Adaptive p: bugfix + optimization + refactor (#1155)

* adaptive-p sampler: fix zeroed orig_probs bug and refactor

- Fix bug where original probabilities were captured as zero by calculating
  them from logits in llama_prep_adaptive_p (new).
- Replace vector with unordered_map to track candidate probabilities,
  filtering for relevance via logit delta (16.6f).
- Standardize API naming: llama_<action/verb>_<focus/name/topic>_<extra/info>
- Update function signatures to follow most other samplers.

* resolve merge bug

* adaptive-p: revert reordering function definitions
This commit is contained in:
dungquixote42
2026-01-18 01:26:06 -05:00
committed by GitHub
parent d71a3ec315
commit 6dfbef27ec
5 changed files with 121 additions and 58 deletions

View File

@@ -118,7 +118,7 @@ struct llama_sampling_context * common_sampler_init(const struct llama_vocab* vo
}
case llama_sampler_type::ADAPTIVE_P:
{
result->adapt_p_ctx=llama_sampler_init_adaptive_p(params.adaptive_target, params.adaptive_decay, result->rng());
result->adapt_p_ctx = llama_init_adaptive_p(params.adaptive_target, params.adaptive_decay, result->rng());
break;
}
default:
@@ -423,7 +423,7 @@ static void sampler_queue(
}
if (use_adaptive_p) {
// adaptive p should be put to the last, so we ignore the order in the sampler
llama_sample_adaptive_p(ctx_main, ctx_sampling->adapt_p_ctx, &cur_p);
llama_sample_adaptive_p(ctx_main, &cur_p, ctx_sampling->adapt_p_ctx);
}
}
@@ -471,15 +471,9 @@ static llama_token llama_sampling_sample_impl(
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else if (adaptive_target >= 0.0f && ctx_sampling->adapt_p_ctx!=nullptr) {
// adaptive p sampling
static thread_local std::vector<float> orig_probs;
orig_probs.resize(cur_p.size);
// store original probabilities
for (size_t ii = 0; ii < cur_p.size; ++ii) {
orig_probs[ii] = cur_p.data[ii].p;
}
llama_prep_adaptive_p(&cur_p, ctx_sampling->adapt_p_ctx);
sampler_queue(ctx_main, params, ctx_sampling, cur_p, std::max(1, params.min_keep));
id = llama_sample_token_adaptive_p(ctx_main, &cur_p, ctx_sampling->adapt_p_ctx, orig_probs.data());
id = llama_sample_token_adaptive_p(ctx_main, &cur_p, ctx_sampling->adapt_p_ctx);
} else {
// temperature sampling
size_t min_keep = std::max(1, params.min_keep);

View File

@@ -1384,16 +1384,20 @@ LLAMA_API struct llama_grammar* llama_sampler_init_grammar_lazy_patterns(
/// @details Adaptive p sampler initializer
/// @param target Select tokens near this probability (valid range 0.0 to 1.0; <0 = disabled)
/// @param decay Decay rate for target adaptation over time. lower values -> faster but less stable adaptation. (valid range 0.0 to 1.0; ≤0 = no adaptation)
LLAMA_API struct llama_sampler_adaptive_p * llama_sampler_init_adaptive_p(
LLAMA_API struct llama_sampler_adaptive_p * llama_init_adaptive_p(
const float target,
const float decay,
const uint32_t seed);
void llama_prep_adaptive_p(
llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx);
/// @details Adaptive p sampler described in https://github.com/MrJackSpade/adaptive-p-docs/blob/main/README.md
void llama_sample_adaptive_p(
struct llama_context * ctx,
struct llama_sampler_adaptive_p * adapt_p_ctx,
llama_token_data_array * candidates);
struct llama_context * ctx,
llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
@@ -1437,8 +1441,7 @@ LLAMA_API struct llama_grammar* llama_sampler_init_grammar_lazy_patterns(
llama_token llama_sample_token_adaptive_p(
struct llama_context * ctx,
llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx,
float * orig_probs);
struct llama_sampler_adaptive_p * adapt_p_ctx);
//
// Model split

