model : Port Minimax M2 from mainline (#907)

Co-authored-by: firecoperana <firecoperana>
This commit is contained in:
firecoperana
2025-11-06 16:09:24 +00:00
committed by GitHub
parent 575e2c2821
commit 0378f38c27
15 changed files with 292 additions and 6 deletions

View File

@@ -657,7 +657,9 @@ class Model:
if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
# ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
res = "bailingmoe2"
if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
# ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
res = "minimax-m2"
if res is None:
logger.warning("\n")
logger.warning("**************************************************************************************")
@@ -4122,6 +4124,63 @@ class JaisModel(Model):
super().prepare_tensors()
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
@Model.register("MiniMaxM2ForCausalLM")
class MiniMaxM2Model(Model):
model_arch = gguf.MODEL_ARCH.MINIMAXM2
_experts_cache: dict[int, dict[str, Tensor]] = {}
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams["num_experts"] = self.hparams["num_local_experts"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
if self.hparams["scoring_func"] == "sigmoid":
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
elif self.hparams["scoring_func"] == "softmax":
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
else:
raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
# merge expert weights
if 'experts' in name:
n_experts = self.hparams["num_experts"]
assert bid is not None
expert_cache = self._experts_cache.setdefault(bid, {})
expert_cache[name] = data_torch
expert_weights = ["w1", "w2", "w3"]
# not enough expert weights to merge
if len(expert_cache) < n_experts * len(expert_weights):
return []
tensors: list[tuple[str, Tensor]] = []
for w_name in expert_weights:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
datas.append(expert_cache[ename])
del expert_cache[ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
del self._experts_cache[bid]
return tensors
return super().modify_tensors(data_torch, name, bid)
@Model.register("Dots1ForCausalLM")
class Dots1Model(Qwen2MoeModel):
@@ -4150,6 +4209,7 @@ class Dots1Model(Qwen2MoeModel):
return [(self.map_tensor_name(name), data_torch)]
return super().modify_tensors(data_torch, name, bid)
@Model.register("Glm4MoeForCausalLM")
class Glm4MoeModel(Model):
model_arch = gguf.MODEL_ARCH.GLM4_MOE

View File

@@ -100,6 +100,7 @@ models = [
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.5-Air", "chkhsh": "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902", },
{"name": "kimi-k2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/moonshotai/Kimi-K2-Base", "chkhsh": "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890", },
{"name": "grok-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/alvarobartt/grok-2-tokenizer", "chkhsh": "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273"},
{"name": "minimax-m2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/MiniMaxAI/MiniMax-M2", },
]
@@ -164,7 +165,7 @@ for model in models:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
except (OSError, TypeError) as e:
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
continue # Skip to the next model if the tokenizer can't be loaded

View File

@@ -248,7 +248,8 @@ class MODEL_ARCH(IntEnum):
ERNIE4_5 = auto()
ERNIE4_5_MOE = auto()
BAILINGMOE2 = auto()
MINIMAXM2 = auto()
class MODEL_TENSOR(IntEnum):
TOKEN_EMBD = auto()
TOKEN_EMBD_NORM = auto()
@@ -384,7 +385,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.CHATGLM: "chatglm",
MODEL_ARCH.GLM4_MOE: "glm4moe",
MODEL_ARCH.GLM4_MOE: "glm4moe",
MODEL_ARCH.BITNET: "bitnet",
MODEL_ARCH.BITNET_25: "bitnet-25",
MODEL_ARCH.T5: "t5",
@@ -394,6 +395,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.ERNIE4_5: "ernie4_5",
MODEL_ARCH.ERNIE4_5_MOE: "ernie4_5-moe",
MODEL_ARCH.BAILINGMOE2: "bailingmoe2",
MODEL_ARCH.MINIMAXM2: "minimax-m2",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -1324,6 +1326,24 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM,
MODEL_TENSOR.LAYER_OUT_NORM,
],
MODEL_ARCH.MINIMAXM2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
],
# TODO
}

View File

@@ -267,6 +267,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
"model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
"model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
"model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
),
# Feed-forward up

View File

@@ -66,6 +66,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
{ LLM_ARCH_OPENAI_MOE, "gpt-oss" },
{ LLM_ARCH_BAILINGMOE2, "bailingmoe2" },
{ LLM_ARCH_MINIMAX_M2, "minimax-m2" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};

View File

@@ -65,6 +65,7 @@ enum llm_arch {
LLM_ARCH_HUNYUAN_MOE,
LLM_ARCH_OPENAI_MOE,
LLM_ARCH_BAILINGMOE2,
LLM_ARCH_MINIMAX_M2,
LLM_ARCH_UNKNOWN,
};

