mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-02-02 12:39:54 +00:00
Fix prompt tokenization issue during prompt processing (#1008)
* Find common tokens between prompt and cache Fix wrong context size usage for mtmd Use start position of common part server: handle context shift * Add size check for inexact match * Change --------- Co-authored-by: firecoperana <firecoperana>
This commit is contained in:
@@ -608,10 +608,11 @@ struct server_prompt_checkpoint {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct server_prompt {
|
||||
server_tokens tokens;
|
||||
int n_keep;
|
||||
int n_discarded;
|
||||
int n_kept_prompt;
|
||||
int n_discarded_prompt;
|
||||
|
||||
std::vector<uint8_t> data;
|
||||
|
||||
@@ -633,7 +634,8 @@ struct server_prompt {
|
||||
};
|
||||
|
||||
struct server_prompt_cache {
|
||||
server_prompt_cache(int32_t limit_size_mib, size_t limit_tokens) {
|
||||
server_prompt_cache(llama_context * ctx,int32_t limit_size_mib, size_t limit_tokens) {
|
||||
this->ctx = ctx;
|
||||
this->limit_size = 1024ull * 1024ull * (limit_size_mib < 0 ? 0 : limit_size_mib);
|
||||
this->limit_tokens = limit_tokens;
|
||||
}
|
||||
@@ -645,7 +647,7 @@ struct server_prompt_cache {
|
||||
|
||||
// in tokens, 0 = no limit
|
||||
size_t limit_tokens = 0;
|
||||
|
||||
llama_context* ctx;
|
||||
size_t size() const {
|
||||
size_t res = 0;
|
||||
|
||||
@@ -662,18 +664,18 @@ struct server_prompt_cache {
|
||||
for (const auto& state : states) {
|
||||
res += state.n_tokens();
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
server_prompt* alloc(const server_prompt& prompt, size_t state_size) {
|
||||
for (auto it = states.begin(); it != states.end();) {
|
||||
auto tokens_ctx_shift = server_tokens(prompt.tokens.get_text_tokens(), false); // copy cache tokens
|
||||
tokens_ctx_shift.discard_n_tokens(prompt.n_keep, prompt.n_discarded);
|
||||
|
||||
const size_t len = it->tokens.get_common_prefix(tokens_ctx_shift);
|
||||
tokens_ctx_shift.discard_n_tokens(prompt.n_kept_prompt, prompt.n_discarded_prompt);
|
||||
auto prefix = it->tokens.get_common_prefix(ctx, tokens_ctx_shift);
|
||||
const size_t len = prefix.first;
|
||||
const size_t len_prompt = prefix.second;
|
||||
// first check if the current state is contained fully in the cache
|
||||
if (len == tokens_ctx_shift.size()) {
|
||||
if (len_prompt == tokens_ctx_shift.size()) {
|
||||
LLAMA_LOG_INFO("%s", " - prompt is already in the cache, skipping\n");
|
||||
return nullptr;
|
||||
}
|
||||
@@ -709,8 +711,8 @@ struct server_prompt_cache {
|
||||
auto& cur = states.emplace_back();
|
||||
cur = {
|
||||
/*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
|
||||
/*.n_keep =*/ prompt.n_keep,
|
||||
/*.n_discarded =*/ prompt.n_discarded,
|
||||
/*.n_keep =*/ prompt.n_kept_prompt,
|
||||
/*.n_discarded_prompt =*/ prompt.n_discarded_prompt,
|
||||
/*.data =*/ std::move(state_data),
|
||||
/*.checkpoints =*/ prompt.checkpoints,
|
||||
};
|
||||
@@ -719,19 +721,19 @@ struct server_prompt_cache {
|
||||
}
|
||||
|
||||
bool load(server_prompt& prompt, const server_tokens& tokens_new, llama_context* ctx, int32_t id_slot) {
|
||||
const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
|
||||
const auto lcp_best = prompt.tokens.get_common_prefix(ctx, tokens_new);
|
||||
|
||||
float f_keep_best = float(lcp_best) / prompt.tokens.size();
|
||||
float sim_best = prompt.tokens.get_tokens_similarity(tokens_new, prompt.n_keep, prompt.n_discarded);
