mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-19 06:30:07 +00:00
* lora_extract: Add a trange If you bite off more than your GPU can chew, this kinda just hangs. Give a rough indication of progress counting the weights in a trange. * lora_extract: Support on-the-fly patching Use the on-the-fly approach from the regular model saving logic for lora extraction too. Switch off force_cast_weights accordingly. This gets extraction working in dynamic vram while also supporting extraction on GPU offloaded.
146 lines
5.6 KiB
Python
146 lines
5.6 KiB
Python
import torch
|
|
import comfy.model_management
|
|
import comfy.utils
|
|
import folder_paths
|
|
import os
|
|
import logging
|
|
from enum import Enum
|
|
from typing_extensions import override
|
|
from comfy_api.latest import ComfyExtension, io
|
|
from tqdm.auto import trange
|
|
|
|
CLAMP_QUANTILE = 0.99
|
|
|
|
def extract_lora(diff, rank):
|
|
conv2d = (len(diff.shape) == 4)
|
|
kernel_size = None if not conv2d else diff.size()[2:4]
|
|
conv2d_3x3 = conv2d and kernel_size != (1, 1)
|
|
out_dim, in_dim = diff.size()[0:2]
|
|
rank = min(rank, in_dim, out_dim)
|
|
|
|
if conv2d:
|
|
if conv2d_3x3:
|
|
diff = diff.flatten(start_dim=1)
|
|
else:
|
|
diff = diff.squeeze()
|
|
|
|
|
|
U, S, Vh = torch.linalg.svd(diff.float())
|
|
U = U[:, :rank]
|
|
S = S[:rank]
|
|
U = U @ torch.diag(S)
|
|
Vh = Vh[:rank, :]
|
|
|
|
dist = torch.cat([U.flatten(), Vh.flatten()])
|
|
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
|
|
low_val = -hi_val
|
|
|
|
U = U.clamp(low_val, hi_val)
|
|
Vh = Vh.clamp(low_val, hi_val)
|
|
if conv2d:
|
|
U = U.reshape(out_dim, rank, 1, 1)
|
|
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
|
|
return (U, Vh)
|
|
|
|
class LORAType(Enum):
|
|
STANDARD = 0
|
|
FULL_DIFF = 1
|
|
|
|
LORA_TYPES = {"standard": LORAType.STANDARD,
|
|
"full_diff": LORAType.FULL_DIFF}
|
|
|
|
def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, bias_diff=False):
|
|
comfy.model_management.load_models_gpu([model_diff])
|
|
sd = model_diff.model_state_dict(filter_prefix=prefix_model)
|
|
|
|
sd_keys = list(sd.keys())
|
|
for index in trange(len(sd_keys), unit="weight"):
|
|
k = sd_keys[index]
|
|
op_keys = sd_keys[index].rsplit('.', 1)
|
|
if len(op_keys) < 2 or op_keys[1] not in ["weight", "bias"] or (op_keys[1] == "bias" and not bias_diff):
|
|
continue
|
|
op = comfy.utils.get_attr(model_diff.model, op_keys[0])
|
|
if hasattr(op, "comfy_cast_weights") and not getattr(op, "comfy_patched_weights", False):
|
|
weight_diff = model_diff.patch_weight_to_device(k, model_diff.load_device, return_weight=True)
|
|
else:
|
|
weight_diff = sd[k]
|
|
|
|
if op_keys[1] == "weight":
|
|
if lora_type == LORAType.STANDARD:
|
|
if weight_diff.ndim < 2:
|
|
if bias_diff:
|
|
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu()
|
|
continue
|
|
try:
|
|
out = extract_lora(weight_diff, rank)
|
|
output_sd["{}{}.lora_up.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[0].contiguous().half().cpu()
|
|
output_sd["{}{}.lora_down.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[1].contiguous().half().cpu()
|
|
except:
|
|
logging.warning("Could not generate lora weights for key {}, is the weight difference a zero?".format(k))
|
|
elif lora_type == LORAType.FULL_DIFF:
|
|
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu()
|
|
|
|
elif bias_diff and op_keys[1] == "bias":
|
|
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = weight_diff.contiguous().half().cpu()
|
|
return output_sd
|
|
|
|
class LoraSave(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="LoraSave",
|
|
search_aliases=["export lora"],
|
|
display_name="Extract and Save Lora",
|
|
category="_for_testing",
|
|
inputs=[
|
|
io.String.Input("filename_prefix", default="loras/ComfyUI_extracted_lora"),
|
|
io.Int.Input("rank", default=8, min=1, max=4096, step=1),
|
|
io.Combo.Input("lora_type", options=tuple(LORA_TYPES.keys())),
|
|
io.Boolean.Input("bias_diff", default=True),
|
|
io.Model.Input(
|
|
"model_diff",
|
|
tooltip="The ModelSubtract output to be converted to a lora.",
|
|
optional=True,
|
|
),
|
|
io.Clip.Input(
|
|
"text_encoder_diff",
|
|
tooltip="The CLIPSubtract output to be converted to a lora.",
|
|
optional=True,
|
|
),
|
|
],
|
|
is_experimental=True,
|
|
is_output_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None) -> io.NodeOutput:
|
|
if model_diff is None and text_encoder_diff is None:
|
|
return io.NodeOutput()
|
|
|
|
lora_type = LORA_TYPES.get(lora_type)
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
|
|
|
|
output_sd = {}
|
|
if model_diff is not None:
|
|
output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, bias_diff=bias_diff)
|
|
if text_encoder_diff is not None:
|
|
output_sd = calc_lora_model(text_encoder_diff.patcher, rank, "", "text_encoders.", output_sd, lora_type, bias_diff=bias_diff)
|
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
|
|
|
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None)
|
|
return io.NodeOutput()
|
|
|
|
|
|
class LoraSaveExtension(ComfyExtension):
|
|
@override
|
|
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
|
return [
|
|
LoraSave,
|
|
]
|
|
|
|
|
|
async def comfy_entrypoint() -> LoraSaveExtension:
|
|
return LoraSaveExtension()
|