View File

@@ -7847,7 +7847,6 @@ ggml_cgraph * llm_build_context::build_ernie4_5_moe() {
cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
// self-attention
{
// Q, K, V projections
@@ -7899,7 +7898,6 @@ ggml_cgraph * llm_build_context::build_ernie4_5_moe() {
}
if (il == n_layer - 1 && inp_out_ids) {
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
@@ -8366,6 +8364,129 @@ ggml_cgraph * llm_build_context::build_bailingmoe2() {
return gf;
}
ggml_cgraph* llm_build_context::build_minimaxm2() {
ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
// GGML_ASSERT(n_embd_head == hparams.n_rot); this is wrong in case of minimax, head_dim = 128, n_rot = 64
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
ggml_tensor * inp_pos = build_inp_pos();
//auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor* inpSA = inpL;
cur = inpL;
// self_attention
{
cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// Q, K, V projections
ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(Qcur, "Qcur_normed", il);
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(Kcur, "Kcur_normed", il);
// reshape for multi-head
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
// Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
// apply RoPE
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask,
n_tokens, kv_head, n_kv,
1.0f / sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS,cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_moe_ffn(ctx0, lctx, cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0,
(llm_expert_gating_func_type)hparams.expert_gating_func,
cb, il, gf);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur,
hparams, model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
ggml_cgraph * llm_build_context::llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
llama_batch dummy;
dummy.n_tokens = 0;
@@ -8712,6 +8833,10 @@ ggml_cgraph * llm_build_context::llama_build_graph(
{
result = llm.build_bailingmoe2();
} break;
case LLM_ARCH_MINIMAX_M2:
{
result = llm.build_minimaxm2();
} break;
default:
GGML_ABORT("fatal error");
}

View File

@@ -268,6 +268,8 @@ struct llm_build_context {
ggml_cgraph * build_bailingmoe2();
ggml_cgraph * build_minimaxm2();
//
static ggml_tensor * llm_build_lora_mm(llama_context & lctx, ggml_context * ctx0,
ggml_tensor * w, ggml_tensor * cur);

View File

@@ -1012,6 +1012,17 @@ void llm_load_hparams(
// TODO: switch (hparams.n_layer)
} break;
case LLM_ARCH_MINIMAX_M2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
switch (hparams.n_layer) {
case 62: model.type = e_model::MODEL_230B_A10B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0;
}

View File

@@ -128,6 +128,8 @@ struct create_tensors_helper : public create_tensors_helper_interface {
bool create_bailingmoe2_tensors(const LLM_TN & tn);
bool create_minimaxm2_tensors(const LLM_TN & tn);
llama_model_loader & ml;
llama_model & model;
@@ -2434,6 +2436,36 @@ bool create_tensors_helper::create_openai_moe_tensors(const LLM_TN & tn) {
return use_mmap_buffer;
}
bool create_tensors_helper::create_minimaxm2_tensors(const LLM_TN & tn) {
LOADING_PRELUDE
create_embd_output(tn, n_embd, n_vocab);
for (int i = 0; i < n_layer; ++i) {
ggml_context* ctx_layer = ctx_for_layer(i);
ggml_context* ctx_split = ctx_for_layer_split(i);
auto& layer = model.layers[i];
layer.wq = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
layer.wk = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
layer.wv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
layer.attn_q_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k * n_head }, 0);
layer.attn_k_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_k_gqa }, 0);
layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
layer.ffn_gate_inp = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff, n_expert }, 0);
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert }, 0);
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert }, 0);
layer.ffn_exp_probs_b = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, 0);
}
return use_mmap_buffer;
}
bool create_tensors_helper::merge_qkv(const LLM_TN & tn, int i, int bias) {
auto& hparams = model.hparams;
const int64_t n_head = hparams.n_head();
@@ -2665,6 +2697,8 @@ bool create_tensors_helper::create_tensors() {
use_mmap_buffer = create_openai_moe_tensors(tn); break;
case LLM_ARCH_BAILINGMOE2:
use_mmap_buffer = create_bailingmoe2_tensors(tn); break;
case LLM_ARCH_MINIMAX_M2:
use_mmap_buffer = create_minimaxm2_tensors(tn); break;
default:
throw std::runtime_error("unknown architecture");
}

View File

@@ -1228,6 +1228,27 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
},
},
{
LLM_ARCH_MINIMAX_M2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
},
},
{
LLM_ARCH_UNKNOWN,
{
@@ -1470,6 +1491,7 @@ const char * llama_model_type_name(e_model type) {
case MODEL_80B_A13B: return "80B.A13B";
case MODEL_100B_A6B: return "100B.A6B";
case MODEL_106B_A12B: return "106B.A12B";
case MODEL_230B_A10B: return "230B.A10B";
case MODEL_235B_A22B: return "235B.A22B";
case MODEL_300B_A47B: return "300B.A47B";
case MODEL_355B_A32B: return "355B.A32B";

View File

@@ -110,6 +110,7 @@ enum e_model {
MODEL_80B_A13B,
MODEL_100B_A6B,
MODEL_106B_A12B,
MODEL_230B_A10B, // Minimax M2
MODEL_235B_A22B,
MODEL_300B_A47B, // Ernie MoE big
MODEL_355B_A32B,

View File

@@ -399,6 +399,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
};
break;
case LLAMA_VOCAB_PRE_TYPE_GPT4O:
case LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2:
regex_exprs = {
// original regex from tokenizer.json
// "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
@@ -1987,6 +1988,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "grok-2") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GROK_2;
clean_spaces = false;
} else if (
tokenizer_pre == "minimax-m2") {
pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
clean_spaces = false;
} else {
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
}

View File

@@ -48,6 +48,7 @@ enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_KIMI_K2 = 37,
LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE = 38,
LLAMA_VOCAB_PRE_TYPE_GROK_2 = 39,
LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2 = 40,
};
struct LLM_KV;

View File

@@ -4668,6 +4668,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_HUNYUAN_MOE:
case LLM_ARCH_OPENAI_MOE:
case LLM_ARCH_BAILINGMOE2:
case LLM_ARCH_MINIMAX_M2:
return LLAMA_ROPE_TYPE_NEOX;
case LLM_ARCH_QWEN2VL: