mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-02-09 16:00:12 +00:00
Metal implementatio for the trellis quants. (#475)
* iq2_kt: Metal dequantize * iq2_kt: Metal GEMV Performance is actually quite decent: 52 t/s on my M2-Max for LlaMA-3.1-8B * iq3_kt: Metal dequantize * iq3_kt: Metal GEMV Performance is not as good as iq2_kt: 40 t/s on my M2-Max for LlaMA-3.1-8B. Flipping signs is a costly affair. * iq4_kt: Metal dequantize - getting NaNs * iq4_kt: Metal GEMV - also not working * iq4_kt: Metal still not working * Disable iq4_kt on Metal for now --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
@@ -115,6 +115,9 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_K,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ5_K,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ6_K,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_KT,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_KT,
|
||||
//GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KT,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
||||
GGML_METAL_KERNEL_TYPE_RMS_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_FUSED_RMS_NORM,
|
||||
@@ -158,6 +161,9 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ5_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_KT_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_KT_F32,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KT_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
|
||||
@@ -195,6 +201,9 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ5_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_KT_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_KT_F32,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KT_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32,
|
||||
@@ -229,6 +238,9 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KT_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_KT_F32,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KT_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F16,
|
||||
@@ -263,6 +275,9 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KT_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_KT_F16,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KT_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32,
|
||||
@@ -297,6 +312,9 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ5_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_KT_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_KT_F32,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KT_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,
|
||||
@@ -747,6 +765,9 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_K, get_rows_iq4_k, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ5_K, get_rows_iq5_k, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ6_K, get_rows_iq6_k, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_KT, get_rows_iq2_kt, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_KT, get_rows_iq3_kt, true);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KT, get_rows_iq4_kt, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FUSED_RMS_NORM, fused_rms_norm, ctx->support_simdgroup_reduction);
|
||||
@@ -790,6 +811,9 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_K_F32, mul_mv_iq4_k_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ5_K_F32, mul_mv_iq5_k_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ6_K_F32, mul_mv_iq6_k_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_KT_F32, mul_mv_iq2_kt_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_KT_F32, mul_mv_iq3_kt_f32, ctx->support_simdgroup_reduction);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KT_F32, mul_mv_iq4_kt_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction);
|
||||
@@ -827,6 +851,9 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_K_F32, mul_mv_id_iq4_k_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ5_K_F32, mul_mv_id_iq5_k_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ6_K_F32, mul_mv_id_iq6_k_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_KT_F32, mul_mv_id_iq2_kt_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_KT_F32, mul_mv_id_iq3_kt_f32, ctx->support_simdgroup_reduction);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KT_F32, mul_mv_id_iq4_kt_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32, mul_mm_bf16_f32, ctx->support_simdgroup_mm);
