Adaptive p: bugfix + optimization + refactor (#1155)

* adaptive-p sampler: fix zeroed orig_probs bug and refactor

- Fix bug where original probabilities were captured as zero by calculating
  them from logits in llama_prep_adaptive_p (new).
- Replace vector with unordered_map to track candidate probabilities,
  filtering for relevance via logit delta (16.6f).
- Standardize API naming: llama_<action/verb>_<focus/name/topic>_<extra/info>
- Update function signatures to follow most other samplers.

* resolve merge bug

* adaptive-p: revert reordering function definitions
This commit is contained in:
dungquixote42
2026-01-18 01:26:06 -05:00
committed by GitHub
parent d71a3ec315
commit 6dfbef27ec
5 changed files with 121 additions and 58 deletions

View File

@@ -1038,41 +1038,47 @@ struct llama_sampler_dry* llama_sampler_init_dry_impl(const struct llama_vocab&
llama_token llama_sample_token_adaptive_p_impl(
struct llama_sampling * smpl,
llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx,
float * orig_probs)
struct llama_sampler_adaptive_p * adapt_p_ctx)
{
GGML_ASSERT(candidates->size > 0);
const int64_t t_start_sample_us = ggml_time_us();
const size_t count = candidates->size;
adapt_p_ctx->probs.resize(count);
struct llama_sampler_adaptive_p * ctx = adapt_p_ctx;
ctx->cum_probs.resize(candidates->size);
// cumulative distribution
const float max_logit = adapt_p_ctx->max_logit;
// compute cumulative probability distribution
const float max_logit = ctx->max_xform_logit;
float cum_prob = 0.0f;
for (size_t i = 0; i < count; ++i) {
for (size_t i = 0; i < candidates->size; ++i) {
cum_prob += expf(candidates->data[i].logit - max_logit);
adapt_p_ctx->probs[i] = cum_prob;
ctx->cum_probs[i] = cum_prob;
}
adapt_p_ctx->probs.back() += 1.0f; // safety margin in case rng() ~= rng.max()
ctx->cum_probs.back() += 1.0f; // safety margin in case rng() ~= rng.max()
// find token with cum_prob > target_cum_prob
const float target_cum_prob = cum_prob * (float)adapt_p_ctx->rng() / (float)adapt_p_ctx->rng.max();
auto iter = std::upper_bound(adapt_p_ctx->probs.begin(), adapt_p_ctx->probs.end(), target_cum_prob);
GGML_ASSERT(iter != adapt_p_ctx->probs.end());
llama_token id = candidates->data[std::distance(adapt_p_ctx->probs.begin(), iter)].id;
// select first token whose cum_prob > target_cum_prob
const float target_cum_prob = cum_prob * (float)ctx->rng() / (float)ctx->rng.max();
auto iter = std::upper_bound(ctx->cum_probs.begin(), ctx->cum_probs.end(), target_cum_prob);
GGML_ASSERT(iter != ctx->cum_probs.end());
const size_t idx = std::distance(ctx->cum_probs.begin(), iter);
llama_token id = candidates->data[idx].id;
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
smpl->n_sample++;
float update_prob = candidates->data[idx].p; // not ideal
if (ctx->orig_prob_map.contains(id)) {
// selected token id is among tracked ids
update_prob = ctx->orig_prob_map[id] / ctx->cum_orig_prob;
}
// update history with original probability of selected token
adapt_p_ctx->weighted_sum = adapt_p_ctx->decay * adapt_p_ctx->weighted_sum + orig_probs[id];
adapt_p_ctx->total_weight = adapt_p_ctx->decay * adapt_p_ctx->total_weight + 1.0f;
ctx->weighted_sum = ctx->decay * ctx->weighted_sum + update_prob;
ctx->total_weight = ctx->decay * ctx->total_weight + 1.0f;
return id;
}
void llama_sampler_adaptive_p_apply(struct llama_sampler_adaptive_p * adapt_p_ctx, llama_token_data_array * candidates)
void llama_sample_adaptive_p_impl(llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx)
{
if (adapt_p_ctx->target < 0.0f) {
// sampler is disabled
@@ -1082,14 +1088,16 @@ void llama_sampler_adaptive_p_apply(struct llama_sampler_adaptive_p * adapt_p_ct
// incomplete softmax because final division can be fused
float max_l = candidates->data[0].logit;
for (size_t i = 1; i < candidates->size; ++i) {
max_l = std::max(max_l, candidates->data[i].logit);
if (!candidates->sorted) {
for (size_t i = 1; i < candidates->size; ++i) {
max_l = std::max(max_l, candidates->data[i].logit);
}
}
float cum_sum = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
const float p = expf(candidates->data[i].logit - max_l);
candidates->data[i].p = p;
cum_sum += p;
const float prob = expf(candidates->data[i].logit - max_l);
candidates->data[i].p = prob;
cum_sum += prob;
}
// compute adapted target probability
@@ -1117,10 +1125,45 @@ void llama_sampler_adaptive_p_apply(struct llama_sampler_adaptive_p * adapt_p_ct
max_logit = std::max(max_logit, logit);
}
candidates->sorted = false;
adapt_p_ctx->max_logit = max_logit;
adapt_p_ctx->max_xform_logit = max_logit;
}
struct llama_sampler_adaptive_p * llama_sampler_init_adaptive_p_impl(
void llama_prep_adaptive_p_impl(
llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx)
{
if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size,
[](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
candidates->sorted = true;
}
const float max_logit = candidates->data[0].logit;
// decide how many tokens to track based on logit delta
// i.e. do not track unlikely tokens
auto iter = std::lower_bound(
candidates->data,
candidates->data + candidates->size,
max_logit - 16.6f, // delta
[](const llama_token_data & data, const float delta) {
return data.logit > delta;
});
const size_t n_track = std::distance(candidates->data, iter);
// store orig_prob_map and cum_orig_prob to estimate original probability later
float cum_prob = 0.0f;
adapt_p_ctx->orig_prob_map.clear();
for (size_t i = 0; i < n_track; ++i) {
const float prob = expf(candidates->data[i].logit - max_logit);
cum_prob += prob;
adapt_p_ctx->orig_prob_map[candidates->data[i].id] = prob;
}
adapt_p_ctx->cum_orig_prob = cum_prob;
}
struct llama_sampler_adaptive_p * llama_init_adaptive_p_impl(
const float target,
const float decay,
const uint32_t seed)
@@ -1132,12 +1175,13 @@ struct llama_sampler_adaptive_p * llama_sampler_init_adaptive_p_impl(
/* .rng = */ std::mt19937(seed),
/* .weighted_sum = */ target / (1.0f - clamped_decay),
/* .total_weight = */ 1.0f / (1.0f - clamped_decay),
/* .max_logit = */ 0.0f,
/* .probs = */ {},
/* .orig_logit_map = */ {},
/* .cum_orig_prob = */ 0.0f,
/* .max_xform_logit = */ -INFINITY,
/* .cum_probs = */ {},
};
}
// grammar
struct llama_sampler_grammar {