|
||||
LLAMA_LOG_INFO(" - looking for better prompt, base f_keep = %.3f, sim = %.3f, n_keep = %d, n_discarded = %d\n", f_keep_best, sim_best, prompt.n_keep, prompt.n_discarded);
|
||||
float f_keep_best = float(lcp_best.second) / prompt.tokens.size();
|
||||
float sim_best = prompt.tokens.get_tokens_similarity(ctx, tokens_new, prompt.n_kept_prompt, prompt.n_discarded_prompt);
|
||||
LLAMA_LOG_INFO(" - looking for better prompt, base f_keep = %.3f, sim = %.3f, n_keep = %d, n_discarded_prompt = %d\n", f_keep_best, sim_best, prompt.n_kept_prompt, prompt.n_discarded_prompt);
|
||||
|
||||
auto it_best = states.end();
|
||||
|
||||
// find the most similar cached prompt, that would also preserve the most context
|
||||
for (auto it = states.begin(); it != states.end(); ++it) {
|
||||
const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
|
||||
const float f_keep_cur = float(lcp_cur) / it->tokens.size();
|
||||
const float sim_cur = it->tokens.get_tokens_similarity(tokens_new, it->n_keep, it->n_discarded);
|
||||
const auto lcp_cur = it->tokens.get_common_prefix(ctx, tokens_new);
|
||||
const float f_keep_cur = float(lcp_cur.first) / it->tokens.size();
|
||||
const float sim_cur = it->tokens.get_tokens_similarity(ctx, tokens_new, it->n_kept_prompt, it->n_discarded_prompt);
|
||||
if (sim_best < sim_cur) {
|
||||
f_keep_best = f_keep_cur;
|
||||
sim_best = sim_cur;
|
||||
@@ -740,7 +742,7 @@ struct server_prompt_cache {
|
||||
}
|
||||
|
||||
if (it_best != states.end()) {
|
||||
LLAMA_LOG_INFO(" - found better prompt with f_keep = %.3f, sim = %.3f, n_keep = %d, n_discarded = %d\n", f_keep_best, sim_best, it_best->n_keep, it_best->n_discarded);
|
||||
LLAMA_LOG_INFO(" - found better prompt with f_keep = %.3f, sim = %.3f, n_keep = %d, n_discarded_prompt = %d\n", f_keep_best, sim_best, it_best->n_kept_prompt, it_best->n_discarded_prompt);
|
||||
const size_t size = it_best->data.size();
|
||||
const size_t n = llama_state_seq_set_data(ctx, it_best->data.data(), size, id_slot);
|
||||
if (n != size) {
|
||||
@@ -798,7 +800,7 @@ struct server_prompt_cache {
|
||||
|
||||
for (const auto& state : states) {
|
||||
LLAMA_LOG_INFO(" - prompt %p: %7d tokens, %7d discarded, checkpoints: %2zu, %9.3f MiB\n",
|
||||
(const void*)&state, state.n_tokens(), state.n_discarded, state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
|
||||
(const void*)&state, state.n_tokens(), state.n_discarded_prompt, state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -823,10 +825,12 @@ struct server_slot {
|
||||
// generation props
|
||||
int32_t n_ctx = 0; // context size per slot
|
||||
int32_t n_past = 0;
|
||||
int32_t n_past_prompt = 0;
|
||||
int32_t n_decoded = 0;
|
||||
int32_t n_remaining = -1;
|
||||
int32_t n_discarded = 0;
|
||||
int32_t n_kept = 0;
|
||||
int32_t n_discarded_prompt = 0;
|
||||
int32_t n_kept_prompt = 0;
|
||||
|
||||
int32_t i_batch = -1;
|
||||
int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
|
||||
|
||||
@@ -989,6 +993,7 @@ struct server_slot {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
json get_formated_timings() const {
|
||||
return json {
|
||||
{"prompt_n", n_prompt_tokens_processed},
|
||||
@@ -1693,7 +1698,7 @@ struct server_context {
|
||||
}
|
||||
LLAMA_LOG_INFO("%s", "use `--cache-ram 0` to disable the prompt cache\n");
|
||||
// only apply ram size limit. No token limit for now.