|
||||
@@ -861,6 +888,9 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32, mul_mm_iq4_k_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F32, mul_mm_iq5_k_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F32, mul_mm_iq6_k_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KT_F32, mul_mm_iq2_kt_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_KT_F32, mul_mm_iq3_kt_f32, ctx->support_simdgroup_mm);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KT_F32, mul_mm_iq4_kt_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F16, mul_mm_f32_f16, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F16, mul_mm_f16_f16, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F16, mul_mm_bf16_f16, ctx->support_simdgroup_mm);
|
||||
@@ -895,6 +925,9 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F16, mul_mm_iq4_k_f16, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F16, mul_mm_iq5_k_f16, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F16, mul_mm_iq6_k_f16, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KT_F16, mul_mm_iq2_kt_f16, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_KT_F16, mul_mm_iq3_kt_f16, ctx->support_simdgroup_mm);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KT_F16, mul_mm_iq4_kt_f16, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32, mul_mm_id_bf16_f32, ctx->support_simdgroup_mm);
|
||||
@@ -929,6 +962,9 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_K_F32, mul_mm_id_iq4_k_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ5_K_F32, mul_mm_id_iq5_k_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ6_K_F32, mul_mm_id_iq6_k_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_KT_F32, mul_mm_id_iq2_kt_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_KT_F32, mul_mm_id_iq3_kt_f32, ctx->support_simdgroup_mm);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KT_F32, mul_mm_id_iq4_kt_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true);
|
||||
@@ -2142,6 +2178,9 @@ static void ggml_metal_encode_node(
|
||||
case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KT_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_KT_F32 ].pipeline; break;
|
||||
//case GGML_TYPE_IQ4_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KT_F32 ].pipeline; break;
|
||||
default: GGML_ABORT("MUL MAT-MAT not implemented");
|
||||
}
|
||||
}
|
||||
@@ -2181,6 +2220,9 @@ static void ggml_metal_encode_node(
|
||||
case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F16 ].pipeline; break;
|
||||
case GGML_TYPE_IQ5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F16 ].pipeline; break;
|
||||
case GGML_TYPE_IQ6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F16 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KT_F16 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_KT_F16 ].pipeline; break;
|
||||
//case GGML_TYPE_IQ4_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KT_F16 ].pipeline; break;
|
||||
default: GGML_ABORT("MUL MAT-MAT not implemented");
|
||||
}
|
||||
}
|
||||
@@ -2440,6 +2482,24 @@ static void ggml_metal_encode_node(
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ6_K_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_KT:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_KT_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_KT:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_KT_F32].pipeline;
|
||||
} break;
|
||||
//case GGML_TYPE_IQ4_KT:
|
||||
// {
|
||||
// nth0 = 4;
|
||||
// nth1 = 16;
|
||||
// pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KT_F32].pipeline;
|
||||
// } break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
||||
@@ -2471,7 +2531,8 @@ static void ggml_metal_encode_node(
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 ||
|
||||
src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K ||
|
||||
src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S||
|
||||
src0t == GGML_TYPE_IQ1_BN|| src0t == GGML_TYPE_IQ2_BN|| src0t == GGML_TYPE_Q6_0) {
|
||||
src0t == GGML_TYPE_IQ1_BN|| src0t == GGML_TYPE_IQ2_BN|| src0t == GGML_TYPE_Q6_0 ||
|
