mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-02-10 16:30:12 +00:00
Fix prompt tokenization issue during prompt processing (#1008)
* Find common tokens between prompt and cache Fix wrong context size usage for mtmd Use start position of common part server: handle context shift * Add size check for inexact match * Change --------- Co-authored-by: firecoperana <firecoperana>
This commit is contained in:
@@ -608,10 +608,11 @@ struct server_prompt_checkpoint {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct server_prompt {
|
||||
server_tokens tokens;
|
||||
int n_keep;
|
||||
int n_discarded;
|
||||
int n_kept_prompt;
|
||||
int n_discarded_prompt;
|
||||
|
||||
std::vector<uint8_t> data;
|
||||
|
||||
@@ -633,7 +634,8 @@ struct server_prompt {
|
||||
};
|
||||
|
||||
struct server_prompt_cache {
|
||||
server_prompt_cache(int32_t limit_size_mib, size_t limit_tokens) {
|
||||
server_prompt_cache(llama_context * ctx,int32_t limit_size_mib, size_t limit_tokens) {
|
||||
this->ctx = ctx;
|
||||
this->limit_size = 1024ull * 1024ull * (limit_size_mib < 0 ? 0 : limit_size_mib);
|
||||
this->limit_tokens = limit_tokens;
|
||||
}
|
||||
@@ -645,7 +647,7 @@ struct server_prompt_cache {
|
||||
|
||||
// in tokens, 0 = no limit
|
||||
size_t limit_tokens = 0;
|
||||
|
||||
llama_context* ctx;
|
||||
size_t size() const {
|
||||
size_t res = 0;
|
||||
|
||||
@@ -662,18 +664,18 @@ struct server_prompt_cache {
|
||||
for (const auto& state : states) {
|
||||
res += state.n_tokens();
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
server_prompt* alloc(const server_prompt& prompt, size_t state_size) {
|
||||
for (auto it = states.begin(); it != states.end();) {
|
||||
auto tokens_ctx_shift = server_tokens(prompt.tokens.get_text_tokens(), false); // copy cache tokens
|
||||
tokens_ctx_shift.discard_n_tokens(prompt.n_keep, prompt.n_discarded);
|
||||
|
||||
const size_t len = it->tokens.get_common_prefix(tokens_ctx_shift);
|
||||
tokens_ctx_shift.discard_n_tokens(prompt.n_kept_prompt, prompt.n_discarded_prompt);
|
||||
auto prefix = it->tokens.get_common_prefix(ctx, tokens_ctx_shift);
|
||||
const size_t len = prefix.first;
|
||||
const size_t len_prompt = prefix.second;
|
||||
// first check if the current state is contained fully in the cache
|
||||
if (len == tokens_ctx_shift.size()) {
|
||||
if (len_prompt == tokens_ctx_shift.size()) {
|
||||
LLAMA_LOG_INFO("%s", " - prompt is already in the cache, skipping\n");
|
||||
return nullptr;
|
||||
}
|
||||
@@ -709,8 +711,8 @@ struct server_prompt_cache {
|
||||
auto& cur = states.emplace_back();
|
||||
cur = {
|
||||
/*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
|
||||
/*.n_keep =*/ prompt.n_keep,
|
||||
/*.n_discarded =*/ prompt.n_discarded,
|
||||
/*.n_keep =*/ prompt.n_kept_prompt,
|
||||
/*.n_discarded_prompt =*/ prompt.n_discarded_prompt,
|
||||
/*.data =*/ std::move(state_data),
|
||||
/*.checkpoints =*/ prompt.checkpoints,
|
||||
};
|
||||
@@ -719,19 +721,19 @@ struct server_prompt_cache {
|
||||
}
|
||||
|
||||
bool load(server_prompt& prompt, const server_tokens& tokens_new, llama_context* ctx, int32_t id_slot) {
|
||||
const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
|
||||
const auto lcp_best = prompt.tokens.get_common_prefix(ctx, tokens_new);
|
||||
|
||||
float f_keep_best = float(lcp_best) / prompt.tokens.size();
|
||||
float sim_best = prompt.tokens.get_tokens_similarity(tokens_new, prompt.n_keep, prompt.n_discarded);
|
||||
LLAMA_LOG_INFO(" - looking for better prompt, base f_keep = %.3f, sim = %.3f, n_keep = %d, n_discarded = %d\n", f_keep_best, sim_best, prompt.n_keep, prompt.n_discarded);
|
||||
float f_keep_best = float(lcp_best.second) / prompt.tokens.size();
|
||||
float sim_best = prompt.tokens.get_tokens_similarity(ctx, tokens_new, prompt.n_kept_prompt, prompt.n_discarded_prompt);
|
||||
LLAMA_LOG_INFO(" - looking for better prompt, base f_keep = %.3f, sim = %.3f, n_keep = %d, n_discarded_prompt = %d\n", f_keep_best, sim_best, prompt.n_kept_prompt, prompt.n_discarded_prompt);
|
||||
|
||||
auto it_best = states.end();
|
||||
|
||||
// find the most similar cached prompt, that would also preserve the most context
|
||||
for (auto it = states.begin(); it != states.end(); ++it) {
|
||||
const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
|
||||
const float f_keep_cur = float(lcp_cur) / it->tokens.size();
|
||||
const float sim_cur = it->tokens.get_tokens_similarity(tokens_new, it->n_keep, it->n_discarded);
|
||||
const auto lcp_cur = it->tokens.get_common_prefix(ctx, tokens_new);
|
||||
const float f_keep_cur = float(lcp_cur.first) / it->tokens.size();
|
||||
const float sim_cur = it->tokens.get_tokens_similarity(ctx, tokens_new, it->n_kept_prompt, it->n_discarded_prompt);
|
||||
if (sim_best < sim_cur) {
|
||||
f_keep_best = f_keep_cur;
|
||||
sim_best = sim_cur;
|
||||
@@ -740,7 +742,7 @@ struct server_prompt_cache {
|
||||
}
|
||||
|
||||
if (it_best != states.end()) {
|
||||
LLAMA_LOG_INFO(" - found better prompt with f_keep = %.3f, sim = %.3f, n_keep = %d, n_discarded = %d\n", f_keep_best, sim_best, it_best->n_keep, it_best->n_discarded);
|
||||
LLAMA_LOG_INFO(" - found better prompt with f_keep = %.3f, sim = %.3f, n_keep = %d, n_discarded_prompt = %d\n", f_keep_best, sim_best, it_best->n_kept_prompt, it_best->n_discarded_prompt);
|
||||
const size_t size = it_best->data.size();
|
||||
const size_t n = llama_state_seq_set_data(ctx, it_best->data.data(), size, id_slot);
|
||||
if (n != size) {
|
||||
@@ -798,7 +800,7 @@ struct server_prompt_cache {
|
||||
|
||||
for (const auto& state : states) {
|
||||
LLAMA_LOG_INFO(" - prompt %p: %7d tokens, %7d discarded, checkpoints: %2zu, %9.3f MiB\n",
|
||||
(const void*)&state, state.n_tokens(), state.n_discarded, state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
|
||||
(const void*)&state, state.n_tokens(), state.n_discarded_prompt, state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -823,10 +825,12 @@ struct server_slot {
|
||||
// generation props
|
||||
int32_t n_ctx = 0; // context size per slot
|
||||
int32_t n_past = 0;
|
||||
int32_t n_past_prompt = 0;
|
||||
int32_t n_decoded = 0;
|
||||
int32_t n_remaining = -1;
|
||||
int32_t n_discarded = 0;
|
||||
int32_t n_kept = 0;
|
||||
int32_t n_discarded_prompt = 0;
|
||||
int32_t n_kept_prompt = 0;
|
||||
|
||||
int32_t i_batch = -1;
|
||||
int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
|
||||
|
||||
@@ -989,6 +993,7 @@ struct server_slot {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
json get_formated_timings() const {
|
||||
return json {
|
||||
{"prompt_n", n_prompt_tokens_processed},
|
||||
@@ -1693,7 +1698,7 @@ struct server_context {
|
||||
}
|
||||
LLAMA_LOG_INFO("%s", "use `--cache-ram 0` to disable the prompt cache\n");
|
||||
// only apply ram size limit. No token limit for now.
