Files
HandRefinerPortable/hand_refiner/__init__.py
2024-01-03 00:39:16 -05:00

43 lines
1.9 KiB
Python

import numpy as np
from PIL import Image
from .util import resize_image_with_pad, common_input_validate, HWC3, custom_hf_download
from hand_refiner.pipeline import MeshGraphormerMediapipe, args
class MeshGraphormerDetector:
def __init__(self, pipeline):
self.pipeline = pipeline
@classmethod
def from_pretrained(cls, pretrained_model_or_path, filename=None, hrnet_filename=None, cache_dir=None, device="cuda"):
filename = filename or "graphormer_hand_state_dict.bin"
hrnet_filename = hrnet_filename or "hrnetv2_w64_imagenet_pretrained.pth"
args.resume_checkpoint = custom_hf_download(pretrained_model_or_path, filename, cache_dir)
args.hrnet_checkpoint = custom_hf_download(pretrained_model_or_path, hrnet_filename, cache_dir)
args.device = device
pipeline = MeshGraphormerMediapipe(args)
return cls(pipeline)
def to(self, device):
self.pipeline._model.to(device)
self.pipeline.mano_model.to(device)
self.pipeline.mano_model.layer.to(device)
return self
def __call__(self, input_image=None, mask_bbox_padding=30, detect_resolution=512, output_type=None, upscale_method="INTER_CUBIC", **kwargs):
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
depth_map, mask, info = self.pipeline.get_depth(input_image, mask_bbox_padding)
if depth_map is None:
depth_map = np.zeros_like(input_image)
mask = np.zeros_like(input_image)
#The hand is small
depth_map, mask = HWC3(depth_map), HWC3(mask)
depth_map, remove_pad = resize_image_with_pad(depth_map, detect_resolution, upscale_method)
depth_map = remove_pad(depth_map)
if output_type == "pil":
depth_map = Image.fromarray(depth_map)
mask = Image.fromarray(mask)
return depth_map, mask, info