mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-02-22 14:14:32 +00:00
CUDA implementation for IQ1_S_R4 (#492)
* iq1_s_r4: CUDA dequantize * iq1_s_r4: CUDA GEMV * iq1_s_r4: MMQ on CUDA Requires Turing or better (will fall back to dequantize+cuBLAS on older cards). --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
@@ -3476,6 +3476,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
case GGML_TYPE_IQ4_KS_R4:
|
||||
case GGML_TYPE_IQ5_K_R4:
|
||||
case GGML_TYPE_IQ5_KS_R4:
|
||||
case GGML_TYPE_IQ1_S_R4:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
|
||||
@@ -515,6 +515,13 @@ struct ggml_cuda_type_traits<GGML_TYPE_IQ1_S> {
|
||||
static constexpr int qi = QI1_S;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_S_R4> {
|
||||
static constexpr int qk = 32;
|
||||
static constexpr int qr = 2;
|
||||
static constexpr int qi = 4;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_M> {
|
||||
static constexpr int qk = QK_K;
|
||||
|
||||
@@ -526,6 +526,41 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
|
||||
}
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq1_s_r4(const void * __restrict__ vx, dst_t * __restrict__ yy, int64_t n_per_row, int64_t row_size) {
|
||||
|
||||
int64_t ii = blockIdx.x;
|
||||
|
||||
int64_t nblock = n_per_row/32;
|
||||
int64_t row = (8*ii)/nblock;
|
||||
int64_t row4 = row/4;
|
||||
int64_t ir = row%4;
|
||||
int64_t ibl = (8*ii)%nblock;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
|
||||
const half * dptr = (const half *)((const char *)vx + 4*row4*row_size);
|
||||
const float d = (float)dptr[ir];
|
||||
const block_iq1_s_r4 * x = (const block_iq1_s_r4 *)(dptr + 4) + ibl;
|
||||
dst_t * y = yy + 256*ii + 32*ib + 8*il;
|
||||
|
||||
float dl = d*(2*((x[ib].qh[ir] >> 12) & 7) + 1);
|
||||
float delta = dl * (x[ib].qh[ir] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA);
|
||||
|
||||
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
||||
grid32[0] = iq1s_grid_gpu[x[ib].qs[4*il+ir] | (((x[ib].qh[ir] >> 3*il) & 7) << 8)];
|
||||
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||
grid32[0] &= 0x0f0f0f0f;
|
||||
|
||||
if constexpr (std::is_same_v<dst_t, nv_bfloat16>) {
|
||||
for (int j = 0; j < 8; ++j) y[j] = __float2bfloat16(dl*q[j] + delta);
|
||||
} else {
|
||||
for (int j = 0; j < 8; ++j) y[j] = dl*q[j] + delta;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
@@ -1398,6 +1433,14 @@ static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int64_t
|
||||
dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq1_s_r4_cuda(const void * vx, dst_t * y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) {
|
||||
const int64_t k = nrows * n_per_row;
|
||||
const int64_t row_size = ggml_row_size(GGML_TYPE_IQ1_S_R4, n_per_row);
|
||||
const int nb = (k + QK_K - 1) / QK_K;
|
||||
dequantize_block_iq1_s_r4<<<nb, 32, 0, stream>>>(vx, y, n_per_row, row_size);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) {
|
||||
const int64_t k = nrows * n_per_row;
|
||||
@@ -1651,6 +1694,8 @@ to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type) {
|
||||
return dequantize_row_iq5_k_r4_cuda<nv_bfloat16>;
|
||||
case GGML_TYPE_IQ5_KS_R4:
|
||||
return dequantize_row_iq5_ks_r4_cuda<nv_bfloat16>;
|
||||
case GGML_TYPE_IQ1_S_R4:
|
||||
return dequantize_row_iq1_s_r4_cuda<nv_bfloat16>;
|
||||
default:
|
||||
return nullptr;
|
||||
}
|
||||
@@ -1699,6 +1744,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_cuda;
|
||||
case GGML_TYPE_IQ1_S_R4:
|
||||
return dequantize_row_iq1_s_r4_cuda;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