|
||||
prompt_cache = std::make_unique<server_prompt_cache>(params.cache_ram_mib, 0);
|
||||
prompt_cache = std::make_unique<server_prompt_cache>(ctx,params.cache_ram_mib, 0);
|
||||
}
|
||||
else {
|
||||
LLAMA_LOG_INFO("%s", "prompt cache is disabled - use `--cache-ram N` to enable it\n");
|
||||
@@ -1788,13 +1793,12 @@ struct server_context {
|
||||
continue;
|
||||
}
|
||||
// length of the Longest Common Prefix between the current slot's prompt and the input prompt
|
||||
// print_tokens(task.tokens, cache_tokens);
|
||||
size_t lcp_len = cache_tokens.get_common_prefix(task.tokens);
|
||||
auto lcp_len = cache_tokens.get_common_prefix(slot.ctx,task.tokens);
|
||||
// fraction of the Longest Common Prefix length with respect to the input prompt and cached prompt length
|
||||
float sim_cur = cache_tokens.get_tokens_similarity(task.tokens, 0, 0);
|
||||
float sim_cur = cache_tokens.get_tokens_similarity(slot.ctx, task.tokens, 0, 0);
|
||||
// handle context shift
|
||||
if (slot.ga_n == 1 && slot.n_discarded > 0 && task.tokens.size()>=slot.n_ctx) {
|
||||
float sim_cur_ctx_shift = cache_tokens.get_tokens_similarity(task.tokens, slot.n_kept, slot.n_discarded);
|
||||
if (slot.ga_n == 1 && slot.n_discarded_prompt > 0 && task.tokens.size()>=slot.n_ctx) {
|
||||
float sim_cur_ctx_shift = cache_tokens.get_tokens_similarity(slot.ctx, task.tokens, slot.n_kept_prompt, slot.n_discarded_prompt);
|
||||
if (sim_cur_ctx_shift > sim_cur) {
|
||||
sim_cur = sim_cur_ctx_shift;
|
||||
}
|
||||
@@ -1803,7 +1807,7 @@ struct server_context {
|
||||
// select the current slot if the criteria match
|
||||
if (sim_cur > sim_best && sim_cur > slot_prompt_similarity) {
|
||||
sim_best = sim_cur;
|
||||
max_lcp_len = lcp_len;
|
||||
max_lcp_len = lcp_len.first;
|
||||
ret = &slot;
|
||||
}
|
||||
}
|
||||
@@ -1842,11 +1846,11 @@ struct server_context {
|
||||
const auto& tokens = ret->cache_tokens;
|
||||
float f_keep = 0.0f;
|
||||
if (!tokens.empty()) {
|
||||
if (ret->ga_n == 1 && ret->n_discarded > 0 && task.tokens.size() >= ret->n_ctx) {
|
||||
f_keep = tokens.get_cached_tokens_similarity(task.tokens, ret->params.n_keep + add_bos_token, ret->n_discarded);
|
||||
if (ret->ga_n == 1 && ret->n_discarded_prompt > 0 && task.tokens.size() >= ret->n_ctx) {
|
||||
f_keep = tokens.get_cached_tokens_similarity(ret->ctx, task.tokens, ret->params.n_keep + add_bos_token, ret->n_discarded_prompt);
|
||||
}
|
||||
else {
|
||||
f_keep = tokens.get_cached_tokens_similarity(task.tokens, 0, 0);
|
||||
f_keep = tokens.get_cached_tokens_similarity(ret->ctx,task.tokens, 0, 0);
|
||||
}
|
||||
// if we are about to lose a large portion of the existing context - save it in the prompt cache
|
||||
if (f_keep < cache_ram_similarity) {
|
||||
@@ -1863,14 +1867,14 @@ struct server_context {
|
||||
// TODO: mtmd does not support prompt cache
|
||||
update_cache = update_cache && (ret->mctx == nullptr);
|
||||
|
||||
LLAMA_LOG_INFO("prompt cache: cache size: %d, n_keep: %d, n_discarded: %d, cache_ram_n_min: %d, f_keep: %.2f, cache_ram_similarity: %.2f\n",
|
||||
(int)tokens.size(), ret->n_kept, ret->n_discarded, cache_ram_n_min, f_keep, cache_ram_similarity);
|
||||
LLAMA_LOG_INFO("======== Prompt cache: cache size: %d, n_keep: %d, n_discarded_prompt: %d, cache_ram_n_min: %d, f_keep: %.2f, cache_ram_similarity: %.2f\n",
|
||||
(int)tokens.size(), ret->n_kept_prompt, ret->n_discarded_prompt, cache_ram_n_min, f_keep, cache_ram_similarity);
|
||||
if (update_cache) {
|
||||
const int64_t t_start = ggml_time_us();
|
