query_params={"task_id": task_id},
),
completed_statuses=["Success"],
failed_statuses=["Fail"],
task_result = await poll_op(
cls,
ApiEndpoint(path="/proxy/minimax/query/video_generation", query_params={"task_id": task_id}),
response_model=MinimaxTaskResultResponse,
status_extractor=lambda x: x.status.value,
estimated_duration=average_duration,
node_id=cls.hidden.unique_id,
auth_kwargs=auth,
)
task_result = await video_generate_operation.execute()
file_id = task_result.file_id
if file_id is None:
raise Exception("Request was not successful. Missing file ID.")
file_retrieve_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/files/retrieve",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxFileRetrieveResponse,
query_params={"file_id": int(file_id)},
),
request=EmptyRequest(),
auth_kwargs=auth,
file_result = await sync_op(
cls,
ApiEndpoint(path="/proxy/minimax/files/retrieve", query_params={"file_id": int(file_id)}),
response_model=MinimaxFileRetrieveResponse,
)
file_result = await file_retrieve_operation.execute()
file_url = file_result.file.download_url
if file_url is None:
raise Exception(
f"No video was found in the response. Full response: {file_result.model_dump()}"
)
logging.info("Generated video URL: %s", file_url)
if cls.hidden.unique_id:
if hasattr(file_result.file, "backup_download_url"):
message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}"
else:
message = f"Result URL: {file_url}"
PromptServer.instance.send_progress_text(message, cls.hidden.unique_id)
raise Exception(f"No video was found in the response. Full response: {file_result.model_dump()}")
video_io = await download_url_to_bytesio(file_url)
if video_io is None:
error_msg = f"Failed to download video from {file_url}"
logging.error(error_msg)
raise Exception(error_msg)
return IO.NodeOutput(VideoFromFile(video_io))
if file_result.file.backup_download_url:
try:
return IO.NodeOutput(await download_url_to_video_output(file_url, timeout=10, max_retries=2))
except Exception: # if we have a second URL to retrieve the result, try again using that one
return IO.NodeOutput(
await download_url_to_video_output(file_result.file.backup_download_url, max_retries=3)
)
return IO.NodeOutput(await download_url_to_video_output(file_url))
class MinimaxExtension(ComfyExtension):

File diff suppressed because it is too large Load Diff

View File

@@ -7,24 +7,23 @@ from __future__ import annotations
from io import BytesIO
import logging
from typing import Optional, TypeVar
from typing import Optional
import torch
from typing_extensions import override
from comfy_api.latest import ComfyExtension, IO
from comfy_api.input_impl.video_types import VideoCodec, VideoContainer, VideoInput
from comfy_api_nodes.apis import pika_defs
from comfy_api_nodes.apis.client import (
from comfy_api_nodes.apis import pika_api as pika_defs
from comfy_api_nodes.util import (
validate_string,
download_url_to_video_output,
tensor_to_bytesio,
ApiEndpoint,
EmptyRequest,
HttpMethod,
PollingOperation,
SynchronousOperation,
sync_op,
poll_op,
)
from comfy_api_nodes.util import validate_string, download_url_to_video_output, tensor_to_bytesio
R = TypeVar("R")
PATH_PIKADDITIONS = "/proxy/pika/generate/pikadditions"
PATH_PIKASWAPS = "/proxy/pika/generate/pikaswaps"
@@ -40,28 +39,18 @@ PATH_VIDEO_GET = "/proxy/pika/videos"
async def execute_task(
initial_operation: SynchronousOperation[R, pika_defs.PikaGenerateResponse],
auth_kwargs: Optional[dict[str, str]] = None,
node_id: Optional[str] = None,
task_id: str,
cls: type[IO.ComfyNode],
) -> IO.NodeOutput:
task_id = (await initial_operation.execute()).video_id
final_response: pika_defs.PikaVideoResponse = await PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"{PATH_VIDEO_GET}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=pika_defs.PikaVideoResponse,
),
completed_statuses=["finished"],
failed_statuses=["failed", "cancelled"],
final_response: pika_defs.PikaVideoResponse = await poll_op(
cls,
ApiEndpoint(path=f"{PATH_VIDEO_GET}/{task_id}"),
response_model=pika_defs.PikaVideoResponse,
status_extractor=lambda response: (response.status.value if response.status else None),
progress_extractor=lambda response: (response.progress if hasattr(response, "progress") else None),
auth_kwargs=auth_kwargs,
result_url_extractor=lambda response: (response.url if hasattr(response, "url") else None),
node_id=node_id,
estimated_duration=60,
max_poll_attempts=240,
).execute()
)
if not final_response.url:
error_msg = f"Pika task {task_id} succeeded but no video data found in response:\n{final_response}"
logging.error(error_msg)
@@ -124,23 +113,15 @@ class PikaImageToVideo(IO.ComfyNode):
resolution=resolution,
duration=duration,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_IMAGE_TO_VIDEO,
method=HttpMethod.POST,
request_model=pika_defs.PikaBodyGenerate22I2vGenerate22I2vPost,
response_model=pika_defs.PikaGenerateResponse,
),
request=pika_request_data,
initial_operation = await sync_op(
cls,
ApiEndpoint(path=PATH_IMAGE_TO_VIDEO, method="POST"),
response_model=pika_defs.PikaGenerateResponse,
data=pika_request_data,
files=pika_files,
content_type="multipart/form-data",
auth_kwargs=auth,
)
return await execute_task(initial_operation, auth_kwargs=auth, node_id=cls.hidden.unique_id)
return await execute_task(initial_operation.video_id, cls)
class PikaTextToVideoNode(IO.ComfyNode):
@@ -183,18 +164,11 @@ class PikaTextToVideoNode(IO.ComfyNode):
duration: int,
aspect_ratio: float,
) -> IO.NodeOutput:
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_TEXT_TO_VIDEO,
method=HttpMethod.POST,
request_model=pika_defs.PikaBodyGenerate22T2vGenerate22T2vPost,
response_model=pika_defs.PikaGenerateResponse,
),
request=pika_defs.PikaBodyGenerate22T2vGenerate22T2vPost(
initial_operation = await sync_op(
cls,
ApiEndpoint(path=PATH_TEXT_TO_VIDEO, method="POST"),
response_model=pika_defs.PikaGenerateResponse,
data=pika_defs.PikaBodyGenerate22T2vGenerate22T2vPost(
promptText=prompt_text,
negativePrompt=negative_prompt,
seed=seed,
@@ -202,10 +176,9 @@ class PikaTextToVideoNode(IO.ComfyNode):
duration=duration,
aspectRatio=aspect_ratio,
),
auth_kwargs=auth,
content_type="application/x-www-form-urlencoded",
)
return await execute_task(initial_operation, auth_kwargs=auth, node_id=cls.hidden.unique_id)
return await execute_task(initial_operation.video_id, cls)
class PikaScenes(IO.ComfyNode):
@@ -309,24 +282,16 @@ class PikaScenes(IO.ComfyNode):
duration=duration,
aspectRatio=aspect_ratio,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_PIKASCENES,
method=HttpMethod.POST,
request_model=pika_defs.PikaBodyGenerate22C2vGenerate22PikascenesPost,
response_model=pika_defs.PikaGenerateResponse,
),
request=pika_request_data,
initial_operation = await sync_op(
cls,
ApiEndpoint(path=PATH_PIKASCENES, method="POST"),
response_model=pika_defs.PikaGenerateResponse,
data=pika_request_data,
files=pika_files,
content_type="multipart/form-data",
auth_kwargs=auth,
)
return await execute_task(initial_operation, auth_kwargs=auth, node_id=cls.hidden.unique_id)
return await execute_task(initial_operation.video_id, cls)
class PikAdditionsNode(IO.ComfyNode):
@@ -383,24 +348,16 @@ class PikAdditionsNode(IO.ComfyNode):
negativePrompt=negative_prompt,
seed=seed,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_PIKADDITIONS,
method=HttpMethod.POST,
request_model=pika_defs.PikaBodyGeneratePikadditionsGeneratePikadditionsPost,
response_model=pika_defs.PikaGenerateResponse,
),
request=pika_request_data,
initial_operation = await sync_op(
cls,
ApiEndpoint(path=PATH_PIKADDITIONS, method="POST"),
response_model=pika_defs.PikaGenerateResponse,
data=pika_request_data,
files=pika_files,
content_type="multipart/form-data",
auth_kwargs=auth,
)
return await execute_task(initial_operation, auth_kwargs=auth, node_id=cls.hidden.unique_id)
return await execute_task(initial_operation.video_id, cls)
class PikaSwapsNode(IO.ComfyNode):
@@ -472,23 +429,15 @@ class PikaSwapsNode(IO.ComfyNode):
seed=seed,
modifyRegionRoi=region_to_modify if region_to_modify else None,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_PIKASWAPS,
method=HttpMethod.POST,
request_model=pika_defs.PikaBodyGeneratePikaswapsGeneratePikaswapsPost,
response_model=pika_defs.PikaGenerateResponse,
),
request=pika_request_data,
initial_operation = await sync_op(
cls,
ApiEndpoint(path=PATH_PIKASWAPS, method="POST"),
response_model=pika_defs.PikaGenerateResponse,
data=pika_request_data,
files=pika_files,
content_type="multipart/form-data",
auth_kwargs=auth,
)
return await execute_task(initial_operation, auth_kwargs=auth, node_id=cls.hidden.unique_id)
return await execute_task(initial_operation.video_id, cls)
class PikaffectsNode(IO.ComfyNode):
@@ -528,18 +477,11 @@ class PikaffectsNode(IO.ComfyNode):
negative_prompt: str,
seed: int,
) -> IO.NodeOutput:
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_PIKAFFECTS,
method=HttpMethod.POST,
request_model=pika_defs.PikaBodyGeneratePikaffectsGeneratePikaffectsPost,
response_model=pika_defs.PikaGenerateResponse,
),
request=pika_defs.PikaBodyGeneratePikaffectsGeneratePikaffectsPost(
initial_operation = await sync_op(
cls,
ApiEndpoint(path=PATH_PIKAFFECTS, method="POST"),
response_model=pika_defs.PikaGenerateResponse,
data=pika_defs.PikaBodyGeneratePikaffectsGeneratePikaffectsPost(
pikaffect=pikaffect,
promptText=prompt_text,
negativePrompt=negative_prompt,
@@ -547,9 +489,8 @@ class PikaffectsNode(IO.ComfyNode):
),
files={"image": ("image.png", tensor_to_bytesio(image), "image/png")},
content_type="multipart/form-data",
auth_kwargs=auth,
)
return await execute_task(initial_operation, auth_kwargs=auth, node_id=cls.hidden.unique_id)
return await execute_task(initial_operation.video_id, cls)
class PikaStartEndFrameNode(IO.ComfyNode):
@@ -592,18 +533,11 @@ class PikaStartEndFrameNode(IO.ComfyNode):
("keyFrames", ("image_start.png", tensor_to_bytesio(image_start), "image/png")),
("keyFrames", ("image_end.png", tensor_to_bytesio(image_end), "image/png")),
]
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=PATH_PIKAFRAMES,
method=HttpMethod.POST,
request_model=pika_defs.PikaBodyGenerate22KeyframeGenerate22PikaframesPost,
response_model=pika_defs.PikaGenerateResponse,
),
request=pika_defs.PikaBodyGenerate22KeyframeGenerate22PikaframesPost(
initial_operation = await sync_op(
cls,
ApiEndpoint(path=PATH_PIKAFRAMES, method="POST"),
response_model=pika_defs.PikaGenerateResponse,
data=pika_defs.PikaBodyGenerate22KeyframeGenerate22PikaframesPost(
promptText=prompt_text,
negativePrompt=negative_prompt,
seed=seed,
@@ -612,9 +546,8 @@ class PikaStartEndFrameNode(IO.ComfyNode):
),
files=pika_files,
content_type="multipart/form-data",
auth_kwargs=auth,
)
return await execute_task(initial_operation, auth_kwargs=auth, node_id=cls.hidden.unique_id)
return await execute_task(initial_operation.video_id, cls)
class PikaApiNodesExtension(ComfyExtension):