return dequantize_row_iq1_m_cuda;
|
||||
case GGML_TYPE_IQ1_BN:
|
||||
@@ -1790,6 +1837,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return dequantize_row_iq1_s_cuda;
|
||||
case GGML_TYPE_IQ1_S_R4:
|
||||
return dequantize_row_iq1_s_r4_cuda;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
return dequantize_row_iq1_m_cuda;
|
||||
case GGML_TYPE_IQ1_BN:
|
||||
|
||||
@@ -353,6 +353,38 @@ __device__ __forceinline__ void vec_dot_iq4_ks_r4_q8_1(
|
||||
}
|
||||
}
|
||||
|
||||
// TODO
|
||||
__device__ __forceinline__ void vec_dot_iq1_s_r4_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs, float * result) {
|
||||
|
||||
const half * dptr = (const half *)vbq;
|
||||
const block_iq1_s_r4 * bq1 = (const block_iq1_s_r4 *)(dptr + 4) + kbx;
|
||||
|
||||
// iqs is 0 or 2
|
||||
const float d8 = __low2float(bq8_1->ds);
|
||||
const int32_t * q8 = (const int *)bq8_1->qs;
|
||||
|
||||
int32_t grid32[2];
|
||||
const int * igrid = (const int *)grid32;
|
||||
|
||||
int minus = 0;
|
||||
for (int k = 0; k < 4; ++k) minus = ggml_cuda_dp4a(0x01010101, q8[4*(iqs/2)+k], minus);
|
||||
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
float dl = (float)dptr[i]*(2*((bq1->qh[i] >> 12) & 7) + 1) * d8;
|
||||
float ml = dl * (bq1->qh[i] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA);
|
||||
grid32[0] = iq1s_grid_gpu[bq1->qs[4*iqs+i] | (((bq1->qh[i] >> 3*iqs) & 7) << 8)];
|
||||
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||
grid32[0] &= 0x0f0f0f0f;
|
||||
int sumi = ggml_cuda_dp4a(igrid[0], q8[4*(iqs/2)+0], ggml_cuda_dp4a(igrid[1], q8[4*(iqs/2)+1], 0));
|
||||
grid32[0] = iq1s_grid_gpu[bq1->qs[4*iqs+i+4] | (((bq1->qh[i] >> (3*iqs+3)) & 7) << 8)];
|
||||
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
||||
grid32[0] &= 0x0f0f0f0f;
|
||||
sumi = ggml_cuda_dp4a(igrid[0], q8[4*(iqs/2)+2], ggml_cuda_dp4a(igrid[1], q8[4*(iqs/2)+3], sumi));
|
||||
result[i] += dl * sumi + ml * minus;
|
||||
}
|
||||
}
|
||||
|
||||
#define VDR_IQ4_KS_Q8_1_MMVQ 4
|
||||
#define VDR_IQ4_KS_Q8_1_MMQ 4
|
||||
|
||||
@@ -1106,6 +1138,14 @@ void mul_mat_vec_iq4_ks_r4_q8_1_cuda(
|
||||
iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ4_KS_R4, 2, vec_dot_iq4_ks_r4_q8_1, 4>(vx, vy, dst, ids_data, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, ne2, nb02, nb12, nb2, ids_nb0, stream);
|
||||
}
|
||||
|
||||
void mul_mat_vec_iq1_s_r4_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const char * ids_data,
|
||||
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst,
|
||||
const int ne2, const uint64_t nb02, const uint64_t nb12, const uint64_t nb2, int64_t ids_nb0, cudaStream_t stream) {
|
||||
|
||||
iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ1_S_R4, 2, vec_dot_iq1_s_r4_q8_1, 4>(vx, vy, dst, ids_data, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, ne2, nb02, nb12, nb2, ids_nb0, stream);
|
||||
}
|
||||
|
||||
void mul_mat_vec_iq5_k_r4_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const char * ids_data,
|
||||
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst,
|
||||
|
||||
@@ -90,3 +90,8 @@ void mul_mat_vec_iq5_ks_r4_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const char * ids_data,
|
||||
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst,
|
||||
const int ne2, const uint64_t nb02, const uint64_t nb12, const uint64_t nb2, const int64_t ids_nb0, cudaStream_t stream);
|
||||
|
||||
void mul_mat_vec_iq1_s_r4_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const char * ids_data,
|
||||
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst,
