mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
Do not quantize activations if not necessary (#79)
* Do not quantize activations if not necessary * Do not quantize activations if not necessary also for MoE models --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
@@ -654,6 +654,7 @@ extern "C" {
|
||||
// since https://github.com/ggerganov/ggml/issues/287
|
||||
struct ggml_cplan {
|
||||
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
|
||||
size_t q_size;
|
||||
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
||||
|
||||
int n_threads;
|
||||
|
||||
@@ -2102,6 +2102,7 @@ struct ggml_compute_params {
|
||||
|
||||
// work buffer for all threads
|
||||
size_t wsize;
|
||||
size_t qsize;
|
||||
void * wdata;
|
||||
|
||||
struct ggml_compute_state_shared * shared;
|
||||
@@ -13421,7 +13422,12 @@ UseGgmlGemm1:;
|
||||
#endif
|
||||
|
||||
if (src1->type != vec_dot_type) {
|
||||
char * wdata = params->wdata;
|
||||
char * wdata = (char *)params->wdata + params->wsize - params->qsize;
|
||||
|
||||
if (strncmp(src1->name, wdata - GGML_MAX_NAME, GGML_MAX_NAME) == 0) {
|
||||
goto AlreadyQunatized;
|
||||
}
|
||||
wdata += GGML_MAX_NAME;
|
||||
|
||||
#if IK_PRINT_TIMING
|
||||
int64_t t1 = ggml_time_us();
|
||||
@@ -13431,7 +13437,7 @@ UseGgmlGemm1:;
|
||||
const size_t nbw2 = nbw1*ne11;
|
||||
const size_t nbw3 = nbw2*ne12;
|
||||
|
||||
assert(params->wsize >= ne13*nbw3);
|
||||
assert(params->qsize >= ne13*nbw3);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||
@@ -13459,14 +13465,18 @@ UseGgmlGemm1:;
|
||||
#endif
|
||||
|
||||
if (ith == 0) {
|
||||
wdata -= GGML_MAX_NAME;
|
||||
memcpy(wdata, src1->name, GGML_MAX_NAME);
|
||||
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
|
||||
atomic_store(¶ms->shared->current_chunk, nth);
|
||||
}
|
||||
|
||||
AlreadyQunatized:;
|
||||
ggml_barrier(params->shared);
|
||||
}
|
||||
|
||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data
|
||||
: (const void *)((const char *)params->wdata + params->wsize - params->qsize + GGML_MAX_NAME);
|
||||
|
||||
#if GGML_USE_IQK_MULMAT
|
||||
if (src1->type != vec_dot_type && dst->type == GGML_TYPE_F32) {
|
||||
@@ -13631,9 +13641,10 @@ static void ggml_compute_forward_mul_mat_id(
|
||||
const int n_ids = ids->ne[0]; // n_expert_used
|
||||
const int n_as = ne02; // n_expert
|
||||
|
||||
char * wdata_src1_end = (src1->type == vec_dot_type) ?
|
||||
(char *) params->wdata :
|
||||
(char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
|
||||
char * qdata = (char *)params->wdata + params->wsize - params->qsize;
|
||||
|
||||
char * wdata_src1_end = (src1->type == vec_dot_type) ? qdata :
|
||||
qdata + GGML_PAD(GGML_MAX_NAME + ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
|
||||
|
||||
struct mmid_row_mapping {
|
||||
int32_t i1;
|
||||
@@ -13643,14 +13654,19 @@ static void ggml_compute_forward_mul_mat_id(
|
||||
int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
|
||||
struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
|
||||
|
||||
bool store_name = false;
|
||||
if (src1->type != vec_dot_type) {
|
||||
char * wdata = params->wdata;
|
||||
if (strncmp(src1->name, qdata, GGML_MAX_NAME) == 0) {
|
||||
goto QuantizationAlreadyDone;
|
||||
}
|
||||
store_name = true;
|
||||
char * wdata = qdata + GGML_MAX_NAME;
|
||||
|
||||
const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
|
||||
const size_t nbw2 = nbw1*ne11;
|
||||
const size_t nbw3 = nbw2*ne12;
|
||||
|
||||
assert(params->wsize >= ne13*nbw3);
|
||||
assert(params->qsize >= ne13*nbw3);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||
@@ -13666,7 +13682,12 @@ static void ggml_compute_forward_mul_mat_id(
|
||||
|
||||
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
|
||||
|
||||
QuantizationAlreadyDone:;
|
||||
if (ith == 0) {
|
||||
if (store_name) {
|
||||
memcpy(qdata, src1->name, GGML_MAX_NAME);
|
||||
}
|
||||
|
||||
// initialize matrix_row_counts
|
||||
memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
|
||||
|
||||
@@ -13695,7 +13716,7 @@ static void ggml_compute_forward_mul_mat_id(
|
||||
|
||||
const char * src0_cur = (const char *) src0->data + cur_a*nb02;
|
||||
|
||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : qdata + GGML_MAX_NAME;
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
|
||||
const int64_t nr0 = ne01; // src0 rows
|
||||
@@ -20148,6 +20169,7 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
||||
}
|
||||
|
||||
size_t work_size = 0;
|
||||
size_t q_size = 0;
|
||||
|
||||
struct ggml_cplan cplan;
|
||||
memset(&cplan, 0, sizeof(struct ggml_cplan));
|
||||
@@ -20163,6 +20185,7 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
||||
max_tasks = MAX(max_tasks, n_tasks);
|
||||
|
||||
size_t cur = 0;
|
||||
size_t cur_q = 0;
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_CPY:
|
||||
@@ -20193,7 +20216,7 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
||||
const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
|
||||
|
||||
if (node->src[1]->type != vec_dot_type) {
|
||||
cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
|
||||
cur_q = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
@@ -20203,12 +20226,12 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
||||
const struct ggml_tensor * src1 = node->src[1];
|
||||
const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
|
||||
if (src1->type != vec_dot_type) {
|
||||
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
|
||||
cur_q += ggml_row_size(vec_dot_type, ggml_nelements(src1));
|
||||
}
|
||||
const int n_as = src0->ne[2];
|
||||
cur += GGML_PAD(cur, sizeof(int64_t)); // align
|
||||
cur += n_as * sizeof(int64_t); // matrix_row_counts
|
||||
cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
|
||||
cur_q += GGML_PAD(cur, sizeof(int64_t)); // align
|
||||
cur_q += n_as * sizeof(int64_t); // matrix_row_counts
|
||||
cur_q += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
@@ -20297,14 +20320,20 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
q_size = MAX(q_size, cur_q);
|
||||
}
|
||||
|
||||
if (work_size > 0) {
|
||||
work_size += CACHE_LINE_SIZE*(n_threads - 1);
|
||||
}
|
||||
if (q_size > 0) {
|
||||
q_size += GGML_MAX_NAME;
|
||||
}
|
||||
work_size += q_size;
|
||||
|
||||
cplan.n_threads = MIN(max_tasks, n_threads);
|
||||
cplan.work_size = work_size;
|
||||
cplan.q_size = q_size;
|
||||
cplan.work_data = NULL;
|
||||
|
||||
return cplan;
|
||||
@@ -20322,6 +20351,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
/*.ith =*/ state->ith,
|
||||
/*.nth =*/ state->shared->n_threads,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.qsize =*/ cplan->q_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
/*.shared=*/ state->shared,
|
||||
};
|
||||
|
||||
Reference in New Issue
Block a user