mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
model : Port Minimax M2 from mainline (#907)
Co-authored-by: firecoperana <firecoperana>
This commit is contained in:
@@ -657,7 +657,9 @@ class Model:
|
||||
if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
|
||||
# ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
|
||||
res = "bailingmoe2"
|
||||
|
||||
if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
|
||||
# ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
|
||||
res = "minimax-m2"
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
logger.warning("**************************************************************************************")
|
||||
@@ -4122,6 +4124,63 @@ class JaisModel(Model):
|
||||
super().prepare_tensors()
|
||||
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
||||
|
||||
@Model.register("MiniMaxM2ForCausalLM")
|
||||
class MiniMaxM2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MINIMAXM2
|
||||
_experts_cache: dict[int, dict[str, Tensor]] = {}
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.hparams["num_experts"] = self.hparams["num_local_experts"]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
if self.hparams["scoring_func"] == "sigmoid":
|
||||
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
|
||||
elif self.hparams["scoring_func"] == "softmax":
|
||||
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
|
||||
else:
|
||||
raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
|
||||
|
||||
self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
if name.endswith("e_score_correction_bias"):
|
||||
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
|
||||
|
||||
# merge expert weights
|
||||
if 'experts' in name:
|
||||
n_experts = self.hparams["num_experts"]
|
||||
assert bid is not None
|
||||
|
||||
expert_cache = self._experts_cache.setdefault(bid, {})
|
||||
expert_cache[name] = data_torch
|
||||
expert_weights = ["w1", "w2", "w3"]
|
||||
|
||||
# not enough expert weights to merge
|
||||
if len(expert_cache) < n_experts * len(expert_weights):
|
||||
return []
|
||||
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
for w_name in expert_weights:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
|
||||
datas.append(expert_cache[ename])
|
||||
del expert_cache[ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
tensors.append((new_name, data_torch))
|
||||
|
||||
del self._experts_cache[bid]
|
||||
return tensors
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@Model.register("Dots1ForCausalLM")
|
||||
class Dots1Model(Qwen2MoeModel):
|
||||
@@ -4150,6 +4209,7 @@ class Dots1Model(Qwen2MoeModel):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@Model.register("Glm4MoeForCausalLM")
|
||||
class Glm4MoeModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GLM4_MOE
|
||||
|
||||
@@ -100,6 +100,7 @@ models = [
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.5-Air", "chkhsh": "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902", },
|
||||
{"name": "kimi-k2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/moonshotai/Kimi-K2-Base", "chkhsh": "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890", },
|
||||
{"name": "grok-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/alvarobartt/grok-2-tokenizer", "chkhsh": "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273"},
|
||||
{"name": "minimax-m2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/MiniMaxAI/MiniMax-M2", },
|
||||
]
|
||||
|
||||
|
||||
@@ -164,7 +165,7 @@ for model in models:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
except OSError as e:
|
||||
except (OSError, TypeError) as e:
|
||||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||
continue # Skip to the next model if the tokenizer can't be loaded
|
||||
|
||||
|
||||
@@ -248,7 +248,8 @@ class MODEL_ARCH(IntEnum):
|
||||
ERNIE4_5 = auto()
|
||||
ERNIE4_5_MOE = auto()
|
||||
BAILINGMOE2 = auto()
|
||||
|
||||
MINIMAXM2 = auto()
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
TOKEN_EMBD = auto()
|
||||
TOKEN_EMBD_NORM = auto()
|
||||
@@ -384,7 +385,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.ARCTIC: "arctic",
|
||||
MODEL_ARCH.DEEPSEEK2: "deepseek2",
|
||||
MODEL_ARCH.CHATGLM: "chatglm",
|
||||
MODEL_ARCH.GLM4_MOE: "glm4moe",
|
||||
MODEL_ARCH.GLM4_MOE: "glm4moe",
|
||||
MODEL_ARCH.BITNET: "bitnet",
|
||||
MODEL_ARCH.BITNET_25: "bitnet-25",
|
||||
MODEL_ARCH.T5: "t5",
|
||||
@@ -394,6 +395,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.ERNIE4_5: "ernie4_5",
|
||||
MODEL_ARCH.ERNIE4_5_MOE: "ernie4_5-moe",
|
||||
MODEL_ARCH.BAILINGMOE2: "bailingmoe2",
|
||||
MODEL_ARCH.MINIMAXM2: "minimax-m2",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
@@ -1324,6 +1326,24 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM,
|
||||
MODEL_TENSOR.LAYER_OUT_NORM,
|
||||
],
|
||||
MODEL_ARCH.MINIMAXM2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_EXP_PROBS_B,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
||||
@@ -267,6 +267,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
|
||||
"model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
|
||||
"model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
|
||||
"model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
|
||||
),
|
||||
|
||||
# Feed-forward up
|
||||
|
||||
@@ -66,6 +66,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
|
||||
{ LLM_ARCH_OPENAI_MOE, "gpt-oss" },
|
||||
{ LLM_ARCH_BAILINGMOE2, "bailingmoe2" },
|
||||
{ LLM_ARCH_MINIMAX_M2, "minimax-m2" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
|
||||
@@ -65,6 +65,7 @@ enum llm_arch {
|
||||
LLM_ARCH_HUNYUAN_MOE,
|
||||
LLM_ARCH_OPENAI_MOE,
|
||||
LLM_ARCH_BAILINGMOE2,
|
||||
LLM_ARCH_MINIMAX_M2,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
||||
@@ -7847,7 +7847,6 @@ ggml_cgraph * llm_build_context::build_ernie4_5_moe() {
|
||||
cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
// self-attention
|
||||
{
|
||||
// Q, K, V projections
|
||||
@@ -7899,7 +7898,6 @@ ggml_cgraph * llm_build_context::build_ernie4_5_moe() {
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@@ -8366,6 +8364,129 @@ ggml_cgraph * llm_build_context::build_bailingmoe2() {
|
||||
return gf;
|
||||
}
|
||||
|
||||
ggml_cgraph* llm_build_context::build_minimaxm2() {
|
||||
ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
// GGML_ASSERT(n_embd_head == hparams.n_rot); this is wrong in case of minimax, head_dim = 128, n_rot = 64
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
|
||||
//auto * inp_attn = build_attn_inp_kv();
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor* inpSA = inpL;
|
||||
|
||||
cur = inpL;
|
||||
|
||||
// self_attention
|
||||
{
|
||||
cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// Q, K, V projections
|
||||
ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(Qcur, "Qcur_normed", il);
|
||||
|
||||
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(Kcur, "Kcur_normed", il);
|
||||
|
||||
// reshape for multi-head
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
// Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
|
||||
// apply RoPE
|
||||
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||
model.layers[il].wo, NULL,
|
||||
Kcur, Vcur, Qcur, KQ_mask,
|
||||
n_tokens, kv_head, n_kv,
|
||||
1.0f / sqrtf(float(n_embd_head)), cb, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// MoE branch
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS,cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_moe_ffn(ctx0, lctx, cur,
|
||||
model.layers[il].ffn_gate_inp,
|
||||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
model.layers[il].ffn_exp_probs_b,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, true,
|
||||
false, 0,
|
||||
(llm_expert_gating_func_type)hparams.expert_gating_func,
|
||||
cb, il, gf);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
|
||||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur,
|
||||
hparams, model.output_norm, NULL,
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
return gf;
|
||||
}
|
||||
|
||||
ggml_cgraph * llm_build_context::llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
||||
llama_batch dummy;
|
||||
dummy.n_tokens = 0;
|
||||
@@ -8712,6 +8833,10 @@ ggml_cgraph * llm_build_context::llama_build_graph(
|
||||
{
|
||||
result = llm.build_bailingmoe2();
|
||||
} break;
|
||||
case LLM_ARCH_MINIMAX_M2:
|
||||
{
|
||||
result = llm.build_minimaxm2();
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
@@ -268,6 +268,8 @@ struct llm_build_context {
|
||||
|
||||
ggml_cgraph * build_bailingmoe2();
|
||||
|
||||
ggml_cgraph * build_minimaxm2();
|
||||
|
||||
//
|
||||
static ggml_tensor * llm_build_lora_mm(llama_context & lctx, ggml_context * ctx0,
|
||||
ggml_tensor * w, ggml_tensor * cur);
|
||||
|
||||
@@ -1012,6 +1012,17 @@ void llm_load_hparams(
|
||||
// TODO: switch (hparams.n_layer)
|
||||
|
||||
} break;
|
||||
case LLM_ARCH_MINIMAX_M2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
||||
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 62: model.type = e_model::MODEL_230B_A10B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
default: (void)0;
