mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-02-10 08:20:09 +00:00
Bitnet(2.25 bpw): CUDA
We get PP-512 = 9600 t/s, TG-128 = 234 t/s (but we need to use 8 CPU threads, else results are lower, so clearly there is something being computed on the CPU). PP-512 is very close to PP-512(fp16) = 9800 t/s
This commit is contained in:
@@ -2757,7 +2757,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
|
||||
a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S ||
|
||||
a_type == GGML_TYPE_IQ1_M || a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS ||
|
||||
a_type == GGML_TYPE_IQ1_BN) {
|
||||
a_type == GGML_TYPE_IQ1_BN || a_type == GGML_TYPE_IQ2_BN) {
|
||||
if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -629,6 +629,13 @@ struct ggml_cuda_type_traits<GGML_TYPE_IQ1_BN> {
|
||||
static constexpr int qi = QI1_BN;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_BN> {
|
||||
static constexpr int qk = QK_IQ1BN;
|
||||
static constexpr int qr = QR1_BN;
|
||||
static constexpr int qi = QI1_BN;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_NL> {
|
||||
static constexpr int qk = QK4_NL;
|
||||
|
||||
@@ -444,6 +444,29 @@ static __global__ void dequantize_block_iq1_bn(const void * __restrict__ vx, dst
|
||||
}
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq2_bn(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb64) {
|
||||
|
||||
const int64_t ii = blockIdx.x;
|
||||
const block_iq2_bn * x = (const block_iq2_bn *) vx;
|
||||
|
||||
const int64_t tid = threadIdx.x;
|
||||
int64_t ib64 = tid%4; // 0...3
|
||||
int64_t il = tid/4; // 0...7
|
||||
dst_t * y = yy + 256*ii + 64*ib64 + 2*il;
|
||||
int64_t i = 256/QK_IQ1BN * ii + ib64;
|
||||
if (i >= nb64) return;
|
||||
const float d = x[i].d;
|
||||
const float m = -d;
|
||||
auto qs = x[i].qs + 2*il;
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
y[j+ 0] = d * ((qs[j] >> 0) & 3) + m;
|
||||
y[j+16] = d * ((qs[j] >> 2) & 3) + m;
|
||||
y[j+32] = d * ((qs[j] >> 4) & 3) + m;
|
||||
y[j+48] = d * ((qs[j] >> 6) & 3) + m;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
@@ -596,6 +619,13 @@ static void dequantize_row_iq1_bn_cuda(const void * vx, dst_t * y, const int64_t
|
||||
dequantize_block_iq1_bn<<<nb, 32, 0, stream>>>(vx, y, nb64);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq2_bn_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb64 = k / QK_IQ1BN;
|
||||
const int nb = (k + 255) / 256;
|
||||
dequantize_block_iq2_bn<<<nb, 32, 0, stream>>>(vx, y, nb64);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
@@ -660,6 +690,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
||||
return dequantize_row_iq1_m_cuda;
|
||||
case GGML_TYPE_IQ1_BN:
|
||||
return dequantize_row_iq1_bn_cuda;
|
||||
case GGML_TYPE_IQ2_BN:
|
||||
return dequantize_row_iq2_bn_cuda;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_cuda;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
@@ -709,6 +741,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
||||
return dequantize_row_iq1_m_cuda;
|
||||
case GGML_TYPE_IQ1_BN:
|
||||
return dequantize_row_iq1_bn_cuda;
|
||||
case GGML_TYPE_IQ2_BN:
|
||||
return dequantize_row_iq2_bn_cuda;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return dequantize_row_iq4_nl_cuda;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
|
||||
@@ -21,6 +21,7 @@ static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type)
|
||||
type == GGML_TYPE_IQ1_S ? vec_dot_iq1_s_q8_1 :
|
||||
type == GGML_TYPE_IQ1_M ? vec_dot_iq1_m_q8_1 :
|
||||
type == GGML_TYPE_IQ1_BN ? vec_dot_iq1_bn_q8_1 :
|
||||
type == GGML_TYPE_IQ2_BN ? vec_dot_iq2_bn_q8_1 :
|
||||
type == GGML_TYPE_IQ4_NL ? vec_dot_iq4_nl_q8_1 :
|
||||
type == GGML_TYPE_IQ4_XS ? vec_dot_iq4_xs_q8_1 :
|
||||
type == GGML_TYPE_IQ3_S ? vec_dot_iq3_s_q8_1 :
|
||||
@@ -315,6 +316,13 @@ static void mul_mat_vec_iq1_bn_q8_1_cuda(
|
||||
mul_mat_vec_q_cuda<GGML_TYPE_IQ1_BN>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||
}
|
||||
|
||||
static void mul_mat_vec_iq2_bn_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst,
|
||||
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_BN>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
||||
}
|
||||
|
||||
static void mul_mat_vec_iq4_nl_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst,
|
||||
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
||||
@@ -408,6 +416,9 @@ void ggml_cuda_op_mul_mat_vec_q(
|
||||
case GGML_TYPE_IQ1_BN:
|
||||
mul_mat_vec_iq1_bn_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_BN:
|
||||
mul_mat_vec_iq2_bn_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
||||
break;
|
||||
|
||||
@@ -1120,6 +1120,46 @@ static __device__ __forceinline__ float vec_dot_iq1_bn_q8_1(
|
||||
return s.f * __low2float(bq8_1[iqs].ds) * sumi;
|
||||
}
|
||||
|
||||
// TODO
|
||||
static __device__ __forceinline__ float vec_dot_iq2_bn_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
||||
const block_iq2_bn * bq2 = (const block_iq2_bn *) vbq + kbx;
|
||||
|
||||
// iqs is 0 or 1
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
auto qs = (const uint16_t *)bq2->qs + 4*iqs;
|
||||
auto q8l = (const int *)bq8_1[0].qs + 2*iqs;
|
||||
auto q8h = (const int *)bq8_1[1].qs + 2*iqs;
|
||||
int sumi1 = 0, sumi2 = 0, sumi3 = 0, sumi4 = 0;
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
int vl = qs[2*j+0] | (uint32_t(qs[2*j+1]) << 16);
|
||||
int vh = vl >> 4;
|
||||
sumi1 = __dp4a(vl & 0x03030303, q8l[j+0], sumi1);
|
||||
sumi2 = __dp4a(vl & 0x0c0c0c0c, q8l[j+4], sumi2);
|
||||
sumi3 = __dp4a(vh & 0x03030303, q8h[j+0], sumi3);
|
||||
sumi4 = __dp4a(vh & 0x0c0c0c0c, q8h[j+4], sumi4);
|
||||
}
|
||||
auto d8l = __half22float2(bq8_1[0].ds);
|
||||
auto d8h = __half22float2(bq8_1[1].ds);
|
||||
return (float)bq2->d * (d8l.x * (sumi1 + 0.25f*sumi2) + d8h.x * (sumi3 + 0.25f * sumi4) - 0.5f*d8l.y - 0.5f*d8h.y);
|
||||
#else
|
||||
int sumi1 = 0, sumi2 = 0, sumi3 = 0, sumi4 = 0;
|
||||
auto q8l = bq8_1[0].qs + 8*iqs;
|
||||
auto q8h = bq8_1[1].qs + 8*iqs;
|
||||
auto qs = bq2->qs + 8*iqs;
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi1 += q8l[j+ 0] * (qs[j] & 0x03);
|
||||
sumi2 += q8l[j+16] * (qs[j] & 0x0c);
|
||||
sumi3 += q8h[j+ 0] * (qs[j] & 0x30);
|
||||
sumi4 += q8h[j+16] * (qs[j] & 0xc0);
|
||||
}
|
||||
auto d8l = __half22float2(bq8_1[0].ds);
|
||||
auto d8h = __half22float2(bq8_1[1].ds);
|
||||
return (float)bq2->d * (d8l.x * (sumi1 + 0.25f*sumi2) + 0.0625f * d8h.x*(sumi3 + 0.25f*sumi4) - 0.5f*d8l.y - 0.5f*d8h.y);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
|
||||
int & val1, int & val2) {
|
||||
|
||||
Reference in New Issue
Block a user