|
||||
prompt_cache = std::make_unique<server_prompt_cache>(params.cache_ram_mib, 0);
|
||||
prompt_cache = std::make_unique<server_prompt_cache>(ctx,params.cache_ram_mib, 0);
|
||||
}
|
||||
else {
|
||||
LLAMA_LOG_INFO("%s", "prompt cache is disabled - use `--cache-ram N` to enable it\n");
|
||||
@@ -1788,13 +1793,12 @@ struct server_context {
|
||||
continue;
|
||||
}
|
||||
// length of the Longest Common Prefix between the current slot's prompt and the input prompt
|
||||
// print_tokens(task.tokens, cache_tokens);
|
||||
size_t lcp_len = cache_tokens.get_common_prefix(task.tokens);
|
||||
auto lcp_len = cache_tokens.get_common_prefix(slot.ctx,task.tokens);
|
||||
// fraction of the Longest Common Prefix length with respect to the input prompt and cached prompt length
|
||||
float sim_cur = cache_tokens.get_tokens_similarity(task.tokens, 0, 0);
|
||||
float sim_cur = cache_tokens.get_tokens_similarity(slot.ctx, task.tokens, 0, 0);
|
||||
// handle context shift
|
||||
if (slot.ga_n == 1 && slot.n_discarded > 0 && task.tokens.size()>=slot.n_ctx) {
|
||||
float sim_cur_ctx_shift = cache_tokens.get_tokens_similarity(task.tokens, slot.n_kept, slot.n_discarded);
|
||||
if (slot.ga_n == 1 && slot.n_discarded_prompt > 0 && task.tokens.size()>=slot.n_ctx) {
|
||||
float sim_cur_ctx_shift = cache_tokens.get_tokens_similarity(slot.ctx, task.tokens, slot.n_kept_prompt, slot.n_discarded_prompt);
|
||||
if (sim_cur_ctx_shift > sim_cur) {
|
||||
sim_cur = sim_cur_ctx_shift;
|
||||
}
|
||||
@@ -1803,7 +1807,7 @@ struct server_context {
|
||||
// select the current slot if the criteria match
|
||||
if (sim_cur > sim_best && sim_cur > slot_prompt_similarity) {
|
||||
sim_best = sim_cur;
|
||||
max_lcp_len = lcp_len;
|
||||
max_lcp_len = lcp_len.first;
|
||||
ret = &slot;
|
||||
}
|
||||
}
|
||||
@@ -1842,11 +1846,11 @@ struct server_context {
|
||||
const auto& tokens = ret->cache_tokens;
|
||||
float f_keep = 0.0f;
|
||||
if (!tokens.empty()) {
|
||||
if (ret->ga_n == 1 && ret->n_discarded > 0 && task.tokens.size() >= ret->n_ctx) {
|
||||
f_keep = tokens.get_cached_tokens_similarity(task.tokens, ret->params.n_keep + add_bos_token, ret->n_discarded);
|
||||
if (ret->ga_n == 1 && ret->n_discarded_prompt > 0 && task.tokens.size() >= ret->n_ctx) {
|
||||
f_keep = tokens.get_cached_tokens_similarity(ret->ctx, task.tokens, ret->params.n_keep + add_bos_token, ret->n_discarded_prompt);
|
||||
}
|
||||
else {
|
||||
f_keep = tokens.get_cached_tokens_similarity(task.tokens, 0, 0);
|
||||
f_keep = tokens.get_cached_tokens_similarity(ret->ctx,task.tokens, 0, 0);
|
||||
}
|
||||
// if we are about to lose a large portion of the existing context - save it in the prompt cache
|
||||
if (f_keep < cache_ram_similarity) {
|
||||
@@ -1863,14 +1867,14 @@ struct server_context {
|
||||
// TODO: mtmd does not support prompt cache
|
||||
update_cache = update_cache && (ret->mctx == nullptr);
|
||||
|
||||
LLAMA_LOG_INFO("prompt cache: cache size: %d, n_keep: %d, n_discarded: %d, cache_ram_n_min: %d, f_keep: %.2f, cache_ram_similarity: %.2f\n",
|
||||
(int)tokens.size(), ret->n_kept, ret->n_discarded, cache_ram_n_min, f_keep, cache_ram_similarity);
|
||||
LLAMA_LOG_INFO("======== Prompt cache: cache size: %d, n_keep: %d, n_discarded_prompt: %d, cache_ram_n_min: %d, f_keep: %.2f, cache_ram_similarity: %.2f\n",
|
||||
(int)tokens.size(), ret->n_kept_prompt, ret->n_discarded_prompt, cache_ram_n_min, f_keep, cache_ram_similarity);
|
||||
if (update_cache) {
|
||||
const int64_t t_start = ggml_time_us();
|
||||
LLAMA_LOG_INFO("updating prompt cache\n");
|
||||
ret->server_cached_prompt.tokens = server_tokens(tokens.get_text_tokens(), false); // copy cache tokens
|
||||
ret->server_cached_prompt.n_discarded = ret->n_discarded;
|
||||
ret->server_cached_prompt.n_keep = ret->n_kept;
|
||||
ret->server_cached_prompt.n_discarded_prompt = ret->n_discarded_prompt;
|
||||
ret->server_cached_prompt.n_kept_prompt = ret->n_kept_prompt;
|
||||
|
||||
ret->prompt_save(*prompt_cache);
|
||||
LLAMA_LOG_INFO("prompt cache save took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0);
|
||||
@@ -1879,15 +1883,15 @@ struct server_context {
|
||||
if (prompt_cache && !prompt_cache->states.empty()) {
|
||||
const int64_t t_start = ggml_time_us();
|
||||
ret->server_cached_prompt.tokens = server_tokens(tokens.get_text_tokens(), false); // copy cache tokens
|
||||
ret->server_cached_prompt.n_discarded = ret->n_discarded;
|
||||
ret->server_cached_prompt.n_keep = ret->n_kept;
|
||||
ret->server_cached_prompt.n_discarded_prompt = ret->n_discarded_prompt;
|
||||
ret->server_cached_prompt.n_kept_prompt = ret->n_kept_prompt;
|
||||
|
||||
ret->prompt_load(*prompt_cache, task.tokens);
|
||||
prompt_cache->update();
|
||||
|
||||
ret->cache_tokens = server_tokens(ret->server_cached_prompt.tokens.get_text_tokens(), false); // recover cache tokens
|
||||
ret->n_discarded = ret->server_cached_prompt.n_discarded;
|
||||
ret->n_kept = ret->server_cached_prompt.n_keep;
|
||||
ret->n_discarded_prompt = ret->server_cached_prompt.n_discarded_prompt;
|
||||
ret->n_kept_prompt = ret->server_cached_prompt.n_kept_prompt;
|
||||
|
||||
LLAMA_LOG_INFO("prompt cache load took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0);
|
||||
}
|
||||
@@ -3093,9 +3097,14 @@ struct server_context {
|
||||
queue_results.send(result);
|
||||
}
|
||||
|
||||
void print_tokens(const server_tokens & prompt, const server_tokens& cache) {
|
||||
LLAMA_LOG_INFO( "prompt: %s\n", prompt.detokenize(ctx, true).c_str());
|
||||
LLAMA_LOG_INFO( "cache: %s\n", cache.detokenize(ctx, true).c_str());
|
||||
void print_tokens(const server_tokens & prompt, const server_tokens& cache, size_t start1 = 0, size_t start2=0 , size_t length = 10) {
|
||||
if (cache.size() > start2) {
|
||||
LLAMA_LOG_INFO("cache : %s\n", cache.detokenize(ctx, true, start2, length).c_str());
|
||||
}
|
||||
if (prompt.size()> start1) {
|
||||
LLAMA_LOG_INFO("prompt: %s\n", prompt.detokenize(ctx, true, start1, length).c_str());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void discard_n_kv_and_cache_tokens(llama_context* ctx, server_slot& slot, int32_t n_keep, int32_t n_discard) {
|
||||
@@ -3106,6 +3115,60 @@ struct server_context {
|
||||
}
|
||||
}
|
||||
|
||||
// convert keep first few and discard next tokens in a to b
|
||||
void context_shift_find_n_tokens(llama_context* ctx, const server_tokens& a, const server_tokens& b, int32_t n_keep,
|
||||
