Split mode graph for Qwen3 (#1106)

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2026-01-05 14:31:36 +02:00
committed by GitHub
parent 419a397ce0
commit 218dcc5727
3 changed files with 51 additions and 50 deletions

View File

@@ -3904,64 +3904,71 @@ ggml_cgraph * llm_build_context::build_qwen3() {
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
auto rope_cache = cparams.rope_cache && (rope_type == LLAMA_ROPE_TYPE_NEOX || rope_type == LLAMA_ROPE_TYPE_NORM) ?
ggml_rope_cache(ctx0, inp_pos, nullptr, n_embd_head, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow) : nullptr;
ggml_tensor * rope_cache = nullptr;
if (model.split_mode != LLAMA_SPLIT_MODE_GRAPH && cparams.rope_cache &&
(rope_type == LLAMA_ROPE_TYPE_NEOX || rope_type == LLAMA_ROPE_TYPE_NORM)) {
rope_cache = ggml_rope_cache(ctx0, inp_pos, nullptr, n_embd_head, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
if (!rope_cache) {
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, KQ_mask, nullptr, nullptr,
1.0f/sqrtf(float(n_embd_head)), 0.0f, 0, il, true, false, true);
} else {
// self-attention
{
auto [Qcur, Kcur, Vcur] = llm_build_mul_mat_qkv(gf, cur,
model.layers[il].wqkv, nullptr,
model.layers[il].wqk, nullptr,
model.layers[il].wq, nullptr,
model.layers[il].wk, nullptr,
model.layers[il].wv, nullptr,
model.layers[il].attn_q_norm, model.layers[il].attn_k_norm, 0, il);
// norm
cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
if (rope_cache) {
Qcur = ggml_rope_fast(ctx0, Qcur, rope_cache);
Kcur = ggml_rope_fast(ctx0, Kcur, rope_cache);
} else {
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
// self-attention
{
auto [Qcur, Kcur, Vcur] = llm_build_mul_mat_qkv(gf, cur,
model.layers[il].wqkv, nullptr,
model.layers[il].wqk, nullptr,
model.layers[il].wq, nullptr,
model.layers[il].wk, nullptr,
model.layers[il].wv, nullptr,
model.layers[il].attn_q_norm, model.layers[il].attn_k_norm, 0, il);
if (rope_cache) {
Qcur = ggml_rope_fast(ctx0, Qcur, rope_cache);
Kcur = ggml_rope_fast(ctx0, Kcur, rope_cache);
} else {
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cur = ggml_add(ctx0, cur, inpSA);
cb(cur, "attn_with_inp", il);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_ffn(ctx0, lctx, model.layers[il].ffn_norm, ffn_inp,
cur = llm_build_ffn(ctx0, lctx, model.layers[il].ffn_norm, cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
LLM_FFN_SILU, LLM_FFN_PAR, cb, il, gf, true);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
@@ -3969,13 +3976,7 @@ ggml_cgraph * llm_build_context::build_qwen3() {
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cur = build_output(lctx, ctx0, inpL, model.output, model.output_norm, cb);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);

View File

@@ -1116,8 +1116,8 @@ bool create_tensors_helper::create_qwen3_tensors(const LLM_TN & tn) {
// output
{
model.output_norm = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
model.output_norm = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
model.output = create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
@@ -1125,21 +1125,20 @@ bool create_tensors_helper::create_qwen3_tensors(const LLM_TN & tn) {
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
use_mmap_buffer &= !merge_qkv(tn, i, 0);
layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
layer.attn_k_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k});
layer.attn_q_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k});
layer.attn_k_norm = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k});
layer.attn_q_norm = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k});
layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
create_std_ffn(i, tn, layer, n_ff, n_embd, ctx_split);
}
return use_mmap_buffer;

View File

@@ -1731,6 +1731,7 @@ static bool is_model_split_supported(const llama_model & model) {
LLM_ARCH_MISTRAL3,
LLM_ARCH_COHERE2,
LLM_ARCH_MIMO2,
LLM_ARCH_QWEN3,
};
auto it = k_supported.find(model.arch);
return it != k_supported.end();