||||
src0t == GGML_TYPE_IQ2_KT|| src0t == GGML_TYPE_IQ3_KT) { //|| src0t == GGML_TYPE_IQ4_KT) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ2_KS || src0t == GGML_TYPE_IQ2_K || src0t == GGML_TYPE_IQ3_K) {
|
||||
@@ -2596,6 +2657,9 @@ static void ggml_metal_encode_node(
|
||||
case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ5_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ6_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_KT_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_KT_F32 ].pipeline; break;
|
||||
//case GGML_TYPE_IQ4_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KT_F32 ].pipeline; break;
|
||||
default: GGML_ABORT("MUL_MAT_ID not implemented");
|
||||
}
|
||||
|
||||
@@ -2839,6 +2903,24 @@ static void ggml_metal_encode_node(
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ6_K_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_KT:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_KT_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_KT:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_KT_F32].pipeline;
|
||||
} break;
|
||||
//case GGML_TYPE_IQ4_KT:
|
||||
// {
|
||||
// nth0 = 4;
|
||||
// nth1 = 16;
|
||||
// pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KT_F32].pipeline;
|
||||
// } break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
|
||||
@@ -2881,7 +2963,8 @@ static void ggml_metal_encode_node(
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 ||
|
||||
src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K ||
|
||||
src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_Q6_0 ||
|
||||
src0t == GGML_TYPE_IQ1_BN|| src0t == GGML_TYPE_IQ2_BN|| src0t == GGML_TYPE_IQ2_K) {
|
||||
src0t == GGML_TYPE_IQ1_BN|| src0t == GGML_TYPE_IQ2_BN|| src0t == GGML_TYPE_IQ2_K||
|
||||
src0t == GGML_TYPE_IQ2_KT|| src0t == GGML_TYPE_IQ3_KT) { //|| src0t == GGML_TYPE_IQ4_KT) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ2_KS || src0t == GGML_TYPE_IQ2_K || src0t == GGML_TYPE_IQ3_K) {
|
||||
@@ -2962,6 +3045,9 @@ static void ggml_metal_encode_node(
|
||||
case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_K ].pipeline; break;
|
||||
case GGML_TYPE_IQ5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ5_K ].pipeline; break;
|
||||
case GGML_TYPE_IQ6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ6_K ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_KT ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_KT ].pipeline; break;
|
||||
//case GGML_TYPE_IQ4_KT: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KT ].pipeline; break;
|
||||
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
|
||||
default: GGML_ABORT("not implemented");
|
||||
}
|
||||
|
||||
@@ -2596,7 +2596,7 @@ void dequantize_f16_t4(device const half4 * src, short il, thread type4 & reg) {
|
||||
template <typename type4x4>
|
||||
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
|
||||
device const int8_t * qs = ((device const int8_t *)xb->qs);
|
||||
if constexpr (is_same_v<type4x4, half4x4>) {
|
||||
if (is_same_v<type4x4, half4x4>) {
|
||||
const half d = xb->d;
|
||||
for (int i = 0; i < 16; i++) {
|
||||
reg[i/4][i%4] = (half)qs[i + 16*il] * d;
|
||||
@@ -6596,6 +6596,431 @@ void kernel_mul_mv_iq2_k_f32_impl(
|
||||
}
|
||||
}
|
||||
|
||||
struct Trellis {
|
||||
constexpr constant static uint32_t kmask1 = 0x8fff8fff;
|
||||
constexpr constant static uint32_t kmask2 = 0x3b603b60;
|
||||
constexpr constant static uint32_t ka = 89226354;
|
||||
constexpr constant static uint32_t kb = 64248484;
|
||||
constexpr constant static uint32_t ka1 = ka*ka;
|
||||
constexpr constant static uint32_t kb1 = kb*ka+kb;
|
||||
constexpr constant static uint32_t ka2 = ka1*ka;
|
||||
constexpr constant static uint32_t kb2 = kb1*ka+kb;
|
||||
constexpr constant static uint32_t ka3 = ka2*ka;
|
||||
constexpr constant static uint32_t kb3 = kb2*ka+kb;
|
||||
constexpr constant static uint32_t ka4 = ka3*ka;
|
||||
constexpr constant static uint32_t kb4 = kb3*ka+kb;
|
||||
constexpr constant static uint32_t ka5 = ka4*ka;
|
||||
constexpr constant static uint32_t kb5 = kb4*ka+kb;
|
||||
constexpr constant static uint32_t ka6 = ka5*ka;
|
||||
constexpr constant static uint32_t kb6 = kb5*ka+kb;
|
||||
constexpr constant static uint32_t ka7 = ka6*ka;
|
||||
constexpr constant static uint32_t kb7 = kb6*ka+kb;
|
||||
|
||||
static inline half4 gen4(uint32_t val) {
|
||||
thread uint32_t aux[4] = {((ka *val + kb ) & kmask1) ^ kmask2,
|
||||
((ka1*val + kb1) & kmask1) ^ kmask2,
|
||||
((ka2*val + kb2) & kmask1) ^ kmask2,
|
||||
((ka3*val + kb3) & kmask1) ^ kmask2};
|
||||
const thread half * h = (const thread half *)aux;
|
||||
return { h[0]+h[1], h[2]+h[3], h[4]+h[5], h[6]+h[7] };
|
||||
}
|
||||
template <typename T4>
|
||||
static inline void gen8(uint32_t val, thread T4& v1, thread T4& v2) {
|
||||
thread uint32_t aux[8] = {((ka *val + kb ) & kmask1) ^ kmask2,
|
||||
((ka1*val + kb1) & kmask1) ^ kmask2,
|
||||
((ka2*val + kb2) & kmask1) ^ kmask2,
|
||||
((ka3*val + kb3) & kmask1) ^ kmask2,
|
||||
((ka4*val + kb4) & kmask1) ^ kmask2,
|
||||
((ka5*val + kb5) & kmask1) ^ kmask2,
|
||||
((ka6*val + kb6) & kmask1) ^ kmask2,
|
||||
((ka7*val + kb7) & kmask1) ^ kmask2};
|
||||
const thread half * h = (const thread half *)aux;
|
||||
if constexpr (is_same_v<T4, half4>) {
|
||||
v1 = { h[0]+h[1], h[2]+h[3], h[4]+h[5], h[6]+h[7] };
|
||||
v2 = { h[8]+h[9], h[10]+h[11], h[12]+h[13], h[14]+h[15] };
|
||||
} else {
|
||||
v1 = { (float)(h[0]+h[1]), (float)(h[ 2]+h[ 3]), (float)(h[ 4]+h[ 5]), (float)(h[ 6]+h[ 7]) };
|
||||
v2 = { (float)(h[8]+h[9]), (float)(h[10]+h[11]), (float)(h[12]+h[13]), (float)(h[14]+h[15]) };
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void kernel_mul_mv_iq2_kt_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
int64_t ne00,
|
||||
int64_t ne01,
|
||||
int64_t ne02,
|
||||
int64_t ne10,
|
||||
int64_t ne12,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
uint r2,
|
||||
uint r3,
|
||||
threadgroup int8_t * shared_values,
|
||||
uint3 tgpig,
|
||||
uint tiisg,
|
||||
uint sgitg) {
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
const int r0 = tgpig.x;
|
||||
const int r1 = tgpig.y;
|
||||
const int im = tgpig.z;
|
||||
|
||||
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
||||
const uint row_size = sizeof(float) + nb*sizeof(block_iq2_kt);
|
||||
|
||||
const uint i12 = im%ne12;
|
||||
const uint i13 = im/ne12;
|
||||
|
||||
const uint offset0 = (i12/r2)*(ne01) + (i13/r3)*(ne01*ne02);
|
||||
|
||||
device const char * cx = (device const char *) src0 + (first_row + offset0)*row_size;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float4 sumf={0.f};
|
||||
|
||||
const int ix = tiisg/16; // 0...1
|
||||
const int it = tiisg%16; // 0...15
|
||||
|
||||
device const float4 * y4 = (device const float4 *)y + ix * (QK_K/4) + 4 * it;
|
||||
|
||||
float4 v1, v2;
|
||||
|
||||
float drow[N_DST];
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
device const float * dptr = (device const float *)(cx + row*row_size);
|
||||
drow[row] = dptr[0] * 31.75f * 1.05f;
|
||||
}
|
||||
|
||||
device const block_iq2_kt * x = (device const block_iq2_kt *)(cx + sizeof(float));
|
||||
|
||||
for (int ib = ix; ib < nb; ib += 2) {
|
||||
|
||||
device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
|
||||
device const uint16_t * q2 = (device const uint16_t *)(sc + 4);
|
||||
|
||||
const float ls = drow[row] * iq4k_values[(sc[(it/2)%4] >> 4*(it/8)) & 0xf];
|
||||
|
||||
Trellis::gen8(q2[2*it+0]+4096, v1, v2);
|
||||
auto sum = v1*y4[0] + v2*y4[1];
|
||||
|
||||
Trellis::gen8(q2[2*it+1]+4096, v1, v2);
|
||||
sum += v1*y4[2] + v2*y4[3];
|
||||
|
||||
sum *= ls;
|
||||
|
||||
sumf[row] += sum[0] + sum[1] + sum[2] + sum[3];
|
||||
|
||||
sc += row_size;
|
||||
|
||||
}
|
||||
|
||||
y4 += QK_K/2;
|
||||
}
|
||||
|
||||
sumf = simd_sum(sumf);
|
||||
if (tiisg < 4) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + tiisg] = sumf[tiisg];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_iq2_kt_f32")]]
|
||||
kernel void kernel_mul_mv_iq2_kt_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
kernel_mul_mv_iq2_kt_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
void kernel_mul_mv_iq3_kt_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
int64_t ne00,
|
||||
int64_t ne01,
|
||||
int64_t ne02,
|
||||
int64_t ne10,
|
||||
int64_t ne12,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
uint r2,
|
||||
uint r3,
|
||||
threadgroup int8_t * shared_values,
|
||||
uint3 tgpig,
|
||||
uint tiisg,
|
||||
uint sgitg) {
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
const int r0 = tgpig.x;
|
||||
const int r1 = tgpig.y;
|
||||
const int im = tgpig.z;
|
||||
|
||||
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
||||
const uint row_size = sizeof(float) + nb*sizeof(block_iq3_kt);
|
||||
|
||||
const uint i12 = im%ne12;
|
||||
const uint i13 = im/ne12;
|
||||
|
||||
const uint offset0 = (i12/r2)*(ne01) + (i13/r3)*(ne01*ne02);
|
||||
|
||||
device const char * cx = (device const char *) src0 + (first_row + offset0)*row_size;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float4 sumf={0.f};
|
||||
|
||||
const int ix = tiisg/16; // 0...1
|
||||
const int it = tiisg%16; // 0...15
|
||||
|
||||
device const float4 * y4 = (device const float4 *)y + ix * (QK_K/4) + 4 * it;
|
||||
|
||||
float4 v[2];
|
||||
thread uint32_t * u32 = (thread uint32_t *)v;
|
||||
|
||||
float drow[N_DST];
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
device const float * dptr = (device const float *)(cx + row*row_size);
|
||||
drow[row] = dptr[0] * 31.75f * 1.01f;
|
||||
}
|
||||
|
||||
device const block_iq3_kt * x = (device const block_iq3_kt *)(cx + sizeof(float));
|
||||
|
||||
for (int ib = ix; ib < nb; ib += 2) {
|
||||
|
||||
device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
|
||||
device const uint16_t * q2 = (device const uint16_t *)(sc + 4);
|
||||
device const uint8_t * qh = (device const uint8_t *)(q2 + QK_K/8) + 16*(it%2);
|
||||
|
||||
const float ls = drow[row] * ((sc[(it/2)%4] >> 4*(it/8)) & 0xf);
|
||||
const uint8_t mask = 1 << (it/2);
|
||||
|
||||
Trellis::gen8(q2[2*it+0]+4096, v[0], v[1]);
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
u32[j] &= 0x7fffffff;
|
||||
u32[j] |= qh[j+0] & mask ? 0x80000000 : 0;
|
||||
}
|
||||
|
||||
auto sum = v[0]*y4[0] + v[1]*y4[1];
|
||||
|
||||
Trellis::gen8(q2[2*it+1]+4096, v[0], v[1]);
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
u32[j] &= 0x7fffffff;
|
||||
u32[j] |= qh[j+8] & mask ? 0x80000000 : 0;
|
||||
}
|
||||
|
||||
sum += v[0]*y4[2] + v[1]*y4[3];
|
||||
|
||||
sum *= ls;
|
||||
|
||||
sumf[row] += sum[0] + sum[1] + sum[2] + sum[3];
|
||||
|
||||
sc += row_size;
|
||||
|
||||
}
|
||||
|
||||
y4 += QK_K/2;
|
||||
}
|
||||
|
||||
sumf = simd_sum(sumf);
|
||||
if (tiisg < 4) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + tiisg] = sumf[tiisg];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_iq3_kt_f32")]]
|
||||
kernel void kernel_mul_mv_iq3_kt_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
kernel_mul_mv_iq3_kt_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
//TODO
|
||||
void kernel_mul_mv_iq4_kt_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
int64_t ne00,
|
||||
int64_t ne01,
|
||||
int64_t ne02,
|
||||
int64_t ne10,
|
||||
int64_t ne12,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
uint r2,
|
||||
uint r3,
|
||||
threadgroup int8_t * shared_values,
|
||||
uint3 tgpig,
|
||||
uint tiisg,
|
||||
uint sgitg) {
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
const int r0 = tgpig.x;
|
||||
const int r1 = tgpig.y;
|
||||
const int im = tgpig.z;
|
||||
|
||||
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
||||
const uint row_size = 2*sizeof(float) + nb*sizeof(block_iq4_kt);
|
||||
|
||||
const uint i12 = im%ne12;
|
||||
const uint i13 = im/ne12;
|
||||
|
||||
const uint offset0 = (i12/r2)*(ne01) + (i13/r3)*(ne01*ne02);
|
||||
|
||||
device const char * cx = (device const char *) src0 + (first_row + offset0)*row_size;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float4 sumf={0.f};
|
||||
|
||||
const int ix = tiisg/16; // 0...1
|
||||
const int it = tiisg%16; // 0...15
|
||||
|
||||
device const float4 * y4 = (device const float4 *)y + ix * (QK_K/4) + 4 * it;
|
||||
|
||||
float4 v[2];
|
||||
thread uint32_t * u32 = (thread uint32_t *)v;
|
||||
|
||||
//float drow[2*N_DST];
|
||||
//for (int row = 0; row < N_DST; ++row) {
|
||||
// device const float * dptr = (device const float *)(cx + row*row_size);
|
||||
// drow[2*row+0] = dptr[0] * 31.75f * 1.01f;
|
||||
// drow[2*row+1] = dptr[1];
|
||||
//}
|
||||