|
||||
const int ne2, const uint64_t nb02, const uint64_t nb12, const uint64_t nb2, const int64_t ids_nb0, cudaStream_t stream);
|
||||
|
||||
@@ -85,6 +85,9 @@ void ggml_cuda_op_mul_mat_q(
|
||||
case GGML_TYPE_IQ1_S:
|
||||
mul_mat_q_case<GGML_TYPE_IQ1_S>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S_R4:
|
||||
mul_mat_q_case<GGML_TYPE_IQ1_S_R4>(ctx, args, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
mul_mat_q_case<GGML_TYPE_IQ4_XS>(ctx, args, stream);
|
||||
break;
|
||||
@@ -150,6 +153,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_S_R4:
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_IQ4_KS:
|
||||
@@ -174,6 +178,9 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
if (int8_mma_available(cc)) {
|
||||
return true;
|
||||
}
|
||||
if (type == GGML_TYPE_IQ1_S_R4) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (cc < MIN_CC_DP4A) {
|
||||
return false;
|
||||
|
||||
@@ -79,6 +79,7 @@ static mmq_q8_1_ds_layout mmq_get_q8_1_ds_layout(const ggml_type type_x) {
|
||||
case GGML_TYPE_IQ3_S:
|
||||
return MMQ_Q8_1_DS_LAYOUT_D4;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_S_R4:
|
||||
return MMQ_Q8_1_DS_LAYOUT_DS4;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
@@ -186,6 +187,7 @@ static constexpr __host__ __device__ tile_x_sizes mmq_get_dp4a_tile_x_sizes(ggml
|
||||
case GGML_TYPE_IQ3_XXS : return MMQ_DP4A_TXS_Q8_0;
|
||||
case GGML_TYPE_IQ3_S : return MMQ_DP4A_TXS_Q8_0;
|
||||
case GGML_TYPE_IQ1_S : return MMQ_DP4A_TXS_Q8_0;
|
||||
case GGML_TYPE_IQ1_S_R4: return MMQ_DP4A_TXS_Q8_0;
|
||||
case GGML_TYPE_IQ4_XS : return MMQ_DP4A_TXS_Q8_0;
|
||||
case GGML_TYPE_IQ4_NL : return MMQ_DP4A_TXS_Q8_0;
|
||||
case GGML_TYPE_IQ4_KS : return MMQ_DP4A_TXS_Q8_0;
|
||||
@@ -231,6 +233,7 @@ static constexpr __host__ __device__ int mmq_get_mma_tile_x_k(ggml_type type) {
|
||||
case GGML_TYPE_IQ3_XXS : return MMQ_MMA_TILE_X_K_Q8_0;
|
||||
case GGML_TYPE_IQ3_S : return MMQ_MMA_TILE_X_K_Q8_0;
|
||||
case GGML_TYPE_IQ1_S : return MMQ_MMA_TILE_X_K_Q8_0;
|
||||
case GGML_TYPE_IQ1_S_R4: return MMQ_MMA_TILE_X_K_Q8_0;
|
||||
case GGML_TYPE_IQ4_XS : return MMQ_MMA_TILE_X_K_Q8_0;
|
||||
case GGML_TYPE_IQ4_NL : return MMQ_MMA_TILE_X_K_Q8_0;
|
||||
case GGML_TYPE_IQ4_KS : return MMQ_MMA_TILE_X_K_Q8_0;
|
||||
@@ -318,6 +321,74 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
}
|
||||
}
|
||||
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq1_s_r4(
|
||||
const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
|
||||
|
||||
#ifdef INT8_MMA_AVAILABLE
|
||||
int * x_qs = (int *) x_tile;
|
||||
float * x_df = (float *) (x_qs + 2*WARP_SIZE);
|
||||
#else
|
||||
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y);
|
||||
int * x_qs = (int *) x_tile;
|
||||
float * x_df = (float *) (x_qs + txs.qs);
|
||||
#endif // INT8_MMA_AVAILABLE
|
||||
|
||||
const int kbx = threadIdx.x / 4;
|
||||
const int kqsx = threadIdx.x % 4;
|
||||
|
||||
int32_t grid32[2];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
int i = i0 + threadIdx.y;
|
||||
|
||||
if (need_check) {
|
||||
i = min(i, i_max);
|
||||
}
|
||||
const int i4 = i/4;
|
||||
const int ir = i%4;
|
||||
|
||||
const block_iq1_s_r4 * bxi = (const block_iq1_s_r4 *)(x + 4*i4*stride + 4*sizeof(half)) + kbx0 + kbx;
|
||||
|
||||
grid32[0] = iq1s_grid_gpu[bxi->qs[4*kqsx+ir] | (((bxi->qh[ir] >> 3*kqsx) & 7) << 8)];
|
||||
grid32[1] = ((grid32[0] >> 4) & 0x0f0f0f0f) << 3;
|
||||
grid32[0] = (grid32[0] & 0x0f0f0f0f) << 3;
|
||||
const int shift = bxi->qh[ir] & 0x8000 ? 0x09090909 : 0x07070707;
|
||||
|
||||
#ifdef INT8_MMA_AVAILABLE
|
||||
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kbx + 2*kqsx + 0] = __vsubss4(grid32[0], shift);
|
||||
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kbx + 2*kqsx + 1] = __vsubss4(grid32[1], shift);
|
||||
#else
|
||||
// TODO
|
||||
//x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0;
|
||||
#endif // INT8_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
const int blocks_per_tile_x_row = WARP_SIZE / 4;
|
||||
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
|
||||
int i = i0 + threadIdx.y * 4 + threadIdx.x / blocks_per_tile_x_row;
|
||||
|
||||
if (need_check) {
|
||||
i = min(i, i_max);
|
||||
}
|
||||
const int i4 = i/4;
|
||||
const int ir = i%4;
|
||||
|
||||
const half * dptr = (const half *)(x + 4*i4*stride);
|
||||
const block_iq1_s_r4 * bxi = (const block_iq1_s_r4 *)(dptr + 4) + kbx0 + kbxd;
|
||||
|
||||
#ifdef INT8_MMA_AVAILABLE
|
||||
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = 0.125f * __half2float(dptr[ir]) * (((bxi->qh[ir] >> 11) & 14) + 1);
|
||||
#else
|
||||
// TODO
|
||||
//x_df[i*(WARP_SIZE/QI4_0) + i/QI4_0 + kbxd] = bxi->d;
|
||||
#endif // INT8_MMA_AVAILABLE
|
||||
}
|
||||
}
|
||||
|
||||
template <int mmq_x, int mmq_y, int nwarps>
|
||||
static __device__ __forceinline__ void vec_dot_q4_0_q8_1_dp4a(
|
||||
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
|
||||
@@ -3132,6 +3203,14 @@ struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ1_S> {
|
||||
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_1_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
|
||||
};
|
||||
|
||||
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
||||
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ1_S_R4> {
|
||||
static constexpr int vdr = VDR_Q4_0_Q8_1_MMQ;
|
||||
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq1_s_r4<mmq_y, nwarps, need_check>;
|
||||
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_DS4>;
|
||||
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
|
||||
};
|
||||
|
||||
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
||||
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ4_NL> {
|
||||
static constexpr int vdr = VDR_IQ4_NL_Q8_1_MMQ;
|
||||
@@ -3656,6 +3735,7 @@ extern DECL_MMQ_CASE(GGML_TYPE_IQ4_K);
|
||||
extern DECL_MMQ_CASE(GGML_TYPE_IQ5_K);
|
||||
extern DECL_MMQ_CASE(GGML_TYPE_IQ5_KS);
|
||||
extern DECL_MMQ_CASE(GGML_TYPE_IQ6_K);
|
||||
extern DECL_MMQ_CASE(GGML_TYPE_IQ1_S_R4);
|
||||
|
||||
// -------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
@@ -560,6 +560,9 @@ static void ggml_cuda_op_mul_mat_vec_q_impl(ggml_backend_cuda_context & ctx, ggm
|
||||
case GGML_TYPE_IQ5_KS_R4:
|
||||
mul_mat_vec_iq5_ks_r4_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ids_data, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, ne2, nb02, nb12, nb2, ids_nb0, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S_R4:
|
||||
mul_mat_vec_iq1_s_r4_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ids_data, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, ne2, nb02, nb12, nb2, ids_nb0, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
@@ -679,6 +682,7 @@ bool ggml_cuda_mmvq_type_supported(ggml_type src0_type) {
|
||||
case GGML_TYPE_IQ4_KS_R4:
|
||||
case GGML_TYPE_IQ5_K_R4:
|
||||
case GGML_TYPE_IQ5_KS_R4:
|
||||
case GGML_TYPE_IQ1_S_R4:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
|
||||
@@ -0,0 +1,5 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../mmq.cuh"
|
||||
|
||||
DECL_MMQ_CASE(GGML_TYPE_IQ1_S_R4);
|
||||
Reference in New Issue
Block a user