View File

@@ -1,7 +1,6 @@
from inspect import cleandoc
from typing import Optional
import torch
from typing_extensions import override
from io import BytesIO
from comfy_api.latest import IO, ComfyExtension
from comfy_api_nodes.apis.pixverse_api import (
PixverseTextVideoRequest,
PixverseImageVideoRequest,
@@ -17,53 +16,30 @@ from comfy_api_nodes.apis.pixverse_api import (
PixverseIO,
pixverse_templates,
)
from comfy_api_nodes.apis.client import (
from comfy_api_nodes.util import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
download_url_to_video_output,
poll_op,
sync_op,
tensor_to_bytesio,
validate_string,
)
from comfy_api_nodes.util import validate_string, tensor_to_bytesio
from comfy_api.input_impl import VideoFromFile
from comfy_api.latest import ComfyExtension, IO
import torch
import aiohttp
AVERAGE_DURATION_T2V = 32
AVERAGE_DURATION_I2V = 30
AVERAGE_DURATION_T2T = 52
def get_video_url_from_response(
response: PixverseGenerationStatusResponse,
) -> Optional[str]:
if response.Resp is None or response.Resp.url is None:
return None
return str(response.Resp.url)
async def upload_image_to_pixverse(image: torch.Tensor, auth_kwargs=None):
# first, upload image to Pixverse and get image id to use in actual generation call
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/pixverse/image/upload",
method=HttpMethod.POST,
request_model=EmptyRequest,
response_model=PixverseImageUploadResponse,
),
request=EmptyRequest(),
async def upload_image_to_pixverse(cls: type[IO.ComfyNode], image: torch.Tensor):
response_upload = await sync_op(
cls,
ApiEndpoint(path="/proxy/pixverse/image/upload", method="POST"),
response_model=PixverseImageUploadResponse,
files={"image": tensor_to_bytesio(image)},
content_type="multipart/form-data",
auth_kwargs=auth_kwargs,
)
response_upload: PixverseImageUploadResponse = await operation.execute()
if response_upload.Resp is None:
raise Exception(f"PixVerse image upload request failed: '{response_upload.ErrMsg}'")
return response_upload.Resp.img_id
@@ -93,17 +69,13 @@ class PixverseTemplateNode(IO.ComfyNode):
class PixverseTextToVideoNode(IO.ComfyNode):
"""
Generates videos based on prompt and output_size.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="PixverseTextToVideoNode",
display_name="PixVerse Text to Video",
category="api node/video/PixVerse",
description=cleandoc(cls.__doc__ or ""),
description="Generates videos based on prompt and output_size.",
inputs=[
IO.String.Input(
"prompt",
@@ -170,7 +142,7 @@ class PixverseTextToVideoNode(IO.ComfyNode):
negative_prompt: str = None,
pixverse_template: int = None,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=False)
validate_string(prompt, strip_whitespace=False, min_length=1)
# 1080p is limited to 5 seconds duration
# only normal motion_mode supported for 1080p or for non-5 second duration
if quality == PixverseQuality.res_1080p:
@@ -179,18 +151,11 @@ class PixverseTextToVideoNode(IO.ComfyNode):
elif duration_seconds != PixverseDuration.dur_5:
motion_mode = PixverseMotionMode.normal
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/pixverse/video/text/generate",
method=HttpMethod.POST,
request_model=PixverseTextVideoRequest,
response_model=PixverseVideoResponse,
),
request=PixverseTextVideoRequest(
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/pixverse/video/text/generate", method="POST"),
response_model=PixverseVideoResponse,
data=PixverseTextVideoRequest(
prompt=prompt,
aspect_ratio=aspect_ratio,
quality=quality,
@@ -200,20 +165,14 @@ class PixverseTextToVideoNode(IO.ComfyNode):
template_id=pixverse_template,
seed=seed,
),
auth_kwargs=auth,
)
response_api = await operation.execute()
if response_api.Resp is None:
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=PixverseGenerationStatusResponse,
),
response_poll = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}"),
response_model=PixverseGenerationStatusResponse,
completed_statuses=[PixverseStatus.successful],
failed_statuses=[
PixverseStatus.contents_moderation,
@@ -221,30 +180,19 @@ class PixverseTextToVideoNode(IO.ComfyNode):
PixverseStatus.deleted,
],
status_extractor=lambda x: x.Resp.status,
auth_kwargs=auth,
node_id=cls.hidden.unique_id,
result_url_extractor=get_video_url_from_response,
estimated_duration=AVERAGE_DURATION_T2V,
)
response_poll = await operation.execute()
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.Resp.url) as vid_response:
return IO.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read())))
return IO.NodeOutput(await download_url_to_video_output(response_poll.Resp.url))
class PixverseImageToVideoNode(IO.ComfyNode):
"""
Generates videos based on prompt and output_size.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="PixverseImageToVideoNode",
display_name="PixVerse Image to Video",
category="api node/video/PixVerse",
description=cleandoc(cls.__doc__ or ""),
description="Generates videos based on prompt and output_size.",
inputs=[
IO.Image.Input("image"),
IO.String.Input(
@@ -309,11 +257,7 @@ class PixverseImageToVideoNode(IO.ComfyNode):
pixverse_template: int = None,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=False)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
img_id = await upload_image_to_pixverse(image, auth_kwargs=auth)
img_id = await upload_image_to_pixverse(cls, image)
# 1080p is limited to 5 seconds duration
# only normal motion_mode supported for 1080p or for non-5 second duration
@@ -323,14 +267,11 @@ class PixverseImageToVideoNode(IO.ComfyNode):
elif duration_seconds != PixverseDuration.dur_5:
motion_mode = PixverseMotionMode.normal
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/pixverse/video/img/generate",
method=HttpMethod.POST,
request_model=PixverseImageVideoRequest,
response_model=PixverseVideoResponse,
),
request=PixverseImageVideoRequest(
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/pixverse/video/img/generate", method="POST"),
response_model=PixverseVideoResponse,
data=PixverseImageVideoRequest(
img_id=img_id,
prompt=prompt,
quality=quality,
@@ -340,20 +281,15 @@ class PixverseImageToVideoNode(IO.ComfyNode):
template_id=pixverse_template,
seed=seed,
),
auth_kwargs=auth,
)
response_api = await operation.execute()
if response_api.Resp is None:
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=PixverseGenerationStatusResponse,
),
response_poll = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}"),
response_model=PixverseGenerationStatusResponse,
completed_statuses=[PixverseStatus.successful],
failed_statuses=[
PixverseStatus.contents_moderation,
@@ -361,30 +297,19 @@ class PixverseImageToVideoNode(IO.ComfyNode):
PixverseStatus.deleted,
],
status_extractor=lambda x: x.Resp.status,
auth_kwargs=auth,
node_id=cls.hidden.unique_id,
result_url_extractor=get_video_url_from_response,
estimated_duration=AVERAGE_DURATION_I2V,
)
response_poll = await operation.execute()
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.Resp.url) as vid_response:
return IO.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read())))
return IO.NodeOutput(await download_url_to_video_output(response_poll.Resp.url))
class PixverseTransitionVideoNode(IO.ComfyNode):
"""
Generates videos based on prompt and output_size.
"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="PixverseTransitionVideoNode",
display_name="PixVerse Transition Video",
category="api node/video/PixVerse",
description=cleandoc(cls.__doc__ or ""),
description="Generates videos based on prompt and output_size.",
inputs=[
IO.Image.Input("first_frame"),
IO.Image.Input("last_frame"),
@@ -445,12 +370,8 @@ class PixverseTransitionVideoNode(IO.ComfyNode):
negative_prompt: str = None,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=False)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
first_frame_id = await upload_image_to_pixverse(first_frame, auth_kwargs=auth)
last_frame_id = await upload_image_to_pixverse(last_frame, auth_kwargs=auth)
first_frame_id = await upload_image_to_pixverse(cls, first_frame)
last_frame_id = await upload_image_to_pixverse(cls, last_frame)
# 1080p is limited to 5 seconds duration
# only normal motion_mode supported for 1080p or for non-5 second duration
@@ -460,14 +381,11 @@ class PixverseTransitionVideoNode(IO.ComfyNode):
elif duration_seconds != PixverseDuration.dur_5:
motion_mode = PixverseMotionMode.normal
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/pixverse/video/transition/generate",
method=HttpMethod.POST,
request_model=PixverseTransitionVideoRequest,
response_model=PixverseVideoResponse,
),
request=PixverseTransitionVideoRequest(
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/pixverse/video/transition/generate", method="POST"),
response_model=PixverseVideoResponse,
data=PixverseTransitionVideoRequest(
first_frame_img=first_frame_id,
last_frame_img=last_frame_id,
prompt=prompt,
@@ -477,20 +395,15 @@ class PixverseTransitionVideoNode(IO.ComfyNode):
negative_prompt=negative_prompt if negative_prompt else None,
seed=seed,
),
auth_kwargs=auth,
)
response_api = await operation.execute()
if response_api.Resp is None:
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=PixverseGenerationStatusResponse,
),
response_poll = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/pixverse/video/result/{response_api.Resp.video_id}"),
response_model=PixverseGenerationStatusResponse,
completed_statuses=[PixverseStatus.successful],
failed_statuses=[
PixverseStatus.contents_moderation,
@@ -498,16 +411,9 @@ class PixverseTransitionVideoNode(IO.ComfyNode):
PixverseStatus.deleted,
],
status_extractor=lambda x: x.Resp.status,
auth_kwargs=auth,
node_id=cls.hidden.unique_id,
result_url_extractor=get_video_url_from_response,
estimated_duration=AVERAGE_DURATION_T2V,
)
response_poll = await operation.execute()
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.Resp.url) as vid_response:
return IO.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read())))
return IO.NodeOutput(await download_url_to_video_output(response_poll.Resp.url))
class PixVerseExtension(ComfyExtension):

File diff suppressed because it is too large Load Diff

View File

@@ -5,12 +5,9 @@ Rodin API docs: https://developer.hyper3d.ai/
"""
from __future__ import annotations
from inspect import cleandoc
import folder_paths as comfy_paths
import aiohttp
import os
import asyncio
import logging
import math
from typing import Optional
@@ -26,11 +23,11 @@ from comfy_api_nodes.apis.rodin_api import (
Rodin3DDownloadResponse,
JobStatus,
)
from comfy_api_nodes.apis.client import (
from comfy_api_nodes.util import (
sync_op,
poll_op,
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
download_url_to_bytesio,
)
from comfy_api.latest import ComfyExtension, IO
@@ -121,35 +118,31 @@ def tensor_to_filelike(tensor, max_pixels: int = 2048*2048):
async def create_generate_task(
cls: type[IO.ComfyNode],
images=None,
seed=1,
material="PBR",
quality_override=18000,
tier="Regular",
mesh_mode="Quad",
TAPose = False,
auth_kwargs: Optional[dict[str, str]] = None,
ta_pose: bool = False,
):
if images is None:
raise Exception("Rodin 3D generate requires at least 1 image.")
if len(images) > 5:
raise Exception("Rodin 3D generate requires up to 5 image.")
path = "/proxy/rodin/api/v2/rodin"
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=path,
method=HttpMethod.POST,
request_model=Rodin3DGenerateRequest,
response_model=Rodin3DGenerateResponse,
),
request=Rodin3DGenerateRequest(
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/rodin/api/v2/rodin", method="POST"),
response_model=Rodin3DGenerateResponse,
data=Rodin3DGenerateRequest(
seed=seed,
tier=tier,
material=material,
quality_override=quality_override,
mesh_mode=mesh_mode,
TAPose=TAPose,
TAPose=ta_pose,
),
files=[
(
@@ -159,11 +152,8 @@ async def create_generate_task(
for image in images if image is not None
],
content_type="multipart/form-data",
auth_kwargs=auth_kwargs,
)
response = await operation.execute()
if hasattr(response, "error"):
error_message = f"Rodin3D Create 3D generate Task Failed. Message: {response.message}, error: {response.error}"
logging.error(error_message)
@@ -187,75 +177,46 @@ def check_rodin_status(response: Rodin3DCheckStatusResponse) -> str:
return "DONE"
return "Generating"
def extract_progress(response: Rodin3DCheckStatusResponse) -> Optional[int]:
if not response.jobs:
return None
completed_count = sum(1 for job in response.jobs if job.status == JobStatus.Done)
return int((completed_count / len(response.jobs)) * 100)
async def poll_for_task_status(
subscription_key, auth_kwargs: Optional[dict[str, str]] = None,
) -> Rodin3DCheckStatusResponse:
poll_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path="/proxy/rodin/api/v2/status",
method=HttpMethod.POST,
request_model=Rodin3DCheckStatusRequest,
response_model=Rodin3DCheckStatusResponse,
),
request=Rodin3DCheckStatusRequest(subscription_key=subscription_key),
completed_statuses=["DONE"],
failed_statuses=["FAILED"],
status_extractor=check_rodin_status,
poll_interval=3.0,
auth_kwargs=auth_kwargs,
)
async def poll_for_task_status(subscription_key: str, cls: type[IO.ComfyNode]) -> Rodin3DCheckStatusResponse:
logging.info("[ Rodin3D API - CheckStatus ] Generate Start!")
return await poll_operation.execute()
async def get_rodin_download_list(uuid, auth_kwargs: Optional[dict[str, str]] = None) -> Rodin3DDownloadResponse:
logging.info("[ Rodin3D API - Downloading ] Generate Successfully!")
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/rodin/api/v2/download",
method=HttpMethod.POST,
request_model=Rodin3DDownloadRequest,
response_model=Rodin3DDownloadResponse,
),
request=Rodin3DDownloadRequest(task_uuid=uuid),
auth_kwargs=auth_kwargs,
return await poll_op(
cls,
ApiEndpoint(path="/proxy/rodin/api/v2/status", method="POST"),
response_model=Rodin3DCheckStatusResponse,
data=Rodin3DCheckStatusRequest(subscription_key=subscription_key),
status_extractor=check_rodin_status,
progress_extractor=extract_progress,
)
return await operation.execute()
async def download_files(url_list, task_uuid):
save_path = os.path.join(comfy_paths.get_output_directory(), f"Rodin3D_{task_uuid}")
async def get_rodin_download_list(uuid: str, cls: type[IO.ComfyNode]) -> Rodin3DDownloadResponse:
logging.info("[ Rodin3D API - Downloading ] Generate Successfully!")
return await sync_op(
cls,
ApiEndpoint(path="/proxy/rodin/api/v2/download", method="POST"),
response_model=Rodin3DDownloadResponse,
data=Rodin3DDownloadRequest(task_uuid=uuid),
monitor_progress=False,
)
async def download_files(url_list, task_uuid: str):
result_folder_name = f"Rodin3D_{task_uuid}"
save_path = os.path.join(comfy_paths.get_output_directory(), result_folder_name)
os.makedirs(save_path, exist_ok=True)
model_file_path = None
async with aiohttp.ClientSession() as session:
for i in url_list.list:
url = i.url
file_name = i.name
file_path = os.path.join(save_path, file_name)
if file_path.endswith(".glb"):
model_file_path = file_path
logging.info("[ Rodin3D API - download_files ] Downloading file: %s", file_path)
max_retries = 5
for attempt in range(max_retries):
try:
async with session.get(url) as resp:
resp.raise_for_status()
with open(file_path, "wb") as f:
async for chunk in resp.content.iter_chunked(32 * 1024):
f.write(chunk)
break
except Exception as e:
logging.info("[ Rodin3D API - download_files ] Error downloading %s:%s", file_path, str(e))
if attempt < max_retries - 1:
logging.info("Retrying...")
await asyncio.sleep(2)
else:
logging.info(
"[ Rodin3D API - download_files ] Failed to download %s after %s attempts.",
file_path,
max_retries,
)
for i in url_list.list:
file_path = os.path.join(save_path, i.name)
if file_path.endswith(".glb"):
model_file_path = os.path.join(result_folder_name, i.name)
await download_url_to_bytesio(i.url, file_path)
return model_file_path
@@ -277,6 +238,7 @@ class Rodin3D_Regular(IO.ComfyNode):
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@@ -295,21 +257,17 @@ class Rodin3D_Regular(IO.ComfyNode):
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality_override = get_quality_mode(Polygon_count)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
task_uuid, subscription_key = await create_generate_task(
cls,
images=m_images,
seed=Seed,
material=Material_Type,
quality_override=quality_override,
tier=tier,
mesh_mode=mesh_mode,
auth_kwargs=auth,
)
await poll_for_task_status(subscription_key, auth_kwargs=auth)
download_list = await get_rodin_download_list(task_uuid, auth_kwargs=auth)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model)
@@ -333,6 +291,7 @@ class Rodin3D_Detail(IO.ComfyNode):
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@@ -351,21 +310,17 @@ class Rodin3D_Detail(IO.ComfyNode):
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality_override = get_quality_mode(Polygon_count)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
task_uuid, subscription_key = await create_generate_task(
cls,
images=m_images,
seed=Seed,
material=Material_Type,
quality_override=quality_override,
tier=tier,
mesh_mode=mesh_mode,
auth_kwargs=auth,
)
await poll_for_task_status(subscription_key, auth_kwargs=auth)
download_list = await get_rodin_download_list(task_uuid, auth_kwargs=auth)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model)
@@ -389,6 +344,7 @@ class Rodin3D_Smooth(IO.ComfyNode):
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@@ -401,27 +357,22 @@ class Rodin3D_Smooth(IO.ComfyNode):
Material_Type,
Polygon_count,
) -> IO.NodeOutput:
tier = "Smooth"
num_images = Images.shape[0]
m_images = []
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality_override = get_quality_mode(Polygon_count)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
task_uuid, subscription_key = await create_generate_task(
cls,
images=m_images,
seed=Seed,
material=Material_Type,
quality_override=quality_override,
tier=tier,
tier="Smooth",
mesh_mode=mesh_mode,
auth_kwargs=auth,
)
await poll_for_task_status(subscription_key, auth_kwargs=auth)
download_list = await get_rodin_download_list(task_uuid, auth_kwargs=auth)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model)
@@ -452,6 +403,7 @@ class Rodin3D_Sketch(IO.ComfyNode):
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@@ -462,29 +414,21 @@ class Rodin3D_Sketch(IO.ComfyNode):
Images,
Seed,
) -> IO.NodeOutput:
tier = "Sketch"
num_images = Images.shape[0]
m_images = []
for i in range(num_images):
m_images.append(Images[i])
material_type = "PBR"
quality_override = 18000
mesh_mode = "Quad"
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
task_uuid, subscription_key = await create_generate_task(
cls,
images=m_images,
seed=Seed,
material=material_type,
quality_override=quality_override,
tier=tier,
mesh_mode=mesh_mode,
auth_kwargs=auth,
material="PBR",
quality_override=18000,
tier="Sketch",
mesh_mode="Quad",
)
await poll_for_task_status(subscription_key, auth_kwargs=auth)
download_list = await get_rodin_download_list(task_uuid, auth_kwargs=auth)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model)
@@ -523,6 +467,7 @@ class Rodin3D_Gen2(IO.ComfyNode):
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@@ -542,22 +487,18 @@ class Rodin3D_Gen2(IO.ComfyNode):
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality_override = get_quality_mode(Polygon_count)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
task_uuid, subscription_key = await create_generate_task(
cls,
images=m_images,
seed=Seed,
material=Material_Type,
quality_override=quality_override,
tier=tier,
mesh_mode=mesh_mode,
TAPose=TAPose,
auth_kwargs=auth,
ta_pose=TAPose,
)
await poll_for_task_status(subscription_key, auth_kwargs=auth)
download_list = await get_rodin_download_list(task_uuid, auth_kwargs=auth)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model)