||||
LLAMA_LOG_INFO("updating prompt cache\n");
|
||||
ret->server_cached_prompt.tokens = server_tokens(tokens.get_text_tokens(), false); // copy cache tokens
|
||||
ret->server_cached_prompt.n_discarded = ret->n_discarded;
|
||||
ret->server_cached_prompt.n_keep = ret->n_kept;
|
||||
ret->server_cached_prompt.n_discarded_prompt = ret->n_discarded_prompt;
|
||||
ret->server_cached_prompt.n_kept_prompt = ret->n_kept_prompt;
|
||||
|
||||
ret->prompt_save(*prompt_cache);
|
||||
LLAMA_LOG_INFO("prompt cache save took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0);
|
||||
@@ -1879,15 +1883,15 @@ struct server_context {
|
||||
if (prompt_cache && !prompt_cache->states.empty()) {
|
||||
const int64_t t_start = ggml_time_us();
|
||||
ret->server_cached_prompt.tokens = server_tokens(tokens.get_text_tokens(), false); // copy cache tokens
|
||||
ret->server_cached_prompt.n_discarded = ret->n_discarded;
|
||||
ret->server_cached_prompt.n_keep = ret->n_kept;
|
||||
ret->server_cached_prompt.n_discarded_prompt = ret->n_discarded_prompt;
|
||||
ret->server_cached_prompt.n_kept_prompt = ret->n_kept_prompt;
|
||||
|
||||
ret->prompt_load(*prompt_cache, task.tokens);
|
||||
prompt_cache->update();
|
||||
|
||||
ret->cache_tokens = server_tokens(ret->server_cached_prompt.tokens.get_text_tokens(), false); // recover cache tokens
|
||||
ret->n_discarded = ret->server_cached_prompt.n_discarded;
|
||||
ret->n_kept = ret->server_cached_prompt.n_keep;
|
||||
ret->n_discarded_prompt = ret->server_cached_prompt.n_discarded_prompt;
|
||||
ret->n_kept_prompt = ret->server_cached_prompt.n_kept_prompt;
|
||||
|
||||
LLAMA_LOG_INFO("prompt cache load took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0);
|
||||
}
|
||||
@@ -3093,9 +3097,14 @@ struct server_context {
|
||||
queue_results.send(result);
|
||||
}
|
||||
|
||||
void print_tokens(const server_tokens & prompt, const server_tokens& cache) {
|
||||
LLAMA_LOG_INFO( "prompt: %s\n", prompt.detokenize(ctx, true).c_str());
|
||||
LLAMA_LOG_INFO( "cache: %s\n", cache.detokenize(ctx, true).c_str());
|
||||
void print_tokens(const server_tokens & prompt, const server_tokens& cache, size_t start1 = 0, size_t start2=0 , size_t length = 10) {
|
||||
if (cache.size() > start2) {
|
||||
LLAMA_LOG_INFO("cache : %s\n", cache.detokenize(ctx, true, start2, length).c_str());
|
||||
}
|
||||
if (prompt.size()> start1) {
|
||||
LLAMA_LOG_INFO("prompt: %s\n", prompt.detokenize(ctx, true, start1, length).c_str());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void discard_n_kv_and_cache_tokens(llama_context* ctx, server_slot& slot, int32_t n_keep, int32_t n_discard) {
|
||||
@@ -3106,6 +3115,60 @@ struct server_context {
|
||||
}
|
||||
}
|
||||
|
||||
// convert keep first few and discard next tokens in a to b
|
||||
void context_shift_find_n_tokens(llama_context* ctx, const server_tokens& a, const server_tokens& b, int32_t n_keep,
|
||||
int32_t n_discard, int32_t& n_kept, int32_t& n_discarded, bool exact = false) {
|
||||
|
||||
common_prefix ctx_keep_prefix = a.get_common_prefix_first_n(ctx, b, n_keep, exact);
|
||||
common_prefix ctx_total_discard_prefix = a.get_common_prefix_first_n(ctx, b, n_discard + n_keep, exact);
|
||||
// only if there is enough common token
|
||||
int32_t discard_offset = ctx_total_discard_prefix.first - (n_discard + n_keep);
|
||||
int32_t keep_offset = ctx_keep_prefix.first - n_keep;
|
||||
n_kept = ctx_keep_prefix.second - keep_offset;
|
||||
n_discarded = ctx_total_discard_prefix.second - ctx_keep_prefix.second - discard_offset;