|
||||
}
|
||||
|
||||
|
||||
@@ -128,6 +128,8 @@ struct create_tensors_helper : public create_tensors_helper_interface {
|
||||
|
||||
bool create_bailingmoe2_tensors(const LLM_TN & tn);
|
||||
|
||||
bool create_minimaxm2_tensors(const LLM_TN & tn);
|
||||
|
||||
llama_model_loader & ml;
|
||||
llama_model & model;
|
||||
|
||||
@@ -2434,6 +2436,36 @@ bool create_tensors_helper::create_openai_moe_tensors(const LLM_TN & tn) {
|
||||
return use_mmap_buffer;
|
||||
}
|
||||
|
||||
bool create_tensors_helper::create_minimaxm2_tensors(const LLM_TN & tn) {
|
||||
LOADING_PRELUDE
|
||||
|
||||
create_embd_output(tn, n_embd, n_vocab);
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
ggml_context* ctx_layer = ctx_for_layer(i);
|
||||
ggml_context* ctx_split = ctx_for_layer_split(i);
|
||||
auto& layer = model.layers[i];
|
||||
|
||||
layer.wq = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
|
||||
layer.wk = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
|
||||
layer.wv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
|
||||
layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
|
||||
|
||||
layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
|
||||
layer.attn_q_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k * n_head }, 0);
|
||||
layer.attn_k_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_k_gqa }, 0);
|
||||
|
||||
layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
|
||||
|
||||
layer.ffn_gate_inp = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
|
||||
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff, n_expert }, 0);
|
||||
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert }, 0);
|
||||
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert }, 0);
|
||||
layer.ffn_exp_probs_b = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, 0);
|
||||
}
|
||||
return use_mmap_buffer;
|
||||
}
|
||||
|
||||
bool create_tensors_helper::merge_qkv(const LLM_TN & tn, int i, int bias) {
|
||||
auto& hparams = model.hparams;
|
||||
const int64_t n_head = hparams.n_head();
|
||||
@@ -2665,6 +2697,8 @@ bool create_tensors_helper::create_tensors() {
|
||||
use_mmap_buffer = create_openai_moe_tensors(tn); break;
|
||||
case LLM_ARCH_BAILINGMOE2:
|
||||
use_mmap_buffer = create_bailingmoe2_tensors(tn); break;
|
||||
case LLM_ARCH_MINIMAX_M2:
|
||||
use_mmap_buffer = create_minimaxm2_tensors(tn); break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
|
||||
@@ -1228,6 +1228,27 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MINIMAX_M2,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
@@ -1470,6 +1491,7 @@ const char * llama_model_type_name(e_model type) {
|
||||
case MODEL_80B_A13B: return "80B.A13B";
|
||||
case MODEL_100B_A6B: return "100B.A6B";
|
||||
case MODEL_106B_A12B: return "106B.A12B";
|
||||
case MODEL_230B_A10B: return "230B.A10B";
|
||||
case MODEL_235B_A22B: return "235B.A22B";
|
||||
case MODEL_300B_A47B: return "300B.A47B";
|
||||
case MODEL_355B_A32B: return "355B.A32B";
|
||||
|
||||
@@ -110,6 +110,7 @@ enum e_model {
|
||||
MODEL_80B_A13B,
|
||||
MODEL_100B_A6B,
|
||||
MODEL_106B_A12B,
|
||||
MODEL_230B_A10B, // Minimax M2
|
||||
MODEL_235B_A22B,
|
||||
MODEL_300B_A47B, // Ernie MoE big
|
||||
MODEL_355B_A32B,
|
||||
|
||||
@@ -399,6 +399,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_GPT4O:
|
||||
case LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2:
|
||||
regex_exprs = {
|
||||
// original regex from tokenizer.json
|
||||
// "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
@@ -1987,6 +1988,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
tokenizer_pre == "grok-2") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_GROK_2;
|
||||
clean_spaces = false;
|
||||
} else if (
|
||||
tokenizer_pre == "minimax-m2") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
|
||||
clean_spaces = false;
|
||||
} else {
|
||||
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
}
|
||||
|
||||
@@ -48,6 +48,7 @@ enum llama_vocab_pre_type {
|
||||
LLAMA_VOCAB_PRE_TYPE_KIMI_K2 = 37,
|
||||
LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE = 38,
|
||||
LLAMA_VOCAB_PRE_TYPE_GROK_2 = 39,
|
||||
LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2 = 40,
|
||||
};
|
||||
|
||||
struct LLM_KV;
|
||||
|
||||
@@ -4668,6 +4668,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_HUNYUAN_MOE:
|
||||
case LLM_ARCH_OPENAI_MOE:
|
||||
case LLM_ARCH_BAILINGMOE2:
|
||||
case LLM_ARCH_MINIMAX_M2:
|
||||
return LLAMA_ROPE_TYPE_NEOX;
|
||||
|
||||
case LLM_ARCH_QWEN2VL:
|
||||
|
||||
Reference in New Issue
Block a user