View File

@@ -200,7 +200,7 @@ class RunwayImageToVideoNodeGen3a(IO.ComfyNode):
) -> IO.NodeOutput:
validate_string(prompt, min_length=1)
validate_image_dimensions(start_frame, max_width=7999, max_height=7999)
validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
validate_image_aspect_ratio(start_frame, (1, 2), (2, 1))
download_urls = await upload_images_to_comfyapi(
cls,
@@ -290,7 +290,7 @@ class RunwayImageToVideoNodeGen4(IO.ComfyNode):
) -> IO.NodeOutput:
validate_string(prompt, min_length=1)
validate_image_dimensions(start_frame, max_width=7999, max_height=7999)
validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
validate_image_aspect_ratio(start_frame, (1, 2), (2, 1))
download_urls = await upload_images_to_comfyapi(
cls,
@@ -390,8 +390,8 @@ class RunwayFirstLastFrameNode(IO.ComfyNode):
validate_string(prompt, min_length=1)
validate_image_dimensions(start_frame, max_width=7999, max_height=7999)
validate_image_dimensions(end_frame, max_width=7999, max_height=7999)
validate_image_aspect_ratio(start_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
validate_image_aspect_ratio(end_frame, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
validate_image_aspect_ratio(start_frame, (1, 2), (2, 1))
validate_image_aspect_ratio(end_frame, (1, 2), (2, 1))
stacked_input_images = image_tensor_pair_to_batch(start_frame, end_frame)
download_urls = await upload_images_to_comfyapi(
@@ -475,7 +475,7 @@ class RunwayTextToImageNode(IO.ComfyNode):
reference_images = None
if reference_image is not None:
validate_image_dimensions(reference_image, max_width=7999, max_height=7999)
validate_image_aspect_ratio(reference_image, min_aspect_ratio=0.5, max_aspect_ratio=2.0)
validate_image_aspect_ratio(reference_image, (1, 2), (2, 1))
download_urls = await upload_images_to_comfyapi(
cls,
reference_image,

View File

@@ -20,13 +20,6 @@ from comfy_api_nodes.apis.stability_api import (
StabilityAudioInpaintRequest,
StabilityAudioResponse,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.util import (
validate_audio_duration,
validate_string,
@@ -34,6 +27,9 @@ from comfy_api_nodes.util import (
bytesio_to_image_tensor,
tensor_to_bytesio,
audio_bytes_to_audio_input,
sync_op,
poll_op,
ApiEndpoint,
)
import torch
@@ -161,19 +157,11 @@ class StabilityStableImageUltraNode(IO.ComfyNode):
"image": image_binary
}
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/generate/ultra",
method=HttpMethod.POST,
request_model=StabilityStableUltraRequest,
response_model=StabilityStableUltraResponse,
),
request=StabilityStableUltraRequest(
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/stability/v2beta/stable-image/generate/ultra", method="POST"),
response_model=StabilityStableUltraResponse,
data=StabilityStableUltraRequest(
prompt=prompt,
negative_prompt=negative_prompt,
aspect_ratio=aspect_ratio,
@@ -183,9 +171,7 @@ class StabilityStableImageUltraNode(IO.ComfyNode):
),
files=files,
content_type="multipart/form-data",
auth_kwargs=auth,
)
response_api = await operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stable Image Ultra generation failed: {response_api.finish_reason}.")
@@ -313,19 +299,11 @@ class StabilityStableImageSD_3_5Node(IO.ComfyNode):
"image": image_binary
}
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/generate/sd3",
method=HttpMethod.POST,
request_model=StabilityStable3_5Request,
response_model=StabilityStableUltraResponse,
),
request=StabilityStable3_5Request(
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/stability/v2beta/stable-image/generate/sd3", method="POST"),
response_model=StabilityStableUltraResponse,
data=StabilityStable3_5Request(
prompt=prompt,
negative_prompt=negative_prompt,
aspect_ratio=aspect_ratio,
@@ -338,9 +316,7 @@ class StabilityStableImageSD_3_5Node(IO.ComfyNode):
),
files=files,
content_type="multipart/form-data",
auth_kwargs=auth,
)
response_api = await operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stable Diffusion 3.5 Image generation failed: {response_api.finish_reason}.")
@@ -427,19 +403,11 @@ class StabilityUpscaleConservativeNode(IO.ComfyNode):
"image": image_binary
}
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/conservative",
method=HttpMethod.POST,
request_model=StabilityUpscaleConservativeRequest,
response_model=StabilityStableUltraResponse,
),
request=StabilityUpscaleConservativeRequest(
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/stability/v2beta/stable-image/upscale/conservative", method="POST"),
response_model=StabilityStableUltraResponse,
data=StabilityUpscaleConservativeRequest(
prompt=prompt,
negative_prompt=negative_prompt,
creativity=round(creativity,2),
@@ -447,9 +415,7 @@ class StabilityUpscaleConservativeNode(IO.ComfyNode):
),
files=files,
content_type="multipart/form-data",
auth_kwargs=auth,
)
response_api = await operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Conservative generation failed: {response_api.finish_reason}.")
@@ -544,19 +510,11 @@ class StabilityUpscaleCreativeNode(IO.ComfyNode):
"image": image_binary
}
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/creative",
method=HttpMethod.POST,
request_model=StabilityUpscaleCreativeRequest,
response_model=StabilityAsyncResponse,
),
request=StabilityUpscaleCreativeRequest(
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/stability/v2beta/stable-image/upscale/creative", method="POST"),
response_model=StabilityAsyncResponse,
data=StabilityUpscaleCreativeRequest(
prompt=prompt,
negative_prompt=negative_prompt,
creativity=round(creativity,2),
@@ -565,25 +523,15 @@ class StabilityUpscaleCreativeNode(IO.ComfyNode):
),
files=files,
content_type="multipart/form-data",
auth_kwargs=auth,
)
response_api = await operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/stability/v2beta/results/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=StabilityResultsGetResponse,
),
response_poll = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/stability/v2beta/results/{response_api.id}"),
response_model=StabilityResultsGetResponse,
poll_interval=3,
completed_statuses=[StabilityPollStatus.finished],
failed_statuses=[StabilityPollStatus.failed],
status_extractor=lambda x: get_async_dummy_status(x),
auth_kwargs=auth,
node_id=cls.hidden.unique_id,
)
response_poll: StabilityResultsGetResponse = await operation.execute()
if response_poll.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Creative generation failed: {response_poll.finish_reason}.")
@@ -628,24 +576,13 @@ class StabilityUpscaleFastNode(IO.ComfyNode):
"image": image_binary
}
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/fast",
method=HttpMethod.POST,
request_model=EmptyRequest,
response_model=StabilityStableUltraResponse,
),
request=EmptyRequest(),
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/stability/v2beta/stable-image/upscale/fast", method="POST"),
response_model=StabilityStableUltraResponse,
files=files,
content_type="multipart/form-data",
auth_kwargs=auth,
)
response_api = await operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Fast failed: {response_api.finish_reason}.")
@@ -717,21 +654,13 @@ class StabilityTextToAudio(IO.ComfyNode):
async def execute(cls, model: str, prompt: str, duration: int, seed: int, steps: int) -> IO.NodeOutput:
validate_string(prompt, max_length=10000)
payload = StabilityTextToAudioRequest(prompt=prompt, model=model, duration=duration, seed=seed, steps=steps)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/audio/stable-audio-2/text-to-audio",
method=HttpMethod.POST,
request_model=StabilityTextToAudioRequest,
response_model=StabilityAudioResponse,
),
request=payload,
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/stability/v2beta/audio/stable-audio-2/text-to-audio", method="POST"),
response_model=StabilityAudioResponse,
data=payload,
content_type="multipart/form-data",
auth_kwargs= {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
},
)
response_api = await operation.execute()
if not response_api.audio:
raise ValueError("No audio file was received in response.")
return IO.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio)))
@@ -814,22 +743,14 @@ class StabilityAudioToAudio(IO.ComfyNode):
payload = StabilityAudioToAudioRequest(
prompt=prompt, model=model, duration=duration, seed=seed, steps=steps, strength=strength
)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/audio/stable-audio-2/audio-to-audio",
method=HttpMethod.POST,
request_model=StabilityAudioToAudioRequest,
response_model=StabilityAudioResponse,
),
request=payload,
response_api = await sync_op(
cls,
ApiEndpoint(path="/proxy/stability/v2beta/audio/stable-audio-2/audio-to-audio", method="POST"),
response_model=StabilityAudioResponse,
data=payload,
content_type="multipart/form-data",
files={"audio": audio_input_to_mp3(audio)},
auth_kwargs= {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
},
)
response_api = await operation.execute()
if not response_api.audio:
raise ValueError("No audio file was received in response.")
return IO.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio)))
@@ -935,22 +856,14 @@ class StabilityAudioInpaint(IO.ComfyNode):
mask_start=mask_start,
mask_end=mask_end,
)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/audio/stable-audio-2/inpaint",
method=HttpMethod.POST,
request_model=StabilityAudioInpaintRequest,
response_model=StabilityAudioResponse,
),
request=payload,
response_api = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/stability/v2beta/audio/stable-audio-2/inpaint", method="POST"),
response_model=StabilityAudioResponse,
data=payload,
content_type="multipart/form-data",
files={"audio": audio_input_to_mp3(audio)},
auth_kwargs={
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
},
)
response_api = await operation.execute()
if not response_api.audio:
raise ValueError("No audio file was received in response.")
return IO.NodeOutput(audio_bytes_to_audio_input(base64.b64decode(response_api.audio)))

View File

@@ -0,0 +1,418 @@
import builtins
from io import BytesIO
import aiohttp
import torch
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api_nodes.apis import topaz_api
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_image_tensor,
download_url_to_video_output,
get_fs_object_size,
get_number_of_images,
poll_op,
sync_op,
upload_images_to_comfyapi,
validate_container_format_is_mp4,
)
UPSCALER_MODELS_MAP = {
"Starlight (Astra) Fast": "slf-1",
"Starlight (Astra) Creative": "slc-1",
}
UPSCALER_VALUES_MAP = {
"FullHD (1080p)": 1920,
"4K (2160p)": 3840,
}
class TopazImageEnhance(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TopazImageEnhance",
display_name="Topaz Image Enhance",
category="api node/image/Topaz",
description="Industry-standard upscaling and image enhancement.",
inputs=[
IO.Combo.Input("model", options=["Reimagine"]),
IO.Image.Input("image"),
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Optional text prompt for creative upscaling guidance.",
optional=True,
),
IO.Combo.Input(
"subject_detection",
options=["All", "Foreground", "Background"],
optional=True,
),
IO.Boolean.Input(
"face_enhancement",
default=True,
optional=True,
tooltip="Enhance faces (if present) during processing.",
),
IO.Float.Input(
"face_enhancement_creativity",
default=0.0,
min=0.0,
max=1.0,
step=0.01,
display_mode=IO.NumberDisplay.number,
optional=True,
tooltip="Set the creativity level for face enhancement.",
),
IO.Float.Input(
"face_enhancement_strength",
default=1.0,
min=0.0,
max=1.0,
step=0.01,
display_mode=IO.NumberDisplay.number,
optional=True,
tooltip="Controls how sharp enhanced faces are relative to the background.",
),
IO.Boolean.Input(
"crop_to_fill",
default=False,
optional=True,
tooltip="By default, the image is letterboxed when the output aspect ratio differs. "
"Enable to crop the image to fill the output dimensions.",
),
IO.Int.Input(
"output_width",
default=0,
min=0,
max=32000,
step=1,
display_mode=IO.NumberDisplay.number,
optional=True,
tooltip="Zero value means to calculate automatically (usually it will be original size or output_height if specified).",
),
IO.Int.Input(
"output_height",
default=0,
min=0,
max=32000,
step=1,
display_mode=IO.NumberDisplay.number,
optional=True,
tooltip="Zero value means to output in the same height as original or output width.",
),
IO.Int.Input(
"creativity",
default=3,
min=1,
max=9,
step=1,
display_mode=IO.NumberDisplay.slider,
optional=True,
),
IO.Boolean.Input(
"face_preservation",
default=True,
optional=True,
tooltip="Preserve subjects' facial identity.",
),
IO.Boolean.Input(
"color_preservation",
default=True,
optional=True,
tooltip="Preserve the original colors.",
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
image: torch.Tensor,
prompt: str = "",
subject_detection: str = "All",
face_enhancement: bool = True,
face_enhancement_creativity: float = 1.0,
face_enhancement_strength: float = 0.8,
crop_to_fill: bool = False,
output_width: int = 0,
output_height: int = 0,
creativity: int = 3,
face_preservation: bool = True,
color_preservation: bool = True,
) -> IO.NodeOutput:
if get_number_of_images(image) != 1:
raise ValueError("Only one input image is supported.")
download_url = await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png")
initial_response = await sync_op(
cls,
ApiEndpoint(path="/proxy/topaz/image/v1/enhance-gen/async", method="POST"),
response_model=topaz_api.ImageAsyncTaskResponse,
data=topaz_api.ImageEnhanceRequest(
model=model,
prompt=prompt,
subject_detection=subject_detection,
face_enhancement=face_enhancement,
face_enhancement_creativity=face_enhancement_creativity,
face_enhancement_strength=face_enhancement_strength,
crop_to_fill=crop_to_fill,
output_width=output_width if output_width else None,
output_height=output_height if output_height else None,
creativity=creativity,
face_preservation=str(face_preservation).lower(),
color_preservation=str(color_preservation).lower(),
source_url=download_url[0],
output_format="png",
),
content_type="multipart/form-data",
)
await poll_op(
cls,
poll_endpoint=ApiEndpoint(path=f"/proxy/topaz/image/v1/status/{initial_response.process_id}"),
response_model=topaz_api.ImageStatusResponse,
status_extractor=lambda x: x.status,
progress_extractor=lambda x: getattr(x, "progress", 0),
price_extractor=lambda x: x.credits * 0.08,
poll_interval=8.0,
max_poll_attempts=160,
estimated_duration=60,
)
results = await sync_op(
cls,
ApiEndpoint(path=f"/proxy/topaz/image/v1/download/{initial_response.process_id}"),
response_model=topaz_api.ImageDownloadResponse,
monitor_progress=False,
)
return IO.NodeOutput(await download_url_to_image_tensor(results.download_url))
class TopazVideoEnhance(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TopazVideoEnhance",
display_name="Topaz Video Enhance",
category="api node/video/Topaz",
description="Breathe new life into video with powerful upscaling and recovery technology.",
inputs=[
IO.Video.Input("video"),
IO.Boolean.Input("upscaler_enabled", default=True),
IO.Combo.Input("upscaler_model", options=list(UPSCALER_MODELS_MAP.keys())),
IO.Combo.Input("upscaler_resolution", options=list(UPSCALER_VALUES_MAP.keys())),
IO.Combo.Input(
"upscaler_creativity",
options=["low", "middle", "high"],
default="low",
tooltip="Creativity level (applies only to Starlight (Astra) Creative).",
optional=True,
),
IO.Boolean.Input("interpolation_enabled", default=False, optional=True),
IO.Combo.Input("interpolation_model", options=["apo-8"], default="apo-8", optional=True),
IO.Int.Input(
"interpolation_slowmo",
default=1,
min=1,
max=16,
display_mode=IO.NumberDisplay.number,
tooltip="Slow-motion factor applied to the input video. "
"For example, 2 makes the output twice as slow and doubles the duration.",
optional=True,
),
IO.Int.Input(
"interpolation_frame_rate",
default=60,
min=15,
max=240,
display_mode=IO.NumberDisplay.number,
tooltip="Output frame rate.",
optional=True,
),
IO.Boolean.Input(
"interpolation_duplicate",
default=False,
tooltip="Analyze the input for duplicate frames and remove them.",
optional=True,
),
IO.Float.Input(
"interpolation_duplicate_threshold",
default=0.01,
min=0.001,
max=0.1,
step=0.001,
display_mode=IO.NumberDisplay.number,
tooltip="Detection sensitivity for duplicate frames.",
optional=True,
),
IO.Combo.Input(
"dynamic_compression_level",
options=["Low", "Mid", "High"],
default="Low",
tooltip="CQP level.",
optional=True,
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
video: Input.Video,
upscaler_enabled: bool,
upscaler_model: str,
upscaler_resolution: str,
upscaler_creativity: str = "low",
interpolation_enabled: bool = False,
interpolation_model: str = "apo-8",
interpolation_slowmo: int = 1,
interpolation_frame_rate: int = 60,
interpolation_duplicate: bool = False,
interpolation_duplicate_threshold: float = 0.01,
dynamic_compression_level: str = "Low",
) -> IO.NodeOutput:
if upscaler_enabled is False and interpolation_enabled is False:
raise ValueError("There is nothing to do: both upscaling and interpolation are disabled.")
validate_container_format_is_mp4(video)
src_width, src_height = video.get_dimensions()
src_frame_rate = int(video.get_frame_rate())
duration_sec = video.get_duration()
src_video_stream = video.get_stream_source()
target_width = src_width
target_height = src_height
target_frame_rate = src_frame_rate
filters = []
if upscaler_enabled:
target_width = UPSCALER_VALUES_MAP[upscaler_resolution]
target_height = UPSCALER_VALUES_MAP[upscaler_resolution]
filters.append(
topaz_api.VideoEnhancementFilter(
model=UPSCALER_MODELS_MAP[upscaler_model],
creativity=(upscaler_creativity if UPSCALER_MODELS_MAP[upscaler_model] == "slc-1" else None),
isOptimizedMode=(True if UPSCALER_MODELS_MAP[upscaler_model] == "slc-1" else None),
),
)
if interpolation_enabled:
target_frame_rate = interpolation_frame_rate
filters.append(
topaz_api.VideoFrameInterpolationFilter(
model=interpolation_model,
slowmo=interpolation_slowmo,
fps=interpolation_frame_rate,
duplicate=interpolation_duplicate,
duplicate_threshold=interpolation_duplicate_threshold,
),
)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/topaz/video/", method="POST"),
response_model=topaz_api.CreateVideoResponse,
data=topaz_api.CreateVideoRequest(
source=topaz_api.CreateCreateVideoRequestSource(
container="mp4",
size=get_fs_object_size(src_video_stream),
duration=int(duration_sec),
frameCount=video.get_frame_count(),
frameRate=src_frame_rate,
resolution=topaz_api.Resolution(width=src_width, height=src_height),
),
filters=filters,
output=topaz_api.OutputInformationVideo(
resolution=topaz_api.Resolution(width=target_width, height=target_height),
frameRate=target_frame_rate,
audioCodec="AAC",
audioTransfer="Copy",
dynamicCompressionLevel=dynamic_compression_level,
),
),
wait_label="Creating task",
final_label_on_success="Task created",
)
upload_res = await sync_op(
cls,
ApiEndpoint(
path=f"/proxy/topaz/video/{initial_res.requestId}/accept",
method="PATCH",
),
response_model=topaz_api.VideoAcceptResponse,
wait_label="Preparing upload",
final_label_on_success="Upload started",
)
if len(upload_res.urls) > 1:
raise NotImplementedError(
"Large files are not currently supported. Please open an issue in the ComfyUI repository."
)
async with aiohttp.ClientSession(headers={"Content-Type": "video/mp4"}) as session:
if isinstance(src_video_stream, BytesIO):
src_video_stream.seek(0)
async with session.put(upload_res.urls[0], data=src_video_stream, raise_for_status=True) as res:
upload_etag = res.headers["Etag"]
else:
with builtins.open(src_video_stream, "rb") as video_file:
async with session.put(upload_res.urls[0], data=video_file, raise_for_status=True) as res:
upload_etag = res.headers["Etag"]
await sync_op(
cls,
ApiEndpoint(
path=f"/proxy/topaz/video/{initial_res.requestId}/complete-upload",
method="PATCH",
),
response_model=topaz_api.VideoCompleteUploadResponse,
data=topaz_api.VideoCompleteUploadRequest(
uploadResults=[
topaz_api.VideoCompleteUploadRequestPart(
partNum=1,
eTag=upload_etag,
),
],
),
wait_label="Finalizing upload",
final_label_on_success="Upload completed",
)
final_response = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/topaz/video/{initial_res.requestId}/status"),
response_model=topaz_api.VideoStatusResponse,
status_extractor=lambda x: x.status,
progress_extractor=lambda x: getattr(x, "progress", 0),
price_extractor=lambda x: (x.estimates.cost[0] * 0.08 if x.estimates and x.estimates.cost[0] else None),
poll_interval=10.0,
max_poll_attempts=320,
)
return IO.NodeOutput(await download_url_to_video_output(final_response.download.url))
class TopazExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
TopazImageEnhance,
TopazVideoEnhance,
]
async def comfy_entrypoint() -> TopazExtension:
return TopazExtension()

View File

@@ -14,9 +14,9 @@ from comfy_api_nodes.util import (
poll_op,
sync_op,
upload_images_to_comfyapi,
validate_aspect_ratio_closeness,
validate_image_aspect_ratio_range,
validate_image_aspect_ratio,
validate_image_dimensions,
validate_images_aspect_ratio_closeness,
)
VIDU_TEXT_TO_VIDEO = "/proxy/vidu/text2video"
@@ -114,7 +114,7 @@ async def execute_task(
cls,
ApiEndpoint(path=VIDU_GET_GENERATION_STATUS % response.task_id),
response_model=TaskStatusResponse,
status_extractor=lambda r: r.state.value,
status_extractor=lambda r: r.state,
estimated_duration=estimated_duration,
)
@@ -307,7 +307,7 @@ class ViduImageToVideoNode(IO.ComfyNode):
) -> IO.NodeOutput:
if get_number_of_images(image) > 1:
raise ValueError("Only one input image is allowed.")
validate_image_aspect_ratio_range(image, (1, 4), (4, 1))
validate_image_aspect_ratio(image, (1, 4), (4, 1))
payload = TaskCreationRequest(
model_name=model,
prompt=prompt,
@@ -423,7 +423,7 @@ class ViduReferenceVideoNode(IO.ComfyNode):
if a > 7:
raise ValueError("Too many images, maximum allowed is 7.")
for image in images:
validate_image_aspect_ratio_range(image, (1, 4), (4, 1))
validate_image_aspect_ratio(image, (1, 4), (4, 1))
validate_image_dimensions(image, min_width=128, min_height=128)
payload = TaskCreationRequest(
model_name=model,
@@ -533,7 +533,7 @@ class ViduStartEndToVideoNode(IO.ComfyNode):
resolution: str,
movement_amplitude: str,
) -> IO.NodeOutput:
validate_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False)
validate_images_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False)
payload = TaskCreationRequest(
model_name=model,
prompt=prompt,

View File

@@ -14,9 +14,12 @@ from .conversions import (
downscale_image_tensor,
image_tensor_pair_to_batch,
pil_to_bytesio,
resize_mask_to_image,
tensor_to_base64_string,
tensor_to_bytesio,
tensor_to_pil,
text_filepath_to_base64_string,
text_filepath_to_data_uri,
trim_video,
video_to_base64_string,
)
@@ -33,13 +36,14 @@ from .upload_helpers import (
upload_video_to_comfyapi,
)
from .validation_utils import (
get_image_dimensions,
get_number_of_images,
validate_aspect_ratio_closeness,
validate_aspect_ratio_string,
validate_audio_duration,
validate_container_format_is_mp4,
validate_image_aspect_ratio,
validate_image_aspect_ratio_range,
validate_image_dimensions,
validate_images_aspect_ratio_closeness,
validate_string,
validate_video_dimensions,
validate_video_duration,
@@ -70,19 +74,23 @@ __all__ = [
"downscale_image_tensor",
"image_tensor_pair_to_batch",
"pil_to_bytesio",
"resize_mask_to_image",
"tensor_to_base64_string",
"tensor_to_bytesio",
"tensor_to_pil",
"text_filepath_to_base64_string",
"text_filepath_to_data_uri",
"trim_video",
"video_to_base64_string",
# Validation utilities
"get_image_dimensions",
"get_number_of_images",
"validate_aspect_ratio_closeness",
"validate_aspect_ratio_string",
"validate_audio_duration",
"validate_container_format_is_mp4",
"validate_image_aspect_ratio",
"validate_image_aspect_ratio_range",
"validate_image_dimensions",
"validate_images_aspect_ratio_closeness",
"validate_string",
"validate_video_dimensions",
"validate_video_duration",

View File

@@ -16,9 +16,9 @@ from pydantic import BaseModel
from comfy import utils
from comfy_api.latest import IO
from comfy_api_nodes.apis import request_logger
from server import PromptServer
from . import request_logger
from ._helpers import (
default_base_url,
get_auth_header,
@@ -63,6 +63,7 @@ class _RequestConfig:
estimated_total: Optional[int] = None
final_label_on_success: Optional[str] = "Completed"
progress_origin_ts: Optional[float] = None
price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None
@dataclass
@@ -77,9 +78,9 @@ class _PollUIState:
_RETRY_STATUS = {408, 429, 500, 502, 503, 504}
COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed"]
FAILED_STATUSES = ["cancelled", "canceled", "failed", "error"]
QUEUED_STATUSES = ["created", "queued", "queueing", "submitted"]
COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed", "finished", "done", "complete"]
FAILED_STATUSES = ["cancelled", "canceled", "canceling", "fail", "failed", "error"]
QUEUED_STATUSES = ["created", "queued", "queueing", "submitted", "initializing"]
async def sync_op(
@@ -87,6 +88,7 @@ async def sync_op(
endpoint: ApiEndpoint,
*,
response_model: Type[M],
price_extractor: Optional[Callable[[M], Optional[float]]] = None,
data: Optional[BaseModel] = None,
files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] = None,
content_type: str = "application/json",
@@ -104,6 +106,7 @@ async def sync_op(
raw = await sync_op_raw(
cls,
endpoint,
price_extractor=_wrap_model_extractor(response_model, price_extractor),
data=data,
files=files,
content_type=content_type,
@@ -175,6 +178,7 @@ async def sync_op_raw(
cls: type[IO.ComfyNode],
endpoint: ApiEndpoint,
*,
price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None,
data: Optional[Union[dict[str, Any], BaseModel]] = None,
files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] = None,
content_type: str = "application/json",
@@ -216,6 +220,7 @@ async def sync_op_raw(
estimated_total=estimated_duration,
final_label_on_success=final_label_on_success,
progress_origin_ts=progress_origin_ts,
price_extractor=price_extractor,
)
return await _request_base(cfg, expect_binary=as_binary)
@@ -424,7 +429,9 @@ def _display_text(
if status:
display_lines.append(f"Status: {status.capitalize() if isinstance(status, str) else status}")
if price is not None:
display_lines.append(f"Price: ${float(price):,.4f}")
p = f"{float(price):,.4f}".rstrip("0").rstrip(".")
if p != "0":
display_lines.append(f"Price: ${p}")
if text is not None:
display_lines.append(text)
if display_lines:
@@ -580,6 +587,7 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
delay = cfg.retry_delay
operation_succeeded: bool = False
final_elapsed_seconds: Optional[int] = None
extracted_price: Optional[float] = None
while True:
attempt += 1
stop_event = asyncio.Event()
@@ -589,7 +597,7 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
operation_id = _generate_operation_id(method, cfg.endpoint.path, attempt)
logging.debug("[DEBUG] HTTP %s %s (attempt %d)", method, url, attempt)
payload_headers = {"Accept": "*/*"}
payload_headers = {"Accept": "*/*"} if expect_binary else {"Accept": "application/json"}
if not parsed_url.scheme and not parsed_url.netloc: # is URL relative?
payload_headers.update(get_auth_header(cfg.node_cls))
if cfg.endpoint.headers:
@@ -767,6 +775,8 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
except json.JSONDecodeError:
payload = {"_raw": text}
response_content_to_log = payload if isinstance(payload, dict) else text
with contextlib.suppress(Exception):
extracted_price = cfg.price_extractor(payload) if cfg.price_extractor else None
operation_succeeded = True
final_elapsed_seconds = int(time.monotonic() - start_time)
try:
@@ -871,7 +881,7 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
else int(time.monotonic() - start_time)
),
estimated_total=cfg.estimated_total,
price=None,
price=extracted_price,
is_queued=False,
processing_elapsed_seconds=final_elapsed_seconds,
)

View File

@@ -1,6 +1,7 @@
import base64
import logging
import math
import mimetypes
import uuid
from io import BytesIO
from typing import Optional
@@ -12,7 +13,7 @@ from PIL import Image
from comfy.utils import common_upscale
from comfy_api.latest import Input, InputImpl
from comfy_api.util import VideoContainer, VideoCodec
from comfy_api.util import VideoCodec, VideoContainer
from ._helpers import mimetype_to_extension
@@ -430,3 +431,40 @@ def audio_bytes_to_audio_input(audio_bytes: bytes) -> dict:
wav = torch.cat(frames, dim=1) # [C, T]
wav = _f32_pcm(wav)
return {"waveform": wav.unsqueeze(0).contiguous(), "sample_rate": out_sr}
def resize_mask_to_image(
mask: torch.Tensor,
image: torch.Tensor,
upscale_method="nearest-exact",
crop="disabled",
allow_gradient=True,
add_channel_dim=False,
):
"""Resize mask to be the same dimensions as an image, while maintaining proper format for API calls."""
_, height, width, _ = image.shape
mask = mask.unsqueeze(-1)
mask = mask.movedim(-1, 1)
mask = common_upscale(mask, width=width, height=height, upscale_method=upscale_method, crop=crop)
mask = mask.movedim(1, -1)
if not add_channel_dim:
mask = mask.squeeze(-1)
if not allow_gradient:
mask = (mask > 0.5).float()
return mask
def text_filepath_to_base64_string(filepath: str) -> str:
"""Converts a text file to a base64 string."""
with open(filepath, "rb") as f:
file_content = f.read()
return base64.b64encode(file_content).decode("utf-8")
def text_filepath_to_data_uri(filepath: str) -> str:
"""Converts a text file to a data URI."""
base64_string = text_filepath_to_base64_string(filepath)
mime_type, _ = mimetypes.guess_type(filepath)
if mime_type is None:
mime_type = "application/octet-stream"
return f"data:{mime_type};base64,{base64_string}"

View File

@@ -12,8 +12,8 @@ from aiohttp.client_exceptions import ClientError, ContentTypeError
from comfy_api.input_impl import VideoFromFile
from comfy_api.latest import IO as COMFY_IO
from comfy_api_nodes.apis import request_logger
from . import request_logger
from ._helpers import (
default_base_url,
get_auth_header,
@@ -232,11 +232,12 @@ async def download_url_to_video_output(
video_url: str,
*,
timeout: float = None,
max_retries: int = 5,
cls: type[COMFY_IO.ComfyNode] = None,
) -> VideoFromFile:
"""Downloads a video from a URL and returns a `VIDEO` output."""
result = BytesIO()
await download_url_to_bytesio(video_url, result, timeout=timeout, cls=cls)
await download_url_to_bytesio(video_url, result, timeout=timeout, max_retries=max_retries, cls=cls)
return VideoFromFile(result)

View File

@@ -1,11 +1,11 @@
from __future__ import annotations
import os
import datetime
import hashlib
import json
import logging
import os
import re
import hashlib
from typing import Any
import folder_paths

View File

@@ -13,8 +13,8 @@ from pydantic import BaseModel, Field
from comfy_api.latest import IO, Input
from comfy_api.util import VideoCodec, VideoContainer
from comfy_api_nodes.apis import request_logger
from . import request_logger
from ._helpers import is_processing_interrupted, sleep_with_interrupt
from .client import (
ApiEndpoint,

View File

@@ -37,63 +37,62 @@ def validate_image_dimensions(
def validate_image_aspect_ratio(
image: torch.Tensor,
min_aspect_ratio: Optional[float] = None,
max_aspect_ratio: Optional[float] = None,
):
width, height = get_image_dimensions(image)
aspect_ratio = width / height
if min_aspect_ratio is not None and aspect_ratio < min_aspect_ratio:
raise ValueError(f"Image aspect ratio must be at least {min_aspect_ratio}, got {aspect_ratio}")
if max_aspect_ratio is not None and aspect_ratio > max_aspect_ratio:
raise ValueError(f"Image aspect ratio must be at most {max_aspect_ratio}, got {aspect_ratio}")
def validate_image_aspect_ratio_range(
image: torch.Tensor,
min_ratio: tuple[float, float], # e.g. (1, 4)
max_ratio: tuple[float, float], # e.g. (4, 1)
min_ratio: Optional[tuple[float, float]] = None, # e.g. (1, 4)
max_ratio: Optional[tuple[float, float]] = None, # e.g. (4, 1)
*,
strict: bool = True, # True -> (min, max); False -> [min, max]
) -> float:
a1, b1 = min_ratio
a2, b2 = max_ratio
if a1 <= 0 or b1 <= 0 or a2 <= 0 or b2 <= 0:
raise ValueError("Ratios must be positive, like (1, 4) or (4, 1).")
lo, hi = (a1 / b1), (a2 / b2)
if lo > hi:
lo, hi = hi, lo
a1, b1, a2, b2 = a2, b2, a1, b1 # swap only for error text
"""Validates that image aspect ratio is within min and max. If a bound is None, that side is not checked."""
w, h = get_image_dimensions(image)
if w <= 0 or h <= 0:
raise ValueError(f"Invalid image dimensions: {w}x{h}")
ar = w / h
ok = (lo < ar < hi) if strict else (lo <= ar <= hi)
if not ok:
op = "<" if strict else ""
raise ValueError(f"Image aspect ratio {ar:.6g} is outside allowed range: {a1}:{b1} {op} ratio {op} {a2}:{b2}")
_assert_ratio_bounds(ar, min_ratio=min_ratio, max_ratio=max_ratio, strict=strict)
return ar
def validate_aspect_ratio_closeness(
start_img,
end_img,
min_rel: float,
max_rel: float,
def validate_images_aspect_ratio_closeness(
first_image: torch.Tensor,
second_image: torch.Tensor,
min_rel: float, # e.g. 0.8
max_rel: float, # e.g. 1.25
*,
strict: bool = False, # True => exclusive, False => inclusive
) -> None:
w1, h1 = get_image_dimensions(start_img)
w2, h2 = get_image_dimensions(end_img)
strict: bool = False, # True -> (min, max); False -> [min, max]
) -> float:
"""
Validates that the two images' aspect ratios are 'close'.
The closeness factor is C = max(ar1, ar2) / min(ar1, ar2) (C >= 1).
We require C <= limit, where limit = max(max_rel, 1.0 / min_rel).
Returns the computed closeness factor C.
"""
w1, h1 = get_image_dimensions(first_image)
w2, h2 = get_image_dimensions(second_image)
if min(w1, h1, w2, h2) <= 0:
raise ValueError("Invalid image dimensions")
ar1 = w1 / h1
ar2 = w2 / h2
# Normalize so it is symmetric (no need to check both ar1/ar2 and ar2/ar1)
closeness = max(ar1, ar2) / min(ar1, ar2)
limit = max(max_rel, 1.0 / min_rel) # for 0.8..1.25 this is 1.25
limit = max(max_rel, 1.0 / min_rel)
if (closeness >= limit) if strict else (closeness > limit):
raise ValueError(f"Aspect ratios must be close: start/end={ar1/ar2:.4f}, allowed range {min_rel}{max_rel}.")
raise ValueError(
f"Aspect ratios must be close: ar1/ar2={ar1/ar2:.2g}, "
f"allowed range {min_rel}{max_rel} (limit {limit:.2g})."
)
return closeness
def validate_aspect_ratio_string(
aspect_ratio: str,
min_ratio: Optional[tuple[float, float]] = None, # e.g. (1, 4)
max_ratio: Optional[tuple[float, float]] = None, # e.g. (4, 1)
*,
strict: bool = False, # True -> (min, max); False -> [min, max]
) -> float:
"""Parses 'X:Y' and validates it against optional bounds. Returns the numeric ratio."""
ar = _parse_aspect_ratio_string(aspect_ratio)
_assert_ratio_bounds(ar, min_ratio=min_ratio, max_ratio=max_ratio, strict=strict)
return ar
def validate_video_dimensions(
@@ -183,3 +182,49 @@ def validate_container_format_is_mp4(video: VideoInput) -> None:
container_format = video.get_container_format()
if container_format not in ["mp4", "mov,mp4,m4a,3gp,3g2,mj2"]:
raise ValueError(f"Only MP4 container format supported. Got: {container_format}")
def _ratio_from_tuple(r: tuple[float, float]) -> float:
a, b = r
if a <= 0 or b <= 0:
raise ValueError(f"Ratios must be positive, got {a}:{b}.")
return a / b
def _assert_ratio_bounds(
ar: float,
*,
min_ratio: Optional[tuple[float, float]] = None,
max_ratio: Optional[tuple[float, float]] = None,
strict: bool = True,
) -> None:
"""Validate a numeric aspect ratio against optional min/max ratio bounds."""
lo = _ratio_from_tuple(min_ratio) if min_ratio is not None else None
hi = _ratio_from_tuple(max_ratio) if max_ratio is not None else None
if lo is not None and hi is not None and lo > hi:
lo, hi = hi, lo # normalize order if caller swapped them
if lo is not None:
if (ar <= lo) if strict else (ar < lo):
op = "<" if strict else ""
raise ValueError(f"Aspect ratio `{ar:.2g}` must be {op} {lo:.2g}.")
if hi is not None:
if (ar >= hi) if strict else (ar > hi):
op = "<" if strict else ""
raise ValueError(f"Aspect ratio `{ar:.2g}` must be {op} {hi:.2g}.")
def _parse_aspect_ratio_string(ar_str: str) -> float:
"""Parse 'X:Y' with integer parts into a positive float ratio X/Y."""
parts = ar_str.split(":")
if len(parts) != 2:
raise ValueError(f"Aspect ratio must be 'X:Y' (e.g., 16:9), got '{ar_str}'.")
try:
a = int(parts[0].strip())
b = int(parts[1].strip())
except ValueError as exc:
raise ValueError(f"Aspect ratio must contain integers separated by ':', got '{ar_str}'.") from exc
if a <= 0 or b <= 0:
raise ValueError(f"Aspect ratio parts must be positive integers, got {a}:{b}.")
return a / b

View File

@@ -1,4 +1,9 @@
import bisect
import gc
import itertools
import psutil
import time
import torch
from typing import Sequence, Mapping, Dict
from comfy_execution.graph import DynamicPrompt
from abc import ABC, abstractmethod
@@ -48,7 +53,7 @@ class Unhashable:
def to_hashable(obj):
# So that we don't infinitely recurse since frozenset and tuples
# are Sequences.
if isinstance(obj, (int, float, str, bool, type(None))):
if isinstance(obj, (int, float, str, bool, bytes, type(None))):
return obj
elif isinstance(obj, Mapping):
return frozenset([(to_hashable(k), to_hashable(v)) for k, v in sorted(obj.items())])
@@ -188,6 +193,9 @@ class BasicCache:
self._clean_cache()
self._clean_subcaches()
def poll(self, **kwargs):
pass
def _set_immediate(self, node_id, value):
assert self.initialized
cache_key = self.cache_key_set.get_data_key(node_id)
@@ -276,6 +284,9 @@ class NullCache:
def clean_unused(self):
pass
def poll(self, **kwargs):
pass
def get(self, node_id):
return None
@@ -336,3 +347,77 @@ class LRUCache(BasicCache):
self._mark_used(child_id)
self.children[cache_key].append(self.cache_key_set.get_data_key(child_id))
return self
#Iterating the cache for usage analysis might be expensive, so if we trigger make sure
#to take a chunk out to give breathing space on high-node / low-ram-per-node flows.
RAM_CACHE_HYSTERESIS = 1.1
#This is kinda in GB but not really. It needs to be non-zero for the below heuristic
#and as long as Multi GB models dwarf this it will approximate OOM scoring OK
RAM_CACHE_DEFAULT_RAM_USAGE = 0.1
#Exponential bias towards evicting older workflows so garbage will be taken out
#in constantly changing setups.
RAM_CACHE_OLD_WORKFLOW_OOM_MULTIPLIER = 1.3
class RAMPressureCache(LRUCache):
def __init__(self, key_class):
super().__init__(key_class, 0)
self.timestamps = {}
def clean_unused(self):
self._clean_subcaches()
def set(self, node_id, value):
self.timestamps[self.cache_key_set.get_data_key(node_id)] = time.time()
super().set(node_id, value)
def get(self, node_id):
self.timestamps[self.cache_key_set.get_data_key(node_id)] = time.time()
return super().get(node_id)
def poll(self, ram_headroom):
def _ram_gb():
return psutil.virtual_memory().available / (1024**3)
if _ram_gb() > ram_headroom:
return
gc.collect()
if _ram_gb() > ram_headroom:
return
clean_list = []
for key, (outputs, _), in self.cache.items():
oom_score = RAM_CACHE_OLD_WORKFLOW_OOM_MULTIPLIER ** (self.generation - self.used_generation[key])
ram_usage = RAM_CACHE_DEFAULT_RAM_USAGE
def scan_list_for_ram_usage(outputs):
nonlocal ram_usage
if outputs is None:
return
for output in outputs:
if isinstance(output, list):
scan_list_for_ram_usage(output)
elif isinstance(output, torch.Tensor) and output.device.type == 'cpu':
#score Tensors at a 50% discount for RAM usage as they are likely to
#be high value intermediates
ram_usage += (output.numel() * output.element_size()) * 0.5
elif hasattr(output, "get_ram_usage"):
ram_usage += output.get_ram_usage()
scan_list_for_ram_usage(outputs)
oom_score *= ram_usage
#In the case where we have no information on the node ram usage at all,
#break OOM score ties on the last touch timestamp (pure LRU)
bisect.insort(clean_list, (oom_score, self.timestamps[key], key))
while _ram_gb() < ram_headroom * RAM_CACHE_HYSTERESIS and clean_list:
_, _, key = clean_list.pop()
del self.cache[key]
gc.collect()

View File

@@ -209,10 +209,15 @@ class ExecutionList(TopologicalSort):
self.execution_cache_listeners[from_node_id] = set()
self.execution_cache_listeners[from_node_id].add(to_node_id)
def get_output_cache(self, from_node_id, to_node_id):
def get_cache(self, from_node_id, to_node_id):
if not to_node_id in self.execution_cache:
return None
return self.execution_cache[to_node_id].get(from_node_id)
value = self.execution_cache[to_node_id].get(from_node_id)
if value is None:
return None
#Write back to the main cache on touch.
self.output_cache.set(from_node_id, value)
return value
def cache_update(self, node_id, value):
if node_id in self.execution_cache_listeners:

View File

@@ -11,13 +11,13 @@ if TYPE_CHECKING:
def easycache_forward_wrapper(executor, *args, **kwargs):
# get values from args
x: torch.Tensor = args[0]
transformer_options: dict[str] = args[-1]
if not isinstance(transformer_options, dict):
transformer_options = kwargs.get("transformer_options")
if not transformer_options:
transformer_options = args[-2]
easycache: EasyCacheHolder = transformer_options["easycache"]
x: torch.Tensor = args[0][:, :easycache.output_channels]
sigmas = transformer_options["sigmas"]
uuids = transformer_options["uuids"]
if sigmas is not None and easycache.is_past_end_timestep(sigmas):
@@ -82,13 +82,13 @@ def easycache_forward_wrapper(executor, *args, **kwargs):
def lazycache_predict_noise_wrapper(executor, *args, **kwargs):
# get values from args
x: torch.Tensor = args[0]
timestep: float = args[1]
model_options: dict[str] = args[2]
easycache: LazyCacheHolder = model_options["transformer_options"]["easycache"]
if easycache.is_past_end_timestep(timestep):
return executor(*args, **kwargs)
# prepare next x_prev
x: torch.Tensor = args[0][:, :easycache.output_channels]
next_x_prev = x
input_change = None
do_easycache = easycache.should_do_easycache(timestep)
@@ -173,7 +173,7 @@ def easycache_sample_wrapper(executor, *args, **kwargs):
class EasyCacheHolder:
def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False):
def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False, output_channels: int=None):
self.name = "EasyCache"
self.reuse_threshold = reuse_threshold
self.start_percent = start_percent
@@ -202,6 +202,7 @@ class EasyCacheHolder:
self.allow_mismatch = True
self.cut_from_start = True
self.state_metadata = None
self.output_channels = output_channels
def is_past_end_timestep(self, timestep: float) -> bool:
return not (timestep[0] > self.end_t).item()
@@ -264,7 +265,7 @@ class EasyCacheHolder:
else:
slicing.append(slice(None))
batch_slice = batch_slice + slicing
x[batch_slice] += self.uuid_cache_diffs[uuid].to(x.device)
x[tuple(batch_slice)] += self.uuid_cache_diffs[uuid].to(x.device)
return x
def update_cache_diff(self, output: torch.Tensor, x: torch.Tensor, uuids: list[UUID]):
@@ -283,7 +284,7 @@ class EasyCacheHolder:
else:
slicing.append(slice(None))
skip_dim = False
x = x[slicing]
x = x[tuple(slicing)]
diff = output - x
batch_offset = diff.shape[0] // len(uuids)
for i, uuid in enumerate(uuids):
@@ -323,7 +324,7 @@ class EasyCacheHolder:
return self
def clone(self):
return EasyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose)
return EasyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose, output_channels=self.output_channels)
class EasyCacheNode(io.ComfyNode):
@@ -350,7 +351,7 @@ class EasyCacheNode(io.ComfyNode):
@classmethod
def execute(cls, model: io.Model.Type, reuse_threshold: float, start_percent: float, end_percent: float, verbose: bool) -> io.NodeOutput:
model = model.clone()
model.model_options["transformer_options"]["easycache"] = EasyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose)
model.model_options["transformer_options"]["easycache"] = EasyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose, output_channels=model.model.latent_format.latent_channels)
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, "easycache", easycache_sample_wrapper)
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.CALC_COND_BATCH, "easycache", easycache_calc_cond_batch_wrapper)
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, "easycache", easycache_forward_wrapper)
@@ -358,7 +359,7 @@ class EasyCacheNode(io.ComfyNode):
class LazyCacheHolder:
def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False):
def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int, offload_cache_diff: bool, verbose: bool=False, output_channels: int=None):
self.name = "LazyCache"
self.reuse_threshold = reuse_threshold
self.start_percent = start_percent
@@ -382,6 +383,7 @@ class LazyCacheHolder:
self.approx_output_change_rates = []
self.total_steps_skipped = 0
self.state_metadata = None
self.output_channels = output_channels
def has_cache_diff(self) -> bool:
return self.cache_diff is not None
@@ -456,7 +458,7 @@ class LazyCacheHolder:
return self
def clone(self):
return LazyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose)
return LazyCacheHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.offload_cache_diff, self.verbose, output_channels=self.output_channels)
class LazyCacheNode(io.ComfyNode):
@classmethod
@@ -482,7 +484,7 @@ class LazyCacheNode(io.ComfyNode):
@classmethod
def execute(cls, model: io.Model.Type, reuse_threshold: float, start_percent: float, end_percent: float, verbose: bool) -> io.NodeOutput:
model = model.clone()
model.model_options["transformer_options"]["easycache"] = LazyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose)
model.model_options["transformer_options"]["easycache"] = LazyCacheHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, offload_cache_diff=False, verbose=verbose, output_channels=model.model.latent_format.latent_channels)
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, "lazycache", easycache_sample_wrapper)
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.PREDICT_NOISE, "lazycache", lazycache_predict_noise_wrapper)
return io.NodeOutput(model)

View File

@@ -2,7 +2,10 @@ import node_helpers
import comfy.utils
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
import comfy.model_management
import torch
import math
import nodes
class CLIPTextEncodeFlux(io.ComfyNode):
@classmethod
@@ -30,6 +33,27 @@ class CLIPTextEncodeFlux(io.ComfyNode):
encode = execute # TODO: remove
class EmptyFlux2LatentImage(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="EmptyFlux2LatentImage",
display_name="Empty Flux 2 Latent",
category="latent",
inputs=[
io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("batch_size", default=1, min=1, max=4096),
],
outputs=[
io.Latent.Output(),
],
)
@classmethod
def execute(cls, width, height, batch_size=1) -> io.NodeOutput:
latent = torch.zeros([batch_size, 128, height // 16, width // 16], device=comfy.model_management.intermediate_device())
return io.NodeOutput({"samples": latent})
class FluxGuidance(io.ComfyNode):
@classmethod
@@ -154,6 +178,58 @@ class FluxKontextMultiReferenceLatentMethod(io.ComfyNode):
append = execute # TODO: remove
def generalized_time_snr_shift(t, mu: float, sigma: float):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def compute_empirical_mu(image_seq_len: int, num_steps: int) -> float:
a1, b1 = 8.73809524e-05, 1.89833333
a2, b2 = 0.00016927, 0.45666666
if image_seq_len > 4300:
mu = a2 * image_seq_len + b2
return float(mu)
m_200 = a2 * image_seq_len + b2
m_10 = a1 * image_seq_len + b1
a = (m_200 - m_10) / 190.0
b = m_200 - 200.0 * a
mu = a * num_steps + b
return float(mu)
def get_schedule(num_steps: int, image_seq_len: int) -> list[float]:
mu = compute_empirical_mu(image_seq_len, num_steps)
timesteps = torch.linspace(1, 0, num_steps + 1)
timesteps = generalized_time_snr_shift(timesteps, mu, 1.0)
return timesteps
class Flux2Scheduler(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="Flux2Scheduler",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Int.Input("steps", default=20, min=1, max=4096),
io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=1),
io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=1),
],
outputs=[
io.Sigmas.Output(),
],
)
@classmethod
def execute(cls, steps, width, height) -> io.NodeOutput:
seq_len = (width * height / (16 * 16))
sigmas = get_schedule(steps, round(seq_len))
return io.NodeOutput(sigmas)
class FluxExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
@@ -163,6 +239,8 @@ class FluxExtension(ComfyExtension):
FluxDisableGuidance,
FluxKontextImageScale,
FluxKontextMultiReferenceLatentMethod,
EmptyFlux2LatentImage,
Flux2Scheduler,
]

View File

@@ -4,7 +4,8 @@ import torch
import comfy.model_management
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
from comfy.ldm.hunyuan_video.upsampler import HunyuanVideo15SRModel
import folder_paths
class CLIPTextEncodeHunyuanDiT(io.ComfyNode):
@classmethod
@@ -37,6 +38,7 @@ class EmptyHunyuanLatentVideo(io.ComfyNode):
def define_schema(cls):
return io.Schema(
node_id="EmptyHunyuanLatentVideo",
display_name="Empty HunyuanVideo 1.0 Latent",
category="latent/video",
inputs=[
io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16),
@@ -57,6 +59,198 @@ class EmptyHunyuanLatentVideo(io.ComfyNode):
generate = execute # TODO: remove
class EmptyHunyuanVideo15Latent(EmptyHunyuanLatentVideo):
@classmethod
def define_schema(cls):
schema = super().define_schema()
schema.node_id = "EmptyHunyuanVideo15Latent"
schema.display_name = "Empty HunyuanVideo 1.5 Latent"
return schema
@classmethod
def execute(cls, width, height, length, batch_size=1) -> io.NodeOutput:
# Using scale factor of 16 instead of 8
latent = torch.zeros([batch_size, 32, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device())
return io.NodeOutput({"samples": latent})
class HunyuanVideo15ImageToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="HunyuanVideo15ImageToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=33, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Image.Input("start_image", optional=True),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 32, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
encoded = vae.encode(start_image[:, :, :, :3])
concat_latent_image = torch.zeros((latent.shape[0], 32, latent.shape[2], latent.shape[3], latent.shape[4]), device=comfy.model_management.intermediate_device())
concat_latent_image[:, :, :encoded.shape[2], :, :] = encoded
mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype)
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent)
class HunyuanVideo15SuperResolution(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="HunyuanVideo15SuperResolution",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae", optional=True),
io.Image.Input("start_image", optional=True),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
io.Latent.Input("latent"),
io.Float.Input("noise_augmentation", default=0.70, min=0.0, max=1.0, step=0.01),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, latent, noise_augmentation, vae=None, start_image=None, clip_vision_output=None) -> io.NodeOutput:
in_latent = latent["samples"]
in_channels = in_latent.shape[1]
cond_latent = torch.zeros([in_latent.shape[0], in_channels * 2 + 2, in_latent.shape[-3], in_latent.shape[-2], in_latent.shape[-1]], device=comfy.model_management.intermediate_device())
cond_latent[:, in_channels + 1 : 2 * in_channels + 1] = in_latent
cond_latent[:, 2 * in_channels + 1] = 1
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image.movedim(-1, 1), in_latent.shape[-1] * 16, in_latent.shape[-2] * 16, "bilinear", "center").movedim(1, -1)
encoded = vae.encode(start_image[:, :, :, :3])
cond_latent[:, :in_channels, :encoded.shape[2], :, :] = encoded
cond_latent[:, in_channels + 1, 0] = 1
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": cond_latent, "noise_augmentation": noise_augmentation})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": cond_latent, "noise_augmentation": noise_augmentation})
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
return io.NodeOutput(positive, negative, latent)
class LatentUpscaleModelLoader(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="LatentUpscaleModelLoader",
display_name="Load Latent Upscale Model",
category="loaders",
inputs=[
io.Combo.Input("model_name", options=folder_paths.get_filename_list("latent_upscale_models")),
],
outputs=[
io.LatentUpscaleModel.Output(),
],
)
@classmethod
def execute(cls, model_name) -> io.NodeOutput:
model_path = folder_paths.get_full_path_or_raise("latent_upscale_models", model_name)
sd = comfy.utils.load_torch_file(model_path, safe_load=True)
if "blocks.0.block.0.conv.weight" in sd:
config = {
"in_channels": sd["in_conv.conv.weight"].shape[1],
"out_channels": sd["out_conv.conv.weight"].shape[0],
"hidden_channels": sd["in_conv.conv.weight"].shape[0],
"num_blocks": len([k for k in sd.keys() if k.startswith("blocks.") and k.endswith(".block.0.conv.weight")]),
"global_residual": False,
}
model_type = "720p"
elif "up.0.block.0.conv1.conv.weight" in sd:
sd = {key.replace("nin_shortcut", "nin_shortcut.conv", 1): value for key, value in sd.items()}
config = {
"z_channels": sd["conv_in.conv.weight"].shape[1],
"out_channels": sd["conv_out.conv.weight"].shape[0],
"block_out_channels": tuple(sd[f"up.{i}.block.0.conv1.conv.weight"].shape[0] for i in range(len([k for k in sd.keys() if k.startswith("up.") and k.endswith(".block.0.conv1.conv.weight")]))),
}
model_type = "1080p"
model = HunyuanVideo15SRModel(model_type, config)
model.load_sd(sd)
return io.NodeOutput(model)
class HunyuanVideo15LatentUpscaleWithModel(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="HunyuanVideo15LatentUpscaleWithModel",
display_name="Hunyuan Video 15 Latent Upscale With Model",
category="latent",
inputs=[
io.LatentUpscaleModel.Input("model"),
io.Latent.Input("samples"),
io.Combo.Input("upscale_method", options=["nearest-exact", "bilinear", "area", "bicubic", "bislerp"], default="bilinear"),
io.Int.Input("width", default=1280, min=0, max=16384, step=8),
io.Int.Input("height", default=720, min=0, max=16384, step=8),
io.Combo.Input("crop", options=["disabled", "center"]),
],
outputs=[
io.Latent.Output(),
],
)
@classmethod
def execute(cls, model, samples, upscale_method, width, height, crop) -> io.NodeOutput:
if width == 0 and height == 0:
return io.NodeOutput(samples)
else:
if width == 0:
height = max(64, height)
width = max(64, round(samples["samples"].shape[-1] * height / samples["samples"].shape[-2]))
elif height == 0:
width = max(64, width)
height = max(64, round(samples["samples"].shape[-2] * width / samples["samples"].shape[-1]))
else:
width = max(64, width)
height = max(64, height)
s = comfy.utils.common_upscale(samples["samples"], width // 16, height // 16, upscale_method, crop)
s = model.resample_latent(s)
return io.NodeOutput({"samples": s.cpu().float()})
PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = (
"<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: "
"1. The main content and theme of the video."
@@ -210,6 +404,11 @@ class HunyuanExtension(ComfyExtension):
CLIPTextEncodeHunyuanDiT,
TextEncodeHunyuanVideo_ImageToVideo,
EmptyHunyuanLatentVideo,
EmptyHunyuanVideo15Latent,
HunyuanVideo15ImageToVideo,
HunyuanVideo15SuperResolution,
HunyuanVideo15LatentUpscaleWithModel,
LatentUpscaleModelLoader,
HunyuanImageToVideo,
EmptyHunyuanImageLatent,
HunyuanRefinerLatent,

View File

@@ -7,63 +7,79 @@ from comfy.ldm.modules.diffusionmodules.mmdit import get_1d_sincos_pos_embed_fro
import folder_paths
import comfy.model_management
from comfy.cli_args import args
from typing_extensions import override
from comfy_api.latest import ComfyExtension, IO, Types
from comfy_api.latest._util import MESH, VOXEL # only for backward compatibility if someone import it from this file (will be removed later) # noqa
class EmptyLatentHunyuan3Dv2:
class EmptyLatentHunyuan3Dv2(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"resolution": ("INT", {"default": 3072, "min": 1, "max": 8192}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
}
}
def define_schema(cls):
return IO.Schema(
node_id="EmptyLatentHunyuan3Dv2",
category="latent/3d",
inputs=[
IO.Int.Input("resolution", default=3072, min=1, max=8192),
IO.Int.Input("batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."),
],
outputs=[
IO.Latent.Output(),
]
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/3d"
def generate(self, resolution, batch_size):
@classmethod
def execute(cls, resolution, batch_size) -> IO.NodeOutput:
latent = torch.zeros([batch_size, 64, resolution], device=comfy.model_management.intermediate_device())
return ({"samples": latent, "type": "hunyuan3dv2"}, )
return IO.NodeOutput({"samples": latent, "type": "hunyuan3dv2"})
class Hunyuan3Dv2Conditioning:
generate = execute # TODO: remove
class Hunyuan3Dv2Conditioning(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"clip_vision_output": ("CLIP_VISION_OUTPUT",),
}}
def define_schema(cls):
return IO.Schema(
node_id="Hunyuan3Dv2Conditioning",
category="conditioning/video_models",
inputs=[
IO.ClipVisionOutput.Input("clip_vision_output"),
],
outputs=[
IO.Conditioning.Output(display_name="positive"),
IO.Conditioning.Output(display_name="negative"),
]
)
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, clip_vision_output):
@classmethod
def execute(cls, clip_vision_output) -> IO.NodeOutput:
embeds = clip_vision_output.last_hidden_state
positive = [[embeds, {}]]
negative = [[torch.zeros_like(embeds), {}]]
return (positive, negative)
return IO.NodeOutput(positive, negative)
encode = execute # TODO: remove
class Hunyuan3Dv2ConditioningMultiView:
class Hunyuan3Dv2ConditioningMultiView(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {},
"optional": {"front": ("CLIP_VISION_OUTPUT",),
"left": ("CLIP_VISION_OUTPUT",),
"back": ("CLIP_VISION_OUTPUT",),
"right": ("CLIP_VISION_OUTPUT",), }}
def define_schema(cls):
return IO.Schema(
node_id="Hunyuan3Dv2ConditioningMultiView",
category="conditioning/video_models",
inputs=[
IO.ClipVisionOutput.Input("front", optional=True),
IO.ClipVisionOutput.Input("left", optional=True),
IO.ClipVisionOutput.Input("back", optional=True),
IO.ClipVisionOutput.Input("right", optional=True),
],
outputs=[
IO.Conditioning.Output(display_name="positive"),
IO.Conditioning.Output(display_name="negative"),
]
)
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, front=None, left=None, back=None, right=None):
@classmethod
def execute(cls, front=None, left=None, back=None, right=None) -> IO.NodeOutput:
all_embeds = [front, left, back, right]
out = []
pos_embeds = None
@@ -76,29 +92,35 @@ class Hunyuan3Dv2ConditioningMultiView:
embeds = torch.cat(out, dim=1)
positive = [[embeds, {}]]
negative = [[torch.zeros_like(embeds), {}]]
return (positive, negative)
return IO.NodeOutput(positive, negative)
encode = execute # TODO: remove
class VOXEL:
def __init__(self, data):
self.data = data
class VAEDecodeHunyuan3D:
class VAEDecodeHunyuan3D(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"samples": ("LATENT", ),
"vae": ("VAE", ),
"num_chunks": ("INT", {"default": 8000, "min": 1000, "max": 500000}),
"octree_resolution": ("INT", {"default": 256, "min": 16, "max": 512}),
}}
RETURN_TYPES = ("VOXEL",)
FUNCTION = "decode"
def define_schema(cls):
return IO.Schema(
node_id="VAEDecodeHunyuan3D",
category="latent/3d",
inputs=[
IO.Latent.Input("samples"),
IO.Vae.Input("vae"),
IO.Int.Input("num_chunks", default=8000, min=1000, max=500000),
IO.Int.Input("octree_resolution", default=256, min=16, max=512),
],
outputs=[
IO.Voxel.Output(),
]
)
CATEGORY = "latent/3d"
@classmethod
def execute(cls, vae, samples, num_chunks, octree_resolution) -> IO.NodeOutput:
voxels = Types.VOXEL(vae.decode(samples["samples"], vae_options={"num_chunks": num_chunks, "octree_resolution": octree_resolution}))
return IO.NodeOutput(voxels)
decode = execute # TODO: remove
def decode(self, vae, samples, num_chunks, octree_resolution):
voxels = VOXEL(vae.decode(samples["samples"], vae_options={"num_chunks": num_chunks, "octree_resolution": octree_resolution}))
return (voxels, )
def voxel_to_mesh(voxels, threshold=0.5, device=None):
if device is None:
@@ -396,24 +418,24 @@ def voxel_to_mesh_surfnet(voxels, threshold=0.5, device=None):
return final_vertices, faces
class MESH:
def __init__(self, vertices, faces):
self.vertices = vertices
self.faces = faces
class VoxelToMeshBasic:
class VoxelToMeshBasic(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"voxel": ("VOXEL", ),
"threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("MESH",)
FUNCTION = "decode"
def define_schema(cls):
return IO.Schema(
node_id="VoxelToMeshBasic",
category="3d",
inputs=[
IO.Voxel.Input("voxel"),
IO.Float.Input("threshold", default=0.6, min=-1.0, max=1.0, step=0.01),
],
outputs=[
IO.Mesh.Output(),
]
)
CATEGORY = "3d"
def decode(self, voxel, threshold):
@classmethod
def execute(cls, voxel, threshold) -> IO.NodeOutput:
vertices = []
faces = []
for x in voxel.data:
@@ -421,21 +443,29 @@ class VoxelToMeshBasic:
vertices.append(v)
faces.append(f)
return (MESH(torch.stack(vertices), torch.stack(faces)), )
return IO.NodeOutput(Types.MESH(torch.stack(vertices), torch.stack(faces)))
class VoxelToMesh:
decode = execute # TODO: remove
class VoxelToMesh(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"voxel": ("VOXEL", ),
"algorithm": (["surface net", "basic"], ),
"threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("MESH",)
FUNCTION = "decode"
def define_schema(cls):
return IO.Schema(
node_id="VoxelToMesh",
category="3d",
inputs=[
IO.Voxel.Input("voxel"),
IO.Combo.Input("algorithm", options=["surface net", "basic"]),
IO.Float.Input("threshold", default=0.6, min=-1.0, max=1.0, step=0.01),
],
outputs=[
IO.Mesh.Output(),
]
)
CATEGORY = "3d"
def decode(self, voxel, algorithm, threshold):
@classmethod
def execute(cls, voxel, algorithm, threshold) -> IO.NodeOutput:
vertices = []
faces = []
@@ -449,7 +479,9 @@ class VoxelToMesh:
vertices.append(v)
faces.append(f)
return (MESH(torch.stack(vertices), torch.stack(faces)), )
return IO.NodeOutput(Types.MESH(torch.stack(vertices), torch.stack(faces)))
decode = execute # TODO: remove
def save_glb(vertices, faces, filepath, metadata=None):
@@ -581,31 +613,32 @@ def save_glb(vertices, faces, filepath, metadata=None):
return filepath
class SaveGLB:
class SaveGLB(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"mesh": ("MESH", ),
"filename_prefix": ("STRING", {"default": "mesh/ComfyUI"}), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, }
def define_schema(cls):
return IO.Schema(
node_id="SaveGLB",
category="3d",
is_output_node=True,
inputs=[
IO.Mesh.Input("mesh"),
IO.String.Input("filename_prefix", default="mesh/ComfyUI"),
],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo]
)
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "3d"
def save(self, mesh, filename_prefix, prompt=None, extra_pnginfo=None):
@classmethod
def execute(cls, mesh, filename_prefix) -> IO.NodeOutput:
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
results = []
metadata = {}
if not args.disable_metadata:
if prompt is not None:
metadata["prompt"] = json.dumps(prompt)
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
if cls.hidden.prompt is not None:
metadata["prompt"] = json.dumps(cls.hidden.prompt)
if cls.hidden.extra_pnginfo is not None:
for x in cls.hidden.extra_pnginfo:
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
for i in range(mesh.vertices.shape[0]):
f = f"{filename}_{counter:05}_.glb"
@@ -616,15 +649,22 @@ class SaveGLB:
"type": "output"
})
counter += 1
return {"ui": {"3d": results}}
return IO.NodeOutput(ui={"3d": results})
NODE_CLASS_MAPPINGS = {
"EmptyLatentHunyuan3Dv2": EmptyLatentHunyuan3Dv2,
"Hunyuan3Dv2Conditioning": Hunyuan3Dv2Conditioning,
"Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView,
"VAEDecodeHunyuan3D": VAEDecodeHunyuan3D,
"VoxelToMeshBasic": VoxelToMeshBasic,
"VoxelToMesh": VoxelToMesh,
"SaveGLB": SaveGLB,
}
class Hunyuan3dExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
EmptyLatentHunyuan3Dv2,
Hunyuan3Dv2Conditioning,
Hunyuan3Dv2ConditioningMultiView,
VAEDecodeHunyuan3D,
VoxelToMeshBasic,
VoxelToMesh,
SaveGLB,
]
async def comfy_entrypoint() -> Hunyuan3dExtension:
return Hunyuan3dExtension()

View File

@@ -2,6 +2,9 @@ import comfy.utils
import folder_paths
import torch
import logging
from comfy_api.latest import IO, ComfyExtension
from typing_extensions import override
def load_hypernetwork_patch(path, strength):
sd = comfy.utils.load_torch_file(path, safe_load=True)
@@ -94,27 +97,42 @@ def load_hypernetwork_patch(path, strength):
return hypernetwork_patch(out, strength)
class HypernetworkLoader:
class HypernetworkLoader(IO.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"hypernetwork_name": (folder_paths.get_filename_list("hypernetworks"), ),
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_hypernetwork"
def define_schema(cls):
return IO.Schema(
node_id="HypernetworkLoader",
category="loaders",
inputs=[
IO.Model.Input("model"),
IO.Combo.Input("hypernetwork_name", options=folder_paths.get_filename_list("hypernetworks")),
IO.Float.Input("strength", default=1.0, min=-10.0, max=10.0, step=0.01),
],
outputs=[
IO.Model.Output(),
],
)
CATEGORY = "loaders"
def load_hypernetwork(self, model, hypernetwork_name, strength):
@classmethod
def execute(cls, model, hypernetwork_name, strength) -> IO.NodeOutput:
hypernetwork_path = folder_paths.get_full_path_or_raise("hypernetworks", hypernetwork_name)
model_hypernetwork = model.clone()
patch = load_hypernetwork_patch(hypernetwork_path, strength)
if patch is not None:
model_hypernetwork.set_model_attn1_patch(patch)
model_hypernetwork.set_model_attn2_patch(patch)
return (model_hypernetwork,)
return IO.NodeOutput(model_hypernetwork)
NODE_CLASS_MAPPINGS = {
"HypernetworkLoader": HypernetworkLoader
}
load_hypernetwork = execute # TODO: remove
class HyperNetworkExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
HypernetworkLoader,
]
async def comfy_entrypoint() -> HyperNetworkExtension:
return HyperNetworkExtension()

39
comfy_extras/nodes_nop.py Normal file
View File

@@ -0,0 +1,39 @@
from comfy_api.latest import ComfyExtension, io
from typing_extensions import override
# If you write a node that is so useless that it breaks ComfyUI it will be featured in this exclusive list
# "native" block swap nodes are placebo at best and break the ComfyUI memory management system.
# They are also considered harmful because instead of users reporting issues with the built in
# memory management they install these stupid nodes and complain even harder. Now it completely
# breaks with some of the new ComfyUI memory optimizations so I have made the decision to NOP it
# out of all workflows.
class wanBlockSwap(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="wanBlockSwap",
category="",
description="NOP",
inputs=[
io.Model.Input("model"),
],
outputs=[
io.Model.Output(),
],
is_deprecated=True,
)
@classmethod
def execute(cls, model) -> io.NodeOutput:
return io.NodeOutput(model)
class NopExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
wanBlockSwap
]
async def comfy_entrypoint() -> NopExtension:
return NopExtension()

View File

@@ -39,5 +39,5 @@ NODE_CLASS_MAPPINGS = {
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PreviewAny": "Preview Any",
"PreviewAny": "Preview as Text",
}

View File

@@ -0,0 +1,47 @@
from comfy_api.latest import ComfyExtension, io
from typing_extensions import override
class ScaleROPE(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ScaleROPE",
category="advanced/model_patches",
description="Scale and shift the ROPE of the model.",
is_experimental=True,
inputs=[
io.Model.Input("model"),
io.Float.Input("scale_x", default=1.0, min=0.0, max=100.0, step=0.1),
io.Float.Input("shift_x", default=0.0, min=-256.0, max=256.0, step=0.1),
io.Float.Input("scale_y", default=1.0, min=0.0, max=100.0, step=0.1),
io.Float.Input("shift_y", default=0.0, min=-256.0, max=256.0, step=0.1),
io.Float.Input("scale_t", default=1.0, min=0.0, max=100.0, step=0.1),
io.Float.Input("shift_t", default=0.0, min=-256.0, max=256.0, step=0.1),
],
outputs=[
io.Model.Output(),
],
)
@classmethod
def execute(cls, model, scale_x, shift_x, scale_y, shift_y, scale_t, shift_t) -> io.NodeOutput:
m = model.clone()
m.set_model_rope_options(scale_x, shift_x, scale_y, shift_y, scale_t, shift_t)
return io.NodeOutput(m)
class RopeExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
ScaleROPE
]
async def comfy_entrypoint() -> RopeExtension:
return RopeExtension()

View File

@@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.67"
__version__ = "0.3.75"

View File

@@ -21,6 +21,7 @@ from comfy_execution.caching import (
NullCache,
HierarchicalCache,
LRUCache,
RAMPressureCache,
)
from comfy_execution.graph import (
DynamicPrompt,
@@ -88,49 +89,56 @@ class IsChangedCache:
return self.is_changed[node_id]
class CacheEntry(NamedTuple):
ui: dict
outputs: list
class CacheType(Enum):
CLASSIC = 0
LRU = 1
NONE = 2
RAM_PRESSURE = 3
class CacheSet:
def __init__(self, cache_type=None, cache_size=None):
def __init__(self, cache_type=None, cache_args={}):
if cache_type == CacheType.NONE:
self.init_null_cache()
logging.info("Disabling intermediate node cache.")
elif cache_type == CacheType.RAM_PRESSURE:
cache_ram = cache_args.get("ram", 16.0)
self.init_ram_cache(cache_ram)
logging.info("Using RAM pressure cache.")
elif cache_type == CacheType.LRU:
if cache_size is None:
cache_size = 0
cache_size = cache_args.get("lru", 0)
self.init_lru_cache(cache_size)
logging.info("Using LRU cache")
else:
self.init_classic_cache()
self.all = [self.outputs, self.ui, self.objects]
self.all = [self.outputs, self.objects]
# Performs like the old cache -- dump data ASAP
def init_classic_cache(self):
self.outputs = HierarchicalCache(CacheKeySetInputSignature)
self.ui = HierarchicalCache(CacheKeySetInputSignature)
self.objects = HierarchicalCache(CacheKeySetID)
def init_lru_cache(self, cache_size):
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
self.objects = HierarchicalCache(CacheKeySetID)
def init_ram_cache(self, min_headroom):
self.outputs = RAMPressureCache(CacheKeySetInputSignature)
self.objects = HierarchicalCache(CacheKeySetID)
def init_null_cache(self):
self.outputs = NullCache()
#The UI cache is expected to be iterable at the end of each workflow
#so it must cache at least a full workflow. Use Heirachical
self.ui = HierarchicalCache(CacheKeySetInputSignature)
self.objects = NullCache()
def recursive_debug_dump(self):
result = {
"outputs": self.outputs.recursive_debug_dump(),
"ui": self.ui.recursive_debug_dump(),
}
return result
@@ -157,14 +165,14 @@ def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt=
if execution_list is None:
mark_missing()
continue # This might be a lazily-evaluated input
cached_output = execution_list.get_output_cache(input_unique_id, unique_id)
if cached_output is None:
cached = execution_list.get_cache(input_unique_id, unique_id)
if cached is None or cached.outputs is None:
mark_missing()
continue
if output_index >= len(cached_output):
if output_index >= len(cached.outputs):
mark_missing()
continue
obj = cached_output[output_index]
obj = cached.outputs[output_index]
input_data_all[x] = obj
elif input_category is not None:
input_data_all[x] = [input_data]
@@ -393,7 +401,7 @@ def format_value(x):
else:
return str(x)
async def execute(server, dynprompt, caches, current_item, extra_data, executed, prompt_id, execution_list, pending_subgraph_results, pending_async_nodes):
async def execute(server, dynprompt, caches, current_item, extra_data, executed, prompt_id, execution_list, pending_subgraph_results, pending_async_nodes, ui_outputs):
unique_id = current_item
real_node_id = dynprompt.get_real_node_id(unique_id)
display_node_id = dynprompt.get_display_node_id(unique_id)
@@ -401,12 +409,15 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
inputs = dynprompt.get_node(unique_id)['inputs']
class_type = dynprompt.get_node(unique_id)['class_type']
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
if caches.outputs.get(unique_id) is not None:
cached = caches.outputs.get(unique_id)
if cached is not None:
if server.client_id is not None:
cached_output = caches.ui.get(unique_id) or {}
server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": cached_output.get("output",None), "prompt_id": prompt_id }, server.client_id)
cached_ui = cached.ui or {}
server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": cached_ui.get("output",None), "prompt_id": prompt_id }, server.client_id)
if cached.ui is not None:
ui_outputs[unique_id] = cached.ui
get_progress_state().finish_progress(unique_id)
execution_list.cache_update(unique_id, caches.outputs.get(unique_id))
execution_list.cache_update(unique_id, cached)
return (ExecutionResult.SUCCESS, None, None)
input_data_all = None
@@ -436,8 +447,8 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
for r in result:
if is_link(r):
source_node, source_output = r[0], r[1]
node_output = execution_list.get_output_cache(source_node, unique_id)[source_output]
for o in node_output:
node_cached = execution_list.get_cache(source_node, unique_id)
for o in node_cached.outputs[source_output]:
resolved_output.append(o)
else:
@@ -445,6 +456,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
resolved_outputs.append(tuple(resolved_output))
output_data = merge_result_data(resolved_outputs, class_def)
output_ui = []
del pending_subgraph_results[unique_id]
has_subgraph = False
else:
get_progress_state().start_progress(unique_id)
@@ -506,7 +518,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
asyncio.create_task(await_completion())
return (ExecutionResult.PENDING, None, None)
if len(output_ui) > 0:
caches.ui.set(unique_id, {
ui_outputs[unique_id] = {
"meta": {
"node_id": unique_id,
"display_node": display_node_id,
@@ -514,7 +526,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
"real_node_id": real_node_id,
},
"output": output_ui
})
}
if server.client_id is not None:
server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id)
if has_subgraph:
@@ -527,10 +539,6 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
if new_graph is None:
cached_outputs.append((False, node_outputs))
else:
# Check for conflicts
for node_id in new_graph.keys():
if dynprompt.has_node(node_id):
raise DuplicateNodeError(f"Attempt to add duplicate node {node_id}. Ensure node ids are unique and deterministic or use graph_utils.GraphBuilder.")
for node_id, node_info in new_graph.items():
new_node_ids.append(node_id)
display_id = node_info.get("override_display_id", unique_id)
@@ -557,8 +565,9 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
pending_subgraph_results[unique_id] = cached_outputs
return (ExecutionResult.PENDING, None, None)
caches.outputs.set(unique_id, output_data)
execution_list.cache_update(unique_id, output_data)
cache_entry = CacheEntry(ui=ui_outputs.get(unique_id), outputs=output_data)
execution_list.cache_update(unique_id, cache_entry)
caches.outputs.set(unique_id, cache_entry)
except comfy.model_management.InterruptProcessingException as iex:
logging.info("Processing interrupted")
@@ -603,14 +612,14 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
return (ExecutionResult.SUCCESS, None, None)
class PromptExecutor:
def __init__(self, server, cache_type=False, cache_size=None):
self.cache_size = cache_size
def __init__(self, server, cache_type=False, cache_args=None):
self.cache_args = cache_args
self.cache_type = cache_type
self.server = server
self.reset()
def reset(self):
self.caches = CacheSet(cache_type=self.cache_type, cache_size=self.cache_size)
self.caches = CacheSet(cache_type=self.cache_type, cache_args=self.cache_args)
self.status_messages = []
self.success = True
@@ -685,6 +694,7 @@ class PromptExecutor:
broadcast=False)
pending_subgraph_results = {}
pending_async_nodes = {} # TODO - Unify this with pending_subgraph_results
ui_node_outputs = {}
executed = set()
execution_list = ExecutionList(dynamic_prompt, self.caches.outputs)
current_outputs = self.caches.outputs.all_node_ids()
@@ -698,7 +708,7 @@ class PromptExecutor:
break
assert node_id is not None, "Node ID should not be None at this point"
result, error, ex = await execute(self.server, dynamic_prompt, self.caches, node_id, extra_data, executed, prompt_id, execution_list, pending_subgraph_results, pending_async_nodes)
result, error, ex = await execute(self.server, dynamic_prompt, self.caches, node_id, extra_data, executed, prompt_id, execution_list, pending_subgraph_results, pending_async_nodes, ui_node_outputs)
self.success = result != ExecutionResult.FAILURE
if result == ExecutionResult.FAILURE:
self.handle_execution_error(prompt_id, dynamic_prompt.original_prompt, current_outputs, executed, error, ex)
@@ -707,18 +717,16 @@ class PromptExecutor:
execution_list.unstage_node_execution()
else: # result == ExecutionResult.SUCCESS:
execution_list.complete_node_execution()
self.caches.outputs.poll(ram_headroom=self.cache_args["ram"])
else:
# Only execute when the while-loop ends without break
self.add_message("execution_success", { "prompt_id": prompt_id }, broadcast=False)
ui_outputs = {}
meta_outputs = {}
all_node_ids = self.caches.ui.all_node_ids()
for node_id in all_node_ids:
ui_info = self.caches.ui.get(node_id)
if ui_info is not None:
ui_outputs[node_id] = ui_info["output"]
meta_outputs[node_id] = ui_info["meta"]
for node_id, ui_info in ui_node_outputs.items():
ui_outputs[node_id] = ui_info["output"]
meta_outputs[node_id] = ui_info["meta"]
self.history_result = {
"outputs": ui_outputs,
"meta": meta_outputs,
@@ -1116,7 +1124,7 @@ class PromptQueue:
messages: List[str]
def task_done(self, item_id, history_result,
status: Optional['PromptQueue.ExecutionStatus']):
status: Optional['PromptQueue.ExecutionStatus'], process_item=None):
with self.mutex:
prompt = self.currently_running.pop(item_id)
if len(self.history) > MAXIMUM_HISTORY_SIZE:
@@ -1126,10 +1134,8 @@ class PromptQueue:
if status is not None:
status_dict = copy.deepcopy(status._asdict())
# Remove sensitive data from extra_data before storing in history
for sensitive_val in SENSITIVE_EXTRA_DATA_KEYS:
if sensitive_val in prompt[3]:
prompt[3].pop(sensitive_val)
if process_item is not None:
prompt = process_item(prompt)
self.history[prompt[1]] = {
"prompt": prompt,

View File

@@ -38,6 +38,8 @@ folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], suppor
folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions)
folder_names_and_paths["latent_upscale_models"] = ([os.path.join(models_dir, "latent_upscale_models")], supported_pt_extensions)
folder_names_and_paths["custom_nodes"] = ([os.path.join(base_path, "custom_nodes")], set())
folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions)

Some files were not shown because too many files have changed in this diff Show More