WIP: GLM-4.5 graph works

This commit is contained in:
Kawrakow
2025-12-21 15:40:10 +00:00
parent 8f6ff1fa76
commit 30fec6dd8a

View File

@@ -6873,7 +6873,7 @@ ggml_cgraph * llm_build_context::build_glm4_moe() {
// self-attention
if (rope_cache == nullptr) {
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, KQ_mask, nullptr, nullptr, kq_scale, 0.0f, 0, il);
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, KQ_mask, nullptr, nullptr, kq_scale, 0.0f, 0, il, true, false, true);
} else {
// Pre-attention norm
cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il);
@@ -6917,8 +6917,13 @@ ggml_cgraph * llm_build_context::build_glm4_moe() {
}
// residual connection for attention output
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
ggml_tensor * ffn_inp;
if (rope_cache) {
ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
} else {
ffn_inp = cur;
}
if ((uint32_t) il < hparams.n_layer_dense_lead) {
// dense FFN
@@ -6927,7 +6932,7 @@ ggml_cgraph * llm_build_context::build_glm4_moe() {
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il, gf);
LLM_FFN_SILU, LLM_FFN_PAR, cb, il, gf, true);
cb(cur, "ffn_out", il);
} else {
cur = llm_build_std_moe_ffn(ctx0, lctx, model.layers[il].ffn_norm, ffn_inp,
@@ -6942,39 +6947,11 @@ ggml_cgraph * llm_build_context::build_glm4_moe() {
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm, true, hparams.expert_weights_scale,
(llm_expert_gating_func_type) hparams.expert_gating_func,
LLM_FFN_SILU, cb, il, gf);
//// Post-attention norm
//cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il);
//cb(cur, "post_attn_norm", il);
//// MoE FFN
//auto routed_out = llm_build_moe_ffn(ctx0, lctx, cur,
// model.layers[il].ffn_gate_inp,
// model.layers[il].ffn_up_exps,
// model.layers[il].ffn_gate_exps,
// model.layers[il].ffn_down_exps,
// model.layers[il].ffn_exp_probs_b,
// n_expert, n_expert_used,
// LLM_FFN_SILU, hparams.expert_weights_norm,
// true, hparams.expert_weights_scale,
// (enum llm_expert_gating_func_type) hparams.expert_gating_func,
// cb, il, gf);
//cb(routed_out, "routed_out", il);
//auto shared_out = llm_build_ffn(ctx0, lctx, nullptr, cur,
// model.layers[il].ffn_up_shexp, NULL, NULL,
// model.layers[il].ffn_gate_shexp, NULL, NULL,
// model.layers[il].ffn_down_shexp, NULL, NULL,
// NULL,
// LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
//cb(shared_out, "ffn_shexp_out", il);
//cur = ggml_add(ctx0, routed_out, shared_out);
//cb(cur, "ffn_out", il);
LLM_FFN_SILU, cb, il, gf, true);
}
// residual and context vector
cur = ggml_add(ctx0, cur, ffn_inp);
//cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);