|
||||
if (n_kept < 0) {
|
||||
n_kept = n_keep;
|
||||
}
|
||||
if (n_discarded < 0) {
|
||||
n_discarded = n_discard;
|
||||
}
|
||||
}
|
||||
|
||||
void context_shift_prompt(llama_context* ctx, server_slot& slot, bool exact = false) {
|
||||
//server_tokens prompt_tokens = std::move(slot.prompt_tokens);
|
||||
int n_keep = std::max(0, slot.params.n_keep + add_bos_token);
|
||||
const int n_left = slot.n_ctx - n_keep;
|
||||
int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
|
||||
|
||||
int n_discard_prompt = 0;
|
||||
// we still need to truncate input since we have not discarded enough tokens
|
||||
while (slot.n_prompt_tokens - slot.n_discarded_prompt >= slot.n_ctx) {
|
||||
slot.n_discarded_prompt = slot.n_discarded_prompt + n_discard;
|
||||
n_discard_prompt = n_discard_prompt + n_discard;
|
||||
}
|
||||
|
||||
// Handle mistokenization between prompt and cache during context shift
|
||||
//
|
||||
int32_t n_discard_cache = n_discard_prompt;
|
||||
int32_t n_kept = n_keep;
|
||||
slot.prompt_tokens.discard_n_tokens(n_keep, slot.n_discarded_prompt - n_discard_prompt);
|
||||
if (n_discard_prompt > 0) {
|
||||
context_shift_find_n_tokens(ctx, slot.prompt_tokens, slot.cache_tokens, n_keep,
|
||||
n_discard, n_kept, n_discard_cache, exact);
|
||||
}
|
||||
|
||||
int n_discard_cache_max = std::max((int32_t)slot.cache_tokens.size() - n_kept, 0);
|
||||
n_discard_cache = std::min(n_discard_cache, n_discard_cache_max);
|
||||
// discard matching tokens from cache and kv cache to avoid reprocessing the prompt
|
||||
if (n_discard_cache > 0) {
|
||||
discard_n_kv_and_cache_tokens(ctx, slot, n_kept, n_discard_cache);
|
||||
}
|
||||
// discard extra tokens from prompts
|
||||
slot.n_kept_prompt = n_keep;
|
||||
slot.prompt_tokens.discard_n_tokens(n_keep, n_discard_prompt);
|
||||
slot.n_prompt_tokens = slot.prompt_tokens.size();
|
||||
}
|
||||
|
||||
void update_slots() {
|
||||
if (system_need_update) {
|
||||
system_prompt_update();
|
||||
@@ -3189,23 +3252,29 @@ struct server_context {
|
||||
|
||||
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
|
||||
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
|
||||
int32_t n_kept;
|
||||
int32_t n_discard_cache;
|
||||
if (n_discard > 0) {
|
||||
context_shift_find_n_tokens(ctx, slot.prompt_tokens, slot.cache_tokens, n_keep,
|
||||
n_discard, n_kept, n_discard_cache);
|
||||
LOG_INFO("slot context shift", {
|
||||
{"id_slot", slot.id},
|
||||
{"id_task", slot.id_task},
|
||||
{"n_keep", n_keep},
|
||||
{"n_left", n_left},
|
||||
{"n_discard", n_discard},
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_past", slot.n_past},
|
||||
{"n_system_tokens", system_tokens.size()},
|
||||
{"n_cache_tokens", slot.cache_tokens.size()}
|
||||
});
|
||||
slot.n_discarded_prompt = slot.n_discarded_prompt + n_discard;
|
||||
slot.n_kept_prompt = n_keep;
|
||||
discard_n_kv_and_cache_tokens(ctx, slot, n_kept, n_discard_cache);
|
||||
slot.n_past -= n_discard_cache;
|
||||
slot.truncated = true;
|
||||
}
|
||||
|
||||
LOG_INFO("slot context shift", {
|
||||
{"id_slot", slot.id},
|
||||
{"id_task", slot.id_task},
|
||||
{"n_keep", n_keep},
|
||||
{"n_left", n_left},
|
||||
{"n_discard", n_discard},
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_past", slot.n_past},
|
||||
{"n_system_tokens", system_tokens.size()},
|
||||
{"n_cache_tokens", slot.cache_tokens.size()}
|
||||
});
|
||||
slot.n_discarded = slot.n_discarded + n_discard;
|
||||
slot.n_kept = n_keep;
|
||||