int32_t n_discard, int32_t& n_kept, int32_t& n_discarded, bool exact = false) {
|
||||
|
||||
common_prefix ctx_keep_prefix = a.get_common_prefix_first_n(ctx, b, n_keep, exact);
|
||||
common_prefix ctx_total_discard_prefix = a.get_common_prefix_first_n(ctx, b, n_discard + n_keep, exact);
|
||||
// only if there is enough common token
|
||||
int32_t discard_offset = ctx_total_discard_prefix.first - (n_discard + n_keep);
|
||||
int32_t keep_offset = ctx_keep_prefix.first - n_keep;
|
||||
n_kept = ctx_keep_prefix.second - keep_offset;
|
||||
n_discarded = ctx_total_discard_prefix.second - ctx_keep_prefix.second - discard_offset;
|
||||
if (n_kept < 0) {
|
||||
n_kept = n_keep;
|
||||
}
|
||||
if (n_discarded < 0) {
|
||||
n_discarded = n_discard;
|
||||
}
|
||||
}
|
||||
|
||||
void context_shift_prompt(llama_context* ctx, server_slot& slot, bool exact = false) {
|
||||
//server_tokens prompt_tokens = std::move(slot.prompt_tokens);
|
||||
int n_keep = std::max(0, slot.params.n_keep + add_bos_token);
|
||||
const int n_left = slot.n_ctx - n_keep;
|
||||
int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
|
||||
|
||||
int n_discard_prompt = 0;
|
||||
// we still need to truncate input since we have not discarded enough tokens
|
||||
while (slot.n_prompt_tokens - slot.n_discarded_prompt >= slot.n_ctx) {
|
||||
slot.n_discarded_prompt = slot.n_discarded_prompt + n_discard;
|
||||
n_discard_prompt = n_discard_prompt + n_discard;
|
||||
}
|
||||
|
||||
// Handle mistokenization between prompt and cache during context shift
|
||||
//
|
||||
int32_t n_discard_cache = n_discard_prompt;
|
||||
int32_t n_kept = n_keep;
|
||||
slot.prompt_tokens.discard_n_tokens(n_keep, slot.n_discarded_prompt - n_discard_prompt);
|
||||
if (n_discard_prompt > 0) {
|
||||
context_shift_find_n_tokens(ctx, slot.prompt_tokens, slot.cache_tokens, n_keep,
|
||||
n_discard, n_kept, n_discard_cache, exact);
|
||||
}
|
||||
|
||||
int n_discard_cache_max = std::max((int32_t)slot.cache_tokens.size() - n_kept, 0);
|
||||
n_discard_cache = std::min(n_discard_cache, n_discard_cache_max);
|
||||
// discard matching tokens from cache and kv cache to avoid reprocessing the prompt
|
||||
if (n_discard_cache > 0) {
|
||||
discard_n_kv_and_cache_tokens(ctx, slot, n_kept, n_discard_cache);
|
||||
}
|
||||
// discard extra tokens from prompts
|
||||
slot.n_kept_prompt = n_keep;
|
||||
slot.prompt_tokens.discard_n_tokens(n_keep, n_discard_prompt);
|
||||
slot.n_prompt_tokens = slot.prompt_tokens.size();
|
||||
}
|
||||
|
||||
void update_slots() {
|
||||
if (system_need_update) {
|
||||
system_prompt_update();
|
||||
@@ -3189,23 +3252,29 @@ struct server_context {
|
||||
|
||||
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
|
||||
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
|
||||
int32_t n_kept;
|
||||
int32_t n_discard_cache;
|
||||
if (n_discard > 0) {
|
||||
context_shift_find_n_tokens(ctx, slot.prompt_tokens, slot.cache_tokens, n_keep,
|
||||
n_discard, n_kept, n_discard_cache);
|
||||
LOG_INFO("slot context shift", {
|
||||
{"id_slot", slot.id},
|
||||
{"id_task", slot.id_task},
|
||||
{"n_keep", n_keep},
|
||||
{"n_left", n_left},
|
||||
{"n_discard", n_discard},
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_past", slot.n_past},
|
||||
{"n_system_tokens", system_tokens.size()},
|
||||
{"n_cache_tokens", slot.cache_tokens.size()}
|
||||
});
|
||||
slot.n_discarded_prompt = slot.n_discarded_prompt + n_discard;
|
||||
slot.n_kept_prompt = n_keep;
|
||||
discard_n_kv_and_cache_tokens(ctx, slot, n_kept, n_discard_cache);
|
||||
slot.n_past -= n_discard_cache;
|
||||
slot.truncated = true;
|
||||
}
|
||||
|
||||
LOG_INFO("slot context shift", {
|
||||
{"id_slot", slot.id},
|
||||
{"id_task", slot.id_task},
|
||||
{"n_keep", n_keep},
|
||||
{"n_left", n_left},
|
||||
{"n_discard", n_discard},
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_past", slot.n_past},
|
||||
{"n_system_tokens", system_tokens.size()},
|
||||
{"n_cache_tokens", slot.cache_tokens.size()}
|
||||
});
|
||||
slot.n_discarded = slot.n_discarded + n_discard;
|
||||
slot.n_kept = n_keep;
|
||||
discard_n_kv_and_cache_tokens(ctx, slot, n_keep, n_discard);
|
||||
slot.n_past -= n_discard;
|
||||
slot.truncated = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -3229,7 +3298,7 @@ struct server_context {
|
||||
|
||||
// TODO: we always have to take into account the "system_tokens"
|
||||
// this is not great and needs to be improved somehow
|
||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
|
||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot.cache_tokens.pos_next(), { slot.id }, true);
|
||||
|
||||
slot.n_past += 1;
|
||||
|
||||
@@ -3355,43 +3424,39 @@ struct server_context {
|
||||
slot.release();
|
||||
continue;
|
||||
}
|
||||
int n_keep = std::max(0, slot.params.n_keep + add_bos_token);
|
||||
const int n_left = slot.n_ctx - n_keep;
|
||||
int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
|
||||
int n_discard_cache = 0;
|
||||
// we still need to truncate input since we have not discarded enough tokens
|
||||
while (slot.n_prompt_tokens - slot.n_discarded >= slot.n_ctx) {
|
||||
slot.n_discarded = slot.n_discarded + n_discard;
|
||||
n_discard_cache = n_discard_cache + n_discard;
|
||||
if (mctx) {
|
||||
// we should never reach this because params.ctx_shift is automatically disabled if mmproj is loaded
|
||||
// we don't support ctx_shift because an image chunk may contains multiple tokens
|
||||
GGML_ABORT("not supported by multimodal");
|
||||
}
|
||||
int n_discard_cache_max = std::max((int)slot.cache_tokens.size() - n_keep, 0);
|
||||
n_discard_cache = std::min(n_discard_cache, n_discard_cache_max);
|
||||
// discard matching tokens from cache and kv cache to avoid reprocessing the prompt
|
||||
if (n_discard_cache > 0) {
|
||||
discard_n_kv_and_cache_tokens(ctx, slot, n_keep, n_discard_cache);
|
||||
}
|
||||
// discard extra tokens from prompts
|
||||
n_discard = slot.n_discarded;
|
||||
slot.n_kept = n_keep;
|
||||
prompt_tokens.discard_n_tokens(n_keep, n_discard);
|
||||
|
||||
context_shift_prompt(ctx, slot);
|
||||
slot.truncated = true;
|
||||
slot.n_prompt_tokens = prompt_tokens.size();
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"id_slot", slot.id},
|
||||
{"id_task", slot.id_task},
|
||||
{"n_ctx", slot.n_ctx},
|
||||
{"n_keep", slot.params.n_keep},
|
||||
{"n_left", n_left},
|
||||
{"n_left", slot.n_ctx- slot.params.n_keep},
|
||||
{"n_prompt_tokens", slot.n_prompt_tokens},
|
||||
{"prompt_tokens", prompt_tokens.detokenize(ctx, true)},
|
||||
});
|
||||
|
||||
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
|
||||
//print_tokens(prompt_tokens, slot.cache_tokens);
|
||||
|
||||
|
||||
#ifndef NDEBUG
|
||||
// debug
|
||||
common_prefix prefix = slot.cache_tokens.get_common_prefix(ctx, prompt_tokens, false);
|
||||
int32_t back = 1;
|
||||
if (slot.cache_tokens.size() && slot.cache_tokens.size() > prefix.first+20
|
||||
&& prefix.second >= back && prefix.first >= back) {
|
||||
LLAMA_LOG_INFO("After context shift :\n");
|
||||
print_tokens(slot.prompt_tokens, slot.cache_tokens, prefix.second - back, prefix.first - back, 50);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
slot.n_discarded = 0;
|
||||
slot.n_discarded_prompt = 0;
|
||||
}
|
||||
llama_sampling_reset(llama_get_model_vocab(model), slot.ctx_sampling);
|
||||
|
||||
@@ -3402,7 +3467,28 @@ struct server_context {
|
||||
GGML_ASSERT(slot.ga_n == 1);
|
||||
|
||||
// reuse any previously computed tokens that are common with the new prompt
|
||||
slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
|
||||
common_prefix prefix = slot.cache_tokens.get_common_prefix(ctx, prompt_tokens, true); // string level match
|
||||
common_prefix prefix_nonexact = slot.cache_tokens.get_common_prefix(ctx, prompt_tokens, false);
|
||||
auto n_past0 = slot.cache_tokens.get_common_prefix_exact(prompt_tokens); // token level match
|
||||
LLAMA_LOG_INFO("======== Cache: cache_size = %ld, n_past0 = %ld, n_past1 = %ld, n_past_prompt1 = %ld, n_past2 = %ld, n_past_prompt2 = %ld\n", (int32_t) slot.cache_tokens.size(), (int32_t) n_past0, (int32_t) prefix.first, prefix.second, (int32_t) prefix_nonexact.first, (int32_t) prefix_nonexact.second);
|
||||
int32_t size_threshold = 20;
|
||||
if (prefix.first + size_threshold < prefix_nonexact.first) {
|
||||
LLAMA_LOG_WARN("Common part contains missing or extra space and new line\n");
|
||||
prefix = prefix_nonexact;
|
||||
}
|
||||
slot.n_past = prefix.first;
|
||||
slot.n_past_prompt = prefix.second;
|
||||
if (slot.n_past != slot.n_past_prompt) {
|
||||
LLAMA_LOG_INFO("Mistokenization found and handled successfully.\n");
|
||||
}
|
||||
if ((slot.n_past + size_threshold < slot.cache_tokens.size()))
|
||||
{
|
||||
LLAMA_LOG_WARN("Common part does not match fully\n");
|
||||
int32_t back = 4;
|
||||
if (prefix.second >= back && prefix.first >= back) {
|
||||
print_tokens(slot.prompt_tokens, slot.cache_tokens, prefix.second - back, prefix.first - back, 30);
|
||||
}
|
||||
}
|
||||
|
||||
// push the prompt into the sampling context (do not apply grammar)
|
||||
for (int i = 0; i < slot.n_past; ++i) {
|
||||
@@ -3411,13 +3497,14 @@ struct server_context {
|
||||
}
|
||||
}
|
||||
|
||||
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
|
||||
if (slot.n_past_prompt == slot.n_prompt_tokens && slot.n_past_prompt > 0) {
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
|
||||
{ "id_slot", slot.id },
|
||||
{ "id_task", slot.id_task }
|
||||
});
|
||||
|
||||
slot.n_past_prompt--;
|
||||
slot.n_past--;
|
||||
if (slot.ga_i > 0) {
|
||||
slot.n_past_se--;
|
||||
@@ -3443,7 +3530,10 @@ struct server_context {
|
||||
}
|
||||
|
||||
// keep only the common part
|
||||
// remove the non-common part from the cache
|
||||
slot.cache_tokens.keep_first(slot.n_past);
|
||||
int p0 = (int) system_tokens.size() + slot.n_past;
|
||||
p0 = system_tokens.size() + slot.cache_tokens.pos_next();
|
||||
if (!llama_kv_cache_seq_rm(ctx, slot.id, p0, -1)) {
|
||||
// could not partially delete (likely using a non-Transformer model)
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
|
||||
@@ -3462,9 +3552,6 @@ struct server_context {
|
||||
llama_sampling_reset(llama_get_model_vocab(model), slot.ctx_sampling);
|
||||
}
|
||||
|
||||
// remove the non-common part from the cache
|
||||
slot.cache_tokens.keep_first(slot.n_past);
|
||||
|
||||
LOG_INFO("kv cache rm [p0, end)", {
|
||||
{ "id_slot", slot.id },
|
||||
{ "id_task", slot.id_task },
|
||||
@@ -3472,13 +3559,12 @@ struct server_context {
|
||||
});
|
||||
|
||||
// check if we should process the image
|
||||
if (slot.n_past < slot.n_prompt_tokens
|
||||
&& slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
|
||||
if (slot.n_past_prompt < slot.n_prompt_tokens
|
||||
&& slot.prompt_tokens[slot.n_past_prompt] == LLAMA_TOKEN_NULL) {
|
||||
// process the image
|
||||
int32_t new_n_past;
|
||||
size_t new_n_tokens;
|
||||
int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past, new_n_tokens);
|
||||
int32_t n_pos = new_n_past - slot.n_past;
|
||||
size_t n_tokens_out = 0;
|
||||
llama_pos p1 = slot.cache_tokens.pos_next()+slot.n_past_prompt-slot.n_past; // add offset to prompt
|
||||
int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past_prompt, p1, slot.id, n_tokens_out);
|
||||
if (res != 0) {
|
||||
LLAMA_LOG_ERROR("failed to process image, res = %d\n", res);
|
||||
slot.release();
|
||||
@@ -3488,12 +3574,14 @@ struct server_context {
|
||||
|
||||
// add the image chunk to cache
|
||||
{
|
||||
const auto& chunk = slot.prompt_tokens.find_chunk(slot.n_past);
|
||||
const auto& chunk = slot.prompt_tokens.find_chunk(slot.n_past_prompt);
|
||||
slot.cache_tokens.push_back(chunk.get()); // copy
|
||||
}
|
||||
|
||||
slot.n_past += n_pos;
|
||||
slot.n_prompt_tokens_processed += new_n_tokens;
|
||||
slot.n_past += n_tokens_out;
|
||||
slot.n_past_prompt += n_tokens_out;
|
||||
slot.n_prompt_tokens_processed += n_tokens_out;
|
||||
|
||||
}
|
||||
|
||||
|
||||
@@ -3506,9 +3594,9 @@ struct server_context {
|
||||
|
||||
// add prompt tokens for processing in the current batch
|
||||
// TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
|
||||
while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
|
||||
while (slot.n_past_prompt < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
|
||||
// get next token to process
|
||||
llama_token cur_tok = slot.prompt_tokens[slot.n_past];
|
||||
llama_token cur_tok = slot.prompt_tokens[slot.n_past_prompt];
|
||||
if (cur_tok == LLAMA_TOKEN_NULL) {
|
||||
break; // end of text chunk
|
||||
}
|
||||
@@ -3520,13 +3608,15 @@ struct server_context {
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch_add(batch, cur_tok, system_tokens.size() + slot_npast, { slot.id }, false);
|
||||
{
|
||||
slot.cache_tokens.push_back(cur_tok);
|
||||
}
|
||||
int p0=system_tokens.size() + slot.cache_tokens.pos_next();
|
||||
llama_batch_add(batch, cur_tok, p0, { slot.id }, false);
|
||||
|
||||
slot.cache_tokens.push_back(cur_tok);
|
||||
|
||||
|
||||
slot.n_prompt_tokens_processed++;
|
||||
slot_npast++;
|
||||
slot.n_past_prompt++;
|
||||
slot.n_past++;
|
||||
}
|
||||
LOG_VERBOSE("prompt processing progress", {
|
||||
@@ -3538,7 +3628,7 @@ struct server_context {
|
||||
});
|
||||
|
||||
// entire prompt has been processed - start decoding new tokens
|
||||
if (slot.n_past == slot.n_prompt_tokens) {
|
||||
if (slot.n_past_prompt == slot.n_prompt_tokens) {
|
||||
slot.state = SLOT_STATE_PROCESSING;
|
||||
slot.command = SLOT_COMMAND_NONE;
|
||||
|
||||
@@ -3643,11 +3733,13 @@ struct server_context {
|
||||
slot.state = SLOT_STATE_PROCESSING;
|
||||
slot.command = SLOT_COMMAND_NONE;
|
||||
slot.release();
|
||||
LLAMA_LOG_INFO("n_past =% d\n", slot.cache_tokens.size());
|
||||
send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
|
||||
}
|
||||
break; // break loop of n_batch
|
||||
}
|
||||
|
||||
|
||||
// retry with half the batch size to try to find a free slot in the KV cache
|
||||
n_batch /= 2;
|
||||
i -= n_batch;
|
||||
@@ -3775,10 +3867,10 @@ struct server_context {
|
||||
|
||||
// construct the speculation batch
|
||||
llama_batch_clear(slot.batch_spec);
|
||||
llama_batch_add(slot.batch_spec, id, slot.n_past, { slot.id }, true);
|
||||
llama_batch_add(slot.batch_spec, id, slot.cache_tokens.pos_next(), { slot.id }, true);
|
||||
|
||||
for (size_t i = 0; i < draft.size(); ++i) {
|
||||
llama_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
|
||||
llama_batch_add(slot.batch_spec, draft[i], slot.cache_tokens.pos_next() + 1 + i, { slot.id }, true);
|
||||
}
|
||||
|
||||
LOG_VERBOSE("decoding speculative batch", {
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
#include <src/llama-impl.h>
|
||||
#include "common.h"
|
||||
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
@@ -14,6 +15,7 @@
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
#include <random>
|
||||
#include <set>
|
||||
|
||||
// increase max payload length to allow use of larger context size
|
||||
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
|
||||
@@ -333,6 +335,165 @@ static std::string tokens_to_output_formatted_string(const llama_context * ctx,
|
||||
return out;
|
||||
}
|
||||
|
||||
struct common_prefix {
|
||||
size_t first = 0;
|
||||
size_t second = 0;
|
||||
};
|
||||
|
||||
common_prefix common_prefix_add(const common_prefix& a, const common_prefix& b) {
|
||||
common_prefix prefix;
|
||||
prefix.first = a.first + b.first;
|
||||
prefix.second = a.second + b.second;
|
||||
return prefix;
|
||||
}
|
||||
|
||||
common_prefix find_common_string_prefix(const std::string & a_str, const std::string & b_str, const std::set<char>& ignore_set) {
|
||||
size_t i = 0;
|
||||
size_t j = 0;
|
||||
while (i < a_str.size() && j < b_str.size()) {
|
||||
auto a_chr = a_str[i];
|
||||
auto b_chr = b_str[j];
|
||||
if (a_chr == b_chr) {
|
||||
++i;
|
||||
++j;
|
||||
}
|
||||
else if (ignore_set.count(a_chr) && ignore_set.count(b_chr)) {
|
||||
++i;
|
||||
++j;
|
||||
}
|
||||
else if (ignore_set.count(a_chr)) {
|
||||
++i;
|
||||
}
|
||||
else if (ignore_set.count(b_chr)) {
|
||||
++j;
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
common_prefix string_prefix;
|
||||
string_prefix.first = i;
|
||||
string_prefix.second = j;
|
||||
return string_prefix;
|
||||
}
|
||||
|
||||
size_t find_n_tokens_from_string(const llama_context* ctx, const llama_tokens& a, const size_t max_size, size_t start,
|
||||
std::vector<size_t> & map) {
|
||||
size_t n = 0;
|
||||
size_t string_len = 0;
|
||||
std::string str;
|
||||
auto model = llama_get_model(ctx);
|
||||
for (n = start; n < a.size(); ++n) {
|
||||
str = llama_token_to_piece(model, a[n], true);
|
||||
string_len = string_len + str.size();
|
||||
if (string_len <= max_size) {
|
||||
map.push_back(string_len);
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return map.size();
|
||||
}
|
||||
|
||||
std::string remove_with_set(std::string str, const std::set<char>& chars_to_remove) {
|
||||
str.erase(std::remove_if(str.begin(), str.end(),
|
||||
[&chars_to_remove](char c) { return chars_to_remove.find(c) != chars_to_remove.end(); }),
|
||||
str.end());
|
||||
return str;
|
||||
}
|
||||
|
||||
common_prefix find_largest_common_number(const std::vector<size_t>& a_list, const std::vector<size_t>& b_list) {
|
||||
common_prefix token_prefix;
|
||||
token_prefix.first = 0;
|
||||
token_prefix.second = 0;
|
||||
int i = a_list.size() - 1; // start from end of a
|
||||
int j = b_list.size() - 1; // start from end of b
|
||||
if (i < 0 || j < 0) {
|
||||
return token_prefix;
|
||||
}
|
||||
while (i >= 0 && j >= 0) {
|
||||
if (a_list[i] == b_list[j]) {
|
||||
// found largest common value
|
||||
token_prefix.first = (size_t)i + 1;
|
||||
token_prefix.second = (size_t)j + 1;
|
||||
break;
|
||||
}
|
||||
else if (a_list[i] > b_list[j]) {
|
||||
--i;
|
||||
}
|
||||
else {
|
||||
--j;
|
||||
}
|
||||
}
|
||||
return token_prefix;
|
||||
}
|
||||
|
||||
size_t find_n_tokens_from_string_with_ignore(const llama_context* ctx, const llama_tokens& a, const size_t max_size, size_t start, const std::set<char> & ignore_set,
|
||||
std::vector<size_t>& map) {
|
||||
bool use_ignore = ignore_set.size()>0;
|
||||
size_t n = 0;
|
||||
size_t string_len = 0;
|
||||
size_t string_len_ignore = 0;
|
||||
std::string str;
|
||||
std::string str_ignore;
|
||||
auto model = llama_get_model(ctx);
|
||||
for (n = start; n < a.size(); ++n) {
|
||||
str = llama_token_to_piece(model, a[n], true);
|
||||
string_len = string_len + str.size();
|
||||
if (use_ignore) {
|
||||
str_ignore = remove_with_set(str, ignore_set);
|
||||
}
|
||||
else {
|
||||
str_ignore = str;
|
||||
}
|
||||
string_len_ignore = string_len_ignore + str_ignore.size();
|
||||
if (string_len <= max_size) {
|
||||
map.push_back(string_len_ignore);
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return map.size();
|
||||
}
|
||||
|
||||
common_prefix find_common_text_token_prefix(const llama_context * ctx, const llama_tokens & a, const llama_tokens& b,
|
||||
size_t start, bool exact) {
|
||||
common_prefix token_prefix;
|
||||
if (a.size()<= start || b.size()<= start) {
|
||||
return token_prefix;
|
||||
}
|
||||
std::set<char> ignore_set = { ' ', '\n' ,'\r'};
|
||||
|
||||
llama_tokens a_sub(a.begin() + start, a.end());
|
||||
llama_tokens b_sub(b.begin() + start, b.end());
|
||||
|
||||
std::string a_str = llama_detokenize(ctx, a_sub, true);
|
||||
std::string b_str = llama_detokenize(ctx, b_sub, true);
|
||||
common_prefix string_prefix;
|
||||
|
||||
std::vector<size_t> a_list;
|
||||
std::vector<size_t> b_list;
|
||||
|
||||
if (exact) {
|
||||
size_t lcp = common_part(a_str, b_str);
|
||||
string_prefix.first = lcp;
|
||||
string_prefix.second = lcp;
|
||||
token_prefix.first = find_n_tokens_from_string(ctx, a_sub, string_prefix.first, 0, a_list);
|
||||
token_prefix.second = find_n_tokens_from_string(ctx, b_sub, string_prefix.second, 0, b_list);
|
||||
}
|
||||
else {
|
||||
string_prefix = find_common_string_prefix(a_str, b_str, ignore_set);
|
||||
token_prefix.first = find_n_tokens_from_string_with_ignore(ctx, a_sub, string_prefix.first, 0, ignore_set, a_list);
|
||||
token_prefix.second = find_n_tokens_from_string_with_ignore(ctx, b_sub, string_prefix.second, 0, ignore_set, b_list);
|
||||
}
|
||||
|
||||
token_prefix = find_largest_common_number(a_list, b_list);
|
||||
return token_prefix;
|
||||
}
|
||||
|
||||
|
||||
struct completion_token_output {
|
||||
llama_token tok;
|
||||
std::string text_to_send;
|
||||
@@ -1000,19 +1161,22 @@ struct server_tokens {
|
||||
|
||||
private: // disallow accessing these members directly, risking out-of-sync
|
||||
|
||||
// map a **start** position in tokens to the image chunk
|
||||
std::unordered_map<llama_pos, mtmd::input_chunk_ptr> map_pos_to_media;
|
||||
// map a **start** index in tokens to the image chunk
|
||||
// note: the order need to be in-sync with tokens
|
||||
std::map<size_t, mtmd::input_chunk_ptr> map_idx_to_media;
|
||||
|
||||
// list of tokens
|
||||
// it can include LLAMA_TOKEN_NULL, which is used to indicate a token that is not a text token
|
||||
// a mtmd_input_chunk can occupy multiple tokens, one llama_token per **position**
|
||||
// important: for models using mrope, an image can contain multiple tokens but will use only one **position**
|
||||
std::vector<llama_token> tokens;
|
||||
// if the token is LLAMA_TOKEN_NULL, it indicates that this position is occupied by media chunk
|
||||
// otherwise, it is a normal text token
|
||||
// note: a non-text chunk can occupy multiple tokens (aka memory cells) in the token list
|
||||
// note(2): for M-RoPE, an image can occupy different number of pos; do not assume 1-to-1 mapping tokens <-> pos
|
||||
llama_tokens tokens;
|
||||
|
||||
// for ex. with input of 5 text tokens and 2 images:
|
||||
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
|
||||
// pos 0 1 2 3 4 5 6 7 8 9
|
||||
// map_pos_to_media will contain: {5, img0}, {8, img1}
|
||||
// for ex. with input of 5 text tokens and 2 images (each image occupies 3 tokens and 2 pos):
|
||||
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1] [img1]
|
||||
// idx 0 1 2 3 4 5 6 7 8 9 10
|
||||
// pos 0 1 2 3 4 5 5 5 7 7 7
|
||||
// map_idx_to_media will contain: {5, img0}, {8, img1}
|
||||
|
||||
public:
|
||||
server_tokens() = default;
|
||||
@@ -1036,7 +1200,8 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
server_tokens(const std::vector<llama_token>& tokens, bool has_mtmd) : has_mtmd(has_mtmd), tokens(tokens) {}
|
||||
server_tokens(const llama_tokens& tokens, bool has_mtmd) : has_mtmd(has_mtmd), tokens(tokens) {
|
||||
}
|
||||
|
||||
llama_pos pos_next() const {
|
||||
if (!has_mtmd) {
|
||||
@@ -1045,7 +1210,7 @@ public:
|
||||
|
||||
llama_pos res = tokens.size();
|
||||
|
||||
for (auto it = map_pos_to_media.begin(); it != map_pos_to_media.end(); ++it) {
|
||||
for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ++it) {
|
||||
const auto& chunk = it->second;
|
||||
res += mtmd_input_chunk_get_n_pos(chunk.get()) - mtmd_input_chunk_get_n_tokens(chunk.get());
|
||||
}
|
||||
@@ -1057,7 +1222,9 @@ public:
|
||||
std::string str() const {
|
||||
std::ostringstream oss;
|
||||
oss << "tokens: ";
|
||||
for (const auto& t : tokens) {
|
||||
for (size_t idx = 0; idx < tokens.size(); ++idx) {
|
||||
llama_token t = tokens[idx];
|
||||
oss << "idx:" << idx << " ";
|
||||
if (t == LLAMA_TOKEN_NULL) {
|
||||
oss << "<embd> ";
|
||||
}
|
||||
@@ -1066,16 +1233,16 @@ public:
|
||||
}
|
||||
}
|
||||
oss << "\n";
|
||||
oss << "image pos: ";
|
||||
for (const auto& it : map_pos_to_media) {
|
||||
oss << "image idx: ";
|
||||
for (const auto& it : map_idx_to_media) {
|
||||
oss << it.first << ", ";
|
||||
}
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
const mtmd::input_chunk_ptr& find_chunk(llama_pos pos) const {
|
||||
auto it = map_pos_to_media.find(pos);
|
||||
if (it != map_pos_to_media.end()) {
|
||||
const mtmd::input_chunk_ptr& find_chunk(size_t idx) const {
|
||||
auto it = map_idx_to_media.find(idx);
|
||||
if (it != map_idx_to_media.end()) {
|
||||
return it->second;
|
||||
}
|
||||
throw std::runtime_error("Chunk not found");
|
||||
@@ -1093,17 +1260,17 @@ public:
|
||||
auto type = mtmd_input_chunk_get_type(chunk);
|
||||
if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE || type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
|
||||
GGML_ASSERT(has_mtmd);
|
||||
const int n_pos = mtmd_input_chunk_get_n_pos(chunk);
|
||||
llama_pos start_pos = tokens.size();
|
||||
for (int i = 0; i < n_pos; ++i) {
|
||||
const size_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk);
|
||||
size_t start_idx = tokens.size();
|
||||
for (size_t i = 0; i < n_tokens; ++i) {
|
||||
tokens.emplace_back(LLAMA_TOKEN_NULL);
|
||||
}
|
||||
mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
|
||||
map_pos_to_media[start_pos] = std::move(new_chunk);
|
||||
map_idx_to_media[start_idx] = std::move(new_chunk);
|
||||
}
|
||||
else if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
||||
size_t n_tokens;
|
||||
auto text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
|
||||
const auto* text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
|
||||
for (size_t i = 0; i < n_tokens; ++i) {
|
||||
push_back(text_tokens[i]);
|
||||
}
|
||||
@@ -1115,7 +1282,7 @@ public:
|
||||
|
||||
// appends server tokens, updates the media map. copies media chunks.
|
||||
void push_back(server_tokens& tokens) {
|
||||
size_t start_pos = size();
|
||||
size_t start_idx = size();
|
||||
for (size_t i = 0; i < tokens.size(); i++) {
|
||||
push_back(tokens[i]);
|
||||
}
|
||||
@@ -1123,10 +1290,10 @@ public:
|
||||
// Assert if we are copying MTMD chunks to a server_tokens that does not have mtmd.
