Allow empty splits (#1029)

* Allow empty splits

* Fix type, add additional asserts

* Fix also output

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2025-12-03 13:52:41 +01:00
committed by GitHub
parent 90f36eb517
commit 0581f90c0f

View File

@@ -653,11 +653,12 @@ ggml_tensor * llm_build_context::llm_build_ffn(
auto split_u = u->splits[id];
auto split_g = g->splits[id];
auto split_d = d->splits[id];
GGML_ASSERT((!split_u && !split_g && split_d) || (split_u && split_g && split_d));
GGML_ASSERT((!split_u && !split_g && !split_d) || (split_u && split_g && split_d));
if (!split_u) continue;
auto cur = input;
if (ffn_norm && ffn_norm->extra) {
auto norm = (ggml_split_tensor_t *)ffn_norm->extra;
GGML_ASSERT(norm->splits[id]);
cur = llm_build_norm(ctx, input, lctx.model.hparams, norm->splits[id], NULL, LLM_NORM_RMS, cb, il);
cb(cur, "ffn_inp_normed", il_cb);
}
@@ -1088,6 +1089,7 @@ llm_expert_gating_func_type gating_op,
auto cur = input;
if (ffn_norm) {
auto the_ffn_norm = ffn_norm->extra ? ((ggml_split_tensor_t *)ffn_norm->extra)->splits[lctx.model.main_gpu] : ffn_norm;
GGML_ASSERT(the_ffn_norm);
cur = llm_build_norm(ctx, input, lctx.model.hparams, the_ffn_norm, nullptr, LLM_NORM_RMS, cb, il);
cb(cur, "ffn_inp_normed", il);
}
@@ -1109,17 +1111,18 @@ llm_expert_gating_func_type gating_op,
gating_op, cb, il, graph);
cb(routed_out, "routed_out", il);
ggml_build_forward_expand(graph, routed_out);
//printf("Using non-split llm_build_moe_ffn for layer %d. n_before = %d, n_now = %d\n", il, n_before, graph->n_nodes);
if (up_shexp && gate_shexp && down_shexp) {
if (split_up_shexp) {
//printf("Using split ffn for shared experts in layer %d\n", il);
std::vector<ggml_tensor *> results(split_up_shexp->n_device);
std::vector<ggml_tensor *> results; results.reserve(split_up_shexp->n_device);
GGML_ASSERT(!split_up_b_shexp || split_up_b_shexp->n_device == split_up_shexp->n_device);
GGML_ASSERT(!split_gate_b_shexp || split_gate_b_shexp->n_device == split_up_shexp->n_device);
GGML_ASSERT(!split_down_b_shexp || split_down_b_shexp->n_device == split_up_shexp->n_device);
for (int id = 0; id < split_up_shexp->n_device; ++id) {
int il_cb = 1000*id + il;
GGML_ASSERT((split_up_shexp->splits[id] && split_gate_shexp->splits[id] && split_down_shexp->splits[id]) ||
(!split_up_shexp->splits[id] && !split_gate_shexp->splits[id] && !split_down_shexp->splits[id]));
if (!split_up_shexp->splits[id]) continue;
auto the_ffn_norm = ffn_norm ? ffn_norm->extra ? ((ggml_split_tensor_t *)ffn_norm->extra)->splits[id] : ffn_norm : nullptr;
auto shared_out = llm_build_ffn(ctx, lctx, the_ffn_norm, input,
split_up_shexp->splits[id], split_up_b_shexp ? split_up_b_shexp->splits[id] : nullptr, nullptr,
@@ -1130,17 +1133,19 @@ llm_expert_gating_func_type gating_op,
if (shared_out->ne[1] > 32) {
shared_out = ggml_cast(ctx, shared_out, GGML_TYPE_F16);
}
results[id] = shared_out;
results.push_back(shared_out);
}
cur = ggml_add(ctx, results[0], results[1]);
if (cur->ne[1] > 32) {
// Force a graph split
GGML_ASSERT(!results.empty());
if (results.size() == 1) {
cur = results.front();
} else {
cur = ggml_add(ctx, results[0], results[1]);
cur->op_params[0] = 0xff;
}
cb(cur, "ffn_shared_combined", il);
for (int id = 2; id < int(results.size()); ++id) {