discard_n_kv_and_cache_tokens(ctx, slot, n_keep, n_discard);
|
||||
slot.n_past -= n_discard;
|
||||
slot.truncated = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -3229,7 +3298,7 @@ struct server_context {
|
||||
|
||||
// TODO: we always have to take into account the "system_tokens"
|
||||
// this is not great and needs to be improved somehow
|
||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
|
||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot.cache_tokens.pos_next(), { slot.id }, true);
|
||||
|
||||
slot.n_past += 1;
|
||||
|
||||
@@ -3355,43 +3424,39 @@ struct server_context {
|
||||
slot.release();
|
||||
continue;
|
||||
}
|
||||
int n_keep = std::max(0, slot.params.n_keep + add_bos_token);
|
||||
const int n_left = slot.n_ctx - n_keep;
|
||||
int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
|
||||
int n_discard_cache = 0;
|
||||
// we still need to truncate input since we have not discarded enough tokens
|
||||
while (slot.n_prompt_tokens - slot.n_discarded >= slot.n_ctx) {
|
||||
slot.n_discarded = slot.n_discarded + n_discard;
|
||||
n_discard_cache = n_discard_cache + n_discard;
|
||||
if (mctx) {
|
||||
// we should never reach this because params.ctx_shift is automatically disabled if mmproj is loaded
|
||||
// we don't support ctx_shift because an image chunk may contains multiple tokens
|
||||
GGML_ABORT("not supported by multimodal");
|
||||
}
|
||||
int n_discard_cache_max = std::max((int)slot.cache_tokens.size() - n_keep, 0);
|
||||
n_discard_cache = std::min(n_discard_cache, n_discard_cache_max);
|
||||
// discard matching tokens from cache and kv cache to avoid reprocessing the prompt
|
||||
if (n_discard_cache > 0) {
|
||||
discard_n_kv_and_cache_tokens(ctx, slot, n_keep, n_discard_cache);
|
||||
}
|
||||
// discard extra tokens from prompts
|
||||
n_discard = slot.n_discarded;
|
||||
slot.n_kept = n_keep;
|
||||
prompt_tokens.discard_n_tokens(n_keep, n_discard);
|
||||
|
||||
context_shift_prompt(ctx, slot);
|
||||
slot.truncated = true;
|
||||
slot.n_prompt_tokens = prompt_tokens.size();
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"id_slot", slot.id},
|
||||
{"id_task", slot.id_task},
|
||||
{"n_ctx", slot.n_ctx},
|
||||
{"n_keep", slot.params.n_keep},
|
||||
{"n_left", n_left},
|
||||
{"n_left", slot.n_ctx- slot.params.n_keep},
|
||||
{"n_prompt_tokens", slot.n_prompt_tokens},
|
||||
{"prompt_tokens", prompt_tokens.detokenize(ctx, true)},
|
||||
});
|
||||
|
||||
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
|
||||
//print_tokens(prompt_tokens, slot.cache_tokens);
|
||||
|
||||
|
||||
#ifndef NDEBUG
|
||||
// debug
|
||||
common_prefix prefix = slot.cache_tokens.get_common_prefix(ctx, prompt_tokens, false);
|
||||
int32_t back = 1;
|
||||
if (slot.cache_tokens.size() && slot.cache_tokens.size() > prefix.first+20
|
||||
&& prefix.second >= back && prefix.first >= back) {
|
||||
LLAMA_LOG_INFO("After context shift :\n");
|
||||
print_tokens(slot.prompt_tokens, slot.cache_tokens, prefix.second - back, prefix.first - back, 50);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
slot.n_discarded = 0;
|
||||
slot.n_discarded_prompt = 0;
|
||||
}
|
||||
llama_sampling_reset(llama_get_model_vocab(model), slot.ctx_sampling);
|
||||
|
||||
@@ -3402,7 +3467,28 @@ struct server_context {
|
||||
GGML_ASSERT(slot.ga_n == 1);
|
||||
|
||||
// reuse any previously computed tokens that are common with the new prompt
|
||||
slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
|
||||