|
||||
// We could also just check, but this will prevent silently dropping MTMD data.
|
||||
GGML_ASSERT(has_mtmd);
|
||||
for (auto it = tokens.map_pos_to_media.begin(); it != tokens.map_pos_to_media.end(); ) {
|
||||
auto chunk = tokens.map_pos_to_media[it->first].get();
|
||||
for (auto it = tokens.map_idx_to_media.begin(); it != tokens.map_idx_to_media.end(); ) {
|
||||
auto* chunk = tokens.map_idx_to_media[it->first].get();
|
||||
mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
|
||||
map_pos_to_media[start_pos + it->first] = std::move(new_chunk);
|
||||
map_idx_to_media[start_idx + it->first] = std::move(new_chunk);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1164,7 +1331,6 @@ public:
|
||||
}
|
||||
|
||||
llama_tokens tokens_data() {
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
@@ -1212,10 +1378,10 @@ public:
|
||||
}
|
||||
}
|
||||
// remove all image chunks that are not used anymore
|
||||
for (auto it = map_pos_to_media.begin(); it != map_pos_to_media.end(); ) {
|
||||
llama_pos pos = it->first;
|
||||
if (pos >= (llama_pos)n) {
|
||||
it = map_pos_to_media.erase(it);
|
||||
for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ) {
|
||||
size_t idx = it->first;
|
||||
if (idx >= n) {
|
||||
it = map_idx_to_media.erase(it);
|
||||
}
|
||||
else {
|
||||
++it;
|
||||
@@ -1236,7 +1402,37 @@ public:
|
||||
return llama_detokenize(ctx, text_tokens, special);
|
||||
}
|
||||
|
||||
size_t get_common_prefix(const server_tokens& b) const {
|
||||
std::string detokenize(const llama_context* ctx, bool special, size_t start, size_t length) const {
|
||||
std::string str;
|
||||
if (tokens.size() <= start || length == 0) {
|
||||
return str;
|
||||
}
|
||||
llama_tokens text_tokens;
|
||||
text_tokens.reserve(tokens.size() - start);
|
||||
size_t i = 0;
|
||||
size_t count = 0;
|
||||
for (const auto& t : tokens) {
|
||||
if (t != LLAMA_TOKEN_NULL && i>=start) {
|
||||
text_tokens.push_back(t);
|
||||
++count;
|
||||
if (count >= length) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
++i;
|
||||
}
|
||||
return llama_detokenize(ctx, text_tokens, special);
|
||||
}
|
||||
|
||||
size_t find_n_from_tokens(const llama_context* ctx, const server_tokens& b, bool special,
|
||||
size_t start, const size_t length) {
|
||||
std::string str = detokenize(ctx, special, start, length);
|
||||
std::vector<size_t> tmp;
|
||||
size_t n = find_n_tokens_from_string(ctx, b.tokens, start, length, tmp);
|
||||
return n;
|
||||
}
|
||||
|
||||
size_t get_common_prefix_exact(const server_tokens& b) const {
|
||||
const size_t max_idx = std::min(tokens.size(), b.tokens.size());
|
||||
|
||||
if (!has_mtmd) {
|
||||
@@ -1262,12 +1458,12 @@ public:
|
||||
const std::string id_ai = mtmd_input_chunk_get_id(a_chunk.get());
|
||||
const std::string id_bi = mtmd_input_chunk_get_id(b_chunk.get());
|
||||
|
||||
const size_t pos_a = mtmd_input_chunk_get_n_pos(a_chunk.get());
|
||||
const size_t pos_b = mtmd_input_chunk_get_n_pos(b_chunk.get());
|
||||
const size_t n_tok_a = mtmd_input_chunk_get_n_tokens(a_chunk.get());
|
||||
const size_t n_tok_b = mtmd_input_chunk_get_n_tokens(b_chunk.get());
|
||||
|
||||
if (id_ai == id_bi && pos_a == pos_b) {
|
||||
GGML_ASSERT(pos_a > 0 && "Invalid media chunk"); // should never happen
|
||||
i += pos_a - 1; // will be +1 by the for loop
|
||||
if (id_ai == id_bi && n_tok_a == n_tok_b) {
|
||||
GGML_ASSERT(n_tok_a > 0 && "Invalid media chunk"); // should never happen
|
||||
i += n_tok_a - 1; // will be +1 by the for loop
|
||||
continue;
|
||||
}
|
||||
|
||||
@@ -1285,6 +1481,94 @@ public:
|
||||
}
|
||||
|
||||
|
||||
common_prefix get_common_prefix(const llama_context* ctx, const server_tokens& b, bool exact = false) const {
|
||||
common_prefix token_prefix;
|
||||
|
||||
size_t n = get_common_prefix_exact(b); // strict token match as a starting point
|
||||
token_prefix.first = n;
|
||||
token_prefix.second = n;
|
||||
|
||||
if (!has_mtmd) {
|
||||
token_prefix = find_common_text_token_prefix(ctx, this->tokens, b.tokens, n, exact);
|
||||
token_prefix.first += n;
|
||||
token_prefix.second += n;
|
||||
return token_prefix;
|
||||
}
|
||||
size_t i = n;
|
||||
size_t j = n;
|
||||
llama_tokens a_list;
|
||||
llama_tokens b_list;
|
||||
while (i < size() && j < b.size()) {
|
||||
llama_token ai = tokens[i];
|
||||
llama_token bi = b.tokens[j];
|
||||
if (ai != LLAMA_TOKEN_NULL) {
|
||||
a_list.push_back(ai);
|
||||
++i;
|
||||
}
|
||||
if (bi != LLAMA_TOKEN_NULL) {
|
||||
b_list.push_back(bi);
|
||||
++j;
|
||||
}
|
||||
if (ai == LLAMA_TOKEN_NULL && bi == LLAMA_TOKEN_NULL) {
|
||||
common_prefix prefix = find_common_text_token_prefix(ctx, a_list, b_list, 0, exact);
|
||||
// text match or empty
|
||||
if (prefix.first == a_list.size() && prefix.second == b_list.size()) {
|
||||
a_list.clear();
|
||||
b_list.clear();
|
||||
const auto& a_chunk = find_chunk(i);
|
||||
const auto& b_chunk = b.find_chunk(j);
|
||||
|
||||
GGML_ASSERT(a_chunk && b_chunk);
|
||||
|
||||
const std::string id_ai = mtmd_input_chunk_get_id(a_chunk.get());
|
||||
const std::string id_bi = mtmd_input_chunk_get_id(b_chunk.get());
|
||||
|
||||
const size_t n_tok_a = mtmd_input_chunk_get_n_tokens(a_chunk.get());
|
||||
const size_t n_tok_b = mtmd_input_chunk_get_n_tokens(b_chunk.get());
|
||||
|
||||
// image match
|
||||
if (id_ai == id_bi && n_tok_a == n_tok_b) {
|
||||
GGML_ASSERT(n_tok_a > 0 && "Invalid media chunk"); // should never happen
|
||||
i += n_tok_a;
|
||||
j += n_tok_a;
|
||||
prefix.first += n_tok_a;
|
||||
prefix.second += n_tok_a;
|
||||
token_prefix = common_prefix_add(prefix, token_prefix);
|
||||
} else {
|
||||
// do no include image token prefix
|
||||
// only return text token prefix
|
||||
token_prefix = common_prefix_add(prefix, token_prefix);
|
||||
return token_prefix;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// text not match
|
||||
token_prefix = common_prefix_add(prefix, token_prefix);
|
||||
return token_prefix;
|
||||
}
|
||||
}
|
||||
}
|
||||
common_prefix prefix = find_common_text_token_prefix(ctx, a_list, b_list, 0, exact);
|
||||
token_prefix = common_prefix_add(prefix, token_prefix);
|
||||
|
||||
return token_prefix;
|
||||
|
||||
}
|
||||
|
||||