cur = ggml_add(ctx, cur, results[id]);
cb(cur, "ffn_shared_combined", il);
for (int id = 2; id < int(results.size()); ++id) {
cur = ggml_add(ctx, cur, results[id]);
cb(cur, "ffn_shared_combined", il);
}
}
if (routed_out->ne[1] > 32) {
auto routed_out_f16 = ggml_cast(ctx, routed_out, GGML_TYPE_F16);
@@ -1150,7 +1155,6 @@ llm_expert_gating_func_type gating_op,
}
cb(cur, "ffn_out", il);
} else {
//printf("Using non-split ffn for shared experts in layer %d\n", il);
auto shared_out = llm_build_ffn(ctx, lctx, nullptr, cur,
up_shexp, up_b_shexp, nullptr,
gate_shexp, gate_b_shexp, nullptr,
@@ -1170,7 +1174,7 @@ llm_expert_gating_func_type gating_op,
}
GGML_ASSERT(split_up_exps && split_gate_exps && split_down_exps);
GGML_ASSERT(split_up_exps->n_device == split_gate_exps->n_device && split_up_exps->n_device == split_down_exps->n_device);
std::vector<ggml_tensor *> results(split_up_exps->n_device);
std::vector<ggml_tensor *> results; results.reserve(split_up_exps->n_device);
GGML_ASSERT((!split_up_shexp && !split_gate_shexp && !split_down_shexp) ||
( split_up_shexp && split_gate_shexp && split_down_shexp));
auto split_gate_inp = (ggml_split_tensor_t *)gate_inp->extra;
@@ -1178,6 +1182,9 @@ llm_expert_gating_func_type gating_op,
auto split_exp_probs_b = exp_probs_b ? (ggml_split_tensor_t *)exp_probs_b->extra : nullptr;
GGML_ASSERT(!split_exp_probs_b || split_exp_probs_b->n_device == split_up_exps->n_device);
for (int id = 0; id < split_up_exps->n_device; ++id) {
GGML_ASSERT((split_up_exps->splits[id] && split_gate_exps->splits[id] && split_down_exps->splits[id]) ||
(!split_up_exps->splits[id] && !split_gate_exps->splits[id] && !split_down_exps->splits[id]));
if (!split_up_exps->splits[id]) continue;
int il_cb = 1000*(id + 1) + il;
auto cur = input;
if (ffn_norm) {
@@ -1220,8 +1227,9 @@ llm_expert_gating_func_type gating_op,
cur = ggml_cast(ctx, cur, GGML_TYPE_F16);
cb(cur, "ffn_out_f16", il_cb);
}
results[id] = cur;
results.push_back(cur);
}
GGML_ASSERT(!results.empty());
if (results.size() == 1) return results.front();
auto cur = ggml_add(ctx, results[0], results[1]);
@@ -1660,10 +1668,15 @@ static ggml_tensor * build_output(llama_context & lctx, ggml_context * ctx, ggml
}
cb(o.back(), "output", id);
}
if (o.size() == 1) cur = o.front();
cur = ggml_concat(ctx, o[0], o[1], 0);
for (int id = 2; id < int(o.size()); ++id) {
cur = ggml_concat(ctx, cur, o[id], 0);
GGML_ASSERT(!o.empty());
if (o.size() == 1) {
cur = o.front();
}
else {
cur = ggml_concat(ctx, o[0], o[1], 0);
for (int id = 2; id < int(o.size()); ++id) {
cur = ggml_concat(ctx, cur, o[id], 0);
}
}
} else {
if (output_norm) {
@@ -9455,6 +9468,7 @@ ggml_tensor * llm_build_context::build_std_attention(ggml_cgraph * gf, ggml_tens
ggml_build_forward_expand(gf, cur);
attn.push_back(cur);
}
GGML_ASSERT(!attn.empty());
if (attn.size() == 1) return attn.front();
auto cur = ggml_add(ctx0, attn[0], attn[1]);
cb(cur, "combine_attn", il);
@@ -9463,10 +9477,6 @@ ggml_tensor * llm_build_context::build_std_attention(ggml_cgraph * gf, ggml_tens
cur = ggml_add(ctx0, cur, attn[id]);
cb(cur, "combine_attn", il);
}
// TODO: for more than 2 GPUs, do we need to add another forced graph split?
//if (attn.size() > 2) {
// cur->op_params[0] = 0xff;
//}
return cur;
}
}