float drow[N_DST];
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
device const float * dptr = (device const float *)(cx + row*row_size);
|
||||
drow[row] = dptr[0] * 31.75f * 1.01f;
|
||||
}
|
||||
|
||||
device const block_iq4_kt * x = (device const block_iq4_kt *)(cx + 2*sizeof(float));
|
||||
|
||||
for (int ib = ix; ib < nb; ib += 2) {
|
||||
|
||||
//auto sumy = y4[0] + y4[1] + y4[2] + y4[3];
|
||||
|
||||
device const uint32_t * shb = x[ib].qs;
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
|
||||
device const uint8_t * ql = (device const uint8_t *)(shb + 8);
|
||||
device const uint8_t * qh = ql + 64;
|
||||
|
||||
const float ls = drow[row] * (((shb[it/2] & 0xff) >> 1) - 64);
|
||||
|
||||
const int jj = 8*(it/2) + 4*(it%2);
|
||||
ql += jj;
|
||||
qh += jj%32;
|
||||
|
||||
const uint32_t offset = 4096 + ((shb[it/2] & 1) << 15);
|
||||
const int shift = 8 - 4*(jj/32);
|
||||
uint32_t sh = (shb[it/2] >> (8 + 12*(it%2))) << 12;
|
||||
|
||||
float4 sum = {0.f};
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
uint32_t idx = ql[j] + ((qh[j] << shift) & 0xf00) + ((sh >> 3*j) & 0x7000) + offset;
|
||||
auto v = Trellis::gen4(idx);
|
||||
sum += y4[j] * (float4)v;
|
||||
}
|
||||
sum *= ls;
|
||||
|
||||
//sumf[row] += sum[0] + sum[1] + sum[2] + sum[3] + drow[2*row+1]*(sumy[0] + sumy[1] + sumy[2] + sumy[3]);
|
||||
sumf[row] += sum[0] + sum[1] + sum[2] + sum[3];
|
||||
|
||||
shb += row_size/4;
|
||||
|
||||
}
|
||||
|
||||
y4 += QK_K/2;
|
||||
}
|
||||
|
||||
sumf = simd_sum(sumf);
|
||||
if (tiisg < 4) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + tiisg] = sumf[tiisg];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_iq4_kt_f32")]]
|
||||
kernel void kernel_mul_mv_iq4_kt_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
kernel_mul_mv_iq4_kt_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
|
||||
[[host_name("kernel_mul_mv_iq2_k_f32")]]
|
||||
kernel void kernel_mul_mv_iq2_k_f32(
|
||||
device const void * src0,
|
||||
@@ -8113,6 +8538,71 @@ void dequantize_iq4_kss(device const block_iq4_kss * xb, short il, thread type4x
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_iq2_kt(device const block_iq2_kt * x, short il, thread type4x4 & reg) {
|
||||
// il is 0...15 for QK_K = 256
|
||||
int ib32 = il/2;
|
||||
half scale = iq4k_values[((x->scales[ib32%4] >> 4*(ib32/4)) & 0xf)] * 31.75h * 1.05h;
|
||||
device const uint16_t * q2 = (device const uint16_t *)x->ql + 4*ib32 + 2*(il%2);
|
||||
|
||||
half4 v1, v2;
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
Trellis::gen8(q2[i]+4096, v1, v2);
|
||||
v1 *= scale; v2 *= scale;
|
||||
if constexpr (is_same_v<type4x4, half4x4>) {
|
||||
reg[2*i+0] = v1;
|
||||
reg[2*i+1] = v2;
|
||||
} else {
|
||||
reg[2*i+0] = {(float)v1[0], (float)v1[1], (float)v1[2], (float)v1[3]};
|
||||
reg[2*i+1] = {(float)v2[0], (float)v2[1], (float)v2[2], (float)v2[3]};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_iq3_kt(device const block_iq3_kt * x, short il, thread type4x4 & reg) {
|
||||
// il is 0...15 for QK_K = 256
|
||||
int ib32 = il/2;
|
||||
half scale = (half)((x->scales[ib32%4] >> 4*(ib32/4)) & 0xf) * 31.75h * 1.01h;
|
||||
device const uint16_t * q2 = (device const uint16_t *)x->ql + 4*ib32 + 2*(il%2);
|
||||
device const uint8_t * qh = x->qh + 16*(il%2);
|
||||
const uint8_t mask = 1 << ib32;
|
||||
|
||||
half4 v1, v2;
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
Trellis::gen8(q2[i]+4096, v1, v2);
|
||||
//v1 *= scale; v2 *= scale;
|
||||
//for (int j = 0; j < 4; ++j) reg[2*i+0][j] = qh[8*i+0+j] & mask ? -abs(v1[j]) : abs(v1[j]);
|
||||
//for (int j = 0; j < 4; ++j) reg[2*i+1][j] = qh[8*i+4+j] & mask ? -abs(v2[j]) : abs(v2[j]);
|
||||
v1 = abs(v1)*scale; v2 = abs(v2)*scale;
|
||||
for (int j = 0; j < 4; ++j) reg[2*i+0][j] = qh[8*i+0+j] & mask ? -v1[j] : v1[j];
|
||||
for (int j = 0; j < 4; ++j) reg[2*i+1][j] = qh[8*i+4+j] & mask ? -v2[j] : v2[j];
|
||||
}
|
||||
}
|
||||
|
||||
void dequantize_iq4_kt(device const block_iq4_kt * x, short il, float d, thread float4x4 & reg) {
|
||||
// il is 0...15 for QK_K = 256
|
||||
int ib32 = il/2;
|
||||
device const uint32_t * shb = x->qs;
|
||||
device const uint8_t * ql = (device const uint8_t *)(shb + 8);
|
||||
device const uint8_t * qh = ql + 64;
|
||||
float scale = d * (((shb[ib32] & 0xff) >> 1) - 64);
|
||||
const uint32_t offset = 4096 + ((shb[ib32] & 1) << 15);
|
||||
|
||||
const int jj = ib32*8 + 4*(il%2);
|
||||
ql += jj;
|
||||
qh += jj%32;
|
||||
|
||||
uint32_t sh = (shb[ib32] >> (8 + 12*(il%2))) << 12;
|
||||
const int shift = 8 - 4*(jj/32);
|
||||
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
uint32_t idx = ql[i] + ((qh[i] << shift) & 0xf00) + ((sh >> 3*i) & 0x7000) + offset;
|
||||
auto v = (float4)Trellis::gen4(idx);
|
||||
reg[i] = v * scale;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_iq2_k(device const block_iq2_k * xb, short il, thread type4x4 & reg) {
|
||||
// il is 0...15 for QK_K = 256
|
||||
@@ -8409,6 +8899,61 @@ struct DequantizerRS {
|
||||
Scale d;
|
||||
};
|
||||
|
||||
template <typename T4x4, typename Block, typename Scale, int nl, void (*dequantize)(device const Block *, short, thread T4x4&)>
|
||||
struct DequantizerRST4 {
|
||||
using type4x4 = T4x4;
|
||||
DequantizerRST4(device const char * cx, short il = 0) : il(il) {
|
||||
device const Scale * dptr = (device const Scale *)cx;
|
||||
d[0] = dptr[0] * Scale(31.75f * 1.01f);
|
||||
d[1] = dptr[1];
|
||||
x = (device const Block *)(dptr + 2);
|
||||
}
|
||||
inline void convert(thread T4x4& t) const {
|
||||
dequantize(x, il, t);
|
||||
for (int i = 0; i < 4; ++i) t[i] = t[i]*d[0] + d[1];
|
||||
}
|
||||
inline void convert(int64_t ind, thread T4x4& t) {
|
||||
dequantize(x + ind/nl, ind%nl, t);
|
||||
for (int i = 0; i < 4; ++i) t[i] = t[i]*d[0] + d[1];
|
||||
}
|
||||
inline void next() {
|
||||
il = (il + 2 < nl) ? il + 2 : il % 2;
|
||||
x = (il < 2) ? x + (2+nl-1)/nl : x;
|
||||
}
|
||||
device const Block * x;
|
||||
short il;
|
||||
Scale d[2];
|
||||
};
|
||||
|
||||
template <typename T4x4, int nl>
|
||||
struct DequantizerKT4 {
|
||||
using Block = block_iq4_kt;
|
||||
using type4x4 = T4x4;
|
||||
DequantizerKT4(device const char * cx, short il = 0) : il(il) {
|
||||
device const float * dptr = (device const float *)cx;
|
||||
d[0] = dptr[0] * 31.75f * 1.01f;
|
||||
d[1] = dptr[1];
|
||||
x = (device const Block *)(dptr + 2);
|
||||
}
|
||||
inline void convert(thread T4x4& t) const {
|
||||
float4x4 tmp;
|
||||
dequantize_iq4_kt(x, il, d[0], tmp);
|
||||
for (int i = 0; i < 4; ++i) for (int j = 0; j < 4; ++j) t[i][j] = tmp[i][j];
|
||||
}
|
||||
inline void convert(int64_t ind, thread T4x4& t) {
|
||||
float4x4 tmp;
|
||||
dequantize_iq4_kt(x + ind/nl, ind%nl, d[0], tmp);
|
||||
for (int i = 0; i < 4; ++i) for (int j = 0; j < 4; ++j) t[i][j] = tmp[i][j];
|
||||
}
|
||||
inline void next() {
|
||||
il = (il + 2 < nl) ? il + 2 : il % 2;
|
||||
x = (il < 2) ? x + (2+nl-1)/nl : x;
|
||||
}
|
||||
device const Block * x;
|
||||
short il;
|
||||
float d[2];
|
||||
};
|
||||
|
||||
template <typename T4x4, typename Block, typename Scale, int nl, void (*dequantize)(half d, device const Block *, short, thread T4x4&), bool may_not_be_aligned = false>
|
||||
struct DequantizerRSBN {
|
||||
using type4x4 = T4x4;
|
||||
@@ -8849,6 +9394,9 @@ template [[host_name("kernel_get_rows_iq4_ks")]] kernel get_rows_q_t kernel_get
|
||||
template [[host_name("kernel_get_rows_iq5_ks")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq5_ks, float, 16, dequantize_iq5_ks>>;
|
||||
template [[host_name("kernel_get_rows_iq4_kss")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq4_kss,float, 16, dequantize_iq4_kss>>;
|
||||
template [[host_name("kernel_get_rows_iq2_ks")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>>;
|
||||
template [[host_name("kernel_get_rows_iq2_kt")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq2_kt, float, 16, dequantize_iq2_kt>>;
|
||||
template [[host_name("kernel_get_rows_iq3_kt")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq3_kt, float, 16, dequantize_iq3_kt>>;
|
||||
template [[host_name("kernel_get_rows_iq4_kt")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerKT4<float4x4, 16>>;
|
||||
|
||||
//
|
||||
// matrix-matrix multiplication
|
||||
@@ -8893,6 +9441,9 @@ template [[host_name("kernel_mul_mm_iq4_ks_f32")]] kernel mat_mm_t kernel_mul_m
|
||||
