mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
A hopefully more efficient adaptive_p sampling
This commit is contained in:
@@ -1038,8 +1038,7 @@ struct llama_sampler_dry* llama_sampler_init_dry_impl(const struct llama_vocab&
|
||||
llama_token llama_sample_token_adaptive_p_impl(
|
||||
struct llama_sampling * smpl,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx)
|
||||
{
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx) {
|
||||
GGML_ASSERT(candidates->size > 0);
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
@@ -1065,15 +1064,21 @@ llama_token llama_sample_token_adaptive_p_impl(
|
||||
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
smpl->n_sample++;
|
||||
|
||||
float update_prob = candidates->data[idx].p; // not ideal
|
||||
if (ctx->orig_prob_map.contains(id)) {
|
||||
// selected token id is among tracked ids
|
||||
update_prob = ctx->orig_prob_map[id] / ctx->cum_orig_prob;
|
||||
if (auto it = ctx->orig_prob_map.find(id); it != ctx->orig_prob_map.end()) {
|
||||
float update_prob = it->second / ctx->cum_orig_prob;
|
||||
ctx->weighted_sum = ctx->decay * ctx->weighted_sum + update_prob;
|
||||
ctx->total_weight = ctx->decay * ctx->total_weight + 1.0f;
|
||||
}
|
||||
|
||||
// update history with original probability of selected token
|
||||
ctx->weighted_sum = ctx->decay * ctx->weighted_sum + update_prob;
|
||||
ctx->total_weight = ctx->decay * ctx->total_weight + 1.0f;
|
||||
//float update_prob = candidates->data[idx].p; // not ideal
|
||||
//if (ctx->orig_prob_map.contains(id)) {
|
||||
// // selected token id is among tracked ids
|
||||
// update_prob = ctx->orig_prob_map[id] / ctx->cum_orig_prob;
|
||||
//}
|
||||
|
||||
//// update history with original probability of selected token
|
||||
//ctx->weighted_sum = ctx->decay * ctx->weighted_sum + update_prob;
|
||||
//ctx->total_weight = ctx->decay * ctx->total_weight + 1.0f;
|
||||
|
||||
return id;
|
||||
}
|
||||
@@ -1130,37 +1135,71 @@ void llama_sample_adaptive_p_impl(llama_token_data_array * candidates, struct ll
|
||||
|
||||
void llama_prep_adaptive_p_impl(
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx)
|
||||
{
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx) {
|
||||
constexpr float kDelta = 16.6f;
|
||||
if (!candidates->sorted) {
|
||||
std::sort(candidates->data, candidates->data + candidates->size,
|
||||
[](const llama_token_data & a, const llama_token_data & b) {
|
||||
return a.logit > b.logit;
|
||||
});
|
||||
candidates->sorted = true;
|
||||
float max_logit = candidates->data[0].logit;
|
||||
for (int j = 1; j < int(candidates->size); ++j) {
|
||||
max_logit = std::max(max_logit, candidates->data[j].logit);
|
||||
}
|
||||
float min_logit = max_logit - kDelta;
|
||||
float cum_prob = 0.0f;
|
||||
adapt_p_ctx->orig_prob_map.clear();
|
||||
for (int j = 0; j < int(candidates->size); ++j) {
|
||||
if (candidates->data[j].logit > min_logit) {
|
||||
float prob = expf(candidates->data[j].logit - max_logit);
|
||||
cum_prob += prob;
|
||||
adapt_p_ctx->orig_prob_map[candidates->data[j].id] = prob;
|
||||
}
|
||||
}
|
||||
adapt_p_ctx->cum_orig_prob = cum_prob;
|
||||
return;
|
||||
}
|
||||
const float max_logit = candidates->data[0].logit;
|
||||
|
||||
// decide how many tokens to track based on logit delta
|
||||
// i.e. do not track unlikely tokens
|
||||
auto iter = std::lower_bound(
|
||||
candidates->data,
|
||||
candidates->data + candidates->size,
|
||||
max_logit - 16.6f, // delta
|
||||
[](const llama_token_data & data, const float delta) {
|
||||
return data.logit > delta;
|
||||
});
|
||||
const size_t n_track = std::distance(candidates->data, iter);
|
||||
|
||||
// store orig_prob_map and cum_orig_prob to estimate original probability later
|
||||
float max_logit = candidates->data[0].logit;
|
||||
float min_logit = max_logit - kDelta;
|
||||
float cum_prob = 0.0f;
|
||||
adapt_p_ctx->orig_prob_map.clear();
|
||||
for (size_t i = 0; i < n_track; ++i) {
|
||||
const float prob = expf(candidates->data[i].logit - max_logit);
|
||||
for (int j = 0; j < int(candidates->size); ++j) {
|
||||
auto logit = candidates->data[j].logit;
|
||||
if (logit <= min_logit) {
|
||||
break;
|
||||
}
|
||||
float prob = expf(logit - max_logit);
|
||||
cum_prob += prob;
|
||||
adapt_p_ctx->orig_prob_map[candidates->data[i].id] = prob;
|
||||
adapt_p_ctx->orig_prob_map[candidates->data[j].id] = prob;
|
||||
}
|
||||
adapt_p_ctx->cum_orig_prob = cum_prob;
|
||||
|
||||
//if (!candidates->sorted) {
|
||||
// std::sort(candidates->data, candidates->data + candidates->size,
|
||||
// [](const llama_token_data & a, const llama_token_data & b) {
|
||||
// return a.logit > b.logit;
|
||||
// });
|
||||
// candidates->sorted = true;
|
||||
//}
|
||||
//const float max_logit = candidates->data[0].logit;
|
||||
|
||||
//// decide how many tokens to track based on logit delta
|
||||
//// i.e. do not track unlikely tokens
|
||||
//auto iter = std::lower_bound(
|
||||
// candidates->data,
|
||||
// candidates->data + candidates->size,
|
||||
// max_logit - kDelta, // delta
|
||||
// [](const llama_token_data & data, const float delta) {
|
||||
// return data.logit > delta;
|
||||
// });
|
||||
//const size_t n_track = std::distance(candidates->data, iter);
|
||||
|
||||
//// store orig_prob_map and cum_orig_prob to estimate original probability later
|
||||
//float cum_prob = 0.0f;
|
||||
//adapt_p_ctx->orig_prob_map.clear();
|
||||
//for (size_t i = 0; i < n_track; ++i) {
|
||||
// const float prob = expf(candidates->data[i].logit - max_logit);
|
||||
// cum_prob += prob;
|
||||
// adapt_p_ctx->orig_prob_map[candidates->data[i].id] = prob;
|
||||
//}
|
||||
//adapt_p_ctx->cum_orig_prob = cum_prob;
|
||||
}
|
||||
|
||||
struct llama_sampler_adaptive_p * llama_init_adaptive_p_impl(
|
||||
|
||||
Reference in New Issue
Block a user