common_prefix prefix = slot.cache_tokens.get_common_prefix(ctx, prompt_tokens, true); // string level match
|
||||
common_prefix prefix_nonexact = slot.cache_tokens.get_common_prefix(ctx, prompt_tokens, false);
|
||||
auto n_past0 = slot.cache_tokens.get_common_prefix_exact(prompt_tokens); // token level match
|
||||
LLAMA_LOG_INFO("======== Cache: cache_size = %ld, n_past0 = %ld, n_past1 = %ld, n_past_prompt1 = %ld, n_past2 = %ld, n_past_prompt2 = %ld\n", (int32_t) slot.cache_tokens.size(), (int32_t) n_past0, (int32_t) prefix.first, prefix.second, (int32_t) prefix_nonexact.first, (int32_t) prefix_nonexact.second);
|
||||
int32_t size_threshold = 20;
|
||||
if (prefix.first + size_threshold < prefix_nonexact.first) {
|
||||
LLAMA_LOG_WARN("Common part contains missing or extra space and new line\n");
|
||||
prefix = prefix_nonexact;
|
||||
}
|
||||
slot.n_past = prefix.first;
|
||||
slot.n_past_prompt = prefix.second;
|
||||
if (slot.n_past != slot.n_past_prompt) {
|
||||
LLAMA_LOG_INFO("Mistokenization found and handled successfully.\n");
|
||||
}
|
||||
if ((slot.n_past + size_threshold < slot.cache_tokens.size()))
|
||||
{
|
||||
LLAMA_LOG_WARN("Common part does not match fully\n");
|
||||
int32_t back = 4;
|
||||
if (prefix.second >= back && prefix.first >= back) {
|
||||
print_tokens(slot.prompt_tokens, slot.cache_tokens, prefix.second - back, prefix.first - back, 30);
|
||||
}
|
||||
}
|
||||
|
||||
// push the prompt into the sampling context (do not apply grammar)
|
||||
for (int i = 0; i < slot.n_past; ++i) {
|
||||
@@ -3411,13 +3497,14 @@ struct server_context {
|
||||
}
|
||||
}
|
||||
|
||||
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
|
||||
if (slot.n_past_prompt == slot.n_prompt_tokens && slot.n_past_prompt > 0) {
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
|
||||
{ "id_slot", slot.id },
|
||||
{ "id_task", slot.id_task }
|
||||
});
|
||||
|
||||
slot.n_past_prompt--;
|
||||
slot.n_past--;
|
||||
if (slot.ga_i > 0) {
|
||||
slot.n_past_se--;
|
||||
@@ -3443,7 +3530,10 @@ struct server_context {
|
||||
}
|
||||
|
||||
// keep only the common part
|
||||
// remove the non-common part from the cache
|
||||
slot.cache_tokens.keep_first(slot.n_past);
|
||||
int p0 = (int) system_tokens.size() + slot.n_past;
|
||||
p0 = system_tokens.size() + slot.cache_tokens.pos_next();
|
||||
if (!llama_kv_cache_seq_rm(ctx, slot.id, p0, -1)) {
|
||||
// could not partially delete (likely using a non-Transformer model)
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
|
||||
@@ -3462,9 +3552,6 @@ struct server_context {
|
||||
llama_sampling_reset(llama_get_model_vocab(model), slot.ctx_sampling);
|
||||
}
|
||||
|
||||
// remove the non-common part from the cache
|
||||
slot.cache_tokens.keep_first(slot.n_past);
|
||||
|
||||
LOG_INFO("kv cache rm [p0, end)", {
|
||||
{ "id_slot", slot.id },
|
||||
{ "id_task", slot.id_task },
|
||||
@@ -3472,13 +3559,12 @@ struct server_context {
|
||||
});
|
||||
|
||||
// check if we should process the image
|
||||
if (slot.n_past < slot.n_prompt_tokens
|
||||
&& slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
|
||||
if (slot.n_past_prompt < slot.n_prompt_tokens
|
||||
&& slot.prompt_tokens[slot.n_past_prompt] == LLAMA_TOKEN_NULL) {
|
||||
// process the image
|
||||
int32_t new_n_past;
|
||||
size_t new_n_tokens;
|
||||
int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past, new_n_tokens);
|
||||
int32_t n_pos = new_n_past - slot.n_past;
|
||||
size_t n_tokens_out = 0;
|
||||
llama_pos p1 = slot.cache_tokens.pos_next()+slot.n_past_prompt-slot.n_past; // add offset to prompt
|
||||
int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past_prompt, p1, slot.id, n_tokens_out);
|
||||
if (res != 0) {
|
||||
LLAMA_LOG_ERROR("failed to process image, res = %d\n", res);
|
||||
slot.release();
|
||||
@@ -3488,12 +3574,14 @@ struct server_context {
|
||||
|
||||
// add the image chunk to cache
|
||||
{
|
||||
const auto& chunk = slot.prompt_tokens.find_chunk(slot.n_past);
|
||||
const auto& chunk = slot.prompt_tokens.find_chunk(slot.n_past_prompt);
|
||||
slot.cache_tokens.push_back(chunk.get()); // copy
|
||||
}
|
||||
|
||||
slot.n_past += n_pos;
|
||||
slot.n_prompt_tokens_processed += new_n_tokens;
|
||||
slot.n_past += n_tokens_out;
|
||||
slot.n_past_prompt += n_tokens_out;
|
||||
slot.n_prompt_tokens_processed += n_tokens_out;
|
||||
|
||||
}
|
||||
|
||||
|
||||
@@ -3506,9 +3594,9 @@ struct server_context {
|
||||
|
||||
// add prompt tokens for processing in the current batch
|
||||
// TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
|
||||
while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
|
||||
while (slot.n_past_prompt < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
|
||||
// get next token to process
|
||||
llama_token cur_tok = slot.prompt_tokens[slot.n_past];
|
||||
llama_token cur_tok = slot.prompt_tokens[slot.n_past_prompt];
|
||||
if (cur_tok == LLAMA_TOKEN_NULL) {
|
||||
break; // end of text chunk
|
||||
}
|
||||
@@ -3520,13 +3608,15 @@ struct server_context {
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch_add(batch, cur_tok, system_tokens.size() + slot_npast, { slot.id }, false);
|
||||
{
|
||||
slot.cache_tokens.push_back(cur_tok);
|
||||
}
|
||||
int p0=system_tokens.size() + slot.cache_tokens.pos_next();
|
||||
llama_batch_add(batch, cur_tok, p0, { slot.id }, false);
|
||||
|
||||
slot.cache_tokens.push_back(cur_tok);
|
||||
|
||||
|
||||
slot.n_prompt_tokens_processed++;
|
||||
slot_npast++;
|
||||
slot.n_past_prompt++;
|
||||
slot.n_past++;
|
||||
}
|
||||
LOG_VERBOSE("prompt processing progress", {
|
||||
@@ -3538,7 +3628,7 @@ struct server_context {
|
||||
});
|
||||
|
||||
// entire prompt has been processed - start decoding new tokens
|
||||
if (slot.n_past == slot.n_prompt_tokens) {
|
||||
if (slot.n_past_prompt == slot.n_prompt_tokens) {
|
||||
slot.state = SLOT_STATE_PROCESSING;
|
||||
slot.command = SLOT_COMMAND_NONE;
|
||||
|
||||
@@ -3643,11 +3733,13 @@ struct server_context {
|
||||
slot.state = SLOT_STATE_PROCESSING;
|
||||
slot.command = SLOT_COMMAND_NONE;
|
||||
slot.release();
|
||||
LLAMA_LOG_INFO("n_past =% d\n", slot.cache_tokens.size());
|
||||
send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
|
||||
}
|
||||
break; // break loop of n_batch
|
||||
}
|
||||
|
||||
|
||||
// retry with half the batch size to try to find a free slot in the KV cache
|
||||
n_batch /= 2;
|
||||
i -= n_batch;
|
||||
@@ -3775,10 +3867,10 @@ struct server_context {
|
||||
|
||||
// construct the speculation batch
|
||||
llama_batch_clear(slot.batch_spec);
|
||||
llama_batch_add(slot.batch_spec, id, slot.n_past, { slot.id }, true);
|
||||
llama_batch_add(slot.batch_spec, id, slot.cache_tokens.pos_next(), { slot.id }, true);
|
||||
|
||||
for (size_t i = 0; i < draft.size(); ++i) {
|
||||
llama_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
|
||||
llama_batch_add(slot.batch_spec, draft[i], slot.cache_tokens.pos_next() + 1 + i, { slot.id }, true);
|
||||
}
|
||||
|
||||
LOG_VERBOSE("decoding speculative batch", {
|
||||
|
||||
Reference in New Issue
Block a user