// take first n tokens of tokens list a
|
||||
// find the common prefix between a and b
|
||||
common_prefix get_common_prefix_first_n(const llama_context* ctx, const server_tokens& b, size_t n, bool exact = false) const {
|
||||
// not work for mtmd
|
||||
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
|
||||
auto tokens = get_text_tokens();
|
||||
if (n > tokens.size()) {
|
||||
n = tokens.size();
|
||||
}
|
||||
llama_tokens copy(tokens.begin(), tokens.begin()+n);
|
||||
server_tokens a = server_tokens(copy, false);
|
||||
return a.get_common_prefix(ctx, b, exact);
|
||||
}
|
||||
|
||||
// make sure all text tokens are within the vocab range
|
||||
bool validate(const struct llama_context* ctx) const {
|
||||
const llama_model* model = llama_get_model(ctx);
|
||||
@@ -1296,8 +1580,8 @@ public:
|
||||
if (t == LLAMA_TOKEN_NULL) {
|
||||
try {
|
||||
const auto& chunk = find_chunk(i);
|
||||
size_t n_pos = mtmd_input_chunk_get_n_pos(chunk.get());
|
||||
i += n_pos - 1; // will be +1 by the for loop
|
||||
size_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk.get());
|
||||
i += n_tokens - 1; // will be +1 by the for loop
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
return false;
|
||||
@@ -1312,41 +1596,33 @@ public:
|
||||
|
||||
// encode and decode the image chunk
|
||||
int32_t process_chunk(
|
||||
llama_context * ctx,
|
||||
mtmd_context * mctx,
|
||||
llama_pos n_past,
|
||||
llama_context* ctx,
|
||||
mtmd_context* mctx,
|
||||
size_t idx,
|
||||
llama_pos pos,
|
||||
int32_t seq_id,
|
||||
llama_pos & n_pos_out,
|
||||
size_t & n_tokens_out) {
|
||||
char buffer[512];
|
||||
auto& chunk = find_chunk(n_past);
|
||||
size_t& n_tokens_out) const {
|
||||
const auto& chunk = find_chunk(idx);
|
||||
const char* name = mtmd_input_chunk_get_type(chunk.get()) == MTMD_INPUT_CHUNK_TYPE_IMAGE
|
||||
? "image" : "audio";
|
||||
snprintf(buffer, 512, "processing : %s",name);
|
||||
LOG_INFO(buffer, {});
|
||||
LLAMA_LOG_INFO("processing %s...\n", name);
|
||||
int32_t n_batch = llama_n_batch(ctx);
|
||||
int64_t t0 = ggml_time_ms();
|
||||
llama_pos new_n_past = n_past;
|
||||
llama_pos new_n_past; // unused for now
|
||||
int32_t result = mtmd_helper_eval_chunk_single(mctx, ctx,
|
||||
chunk.get(),
|
||||
n_past,
|
||||
pos,
|
||||
seq_id,
|
||||
n_batch,
|
||||
true, // logits last
|
||||
&new_n_past);
|
||||
// get number of tokens in the image
|
||||
const size_t new_n_tokens = mtmd_input_chunk_get_n_tokens(chunk.get());
|
||||
snprintf(buffer, 512, "processed in %g ms", 1.*(ggml_time_ms() - t0));
|
||||
LOG_INFO(buffer, {});
|
||||
LLAMA_LOG_INFO("%s processed in %" PRId64 " ms\n", name, ggml_time_ms() - t0);
|
||||
if (result != 0) {
|
||||
snprintf(buffer, 512, "mtmd_helper_eval failed with status %d", result);
|
||||
LOG_ERROR(buffer, {});
|
||||
n_pos_out = n_past;
|
||||
LLAMA_LOG_ERROR("mtmd_helper_eval failed with status %d", result);
|
||||
n_tokens_out = 0;
|
||||
return result;
|
||||
}
|
||||
n_pos_out = new_n_past;
|
||||
n_tokens_out = new_n_tokens;
|
||||
n_tokens_out = mtmd_input_chunk_get_n_tokens(chunk.get());
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1368,37 +1644,37 @@ public:
|
||||
}
|
||||
|
||||
// Similarity between prompt and cached
|
||||
float get_tokens_similarity(const server_tokens& tokens, int n_keep = 0, int n_discard = 0) const {
|
||||
float get_tokens_similarity(const llama_context* ctx, const server_tokens& tokens, int n_keep = 0, int n_discard = 0) const {
|
||||
GGML_ASSERT(n_keep >= 0 && n_discard >= 0);
|
||||
float sim_cur = 0;
|
||||
if (n_keep == 0 && n_discard == 0) {
|
||||
size_t lcp_len= get_common_prefix(tokens);
|
||||
sim_cur = get_slot_similarity(lcp_len, tokens.size(), size());
|
||||
auto lcp_len= get_common_prefix(ctx, tokens);
|
||||
sim_cur = get_slot_similarity(lcp_len.second, tokens.size(), size());
|
||||
}
|
||||
else {
|
||||
// remove tokens due to context shift and compare
|
||||
auto tokens_ctx_shift = server_tokens(tokens.get_text_tokens(), false); // copy cache tokens
|
||||
tokens_ctx_shift.discard_n_tokens(n_keep, n_discard);
|
||||
size_t lcp_len = get_common_prefix(tokens_ctx_shift);
|
||||
sim_cur = get_slot_similarity(lcp_len, tokens_ctx_shift.size(), size());
|
||||
auto lcp_len = get_common_prefix(ctx, tokens_ctx_shift);
|
||||
sim_cur = get_slot_similarity(lcp_len.second, tokens_ctx_shift.size(), size());
|
||||
}
|
||||
return sim_cur;
|
||||
}
|
||||
|
||||
// Similarity between common part and cache
|
||||
float get_cached_tokens_similarity(const server_tokens& tokens, int n_keep = 0, int n_discard = 0) const {
|
||||
float get_cached_tokens_similarity(const llama_context* ctx, const server_tokens& tokens, int n_keep = 0, int n_discard = 0) const {
|
||||
GGML_ASSERT(n_keep >= 0 && n_discard >= 0);
|
||||
float sim_cur = 0;
|
||||
if (n_keep == 0 && n_discard == 0) {
|
||||
size_t lcp_len = get_common_prefix(tokens);
|
||||
sim_cur = (float) lcp_len/size();
|
||||
auto lcp_len = get_common_prefix(ctx, tokens);
|
||||
sim_cur = (float) lcp_len.first/size();
|
||||
}
|
||||
else {
|
||||
// remove tokens due to context shift and compare
|
||||
auto tokens_ctx_shift = server_tokens(tokens.get_text_tokens(), false); // copy cache tokens
|
||||
tokens_ctx_shift.discard_n_tokens(n_keep, n_discard);
|
||||
size_t lcp_len = get_common_prefix(tokens_ctx_shift);
|
||||
sim_cur = (float) lcp_len / size();
|
||||
auto lcp_len = get_common_prefix(ctx, tokens_ctx_shift);
|
||||
sim_cur = (float) lcp_len.first / size();
|
||||
}
|
||||
return sim_cur;
|
||||
}
|
||||
@@ -1541,3 +1817,11 @@ inline void print_files_info(const std::vector<raw_buffer>& files) {
|
||||
std::cout << std::dec << "\n\n"; // Reset to decimal
|
||||
}
|
||||
}
|
||||
|
||||
inline bool prompt_cache_equal(llama_context* ctx, const server_tokens& cache_tokens,
|
||||
const server_tokens& prompt_tokens, size_t start, const common_prefix & prefix ) {
|
||||
std::string common_cache = cache_tokens.detokenize(ctx, true, start, prefix.first);
|
||||
std::string common_prompt = prompt_tokens.detokenize(ctx, true, start, prefix.second);
|
||||
bool equal = common_cache == common_prompt;
|
||||
return equal;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user