View File

@@ -1038,41 +1038,47 @@ struct llama_sampler_dry* llama_sampler_init_dry_impl(const struct llama_vocab&
llama_token llama_sample_token_adaptive_p_impl(
struct llama_sampling * smpl,
llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx,
float * orig_probs)
struct llama_sampler_adaptive_p * adapt_p_ctx)
{
GGML_ASSERT(candidates->size > 0);
const int64_t t_start_sample_us = ggml_time_us();
const size_t count = candidates->size;
adapt_p_ctx->probs.resize(count);
struct llama_sampler_adaptive_p * ctx = adapt_p_ctx;
ctx->cum_probs.resize(candidates->size);
// cumulative distribution
const float max_logit = adapt_p_ctx->max_logit;
// compute cumulative probability distribution
const float max_logit = ctx->max_xform_logit;
float cum_prob = 0.0f;
for (size_t i = 0; i < count; ++i) {
for (size_t i = 0; i < candidates->size; ++i) {
cum_prob += expf(candidates->data[i].logit - max_logit);
adapt_p_ctx->probs[i] = cum_prob;
ctx->cum_probs[i] = cum_prob;
}
adapt_p_ctx->probs.back() += 1.0f; // safety margin in case rng() ~= rng.max()
ctx->cum_probs.back() += 1.0f; // safety margin in case rng() ~= rng.max()
// find token with cum_prob > target_cum_prob
const float target_cum_prob = cum_prob * (float)adapt_p_ctx->rng() / (float)adapt_p_ctx->rng.max();
auto iter = std::upper_bound(adapt_p_ctx->probs.begin(), adapt_p_ctx->probs.end(), target_cum_prob);
GGML_ASSERT(iter != adapt_p_ctx->probs.end());
llama_token id = candidates->data[std::distance(adapt_p_ctx->probs.begin(), iter)].id;
// select first token whose cum_prob > target_cum_prob
const float target_cum_prob = cum_prob * (float)ctx->rng() / (float)ctx->rng.max();
auto iter = std::upper_bound(ctx->cum_probs.begin(), ctx->cum_probs.end(), target_cum_prob);
GGML_ASSERT(iter != ctx->cum_probs.end());
const size_t idx = std::distance(ctx->cum_probs.begin(), iter);
llama_token id = candidates->data[idx].id;
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
smpl->n_sample++;
float update_prob = candidates->data[idx].p; // not ideal
if (ctx->orig_prob_map.contains(id)) {
// selected token id is among tracked ids
update_prob = ctx->orig_prob_map[id] / ctx->cum_orig_prob;
}
// update history with original probability of selected token
adapt_p_ctx->weighted_sum = adapt_p_ctx->decay * adapt_p_ctx->weighted_sum + orig_probs[id];
adapt_p_ctx->total_weight = adapt_p_ctx->decay * adapt_p_ctx->total_weight + 1.0f;
ctx->weighted_sum = ctx->decay * ctx->weighted_sum + update_prob;
ctx->total_weight = ctx->decay * ctx->total_weight + 1.0f;
return id;
}
void llama_sampler_adaptive_p_apply(struct llama_sampler_adaptive_p * adapt_p_ctx, llama_token_data_array * candidates)
void llama_sample_adaptive_p_impl(llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx)
{
if (adapt_p_ctx->target < 0.0f) {
// sampler is disabled
@@ -1082,14 +1088,16 @@ void llama_sampler_adaptive_p_apply(struct llama_sampler_adaptive_p * adapt_p_ct
// incomplete softmax because final division can be fused
float max_l = candidates->data[0].logit;
for (size_t i = 1; i < candidates->size; ++i) {
max_l = std::max(max_l, candidates->data[i].logit);
if (!candidates->sorted) {
for (size_t i = 1; i < candidates->size; ++i) {
max_l = std::max(max_l, candidates->data[i].logit);
}
}
float cum_sum = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
const float p = expf(candidates->data[i].logit - max_l);
candidates->data[i].p = p;
cum_sum += p;
const float prob = expf(candidates->data[i].logit - max_l);
candidates->data[i].p = prob;
cum_sum += prob;
}
// compute adapted target probability
@@ -1117,10 +1125,45 @@ void llama_sampler_adaptive_p_apply(struct llama_sampler_adaptive_p * adapt_p_ct
max_logit = std::max(max_logit, logit);
}
candidates->sorted = false;
adapt_p_ctx->max_logit = max_logit;
adapt_p_ctx->max_xform_logit = max_logit;
}
struct llama_sampler_adaptive_p * llama_sampler_init_adaptive_p_impl(
void llama_prep_adaptive_p_impl(
llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx)
{
if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size,
[](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
candidates->sorted = true;
}
const float max_logit = candidates->data[0].logit;
// decide how many tokens to track based on logit delta
// i.e. do not track unlikely tokens
auto iter = std::lower_bound(
candidates->data,
candidates->data + candidates->size,
max_logit - 16.6f, // delta
[](const llama_token_data & data, const float delta) {
return data.logit > delta;
});
const size_t n_track = std::distance(candidates->data, iter);
// store orig_prob_map and cum_orig_prob to estimate original probability later
float cum_prob = 0.0f;
adapt_p_ctx->orig_prob_map.clear();
for (size_t i = 0; i < n_track; ++i) {
const float prob = expf(candidates->data[i].logit - max_logit);
cum_prob += prob;
adapt_p_ctx->orig_prob_map[candidates->data[i].id] = prob;
}
adapt_p_ctx->cum_orig_prob = cum_prob;
}
struct llama_sampler_adaptive_p * llama_init_adaptive_p_impl(
const float target,
const float decay,
const uint32_t seed)
@@ -1132,12 +1175,13 @@ struct llama_sampler_adaptive_p * llama_sampler_init_adaptive_p_impl(
/* .rng = */ std::mt19937(seed),
/* .weighted_sum = */ target / (1.0f - clamped_decay),
/* .total_weight = */ 1.0f / (1.0f - clamped_decay),
/* .max_logit = */ 0.0f,
/* .probs = */ {},
/* .orig_logit_map = */ {},
/* .cum_orig_prob = */ 0.0f,
/* .max_xform_logit = */ -INFINITY,
/* .cum_probs = */ {},
};
}
// grammar
struct llama_sampler_grammar {

View File

@@ -61,6 +61,7 @@ struct llama_sampler_dry * llama_sampler_init_dry_impl(
void llama_sampler_dry_apply(struct llama_sampler_dry* smpl, llama_token_data_array* cur_p);
// maintains an exponential moving average of the *ORIGINAL* probabilities of selected tokens
// used to compute an adapted target at each sampling step.
// see llama.h for a full description of the sampler
@@ -70,15 +71,30 @@ struct llama_sampler_adaptive_p {
std::mt19937 rng; // RNG
float weighted_sum; // sum(p_n * decay^N)
float total_weight; // sum(decay^i), converges to 1/(1-decay)
float max_logit; // maximum logit found during transform
std::vector<float> probs; // cumulative probabilities
// first referenced in prep
std::unordered_map<llama_token, float> orig_prob_map; // probabilities before sampler_queue
float cum_orig_prob; // for normalizing orig_prob in sample_token
// first referenced in sample
float max_xform_logit; // maximum logit found during transform
// first referenced in sample_token
std::vector<float> cum_probs; // cumulative probability distribution
};
void llama_sampler_adaptive_p_apply(
struct llama_sampler_adaptive_p * adapt_p_ctx,
llama_token_data_array * candidates);
struct llama_sampler_adaptive_p * llama_init_adaptive_p_impl(
const float target,
const float decay,
const uint32_t seed);
struct llama_sampler_adaptive_p * llama_sampler_init_adaptive_p_impl(const float target, const float decay, const uint32_t seed);
void llama_prep_adaptive_p_impl(
llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx);
void llama_sample_adaptive_p_impl(
llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx);
void llama_sample_repetition_penalties_impl(
@@ -101,6 +117,6 @@ llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, ll
llama_token llama_sample_token_greedy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
llama_token llama_sample_token_with_rng_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng);
llama_token llama_sample_token_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
llama_token llama_sample_token_adaptive_p_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx, float * orig_probs);
llama_token llama_sample_token_adaptive_p_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx);

View File

@@ -7689,11 +7689,18 @@ void llama_sample_dry([[maybe_unused]] struct llama_context* ctx, struct llama_s
void llama_sample_adaptive_p(
[[maybe_unused]] struct llama_context * ctx,
struct llama_sampler_adaptive_p * adapt_p_ctx,
llama_token_data_array * candidates) {
llama_sampler_adaptive_p_apply(adapt_p_ctx, candidates);
llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx)
{
llama_sample_adaptive_p_impl(candidates, adapt_p_ctx);
}
void llama_prep_adaptive_p(llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx)
{
llama_prep_adaptive_p_impl(candidates, adapt_p_ctx);
}
void llama_sample_repetition_penalties(
struct llama_context * ctx,
llama_token_data_array * candidates,
@@ -7736,10 +7743,9 @@ llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_arra
llama_token llama_sample_token_adaptive_p(
struct llama_context * ctx,
llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx,
float * orig_probs)
struct llama_sampler_adaptive_p * adapt_p_ctx)
{
return llama_sample_token_adaptive_p_impl(&ctx->sampling, candidates, adapt_p_ctx, orig_probs);
return llama_sample_token_adaptive_p_impl(&ctx->sampling, candidates, adapt_p_ctx);
}
int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
@@ -7794,9 +7800,9 @@ void llama_sampler_dry_accept(struct llama_sampler_dry* smpl, llama_token token)
}
struct llama_sampler_adaptive_p * llama_sampler_init_adaptive_p(const float target, const float decay, const uint32_t seed)
struct llama_sampler_adaptive_p * llama_init_adaptive_p(const float target, const float decay, const uint32_t seed)
{
return llama_sampler_init_adaptive_p_impl(target, decay, seed);
return llama_init_adaptive_p_impl(target, decay, seed);
}