template [[host_name("kernel_mul_mm_iq5_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq5_ks, float, 16, dequantize_iq5_ks>, float>;
|
||||
template [[host_name("kernel_mul_mm_iq4_kss_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_kss,float, 16, dequantize_iq4_kss>, float>;
|
||||
template [[host_name("kernel_mul_mm_iq2_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>, float>;
|
||||
template [[host_name("kernel_mul_mm_iq2_kt_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_kt, float, 16, dequantize_iq2_kt>, float>;
|
||||
template [[host_name("kernel_mul_mm_iq3_kt_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq3_kt, float, 16, dequantize_iq3_kt>, float>;
|
||||
template [[host_name("kernel_mul_mm_iq4_kt_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerKT4<half4x4, 16>, float>;
|
||||
|
||||
template [[host_name("kernel_mul_mm_f32_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<float4x4, 1, dequantize_f32>, half>;
|
||||
template [[host_name("kernel_mul_mm_f16_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<half4x4, 1, dequantize_f16>, half>;
|
||||
@@ -8928,6 +9479,9 @@ template [[host_name("kernel_mul_mm_iq4_ks_f16")]] kernel mat_mm_t kernel_mul_m
|
||||
template [[host_name("kernel_mul_mm_iq5_ks_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq5_ks, float, 16, dequantize_iq5_ks>, half>;
|
||||
template [[host_name("kernel_mul_mm_iq4_kss_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_kss,float, 16, dequantize_iq4_kss>, half>;
|
||||
template [[host_name("kernel_mul_mm_iq2_ks_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>, half>;
|
||||
template [[host_name("kernel_mul_mm_iq2_kt_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_kt, float, 16, dequantize_iq2_kt>, half>;
|
||||
template [[host_name("kernel_mul_mm_iq3_kt_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq3_kt, float, 16, dequantize_iq3_kt>, half>;
|
||||
template [[host_name("kernel_mul_mm_iq4_kt_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerKT4<half4x4, 16>, half>;
|
||||
|
||||
|
||||
//
|
||||
@@ -8970,6 +9524,9 @@ template [[host_name("kernel_mul_mm_id_iq4_ks_f32")]] kernel mat_mm_id_t kernel
|
||||
template [[host_name("kernel_mul_mm_id_iq5_ks_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq5_ks, float, 16, dequantize_iq5_ks>>;
|
||||
template [[host_name("kernel_mul_mm_id_iq4_kss_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq4_kss,float, 16, dequantize_iq4_kss>>;
|
||||
template [[host_name("kernel_mul_mm_id_iq2_ks_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>>;
|
||||
template [[host_name("kernel_mul_mm_id_iq2_kt_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq2_kt, float, 16, dequantize_iq2_kt>>;
|
||||
template [[host_name("kernel_mul_mm_id_iq3_kt_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq3_kt, float, 16, dequantize_iq3_kt>>;
|
||||
template [[host_name("kernel_mul_mm_id_iq4_kt_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerKT4<half4x4, 16>>;
|
||||
|
||||
//
|
||||
// matrix-vector multiplication
|
||||
@@ -9188,6 +9745,9 @@ template [[host_name("kernel_mul_mv_id_iq5_ks_f32")]] kernel kernel_mul_mv_id_t
|
||||
template [[host_name("kernel_mul_mv_id_iq4_kss_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_kss_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq2_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_k_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq2_ks_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_ks_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq2_kt_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_kt_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq3_kt_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_kt_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq4_kt_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_kt_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq3_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_k_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq4_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_k_f32_impl>>;
|
||||
template [[host_name("kernel_mul_mv_id_iq5_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq5_k_f32_impl>>;
|
||||
|
||||
Reference in New Issue
Block a user