cuda: fused top_k+softmax as used in most MoE models (#789)

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2025-09-23 13:45:57 +02:00
committed by GitHub
parent af5f2859c2
commit 4591e83825
4 changed files with 244 additions and 19 deletions

View File

@@ -41,6 +41,7 @@
#include "ggml-cuda/graph.cuh"
#include "ggml-cuda/mmq_id.cuh"
#include "ggml-cuda/quantize_id.cuh"
#include "ggml-cuda/topk-moe.cuh"
#include <algorithm>
#include <array>
@@ -3030,7 +3031,8 @@ static void ggml_cuda_up_gate_unary(ggml_backend_cuda_context & ctx, ggml_tensor
}
static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst, struct ggml_tensor * next, bool& skip_next) {
static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst, struct ggml_tensor * next,
const ggml_cgraph * cgraph, int & i) {
// why is this here instead of mul_mat?
if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
@@ -3152,10 +3154,10 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
}
break;
case GGML_OP_MUL_MAT_ID:
skip_next = ggml_cuda_mul_mat_id(ctx, dst, next);
if (ggml_cuda_mul_mat_id(ctx, dst, next)) ++i;
break;
case GGML_OP_MOE_FUSED_UP_GATE:
skip_next = ggml_cuda_moe_up_gate_unary(ctx, dst, next);
if (ggml_cuda_moe_up_gate_unary(ctx, dst, next)) ++i;
break;
case GGML_OP_FUSED_UP_GATE:
ggml_cuda_up_gate_unary(ctx, dst);
@@ -3185,7 +3187,17 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
ggml_cuda_op_diag_mask_inf(ctx, dst);
break;
case GGML_OP_SOFT_MAX:
ggml_cuda_op_soft_max(ctx, dst);
if (i + 4 < cgraph->n_nodes &&
cgraph->nodes[i+1]->op == GGML_OP_RESHAPE &&
cgraph->nodes[i+2]->op == GGML_OP_ARGSORT &&
cgraph->nodes[i+3]->op == GGML_OP_VIEW &&
cgraph->nodes[i+4]->op == GGML_OP_GET_ROWS &&
ggml_cuda_should_use_topk_moe(cgraph->nodes[i], cgraph->nodes[i+4])) {
ggml_cuda_op_topk_moe(ctx, cgraph->nodes[i], cgraph->nodes[i+4], cgraph->nodes[i+3]);
i += 4;
} else {
ggml_cuda_op_soft_max(ctx, dst);
}
break;
case GGML_OP_SOFT_CAP_MAX:
ggml_cuda_op_soft_cap_max(ctx, dst);
@@ -3592,13 +3604,11 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
GGML_UNUSED(integrated);
#endif // NDEBUG
bool skip_next = false;
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node, next, skip_next);
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node, next, cgraph, i);
if (!ok) {
GGML_CUDA_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
if (skip_next) ++i;
}
}
#ifdef USE_CUDA_GRAPH

View File

@@ -0,0 +1,203 @@
#include "ggml-cuda/common.cuh"
#include "ggml.h"
#include "topk-moe.cuh"
/*
This kernel does the following:
1. softmax over the logits per token [n_experts, n_tokens]
2. argmax reduce over the top-k (n_experts_used) logits
3. write weights + ids to global memory
It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models
*/
template <size_t n_experts>
__launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float * logits,
float * weights,
int32_t * ids,
const int n_rows,
const int n_expert_used) {
const int row = blockIdx.x * blockDim.y + threadIdx.y;
if (row >= n_rows) {
return;
}
logits += n_experts * row;
weights += n_expert_used * row;
ids += n_experts * row;
constexpr int experts_per_thread = (n_experts > WARP_SIZE) ? n_experts / WARP_SIZE : 1;
float logits_r[experts_per_thread];
#pragma unroll
for (int i = 0; i < n_experts; i += WARP_SIZE) {
const int expert = i + threadIdx.x;
logits_r[i / WARP_SIZE] = expert < n_experts ? logits[expert] : -INFINITY;
}
float max_val = logits_r[0];
#pragma unroll
for (int i = 1; i < experts_per_thread; i++) {
const float val = logits_r[i];
max_val = max(val, max_val);
}
max_val = warp_reduce_max(max_val);
float wt[experts_per_thread];
float tmp = 0.f;
#pragma unroll
for (int i = 0; i < experts_per_thread; i++) {
const float val = logits_r[i];
wt[i] = expf(val - max_val);
tmp += wt[i];
}
tmp = warp_reduce_sum(tmp);
const float inv_sum = 1.0f / tmp;
#pragma unroll
for (int i = 0; i < experts_per_thread; i++) {
wt[i] = wt[i] * inv_sum;
}
//at this point, each thread holds a portion of softmax,
//we do the argmax reduce over n_expert_used, each time marking
//the expert weight as -inf to exclude from the next iteration
for (int k = 0; k < n_expert_used; k++) {
float max_val = wt[0];
int max_expert = threadIdx.x;
#pragma unroll
for (int i = 1; i < experts_per_thread; i++) {
const int expert = threadIdx.x + i * WARP_SIZE;
if (expert < n_experts && wt[i] > max_val) {
max_val = wt[i];
max_expert = expert;
}
}
#pragma unroll
for (int mask = WARP_SIZE / 2; mask > 0; mask /= 2) {
const float val = __shfl_xor_sync(0xFFFFFFFF, max_val, mask, WARP_SIZE);
const int expert = __shfl_xor_sync(0xFFFFFFFF, max_expert, mask, WARP_SIZE);
if (val > max_val) {
max_val = val;
max_expert = expert;
}
}
if ((max_expert & (WARP_SIZE - 1)) == threadIdx.x) {
wt[max_expert / WARP_SIZE] = -INFINITY;
weights[k] = max_val;
ids[k] = max_expert;
}
}
}
static void launch_topk_moe_cuda(ggml_backend_cuda_context & ctx,
const float * logits,
float * weights,
int32_t * ids,
const int n_rows,
const int n_expert,
const int n_expert_used) {
const int rows_per_block = 4;
dim3 grid_dims((n_rows + rows_per_block - 1) / rows_per_block, 1, 1);
dim3 block_dims(WARP_SIZE, rows_per_block, 1);
cudaStream_t stream = ctx.stream();
switch (n_expert) {
case 1:
topk_moe_cuda<1><<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break;
case 2:
topk_moe_cuda<2><<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break;
case 4:
topk_moe_cuda<4><<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break;
case 8:
topk_moe_cuda<8><<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break;
case 16:
topk_moe_cuda<16><<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break;
case 32:
topk_moe_cuda<32><<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break;
case 64:
topk_moe_cuda<64><<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break;
case 128:
topk_moe_cuda<128><<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break;
case 256:
topk_moe_cuda<256><<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break;
case 512:
topk_moe_cuda<512><<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
break;
default:
GGML_ASSERT(false && "fatal error");
break;
}
}
void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
const ggml_tensor * logits,
ggml_tensor * weights,
ggml_tensor * ids) {
GGML_ASSERT(logits->type == GGML_TYPE_F32);
GGML_ASSERT(weights->type == GGML_TYPE_F32);
GGML_ASSERT(ids->type == GGML_TYPE_I32);
const int n_experts = logits->ne[0];
const int n_rows = logits->ne[1];
const float * logits_d = (const float *) logits->src[0]->data;
float * weights_d = (float *) weights->data;
int32_t * ids_d = (int32_t *) ids->data;
GGML_ASSERT(ids->nb[1] / ggml_type_size(ids->type) == (size_t) n_experts);
cudaStream_t stream = ctx.stream();
const int n_expert_used = weights->ne[1];
launch_topk_moe_cuda(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used);
}
bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tensor * weights) {
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (const float *) softmax->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) softmax->op_params + 1, sizeof(float));
if (!ggml_is_contiguous(softmax->src[0]) || !ggml_is_contiguous(weights)) {
return false;
}
if (scale != 1.0f || max_bias != 0.0f) {
return false;
}
// don't fuse when masks or sinks are present
if (softmax->src[1] || softmax->src[2]) {
return false;
}
const int n_expert = softmax->ne[0];
// n_expert must be a power of 2
if ((n_expert & (n_expert - 1)) != 0 || n_expert > 512) {
return false;
}
return true;
}

View File

@@ -0,0 +1,8 @@
#include "common.cuh"
void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
const ggml_tensor * logits,
ggml_tensor * weights,
ggml_tensor * top_k);
bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tensor * weights);

View File

@@ -7950,6 +7950,10 @@ llm_expert_gating_func_type gating_op,
ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights", il);
if (graph) {
ggml_build_forward_expand(graph, weights);
}
if (gating_op == LLM_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT) {
weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
weights = ggml_soft_max(ctx, weights); // [n_expert_used, n_tokens]
@@ -8960,7 +8964,7 @@ struct llm_build_context {
LLM_FFN_SILU, false,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SIGMOID,
cb, il);
cb, il, gf);
// Shared experts
ggml_tensor * shexp_out = llm_build_ffn(ctx0, lctx, ffn_inp_normed,
@@ -8991,7 +8995,7 @@ struct llm_build_context {
LLM_FFN_SILU, true,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb, il, gf);
cb(cur, "ffn_moe_out", il);
}
@@ -9648,7 +9652,7 @@ struct llm_build_context {
LLM_FFN_GELU, true,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb, il, gf);
cb(cur, "ffn_moe_out", il);
// Grok
@@ -9791,7 +9795,7 @@ struct llm_build_context {
LLM_FFN_SILU, true,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb, il, gf);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
@@ -10923,7 +10927,7 @@ struct llm_build_context {
LLM_FFN_SILU, false,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb, il, gf);
cb(cur, "ffn_moe_out", il);
// FFN shared expert
@@ -11188,7 +11192,7 @@ struct llm_build_context {
LLM_FFN_SILU, true,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb, il, gf);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
@@ -13451,7 +13455,7 @@ struct llm_build_context {
LLM_FFN_SILU, true,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb, il, gf);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_out);
@@ -13940,7 +13944,7 @@ struct llm_build_context {
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(enum llm_expert_gating_func_type) hparams.expert_gating_func,
cb, il);
cb, il, gf);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
@@ -14116,7 +14120,7 @@ struct llm_build_context {
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(enum llm_expert_gating_func_type) hparams.expert_gating_func,
cb, il);
cb, il, gf);
cb(routed_out, "routed_out", il);
{
@@ -15377,7 +15381,7 @@ struct llm_build_context {
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(enum llm_expert_gating_func_type) hparams.expert_gating_func,
cb, il);
cb, il, gf);
cb(moe_out, "ffn_moe_out", il);
{
@@ -15670,7 +15674,7 @@ struct llm_build_context {
LLM_FFN_SILU, true,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb, il, gf);
cb(moe_out, "ffn_moe_out", il);
// Shared expert (if present)
@@ -15835,7 +15839,7 @@ struct llm_build_context {
0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb,
il);
il, gf);
cb(cur_moe, "ffn_moe_out", il);
ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp);