mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 09:09:50 +00:00
sweep_bench: set number of repetions (#1176)
This commit is contained in:
@@ -786,6 +786,11 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
params.max_extra_alloc_MiB = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "-nrep" || arg == "--n-repetitions") {
|
||||
CHECK_ARG
|
||||
params.nrep = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--samplers") {
|
||||
CHECK_ARG
|
||||
const auto sampler_names = string_split(argv[i], ";");
|
||||
|
||||
@@ -145,38 +145,39 @@ struct gpt_params {
|
||||
|
||||
int32_t n_threads = cpu_get_num_math();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 0; // context size
|
||||
int32_t n_ctx_draft = 0; // context size for draft model
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
|
||||
int32_t n_draft_min = 1; // minimum number of tokens to draft during speculative decoding
|
||||
float p_draft_min = 0.8f; // minimum speculative decoding probability (greedy)
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
int32_t max_gpu = 0; // max number of GPUs to use at a time for split mode "graph"
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 0; // context size
|
||||
int32_t n_ctx_draft = 0; // context size for draft model
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
|
||||
int32_t n_draft_min = 1; // minimum number of tokens to draft during speculative decoding
|
||||
float p_draft_min = 0.8f; // minimum speculative decoding probability (greedy)
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
int32_t max_gpu = 0; // max number of GPUs to use at a time for split mode "graph"
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
float yarn_attn_factor = -1.0f; // YaRN magnitude scaling factor
|
||||
float yarn_beta_fast = -1.0f; // YaRN low correction dim
|
||||
float yarn_beta_fast = -1.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = -1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||||
int32_t max_extra_alloc_MiB = 256; // additional VRAM per GPU the scheduler may allocate for more efficient compute graph evaluation
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||||
int32_t max_extra_alloc_MiB = 256; // extra VRAM per GPU the scheduler may allocate for more efficient compute graph evaluation
|
||||
int32_t nrep = 1; // number of repetitions used in sweep bench
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
||||
void * cb_eval_user_data = nullptr;
|
||||
|
||||
@@ -31,6 +31,7 @@ int main(int argc, char ** argv) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
if (params.nrep < 1) params.nrep = 1;
|
||||
|
||||
// init LLM
|
||||
|
||||
@@ -135,49 +136,63 @@ int main(int argc, char ** argv) {
|
||||
common_batch_clear(batch);
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
int i_loop = 0;
|
||||
|
||||
for (unsigned int n_kv = 0; n_kv < n_kv_max; n_kv += params.n_ubatch) {
|
||||
// clean up KV cache before generation
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
|
||||
//llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
|
||||
|
||||
int nrep = i_loop < 1 ? params.nrep : 1;
|
||||
|
||||
// first measure token generation performance at this context size
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
|
||||
for (unsigned int i = 0; i < tg; ++i) {
|
||||
for (int irep = 0; irep < nrep; ++irep) {
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
|
||||
|
||||
for (unsigned int i = 0; i < tg; ++i) {
|
||||
common_batch_clear(batch);
|
||||
common_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, true);
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
const auto t_tg_end = ggml_time_us();
|
||||
|
||||
// measure prompt processing performance
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
|
||||
for (int irep = 0; irep < nrep; ++irep) {
|
||||
|
||||
// clean up KV cache after generation
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
|
||||
|
||||
// prepare batch of pp size for prompt processing performance measurement
|
||||
common_batch_clear(batch);
|
||||
common_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, true);
|
||||
|
||||
for (unsigned int i = 0; i < pp; ++i) {
|
||||
common_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_tg_end = ggml_time_us();
|
||||
|
||||
// clean up KV cache after generation
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
|
||||
|
||||
// prepare batch of pp size for prompt processing performance measurement
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (unsigned int i = 0; i < pp; ++i) {
|
||||
common_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
// measure prompt processing performance
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const auto t_pp_end = ggml_time_us();
|
||||
|
||||
// calculate and print metrics
|
||||
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
|
||||
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
|
||||
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f / nrep;
|
||||
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f / nrep;
|
||||
|
||||
const float speed_pp = pp / t_pp;
|
||||
const float speed_tg = tg / t_tg;
|
||||
@@ -192,6 +207,8 @@ int main(int argc, char ** argv) {
|
||||
} else {
|
||||
LOG_TEE("|%6d | %6d | %6d | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg);
|
||||
}
|
||||
|
||||
++i_loop;
|
||||
}
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
Reference in New Issue
Block a user