Much faster rng sampling (#1187)

This commit is contained in:
Kawrakow
2026-01-25 09:11:27 +02:00
committed by GitHub
parent 04beeffa4e
commit 28f8320f3a

View File

@@ -702,23 +702,39 @@ llama_token llama_sample_token_with_rng_impl(struct llama_sampling * smpl, llama
GGML_ASSERT(smpl);
const int64_t t_start_sample_us = ggml_time_us();
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
std::vector<float> probs;
probs.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
probs.push_back(candidates->data[i].p);
if (candidates->size < 2) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
smpl->n_sample++;
return candidates->data[0].id;
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
std::vector<float> probs(candidates->size);
probs[0] = candidates->data[0].logit;
float max = probs[0];
for (int j = 1; j < candidates->size; ++j) {
probs[j] = candidates->data[j].logit;
max = std::max(max, probs[j]);
}
llama_token result = candidates->data[idx].id;
float sump = 0;
for (int j = 0; j < candidates->size; ++j) {
float p = expf(probs[j] - max);
sump += p;
probs[j] = sump;
}
probs.back() += sump;
auto p = sump * rng() / rng.max();
auto iter = std::upper_bound(probs.begin(), probs.end(), p);
GGML_ASSERT(iter != probs.end());
auto idx = std::distance(probs.begin(), iter);
auto id = candidates->data[idx].id;
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
smpl->n_sample++;
return result;
return id;
}
llama_token llama_sample_token_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {